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Abstract

Experimental studies of neuronal culturesin vitro have revealed a wide
variety of spiking network activity ranging from sparse, asynchronous fir-
ing to distinct, network-wide synchronous bursting. However, the functional
mechanisms driving these observed firing patterns is not well understood. In
this work, we have developed anin silico network of cortical neurons based
on known features of similarin vitro networks. The activity from these
simulations is found to closely mimic experimental data. Furthermore, the
strength or degree of network bursting is found to depend on a few parame-
ters: the density of the culture, the type of synaptic connections, and the ratio
of excitatory to inhibitory connections. Network bursting gradually becomes
more prominent as either the density, the fraction of long range connections,
or the fraction of excitatory neurons is increased. Interestingly, typicalval-
ues of parameters result in networks that are at the transition between strong
bursting and sparse firing. Using a measure of network entropy, we show
that networks with typical parameters have maximum information capac-
ity due to the balance between redundancy to reduce noise and variability
for efficient coding. These results have implications for understanding how
information is encoded at the population level as well as for why certain
network structures are ubiquitous in cortical tissue.
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1 Introduction

With the development of multielectrode arrays (MEAs), researchers are able to
record extracellularly from large sets of cultured neuronsin vitro. Typical MEAs
consist of a matrix of very tiny electrodes (around 30µm in diameter, spaced
around 200µmapart) embedded in a two-dimensional grid. Cortical tissue from
animal models, typically rodents, is plated onto the arraysand allowed to grow
and differentiate on the electrodes, and can last for weeks or months at a time
[9]. Neurons quickly form synaptic connections with one another and develop
into fully functioning networks. The electrical activity of these networks is then
recorded extracellularly using the embedded electrodes. These techniques allow
for relatively high spatial and precise temporal resolution while recording from
of a culture, yielding access to the spiking activity of a subset of neurons in the
culture. MEAs have been used to observe and characterize thewide variety of
bursting activity that is present in cortical cultures [12].

Bursting is the most prevalent behavior observed in these culture. Activ-
ity ranges from sporadic, asynchronous firing to periodic, synchronous network
bursts. This network bursting is found to be robust and is observed in multiple ex-
perimental setups [3]. Despite vast experimental data, themechanisms that gov-
ern network burstingin vitro are unclear, in part because all parameters of interest
cannot be precisely controlled. There is experimental evidence to suggest that the
plating density of a culture as well as the culture’s age playan significant role in
determining the amount of synchronization in the network [12]. There is a grow-
ing body of knowledge regarding the structure of such networks. For example,
biological neural systems have been shown to obey the small-world connection
paradigm proposed by Watts and Strogatz [13]. A recent studyby Gerhard et.
al. [5] showed that the topology of cortical cultures shows asmall but significant
small-world structure, and that distance-dependent connectivity can account for
the small-world effect. Other studies have also observed the presence of small-
world structure in neural networks [11, 1].

In order to further understand the biophysical mechanisms behind observed
behavior ofin vitro networks, anin silico model of a typical neuronal culture was
developed, allowing parameters of interest to be varied systematically. The model
simulates a 2D medium of spiking neurons with variable axonal delays, exponen-
tially decaying synapses, and small world connections. In addition, the electrode
interface of the MEA is modeled for direct comparison with experimental data. A
wide variety of activity patterns emerge in the simulationswhich closely mimic
activity seenin vitro. The strength of emergent network bursting, characterized
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by burst rate and periodicity, is explored across the parameter space. In addition,
information theoretic analysis is applied to quantify the ability of a network to
maximally encode a signal in the presence of noise and provide some insight into
the nature of neural coding through the use of bursts. Resultsshow that bursting
is an emergent phenomenon as density, long-rage connections, and the fraction
of excitatory neurons are increased, and that the critical region for when bursting
develops occurs at parameter values typically observed in cultures. Furthermore,
a measure of the information contained in the network shows that information
capacity peaks at the onset of network bursting, thus providing a reason for why
such parameter values are observed.

2 Materials and Methods

2.1 Spiking neuron model

The framework of the model consists of a set ofN interconnected spiking neurons.
To accurately capture the varied behavior present in neuronal populations while
maintaining computational efficiency, the Izhikevich model was used to simulate
the spiking dynamics of each neuron [6]. The Izhikevich model consists of a
fast acting variable describing the membrane voltage (v) and a slowly decaying
membrane reset variable (u), and four dimensionless parameters (a, b, c andd)
allow for tuning of the spiking behavior of the neurons. BRIEFLY EXPLAIN
WHAT YOU FOUND WITH INTEGRATE AND FIRE NEURONS AND WHY
THEY WERE NOT USED HERE.

Each neuron in the network is assigned values for the parametersa throughd
depending on whether the neuron is excitatory or inhibitory. Excitatory neurons
are modeled as typical regular spiking neurons, and inhibitory are modeled as
fast spiking neurons. In addition, a stochastic component to these parameters was
included to encourage varied spiking dynamics throughout the network. For a
detailed description of the model and the data analysis methods described below,
see the appendix.

2.2 Network connections

Connections between neurons are formed via synapses modeledwith a single vari-
able,n, representing the amount of neurotransmitter release at the synapse. The
amount of neurotransmitter decays exponentially, and is released instantaneously
as an action potential reaches the presynaptic terminal. Axonal delays are ran-
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Figure 1: Interactions between three neurons. Neuron a (toptrace) and b (middle
trace) are presynaptic neurons that terminate onto c (bottom trace). Voltage traces
(lines) and spikes (circles) for neurons a, b and c during 0.5s of simulation are
shown. Note that coincidental spikes from a and b are will cause c to fire, and only
occasionally will a spike from one presynaptic neuron but not the other causes c
to fire.

domly chosen from a normal distribution and assigned to eachneuron. In the
model, neurons are treated as points embedded in a two-dimensional medium,
which serves as the surface of the multielectrode array. Figure 1 shows voltage
traces of three simulated Izhikevich neurons at a synapse, with two excitatory
neurons synapsing onto the third.

Neurons are connected according to the small-world paradigm proposed by
Watts and Strogatz [13]. Neurons are initially connected toevery neuron within
some radius threshold, and then randomly reconnected to other neurons across the
network with probabilityp. Note that for small values ofp, the network is ordered
but highly localalized (characterized by a large clustering coefficient and a large
mean path length), while for large values of p the network is largely randomized
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Parameter Description Value
dn Neuron density 250neurons

mm2

p Small-world rewiring probability 0.03
Ne : Ni Ratio of excitatory/inhibitory connections 4:1
σ2

noise Noise variance 1.5
erad MEA electrode radius 25µm
esep MEA electrode separation distance 200µm
dt Simulation time step 0.5ms

dmin−dmax Axonal conduction delay range 2ms−20ms
τsyn Synaptic time constant 2ms

Table 1: Neural network and simulation parameters

(characterized by a small clustering coefficient and short mean path length). A
network is considered “small-world” if it fits between thesetwo regimes, thus if
it has a short mean path length and large clustering coefficient. Figure 2 shows
the effect of this probability on the network. A value ofp = 0.03 was chosen
to obtain a short mean path length and high clustering coefficient. This process
yields sparse synaptic weight distributions which are theninitialized to randomly
chosen weights, drawn from normal distributions. The modelincorporates both
excitatory and inhibitory synapses, with fractions that can be varied.

2.3 Simulations and MEAs

Each single trial consists of generating a newly randomizednetwork with a unique
set of weights, connections, and neuronal parameters. The network is then simu-
lated using random synaptic noise as the only input. In addition to recording the
spike times of all of the individual neurons, the electrode interface of the multi-
electrode arrays is modeled as well. MEAs are modeled with a 7×8 grid of elec-
trodes spaced 200µmapart. Each electrode records spikes from neurons within a
20µmradius of the center of the electrode, and in total they capture a small subset
of the spiking activity of the whole network. For simplicity, it is assumed that the
spike time can be detected at the electrode, but sorting of the contributing neurons
is not performed (NOT SURE IF THIS IS CORRECT).

The model was developed in Matlab (The MathWorks Inc., Natick, MA) using
C++ mex files as the core. This allows for simulation of around 800 neurons in
real time on a 2GHz computer. Table 1 shows a list of parameters used and their
values.
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Figure 2: Small-world network connections. (a) Neurons (dots) are placed in
random locations of a 2D medium, along with the embedded electrodes (circles).
(b) Excitatory (circles) and inhibitory (squares) neuronsshown with connections
(dashed lines) drawn for seven randomly chosen neurons. Note that some con-
nections are long range but the majority lie within a given radius threshold. (c)
Characteristic path length (circles) and clustering coefficient (squares) in networks
as a function of the probability of rewiring,p. A p value of 0.03 was chosen for
a large clustering coefficient and small path length, characteristic of small-world
networks. (d) Histogram of the log of the distance of synaptic connections. Most
connections are short (10−2mmor less) though some are long range (around 1mm).
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2.4 Data analysis

In order to measure the degree or amount of network synchronization or bursting
present in a given simulation, two different metrics were used: the maximum AC
component (MAC) and the bursts per minute count (BPM). In orderto compute
these estimates acrossN different spike trains for a network withN neurons, all of
the spikes are binned using discrete time windows to obtain atime-varying signal
corresponding to the average firing rate of the entire network at a given point in
time. This signal is then normalized by the mean firing rate and smoothed by
convolving with a Gaussian kernel. The filtered signal is defined as the global
firing rate, or GFR. The GFR is a time varying signal that represents the firing rate
of the network over time.

For networks that display prominent synchronized bursting, this signal has
sharp peaks during the bursts as many neurons in the network are firing in a short
time window. To quantify the rate of bursting independent ofwhether it is syn-
chronous or not, the GFR signal is used. A peak detection algorithm is run on
the GFR and the number of peaks found per minute is computed and defined as
the bursts per minute (BPM) count. The more prominent a network burst is, the
sharper the peak will be in the GFR signal, and the more likelyit is to be regis-
tered in the BPM count. To compute the MAC parameter, frequency analysis is
used. The Fourier spectrum of the GFR signal is analyzed by computing the fast
Fourier transform (FFT). The FFT is then normalized by setting the DC (zero fre-
quency) component of the FFT to 1. The amplitude of the maximum AC (nonzero
frequency) component of this signal is defined as the maximumAC (MAC) pa-
rameter. A high value for the MAC parameter corresponds to a high degree of
synchrony in the network, as there is a sharp peak in the normalized FFT. The fre-
quency at which the maximum value occurs indicates the fundamental frequency
of network bursting. The MAC serves as a measure of the periodicity of network
bursting. Figure 3 shows these metrics applied to example sets of spike trains.

2.4.1 PCA and Information theory

Previous work [4] has used dimensional reduction techniques to project firing
rates onto low-dimensional variables that allow for easiervisualization of neural
trajectories. The general idea is that redundancy is encoded in the firing rates of
neurons, so using a PCA-like method to transform the firing rates onto a basis that
better captures the variance in the data allows us to ignore the redundant variables.
To extract neural trajectories, the firing rates for individual neurons were first
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determined by binning spike counts into 10ms time windows. The square root
of the rates was taken (to compress the range) and then smoothed by convolving
the signals with a Gaussian kernel. PCA was run on these smoothed firing rate
trajectories, and the top three components were extracted to serve as the low-
dimensional projection of the neural state.

The PCA method described above assumes that the information in the network

Figure 3: Example of metrics used to characterize degree of bursting. Metrics
shown for a low density network (left, 200 neurons/mm2) and a high density net-
work (right, 400 neurons/mm2). Top: Rasters of the spiking activity of all neurons
in the network for 5s of simulation. Inhibitory neurons are located at the top, and
fire more rapidly. Middle: Global firing rate (GFR) signal along with bursts de-
tected through peak detection using the GFR signal. Bottom: Fourier transform of
the GFR shown, normalized by the DC component. The higher density network
has a larger maximum AC component of the GFR.
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is described by the instantaneous firing rate. In order to more rigorously quantify
the amount of information carried within a given network, weturn to information
theory. Yu et. al. [14] proposed a Fourier-based method of computing the infor-
mation delivery rate from a population of neurons which we use here to estimate
the information carrying capacity of a given network. It consists of treating each
spike train as a series of delta functions, where each is shifted in time to the loca-
tion of a given spike. The fourier transform of a set of such delta functions is a sum
of sines and cosines whose frequency depend on the timing of the spike. These
fourier coefficients allow for estimation of the entropy at each frequency in the
network. With enough data, the set of fourier coefficients ata given frequency ap-
proaches a normal distribution according to the central limit theorem. The entropy
of a normal distribution is then computed given the varianceof that distribution.
The total entropy of the network is given by summing across all frequencies.

If we have a network of multiple neurons, then the distribution of fourier co-
efficients is a multivariate gaussian and is characterized by its covariance matrix.
From the covariance, the entropy across frequency and sum across frequency is
estimated. For an input that is random noise, this approach gives an estimate of
the total entropy of a system [14]. For a repeated input, however, the computa-
tion described above yields just the noise entropy. To estimate the information of
the network, a simulation was run with random noise and another was run with
a repeated stimulus. The difference in entropy between the two was used as the
measure of the information of the network.

3 Results

3.1 Qualitative Behavior

Figure 4 shows examples of activity from the simulations: the behavior of all neu-
rons (left) and those that are recorded at the simulated electrodes (right). Note the
large variability in activity (here shown across differentnetwork densities), indi-
cating that the transition from spare asynchronous activity to network bursting is
gradual. Spatial subsampling of MEA electrodes seems to capture the qualitative
behavior but fails to capture a large amount of the activity in the network. Activity
patterns are robust with respect to the random initialization of the network, that
is, the observed bursting occurs independently of the initial connections, weights,
and neuronal properties of the network.
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Figure 4: Network activity and electrode recordings from simulation. Rasters of
both the spiking activity of all neurons (a) and that recorded by the simulated
MEA (b) across 5s of simulation. Three different networks are shown, one of a
low density (top), medium density (middle), and high density (low). The high
firing rates for the upper neuron indices correspond to the fast spiking inhibitory
neurons, which have different dynamics than the excitatoryneurons. Network
bursting gradually becomes more pronounced as density is increased.
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Figure 5: FFT of GFR signal across different parameters. Images show emergence
of synchronous activity as the (a) density, (b)small-worldrewiring probabilityp,
and (c) % of excitatory connections are varied. Largest frequency component
emerges for all three parameters around just over 5Hz, corresponding to the fre-
quency of network bursting. The higher values observed in the FFT are harmonics
of this 5Hz bursting.

3.2 Variation across parameter space

The effect of three different parameters (density, connection type, and ratio of ex-
citatory/inhibitory connections) on network activity wasstudied. For each param-
eter, a range of different values was tested (densities from100-600 neurons/mm2,
p values from 0.001 to 1, and the fraction of excitatory neurons from 0.5 to 1).
Each parameter affects the network structure differently:increasing the density
corresponds to an increase in the number of connections eachneuron makes, as
there are more neurons within the local threshold to form synapses with. Increas-
ing the value ofp only affects how the connections are organized: either local and
structured (smallp) or long-range and disorganized (largep). Finally, increasing
the fraction of excitatory neurons affects the amounts of inhibitory and excitatory
neurotransmitter release in the network. Each range was tested by generating a
new randomized network for each parameter value and simulating with random
noise for 5 seconds.

Figure 5 shows the fourier transform of the global firing rate(GFR) signal
across parameters. Note that as each parameter is increased, highly periodic struc-
ture emerges centered around a fundamental frequency of just over 5Hz. This
frequency corresponds to the bursting rate of around five times per second, which
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is consistent with observed bursting frequency in cultures. The maximum AC
component (MAC) and number of bursts were also computed across the range of
parameters. These results are summarized in Figure 6. The vertical grey bar in-
dicates the typical range of the parameter of interest (Table 1). The general trend
appears to be that as the network gets denser (more connected) and as those con-
nections are more likely to reach out across the network, there is an increase in
synchronous network activity. Perhaps surprisingly, typical networks (grey bar)
with respect to all three parameters tend to be centered at the middle of the transi-
tion between sparse firing and synchronous bursting.

3.3 Principal components analysis

Principal components of firing rates were computed to bettervisualize the neural
state. Example neural trajectories are shown in Figure 7 fordifferent values of
density and ofp. Note that as the degree of synchrony in the network increases
(for increasing values ofp and density) the trajectory projected onto the first prin-
cipal component becomes increasingly periodic. It is much easier to characterize
the synchrony in the system by looking at the projection of the first principal
component rather than of the global activity. The motivation behind applying di-
mensionality reduction technqiues to neural data is to eliminate the redundancy
inherent to the neural code and to extract out interesting variables.

Plots of the projection of neural state onto the top three principal components
are shown in Figure 8. Here, each point in the space can be thought of as a
distinct neural state. The trajectory through the space across time represents the
evolution of that neural state. For asynchronous networks (top), the trajectories
appear random or chaotic. The neural state is unpredictableusing just a three
dimensional projection of the original data space. However, for networks that
have syncrhonous network bursting (bottom), the trajectories appear to follow
some sort of limit cycle or other attractor as they evolve through the space. The
evolution of the attractor is again gradual across different values of density orp,
but once it develops it remains the same across newly initialized networks with
similar properties.

These results also make sense when we look at how much variance is captured
by the first principal component across the parameter space,shown in Figure 9.
For large values ofp or high densities, there is a large amount of redundancy in
the system, and the neural state can be approximated with just a few variables.
This seems rather inefficient, as a large number of neurons are encoding the same
information.
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3.4 Information theory

Figure 6 shows that for the three parameters we tested, biological neuronal net-
works tend to organize at the transition between asynchronous firing and distinct
network bursting. From an information theoretic perspective, a synchronous net-
work is highly redundant since each neuron is not encoding new information.
However, such networks are robust with respect to noise in the network. Conse-

Figure 6: Analysis of bursting metrics across parameters. The maximum AC
parameter (left) and the bursts per minute count (right) areshown for different
values of density (top), small-world parameter (middle), and fraction of excitatory
synapses (bottom). For all three parameters, both the maximum AC component of
the GFR and the number of bursts per minute are found to increase along with the
parameter, indicative of an emergence in the strength and synchrony of network
bursting. Grey bars indicate typical values of the parameters from networks in
culture.
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Figure 7: Neural trajectories across time. First (red), second (blue), and third
(green) principal components of the firings rates are shown across time for differ-
ent values of density (a) andp (b).

quently, we hypothesized that these critical regions allowthe network to represent
a large amount of information with enough redundancy such that the information
capacity of the network is maximized even in the presence of noise. To test this,
we estimated the information capacity of simulated networks of various densities,
connection types, and inhibitory/excitatory ratios. Figure ??? shows the informa-
tion of networks of differing parameters. The information capacity peaks around
the typical parameter values seen in neural system, supporting the hypothesis that
networks attempt to self-maximize the amount of information that they can accu-
rately carry in the presence of random background noise.

4 Discussion

These results help to uncover the nature of network burstingobserved inin vitro
cultures. Bursting appears to be an emergent property of networks with both
excitatory and inhibitory connections. Simulations qualitatively match data ob-
tained from cultures grown on microelectrode arrays, and are able to mimic the
wide repertoire of activity seen experimentally. The modelwas developed using
a bottom-up approach, replicating both the connectivity and intrinsic properties
observed in in vitro cultures. Random synaptic noise appearsto be a sufficient
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Figure 8: Trajectories through state space. Neural trajectories (black lines) pro-
jected onto the first three principal components shown for different densities (a)
and values ofp (b). Initial states are marked with a red dot.
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Figure 9: Fraction of the variance captured by the first principal component across
different values of density (a) and small-world rewiring probability p (b).

input for driving these cultures towards self-synchronization.

4.1 Bursting

The dynamics of network bursting are explored across the parameter space, against
both the density of the network and the type of connections (realized by the small
world rewiring probabilityp). The strength and periodicity of bursting is found
to become more prominent as the density increases or as the network becomes
more random and disorganized. This gradation in strength ofbursting has been
observed experimentally by Wagenaar et al., and has qualitatively been shown to
depend on plating density [12]. Ideally, the activity from these simulations will in
turn make predictions regarding the dynamics of cultured neuronal networks. Cer-
tain network properties (neuronal dynamics, individual connections and weights,
neuron locations and type) are randomized at the beginning of a simulation, in-
dicating that these individual parameters do not affect global network behavior.
Our findings show that network bursting is a connection-dependent, large-scale
phenomenon and is independent of the differences in individual neurons and their
connections.
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Projecting network firing rates onto an optimal subspace using principal com-
ponents analysis yields more insight into the dynamics of network bursting. As
density is increased, or as the network connections becomesmore long-range, the
amount of variance captured by the first principal componentincreases markedly
from as little as 10% to as much at 95%. This implies that networks with a strong
degree of bursting are highly redundant such that the behavior of all of the neurons
can be captured with only a few. Trajectories of the neural state through the phase
space of the top three components show that the dynamics are chaotic and unpre-
dictable for sparse or ordered cultures, yet for dense or random cultures, distinct
limit cycle attractors arise. These attractors are robust with respect to random
initialization of different networks, indicating that their dynamics are capturing
the essential activity of the network. Persistent dynamical attractors have already
been observed in experimental cultures [12]. Interestingly, the trajectories for
dense networks are different from those of highly disorganized networks, which
could serve as a potential marker for identifying experimental network states. The
concept of thinking about network dynamics as a low dimensional projection of
the higher order system proves to be very useful in understanding the behavior of
the model.

4.2 Neural Code and Self-Organized Criticality

These observations from studying the principal componentsof the data allow us
to speculate on issues of neural coding. From an informationtheory point of view,
network bursting seems to be a redundant way of coding information when large
numbers of neurons are used to represent information that could be carried with
just one or two. This is supported by Figure xx. However, there is a tradeoff be-
tween capacity and robustness, as these dense networks are relatively unscathed
with respect to noise or the removal of a subset of neurons. Thus, one might ex-
pect biological neural networks to remain in between these two extremes, taking
advantage of robustness in the system while still utilizingthe capacity efficiently.
Interestingly, the simulations seem to support this idea; typical biological net-
works have densities of around 200-250 neurons/mm2 and have characteristically
small-world connections (corresponding to ap value of around 0.03). Note that
for these values, the MAC parameter, bursts per minute count, and amount of
variance captured through the first principal component allshow a balance be-
tween too much order (strong bursting) and too much chaos (nobursting). These
findings support the concept of self-organized criticality, originally proposed by
Bak and colleagues [2] in which biological complexity arisesfrom systems that
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self-organize around critical transition points in the system’s dynamics. Although
speculative, the model results for typical parameter values reveals a network that
teeters between chaotic asynchronous behavior and distinct bursts.

Why are these questions regarding network bursting important? Ideally, stuy-
ding the dynamical properties of these simulated networks will give us insight
into the dynamics of neuronal circuits in the brain. For example, although highly
synchronous behavior is observedin vitro, it is only observedin vivo in patha-
logical states, such as during epileptic seizures. Assuming these seizures consist
of the network getting stuck at some attractor might lead to the discovery of new
electrical stimulation techniques that could bump the network into a new basin of
attraction. These ideas could develop into new forms of treatment for those who
suffer from epilepsy. In addition, there are a number of engineering and control
systems that look to utilize the high-dimensional dynamical processing that occurs
in such networks, and understanding the mechanisms behind these neural systems
could serve as the foundation for the development of new approaches for optimal
control that more closely mimic those seen in biological systems.

5 Appendix

5.1 Description of Model

In developing the model, the general approach consisted of simulating a medium
of spiking neurons, constraining the parameters of the model using what is known
biologically about cortical cultures, and then comparing simulated activity to ex-
perimental data.

5.1.1 Neuron Model

The neuron model used is that proposed by Izhikevich [6], which is a type of
quadratic integrate-and-fire neuron model. This model is both computationally
efficient and can implement a wide repertoire of neuronal spiking dynamics [7].
The model consists of a fast acting variable describing the membrane voltage
(v) and a slowly decaying membrane reset variable (u) defined by the following
equations:

dv
dt

= 0.04v2+5v+140−u+ I (1)

du
dt

= a(bv−u) (2)
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With the after-spike reset conditions:

if v≥+30mV, then

{

v← c
u← u+d

The parametersa, b, c, andd are dimensionless variables that are chosen to give
the neurons various spiking dynamics, and the currentI is composed of a noise
component and the synaptic current due to neurotransmitterrelease from presy-
naptic neurons. Varying the dimensionless parametersa throughd allows for
tuning of the spiking behavior of the neurons.

5.1.2 Synaptic Release

Neurons form connections at synapses which are modeled by a simple exponen-
tially decaying neurotransmitter (n) release, defined by the following:

dn
dt

=−
n
τn

(3)

This model is efficient in capturing the decay in neurotransmitter at the synapse
after a spike. Axonal delays, which have been found to have a wide range of dis-
tinct values in cortical neurons, are also incorporated into the model as randomly
chosen values drawn uniformly from the range of 1msto 20ms. Specific timings
of presynaptic spikes are required to force a postsynaptic spike, otherwise they
potentiate the postsynaptic neuron.

5.1.3 Small World Connections

Connections between neurons are chosen according to the small world paradigm
[13]. Neurons are initially wired to every neuron within some radius thresholdσ,
and then randomly rewired to other neurons across the network with probabilityp.
A value of p= 0.03 was chosen to obtain a short mean path length and high clus-
tering coefficient. This process yields sparse synaptic weight distributions which
are then initialized to randomly chosen weights, drawn fromnormal distributions.
Typically, 80% of the synapses are chosen to be excitatory and 20% are chosen to
be inhibitory. This ratio is pervasive through cortical tissue [REFERENCE].

5.1.4 Microelectrode Arrays

Although computer simulation monitors the activity of all the neurons in the net-
work, MEA electrodes would only capture a subset of the activity. In order to
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mimic extracellular recordings from the network, the electrode interface was also
modeled. A given electrode records spikes from all neurons overlapping the elec-
trode. The electrode activity can be thought of as a spatial subsampling of the
activity of the underlying network.

5.2 Data metrics

In order to analyze the bursting behavior observed in the networks, two metrics
are used. To compute them, the network spikes are summed intodiscrete time bins
and then smoothed to obtain a time-varying signal representing the average firing
rate of the network, called the global firing rate (GFR). The first metric consists
of using a peak detection algorithm to determine the number of peaks in the GFR
signal per minute, which is defined as the number of bursts perminute (BPM).
The second metric is simply the value of the maximum AC component (MAC)
of the fourier transform (computed via the FFT) of the GFR. TheMAC is meant
to be a measure of the amount of periodic bursting in the network - a large AC
component in the FFT is indicative of a high degree of periodicity.

5.2.1 Principal Components Analysis

Previous work [4] has used dimensional reduction techniques to project firing
rates onto low-dimensional variables that allow for easiervisualization of neural
trajectories. The general idea is that redundancy is encoded in the firing rates of
neurons, so using a PCA-like method to transform the firing rates onto a basis that
better captures the variance in the data allows us to ignore the redundant variables.
To extract neural trajectories, the firing rates for individual neurons were first
determined by binning spike counts into 10ms time windows. The square root
of the rates was taken (to compress the range) and then smoothed by convolving
the signals with a Gaussian kernel. PCA was run on these smoothed firing rate
trajectories, and the top three components were extracted to serve as the low-
dimensional projection of the neural state.

5.2.2 Information estimates

Information capacity was estimated using the method described by Yu et. al.[14].
It consists of treating each spike train as a series ofM delta functions, where each
is shifted to the location of a given spike andM is the total number of spikes in
the spike train.
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s(t) =
M

∑
i=1

δ(t− ti) (4)

The fourier transform of a set of such delta functions is a sumof sines and
cosines whose frequency depend on the timing of the delta function.

F [s(t)](k) =
M

∑
i=1

e−2πikti = sin(2πkti)− i cos(2πkti) (5)

These fourier coefficients allow for estimation of the entropy at each frequency
in the network. With enough data, the set of fourier coefficients at a given fre-
quency approaches a normal distribution according to the central limit theorem.
The entropy of a normal distribution is easily computed given the variance of that
distribution.

H(σ2) =
1
2

log2πeσ2 (6)

Thus, the variance of the fourier coefficients at a given frequency allow us to
estimate the entropy of the network at a given frequency. Thetotal entropy of
the network is given by summing across all frequencies. Thisends up giving a
general estimate of the total entropy of a system, if the input is random noise.
However, given a repeated stimulus, the computation described above yields just
the noise entropy. To estimate the information of the network, a simulation was
run with random noise and another was run with a repeated stimulus. The different
in entropy between the two was used as the measure of the information of the
network.
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