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Abstract

Experimental studies of neuronal cultuiesvitro have revealed a wide
variety of spiking network activity ranging from sparse, asynchrenfiu
ing to distinct, network-wide synchronous bursting. However, the funatio
mechanisms driving these observed firing patterns is not well underdtood
this work, we have developed @msilico network of cortical neurons based
on known features of similain vitro networks. The activity from these
simulations is found to closely mimic experimental data. Furthermore, the
strength or degree of network bursting is found to depend on a fewngara
ters: the density of the culture, the type of synaptic connections, andithe ra
of excitatory to inhibitory connections. Network bursting gradually becomes
more prominent as either the density, the fraction of long range connections
or the fraction of excitatory neurons is increased. Interestingly, typadal
ues of parameters result in networks that are at the transition betweeg stro
bursting and sparse firing. Using a measure of network entropy, we sho
that networks with typical parameters have maximum information capac-
ity due to the balance between redundancy to reduce noise and variability
for efficient coding. These results have implications for understanding h
information is encoded at the population level as well as for why certain
network structures are ubiquitous in cortical tissue.
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1 Introduction

With the development of multielectrode arrays (MEAS), egsbers are able to
record extracellularly from large sets of cultured neurongitro. Typical MEAs
consist of a matrix of very tiny electrodes (arounduB80in diameter, spaced
around 20im apart) embedded in a two-dimensional grid. Cortical tissamnf
animal models, typically rodents, is plated onto the ar@ayd allowed to grow
and differentiate on the electrodes, and can last for weeksamths at a time
[9]. Neurons quickly form synaptic connections with one tweo and develop
into fully functioning networks. The electrical activityf these networks is then
recorded extracellularly using the embedded electrodbssd techniques allow
for relatively high spatial and precise temporal resolutighile recording from
of a culture, yielding access to the spiking activity of asetbof neurons in the
culture. MEAs have been used to observe and characteriz@itieevariety of
bursting activity that is present in cortical cultures [12]

Bursting is the most prevalent behavior observed in theseireul Activ-
ity ranges from sporadic, asynchronous firing to periodyochironous network
bursts. This network bursting is found to be robust and ieokel in multiple ex-
perimental setups [3]. Despite vast experimental datanthehanisms that gov-
ern network burstingn vitro are unclear, in part because all parameters of interest
cannot be precisely controlled. There is experimentaleswé to suggest that the
plating density of a culture as well as the culture’s age plaignificant role in
determining the amount of synchronization in the netwo.[There is a grow-
ing body of knowledge regarding the structure of such netaiofFor example,
biological neural systems have been shown to obey the smoaltt connection
paradigm proposed by Watts and Strogatz [13]. A recent shyd¢erhard et.
al. [5] showed that the topology of cortical cultures shovesrall but significant
small-world structure, and that distance-dependent adivity can account for
the small-world effect. Other studies have also observedtiesence of small-
world structure in neural networks [11, 1].

In order to further understand the biophysical mechanisefsna observed
behavior ofin vitro networks, arn silico model of a typical neuronal culture was
developed, allowing parameters of interest to be varietksyatically. The model
simulates a 2D medium of spiking neurons with variable akdekays, exponen-
tially decaying synapses, and small world connectionsdthteon, the electrode
interface of the MEA is modeled for direct comparison witlpexmental data. A
wide variety of activity patterns emerge in the simulatiovisch closely mimic
activity seenin vitro. The strength of emergent network bursting, characterized
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by burst rate and periodicity, is explored across the pat@nspace. In addition,
information theoretic analysis is applied to quantify thelity of a network to
maximally encode a signal in the presence of noise and pe@odhe insight into
the nature of neural coding through the use of bursts. Restit that bursting
is an emergent phenomenon as density, long-rage conngctiad the fraction
of excitatory neurons are increased, and that the critegabn for when bursting
develops occurs at parameter values typically observedliares. Furthermore,
a measure of the information contained in the network shows information
capacity peaks at the onset of network bursting, thus piroyid reason for why
such parameter values are observed.

2 Materialsand Methods

2.1 Spiking neuron model

The framework of the model consists of a seNahterconnected spiking neurons.
To accurately capture the varied behavior present in nalifmopulations while
maintaining computational efficiency, the Izhikevich mbdas used to simulate
the spiking dynamics of each neuron [6]. The Izhikevich niammsists of a
fast acting variable describing the membrane voltagea(d a slowly decaying
membrane reset variable)( and four dimensionless parameteaslf, c andd)
allow for tuning of the spiking behavior of the neurons. BRIEFEXPLAIN
WHAT YOU FOUND WITH INTEGRATE AND FIRE NEURONS AND WHY
THEY WERE NOT USED HERE.

Each neuron in the network is assigned values for the paemssethroughd
depending on whether the neuron is excitatory or inhibit&ycitatory neurons
are modeled as typical regular spiking neurons, and irdnpiare modeled as
fast spiking neurons. In addition, a stochastic comporeetitdse parameters was
included to encourage varied spiking dynamics throughletrtetwork. For a
detailed description of the model and the data analysis adstdescribed below,
see the appendix.

2.2 Network connections

Connections between neurons are formed via synapses moedtiexdsingle vari-

able,n, representing the amount of neurotransmitter releaseeagythapse. The
amount of neurotransmitter decays exponentially, andéssed instantaneously
as an action potential reaches the presynaptic terminabnalxdelays are ran-
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Figure 1: Interactions between three neurons. Neuron argop) and b (middle

trace) are presynaptic neurons that terminate onto c (indttace). Voltage traces
(lines) and spikes (circles) for neurons a, b and c¢ during 0fSsimulation are

shown. Note that coincidental spikes from a and b are wilkeavto fire, and only

occasionally will a spike from one presynaptic neuron butthe other causes c
to fire.

domly chosen from a normal distribution and assigned to eethron. In the
model, neurons are treated as points embedded in a two-siomath medium,
which serves as the surface of the multielectrode arrayurEi@ shows voltage
traces of three simulated Izhikevich neurons at a synapih,two excitatory
neurons synapsing onto the third.

Neurons are connected according to the small-world panmagigpposed by
Watts and Strogatz [13]. Neurons are initially connectedvery neuron within
some radius threshold, and then randomly reconnected¢o o&urons across the
network with probabilityp. Note that for small values gd, the network is ordered
but highly localalized (characterized by a large clusggoefficient and a large
mean path length), while for large values of p the networlaigely randomized
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Parameter | Description | Value
dn Neuron density 250%3
p Small-world rewiring probability 0.03
Ne : N; Ratio of excitatory/inhibitory connections  4:1
020ise Noise variance 1.5
€rad MEA electrode radius 25um
€sep MEA electrode separation distance 20Qum
dt Simulation time step 0.5ms
Omin — dmax Axonal conduction delay range 2ms— 20ms
Tsyn Synaptic time constant 2ms

Table 1. Neural network and simulation parameters

(characterized by a small clustering coefficient and sh@ampath length). A
network is considered “small-world” if it fits between thase regimes, thus if
it has a short mean path length and large clustering coefticigigure 2 shows
the effect of this probability on the network. A value pf= 0.03 was chosen
to obtain a short mean path length and high clustering casffic This process
yields sparse synaptic weight distributions which are inéralized to randomly
chosen weights, drawn from normal distributions. The madebrporates both
excitatory and inhibitory synapses, with fractions that ba varied.

2.3 Simulationsand MEASs

Each single trial consists of generating a newly randomiegdork with a unique
set of weights, connections, and neuronal parameters. derk is then simu-
lated using random synaptic noise as the only input. In aadto recording the
spike times of all of the individual neurons, the electroateiface of the multi-
electrode arrays is modeled as well. MEAs are modeled witlx 8 grid of elec-
trodes spaced 2@@napart. Each electrode records spikes from neurons within a
20umradius of the center of the electrode, and in total they capismall subset
of the spiking activity of the whole network. For simplicityis assumed that the
spike time can be detected at the electrode, but sortingeafdhtributing neurons
is not performed (NOT SURE IF THIS IS CORRECT).

The model was developed in Matlab (The MathWorks Inc., MatitA) using
C++ nex files as the core. This allows for simulation of around 800raes in
real time on a 2GHz computer. Table 1 shows a list of parametsed and their
values.
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Figure 2: Small-world network connections. (a) Neuronstgylare placed in
random locations of a 2D medium, along with the embeddedreldes (circles).
(b) Excitatory (circles) and inhibitory (squares) neurghswn with connections
(dashed lines) drawn for seven randomly chosen neuronse fdat some con-
nections are long range but the majority lie within a givediua threshold. (c)
Characteristic path length (circles) and clustering caeffi(squares) in networks
as a function of the probability of rewiringh. A p value of 0.03 was chosen for
a large clustering coefficient and small path length, charestic of small-world
networks. (d) Histogram of the log of the distance of syr@aptinnections. Most
connections are short (18mmor less) though some are long range (aroumatil
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24 Dataanalysis

In order to measure the degree or amount of network synctaton or bursting
present in a given simulation, two different metrics weredighe maximum AC
component (MAC) and the bursts per minute count (BPM). In otdexompute
these estimates acrasdifferent spike trains for a network witd neurons, all of
the spikes are binned using discrete time windows to obtimexvarying signal
corresponding to the average firing rate of the entire nétvabr given point in
time. This signal is then normalized by the mean firing raté smoothed by
convolving with a Gaussian kernel. The filtered signal isrdefias the global
firing rate, or GFR. The GFR is a time varying signal that repnésthe firing rate
of the network over time.

For networks that display prominent synchronized burstthg signal has
sharp peaks during the bursts as many neurons in the netwefkiag in a short
time window. To quantify the rate of bursting independenwbiether it is syn-
chronous or not, the GFR signal is used. A peak detectiorritigo is run on
the GFR and the number of peaks found per minute is compuidieimed as
the bursts per minute (BPM) count. The more prominent a nétworst is, the
sharper the peak will be in the GFR signal, and the more likak/to be regis-
tered in the BPM count. To compute the MAC parameter, frequanalysis is
used. The Fourier spectrum of the GFR signal is analyzed mpating the fast
Fourier transform (FFT). The FFT is then normalized by sgtthe DC (zero fre-
guency) component of the FFT to 1. The amplitude of the marirAC (nonzero
frequency) component of this signal is defined as the maxilA@{MAC) pa-
rameter. A high value for the MAC parameter corresponds tmh tegree of
synchrony in the network, as there is a sharp peak in the limeda=FT. The fre-
qguency at which the maximum value occurs indicates the foneddal frequency
of network bursting. The MAC serves as a measure of the peripaf network
bursting. Figure 3 shows these metrics applied to exampdeo$apike trains.

24.1 PCA and Information theory

Previous work [4] has used dimensional reduction techrigoeproject firing
rates onto low-dimensional variables that allow for eagisualization of neural
trajectories. The general idea is that redundancy is encidihe firing rates of
neurons, so using a PCA-like method to transform the firingsrahto a basis that
better captures the variance in the data allows us to igherssdundant variables.
To extract neural trajectories, the firing rates for indiatl neurons were first



Culture simulations of neuronal cultures 8

determined by binning spike counts intom®time windows. The square root
of the rates was taken (to compress the range) and then sedoloyhconvolving
the signals with a Gaussian kernel. PCA was run on these seuwbditing rate
trajectories, and the top three components were extraotsgrive as the low-

dimensional projection of the neural state.
The PCA method described above assumes that the informatiba network

2

Density = 200 neurons/mm> Density = 400 neurons/mm

Neuron Index
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Figure 3: Example of metrics used to characterize degreeaustihg. Metrics
shown for a low density network (left, 200 neurons/fAmnd a high density net-
work (right, 400 neurons/mf). Top: Rasters of the spiking activity of all neurons
in the network for 5s of simulation. Inhibitory neurons amedted at the top, and
fire more rapidly. Middle: Global firing rate (GFR) signal atpwith bursts de-
tected through peak detection using the GFR signal. Bottauri€ér transform of
the GFR shown, normalized by the DC component. The highesiyenetwork
has a larger maximum AC component of the GFR.



Culture simulations of neuronal cultures 9

is described by the instantaneous firing rate. In order teemgorously quantify
the amount of information carried within a given network, twen to information
theory. Yu et. al. [14] proposed a Fourier-based method ofpding the infor-
mation delivery rate from a population of neurons which we ksre to estimate
the information carrying capacity of a given network. It s@ts of treating each
spike train as a series of delta functions, where each iteshiifi time to the loca-
tion of a given spike. The fourier transform of a set of sudted@nctions is a sum
of sines and cosines whose frequency depend on the timifgeddgdike. These
fourier coefficients allow for estimation of the entropy atck frequency in the
network. With enough data, the set of fourier coefficients gitven frequency ap-
proaches a normal distribution according to the centrat lineorem. The entropy
of a normal distribution is then computed given the variaoficthat distribution.
The total entropy of the network is given by summing acrokBeduencies.

If we have a network of multiple neurons, then the distriaitof fourier co-
efficients is a multivariate gaussian and is characterizeitslcovariance matrix.
From the covariance, the entropy across frequency and stossafrequency is
estimated. For an input that is random noise, this approa@s gn estimate of
the total entropy of a system [14]. For a repeated input, kewehe computa-
tion described above yields just the noise entropy. To edérthe information of
the network, a simulation was run with random noise and atoilas run with
a repeated stimulus. The difference in entropy betweenvibemas used as the
measure of the information of the network.

3 Reaults

3.1 Qualitative Behavior

Figure 4 shows examples of activity from the simulations: iehavior of all neu-
rons (left) and those that are recorded at the simulatetretis (right). Note the
large variability in activity (here shown across differemtwork densities), indi-
cating that the transition from spare asynchronous agtiginetwork bursting is
gradual. Spatial subsampling of MEA electrodes seems tumafhe qualitative
behavior but fails to capture a large amount of the activitthe network. Activity

patterns are robust with respect to the random initialiratf the network, that
is, the observed bursting occurs independently of thealrebnnections, weights,
and neuronal properties of the network.
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Figure 4: Network activity and electrode recordings fromgliation. Rasters of
both the spiking activity of all neurons (a) and that recdrdy the simulated
MEA (b) across S of simulation. Three different networks are shown, one of a
low density (top), medium density (middle), and high dgngibw). The high
firing rates for the upper neuron indices correspond to teesjaiking inhibitory
neurons, which have different dynamics than the excitat@myrons. Network
bursting gradually becomes more pronounced as densitgriedased.
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Figure 5: FFT of GFR signal across different parametersgbaahow emergence
of synchronous activity as the (a) density, (b)small-wagdiring probability p,
and (c) % of excitatory connections are varied. Largestueegy component
emerges for all three parameters around just over 5Hz, sjworaling to the fre-
guency of network bursting. The higher values observedar-fT are harmonics
of this 5Hz bursting.

3.2 Variation across parameter space

The effect of three different parameters (density, conaedype, and ratio of ex-
citatory/inhibitory connections) on network activity wstsidied. For each param-
eter, a range of different values was tested (densities #0®600 neurons/mfn

p values from 0.001 to 1, and the fraction of excitatory nearsom 0.5 to 1).
Each parameter affects the network structure differentigreasing the density
corresponds to an increase in the number of connectionsreacbn makes, as
there are more neurons within the local threshold to formapges with. Increas-
ing the value ofp only affects how the connections are organized: eithell koa
structured (smalp) or long-range and disorganized (large Finally, increasing
the fraction of excitatory neurons affects the amounts bitimory and excitatory
neurotransmitter release in the network. Each range wésdtéy generating a
new randomized network for each parameter value and simglatith random
noise for 5 seconds.

Figure 5 shows the fourier transform of the global firing ré@~R) signal
across parameters. Note that as each parameter is incraagdy periodic struc-
ture emerges centered around a fundamental frequency tobyes 5Hz. This
frequency corresponds to the bursting rate of around fivegiper second, which
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is consistent with observed bursting frequency in culturése maximum AC
component (MAC) and number of bursts were also computed sithesrange of
parameters. These results are summarized in Figure 6. Ttieavgrey bar in-
dicates the typical range of the parameter of interest €rapl The general trend
appears to be that as the network gets denser (more conpanteds those con-
nections are more likely to reach out across the networkettsean increase in
synchronous network activity. Perhaps surprisingly, agpbnetworks (grey bar)
with respect to all three parameters tend to be centeree atitfdle of the transi-
tion between sparse firing and synchronous bursting.

3.3 Principal components analysis

Principal components of firing rates were computed to betseralize the neural
state. Example neural trajectories are shown in Figure difeerent values of
density and ofp. Note that as the degree of synchrony in the network inceease
(for increasing values g and density) the trajectory projected onto the first prin-
cipal component becomes increasingly periodic. It is mwagiex to characterize
the synchrony in the system by looking at the projection &f finst principal
component rather than of the global activity. The motivati@hind applying di-
mensionality reduction techngiues to neural data is toielte the redundancy
inherent to the neural code and to extract out interestingvizs.

Plots of the projection of neural state onto the top threegal components
are shown in Figure 8. Here, each point in the space can bglhai as a
distinct neural state. The trajectory through the spacesadime represents the
evolution of that neural state. For asynchronous netwdiks) (the trajectories
appear random or chaotic. The neural state is unpredicteddhg just a three
dimensional projection of the original data space. Howefa@r networks that
have syncrhonous network bursting (bottom), the trajezsoappear to follow
some sort of limit cycle or other attractor as they evolvetgh the space. The
evolution of the attractor is again gradual across diffevatues of density op,
but once it develops it remains the same across newly izg@lnetworks with
similar properties.

These results also make sense when we look at how much varsacaptured
by the first principal component across the parameter sghosyn in Figure 9.
For large values op or high densities, there is a large amount of redundancy in
the system, and the neural state can be approximated witla jigsv variables.
This seems rather inefficient, as a large number of neur@nsratoding the same
information.
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3.4 Information theory

Figure 6 shows that for the three parameters we tested,didalloneuronal net-
works tend to organize at the transition between asyncluofiong and distinct
network bursting. From an information theoretic perspegta synchronous net-
work is highly redundant since each neuron is not encodirvg inéormation.
However, such networks are robust with respect to noiseem#iwork. Conse-
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Figure 6: Analysis of bursting metrics across parameterse maximum AC
parameter (left) and the bursts per minute count (right)stu@vn for different
values of density (top), small-world parameter (middled &action of excitatory
synapses (bottom). For all three parameters, both the niemiAC component of
the GFR and the number of bursts per minute are found to isergang with the
parameter, indicative of an emergence in the strength amchsgny of network
bursting. Grey bars indicate typical values of the paramsdi@m networks in
culture.
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Figure 7: Neural trajectories across time. First (red)osdc(blue), and third
(green) principal components of the firings rates are shaswsa time for differ-
ent values of density (a) arpul(b).

guently, we hypothesized that these critical regions atlwwnetwork to represent
a large amount of information with enough redundancy suahttie information
capacity of the network is maximized even in the presenceoiden To test this,
we estimated the information capacity of simulated netwafkarious densities,
connection types, and inhibitory/excitatory ratios. Feg@?? shows the informa-
tion of networks of differing parameters. The informatiapecity peaks around
the typical parameter values seen in neural system, supgane hypothesis that
networks attempt to self-maximize the amount of inforntativat they can accu-
rately carry in the presence of random background noise.

4 Discussion

These results help to uncover the nature of network burstosgrved inin vitro

cultures. Bursting appears to be an emergent property ofank$wwith both

excitatory and inhibitory connections. Simulations giadively match data ob-
tained from cultures grown on microelectrode arrays, aedahte to mimic the
wide repertoire of activity seen experimentally. The modat developed using
a bottom-up approach, replicating both the connectivity emrinsic properties
observed in in vitro cultures. Random synaptic noise appeakbe a sufficient
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p =0.001

Density = 109 neurons/mm?

Density = 499 neurons/mm?
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Figure 8: Trajectories through state space. Neural trajest (black lines) pro-
jected onto the first three principal components shown ffieint densities (a)
and values op (b). Initial states are marked with a red dot.
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Figure 9: Fraction of the variance captured by the first pp@lccomponent across
different values of density (a) and small-world rewirin@bpability p (b).

input for driving these cultures towards self-synchrotiaa

4.1 Bursting

The dynamics of network bursting are explored across thempater space, against
both the density of the network and the type of connectiogaliged by the small
world rewiring probabilityp). The strength and periodicity of bursting is found
to become more prominent as the density increases or as tlerkdoecomes
more random and disorganized. This gradation in strengthurdting has been
observed experimentally by Wagenaar et al., and has quixaitabeen shown to
depend on plating density [12]. Ideally, the activity fronese simulations will in
turn make predictions regarding the dynamics of culturedom®al networks. Cer-
tain network properties (neuronal dynamics, individuaireections and weights,
neuron locations and type) are randomized at the beginrfiagsomulation, in-
dicating that these individual parameters do not affecballmetwork behavior.
Our findings show that network bursting is a connection-ddpat, large-scale
phenomenon and is independent of the differences in ingilideurons and their
connections.
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Projecting network firing rates onto an optimal subspacegugrincipal com-
ponents analysis yields more insight into the dynamics oivokk bursting. As
density is increased, or as the network connections becomsslong-range, the
amount of variance captured by the first principal compomareases markedly
from as little as 10% to as much at 95%. This implies that néta/with a strong
degree of bursting are highly redundant such that the beha¥all of the neurons
can be captured with only a few. Trajectories of the neuedeshrough the phase
space of the top three components show that the dynamickaoticand unpre-
dictable for sparse or ordered cultures, yet for dense afamncultures, distinct
limit cycle attractors arise. These attractors are robust vespect to random
initialization of different networks, indicating that tinelynamics are capturing
the essential activity of the network. Persistent dynahatteactors have already
been observed in experimental cultures [12]. Interesjjridie trajectories for
dense networks are different from those of highly disorgediinetworks, which
could serve as a potential marker for identifying experitabmetwork states. The
concept of thinking about network dynamics as a low dimeradiprojection of
the higher order system proves to be very useful in undetstgrihe behavior of
the model.

4.2 Neural Code and Self-Organized Criticality

These observations from studying the principal componehtise data allow us
to speculate on issues of neural coding. From an informatieory point of view,
network bursting seems to be a redundant way of coding irdtiom when large
numbers of neurons are used to represent information thed @ carried with
just one or two. This is supported by Figure xx. However, ¢hsra tradeoff be-
tween capacity and robustness, as these dense networledaiieety unscathed
with respect to noise or the removal of a subset of neuronas,Téne might ex-
pect biological neural networks to remain in between theseextremes, taking
advantage of robustness in the system while still utilizimgcapacity efficiently.
Interestingly, the simulations seem to support this idgpictl biological net-
works have densities of around 200-250 neurons/ranu have characteristically
small-world connections (corresponding t@a&alue of around 0.03). Note that
for these values, the MAC parameter, bursts per minute ¢c@nmt amount of
variance captured through the first principal componensiadiw a balance be-
tween too much order (strong bursting) and too much chaob(rsiing). These
findings support the concept of self-organized criticakityiginally proposed by
Bak and colleagues [2] in which biological complexity ari$esn systems that
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self-organize around critical transition points in theteps's dynamics. Although
speculative, the model results for typical parameter wtegeals a network that
teeters between chaotic asynchronous behavior and dibtirsts.

Why are these questions regarding network bursting imptittieally, stuy-
ding the dynamical properties of these simulated networilisgive us insight
into the dynamics of neuronal circuits in the brain. For eglenalthough highly
synchronous behavior is observedvitro, it is only observedn vivo in patha-
logical states, such as during epileptic seizures. Assgithiese seizures consist
of the network getting stuck at some attractor might leadhéodiscovery of new
electrical stimulation techniques that could bump the netvinto a new basin of
attraction. These ideas could develop into new forms otrireat for those who
suffer from epilepsy. In addition, there are a number of regiing and control
systems that look to utilize the high-dimensional dynamrpcacessing that occurs
in such networks, and understanding the mechanisms bdtesd heural systems
could serve as the foundation for the development of newaages for optimal
control that more closely mimic those seen in biologicatays.

5 Appendix

5.1 Description of Model

In developing the model, the general approach consistennofigting a medium
of spiking neurons, constraining the parameters of the mileg what is known
biologically about cortical cultures, and then compariimgudated activity to ex-
perimental data.

5.1.1 Neuron Modé€

The neuron model used is that proposed by Izhikevich [6],ctviis a type of
guadratic integrate-and-fire neuron model. This model i& lsomputationally
efficient and can implement a wide repertoire of neuronatisgidynamics [7].
The model consists of a fast acting variable describing teenbrane voltage
(v) and a slowly decaying membrane reset variab)edefined by the following
equations:

%’ — 0.042+5v+140— u+| 1)
du-_ a(bv—u) (2)

dt
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With the after-spike reset conditions:

V«C

if v>+30mV, then{ U utd

The parameters, b, ¢, andd are dimensionless variables that are chosen to give
the neurons various spiking dynamics, and the currestcomposed of a noise
component and the synaptic current due to neurotransméiease from presy-
naptic neurons. Varying the dimensionless parametetyoughd allows for
tuning of the spiking behavior of the neurons.

5.1.2 Synaptic Release

Neurons form connections at synapses which are modeled inypdesexponen-
tially decaying neurotransmitten) release, defined by the following:
dn n

& T ©

This model is efficient in capturing the decay in neurotraittemat the synapse
after a spike. Axonal delays, which have been found to havila range of dis-

tinct values in cortical neurons, are also incorporated the model as randomly
chosen values drawn uniformly from the range ofsto 20ms Specific timings

of presynaptic spikes are required to force a postsynapti@sotherwise they
potentiate the postsynaptic neuron.

5.1.3 Small World Connections

Connections between neurons are chosen according to thevgonial paradigm

[13]. Neurons are initially wired to every neuron within semadius threshold,

and then randomly rewired to other neurons across the nletwithr probability p.

A value of p = 0.03 was chosen to obtain a short mean path length and high clus-
tering coefficient. This process yields sparse synaptigadistributions which

are then initialized to randomly chosen weights, drawn frmmmal distributions.
Typically, 80% of the synapses are chosen to be excitataiy8f6 are chosen to

be inhibitory. This ratio is pervasive through corticaktie [REFERENCE].

5.1.4 Microelectrode Arrays

Although computer simulation monitors the activity of dktneurons in the net-
work, MEA electrodes would only capture a subset of the #@gtiMn order to
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mimic extracellular recordings from the network, the alede interface was also
modeled. A given electrode records spikes from all neuremsl@pping the elec-

trode. The electrode activity can be thought of as a spatiasampling of the

activity of the underlying network.

5.2 Datametrics

In order to analyze the bursting behavior observed in thevorés, two metrics
are used. To compute them, the network spikes are summedisetete time bins
and then smoothed to obtain a time-varying signal reprasgtite average firing
rate of the network, called the global firing rate (GFR). Thstfimetric consists
of using a peak detection algorithm to determine the numbpeaks in the GFR
signal per minute, which is defined as the number of burstsrpeuate (BPM).
The second metric is simply the value of the maximum AC conepbitMAC)
of the fourier transform (computed via the FFT) of the GFR. M&C is meant
to be a measure of the amount of periodic bursting in the mtwa large AC
component in the FFT is indicative of a high degree of pedibyli

5.21 Principal Components Analysis

Previous work [4] has used dimensional reduction techrsigoeproject firing
rates onto low-dimensional variables that allow for eagisualization of neural
trajectories. The general idea is that redundancy is encdthe firing rates of
neurons, so using a PCA-like method to transform the firingsranto a basis that
better captures the variance in the data allows us to igheresdundant variables.
To extract neural trajectories, the firing rates for indinatl neurons were first
determined by binning spike counts intom®time windows. The square root
of the rates was taken (to compress the range) and then sedoloyihconvolving
the signals with a Gaussian kernel. PCA was run on these seuditing rate
trajectories, and the top three components were extraotsgrve as the low-
dimensional projection of the neural state.

5.2.2 Information estimates

Information capacity was estimated using the method desdiby Yu et. al.[14].
It consists of treating each spike train as a seriéd dfelta functions, where each
is shifted to the location of a given spike ahtlis the total number of spikes in
the spike train.
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M
SO =3 8(t-1) (4)

The fourier transform of a set of such delta functions is a sfirsines and
cosines whose frequency depend on the timing of the deltaium

Fs(t)](k) = _ie—zﬂikti — sin(2rkt;) — i cos(2mkt;) (5)

These fourier coefficients allow for estimation of the epyrat each frequency
in the network. With enough data, the set of fourier coeffitseat a given fre-
guency approaches a normal distribution according to th&aedimit theorem.
The entropy of a normal distribution is easily computed gitlee variance of that
distribution.

H(o?) = %Iog 2mec? (6)

Thus, the variance of the fourier coefficients at a givendssgy allow us to
estimate the entropy of the network at a given frequency. tote entropy of
the network is given by summing across all frequencies. €hids up giving a
general estimate of the total entropy of a system, if the tilpuandom noise.
However, given a repeated stimulus, the computation deesgtiabove yields just
the noise entropy. To estimate the information of the netwarsimulation was
run with random noise and another was run with a repeatedstsnThe different
in entropy between the two was used as the measure of thenafimn of the
network.
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