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This paper presents a deterministic and adaptive spike model derived from radial basis functions and a leaky integrate-and-
fire sampler developed for training spiking neural networks without direct weight manipulation. Several algorithms have
been proposed for training spiking neural networks through biologically-plausible learning mechanisms, such as spike-timing-
dependent synaptic plasticity and Hebbian plasticity. These algorithms typically rely on the ability to update the synaptic strengths,
or weights, directly, through a weight update rule in which the weight increment can be decided and implemented based on
the training equations. However, in several potential applications of adaptive spiking neural networks, including neuroprosthetic
devices and CMOS/memristor nanoscale neuromorphic chips, the weights cannot be manipulated directly and, instead, tend to
change over time by virtue of the pre- and postsynaptic neural activity. This paper presents an indirect learning method that
induces changes in the synaptic weights by modulating spike-timing-dependent plasticity by means of controlled input spike
trains. In place of the weights, the algorithm manipulates the input spike trains used to stimulate the input neurons by determining
a sequence of spike timings that minimize a desired objective function and, indirectly, induce the desired synaptic plasticity in the
network.

1. Introduction

This paper presents a deterministic and adaptive spike
model obtained from radial basis functions (RBFs) and a
leaky integrate-and-fire (LIF) sampler for the purpose of
training spiking neural networks (SNNs), without directly
manipulating the synaptic weights. Spiking neural networks
are computational models of biological neurons comprised
of systems of differential equations that can reproduce
some of the spike patterns and dynamics observed in real
neuronal networks [1, 2]. Recently, SNNs have also been
shown capable of simulating sigmoidal artificial neural net-
works (ANNs) and of solving small-dimensional nonlinear
function approximation problems through reinforcement
learning [3–5]. Like all ANN learning techniques, existing
SNN training algorithms rely on the direct manipulation
of the synaptic weights [4–9]. In other words, the learning

algorithms typically include a weight-update rule by which
the synaptic weights are updated over several iterations,
based on the reinforcement signal or network performance.

In many potential SNN applications, including neuro-
prosthetic devices, light-sensitive neuronal networks grown
in vitro, and CMOS/memristor nanoscale neuromorphic
chips [10], the synaptic weights cannot be updated directly
by the learning algorithm. In several of these applications,
the objective is to stimulate a network of biological or
artificial spiking neurons to perform a complex function,
such as processing an auditory signal or restoring a cognitive
function. In neuroprosthetic medical implants, for example,
the artificial device may consist of a microelectrode array
or integrated circuit that stimulates biological neurons via
spike trains. Therefore, the device is not capable of directly
modifying the synaptic efficacies of the biological neurons,
as do existing SNN training algorithms, but it is capable of
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stimulating a subset of neurons through controlled pulses of
electrical current.

As another example, light-sensitive neuronal networks
grown in vitro can be similarly stimulated through controlled
light patterns that cause selected neurons to fire at precise
moments in time, in an attempt to induce plasticity, while
their output is being recorded in real time using a multi-
electrode array (MEA) [11]. In this case, a digital computer
can be used to determine the desired stimulation patterns
for an in-vitro neuronal network with random connectivity,
produced by culturing dissociated cortical neurons derived
from embryonic day E18 rat brain [11, 12]. As a result, the
cultures may be used to verify biophysical models of the
mechanisms by which biological neuronal networks execute
the control and storage of information via temporal coding
and learn to solve complex tasks over time. In these networks,
the actual connectivity and synaptic plasticities are typically
unknown and cannot be manipulated directly as required by
existing SNN learning algorithms.

This paper presents a novel indirect learning approach
and algorithm that assume synaptic weights cannot be
updated or manipulated at any time. The learning algorithm
induces changes in the SNN weights by modulating spike-
timing dependent plasticity (STDP) through controlled
input spike trains. The algorithm adapts the input spike
trains that are used to stimulate the input neurons of the
SNN and, thus, are realizable through controlled pulses of
electric voltage or controlled pulses of blue light. The main
difficulty to be overcome in indirect learning is that the
algorithm aims at adapting pulse signals, such as square
waves, in place of continuous-valued weights. While available
in closed analytic form, these signals typically are represented
by piece-wise continuous, multi-valued (or many-to-one),
and nondifferentiable functions that are difficult to adapt
or update using optimization or reinforcement-learning
algorithms. Furthermore, stimulation patterns typically are
generated by spike models that are stochastic, such as the
Poisson spike model [5, 13–15]. Thus, even when the spike
model is optimized, it does not allow for precise timing of
pre- and post-synaptic firings, and as a result, may induce
undesirable changes in the synaptic weights.

In this paper, a deterministic spike model that allows
for precise timing of neuron firings is obtained using
adaptive RBFs to model the characteristics of the spike
pattern through a continuous and infinitely differentiable
function that also is one to one. The RBF model is combined
with an LIF sampling technique originally developed in
[16, 17] for the approximate reconstruction of bandlimited
functions. It is shown that, by this approach, the spike
trains generated by the LIF sampler display the precise
characteristics specified by the RBF model. Furthermore, this
deterministic spike model can be optimized to modulate
STDP through controlled input spike trains that bring about
the desired SNN weight change without direct manipulation.
The indirect learning approach presented in this paper is
applicable both in supervised and unsupervised settings. In
fact, when the desired SNN output is unknown, it can be
replaced by a reinforcement signal produced by a critic SNN,
as shown by the adaptive critic method reviewed in Section 3.

The paper is organized as follows. The model of spiking
neural network used to derive and demonstrate the train-
ing equations is presented in Section 2. In Section 3, an
adaptive critic approach is described to illustrate how the
proposed indirect training methodology can be applied using
reinforcement learning, for example, to model or control a
dynamical plant. The novel spike model and indirect training
methodology are presented in Section 4 and demonstrated
on a benchmark problem involving a two-node spiking neu-
ral network. The generalized form of gradient equations for
indirect training is presented in Section 5 and demonstrated
through a three-node spiking neural network. These gradient
equations show how the methodology can be generalized to
any spiking neural network with the characteristics described
in the next section.

2. Spiking Neural Network Model

2.1. Models of Neuron and Synapse. Various models of SNNs
have been proposed in recent years, motivated by biological
studies that have shown complex spike patterns and dynam-
ics to be an essential component of information processing
and learning in the brain. The two crucial considerations
involved in determining a suitable SNN model are the range
of neurocomputational behaviors the model can reproduce,
and its computational efficiency [18]. As can be expected,
the implementation efficiency typically increases with the
number of features and behaviors that can be accurately
reproduced [18], such that each model offers a tradeoff
between these competing objectives. One of the computa-
tional neuron models that is most biophysically accurate is
the well-known Hodgkin-Huxley (HH) model [2]. Due to
its extremely low computational efficiency, however, using
the HH model to simulate large networks of neurons can
be computationally prohibitive [18]. Recently, bifurcation
studies have been used to reduce the HH dynamics from four
to two differential equations, referred to as the Izhikevich
model, which are capable of reproducing a wide range of
spiking patterns and behaviors with much higher efficiency
than the HH model [19].

In [15], the authors proposed an indirect training
method based on a Poison spike model and demonstrated
it on a network of Izhikevich neurons. In this work it
was found that the adaptive critic architecture described
in Section 3 could be implemented without modeling the
neuron response in closed form. However, the effectiveness
of the approach in [15] was limited in that, due to the
use of a stochastic Poison model, the Izhikevich SNN could
not converge to the optimal control law. Therefore, in this
paper, a new deterministic spike model is proposed and
implemented by deriving the training equations in closed
form, using a leaky integrate-and-fire (LIF) SNN. The LIF is
the simplest model of spiking neuron. It has the advantages
that it displays the highest computational efficiency and is
amenable to mathematical analysis [13, 14].

The LIF membrane potential, v(t), is governed by

Cm
dv(t)
dt

= Ileak(t) + Is(t) + Iinj(t), (1)
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where Cm is the membrane capacitance, Ileak(t) is the current
due to the leak of the membrane, Is(t) is the synaptic input to
the neuron, and Iinj(t) is the current injected to the neuron
[20]. The leak current is defined as follow:

Ileak(t) = −Cm

τm
[v(t)−V0], (2)

where V0 is the resting potential and τm is the passive-
membrane time constant [20]. τm is related to the capac-
itance, Cm, and the membrane resistance, Rm, of the
membrane potential by τm = RmCm.

The response of the membrane potential is obtained by
solving the differential equation (1) analytically for v(t), such
that

v(t) = V0 + e−t/τm
∫ t

t0

Iinj
(
ρ
)

Cm
eρ/τmdρ, (3)

where ρ is a dummy variable used for integration and t0 is
the time at which the membrane potential equals V0 [20].
Whenever the membrane potential, v(t), reaches a prescribed
threshold value, Vth, the neuron will fire. At this point, we
have considered an isolated neuron that is stimulated by an
external current, Iinj(t). When the LIF neuron (1) is part of a
larger network, the input current, referred to as the synaptic
current, is generated by the activity of presynaptic neurons.

Let the synaptic current, denoted by Is(t), be modeled as
the sum of the currents of excitatory presynaptic neurons and
of inhibitory presynaptic neurons,

Is(t) = Cm

NE∑
k=1

aE,kSE,k(t) + Cm

NI∑
k=1

aI ,kSI ,k(t), (4)

where the subscript E denotes inputs from excitatory neu-
rons, while the subscript I denotes inputs from inhibitory
neurons. The amplitudes, aE,k > 0 and aI ,k < 0, represent the
change in potential due to a single synaptic event and depend
on the weight of the synapse. NE and NI are the numbers
of excitatory and inhibitory current synapses, respectively.
SE,k and SI ,k describe the excitatory and inhibitory synaptic
inputs as a series of input spikes to each synapse. The synaptic
inputs are modeled as a sum of instantaneous impulse
functions,

SE,k(t) =
∑
tE,k

δ
(
t − tE,k

)
, (5)

SI ,k(t) =
∑
tI ,k

δ
(
t − tI ,k

)
, (6)

where tE,k and tI ,k are the firing times of the presynaptic
neurons and δ represents the Dirac delta function [21].

In addition to the above deterministic properties, there
are prevalent stochastic qualities in biological neural net-
works caused by effects such as thermal noise and random
variations in neurotransmitters. For simplicity, these effects
are assumed negligible in this paper. However, the reader
is referred to [15] for a technique that can be used to
incorporate these effects in the above SNN model.
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Figure 1: STDP term as a function of the time delay between the
last spike of postsynaptic neuron and presynaptic neuron.

2.2. Model of Spike-Timing-Dependent Plasticity (STDP).
A persistent learning mechanism known as spike-timing-
dependent plasticity, recently observed in biological neu-
ronal networks, is used in this paper to model synaptic
plasticity in the LIF SNN. Synaptic plasticity refers to the
mechanism by which the synaptic efficacies or strengths
between neurons are modified over time, typically as a
result of the neuronal activity. These changes are known
to be driven in part by the correlated activity of adjacently
connected neurons. The directions and magnitudes of the
changes are dependent on the relative timings of the presy-
naptic spike arrivals and postsynaptic firings. For simplicity,
in this paper, all changes in synaptic strengths are assumed
to occur solely as a result of the spike-timing-dependent
plasticity mechanism. The approach presented in [5] can be
used to also incorporate a model of the Hebbian plasticity.

Spike-timing-dependent plasticity (STDP) is known to
modify the synaptic strengths according to the relative
timing of the output and input action potentials, or spikes,
of a particular neuron. If the presynaptic neuron fires
shortly before the postsynaptic neuron, the strength of the
connection will be increased. In contrast, if the presynaptic
neuron fires after the postsynaptic neuron, the strength of the
connection will be decreased, as illustrated in Figure 1. Two
constants τ+ and τ− determine the ranges of the presynaptic
to postsynaptic interspike intervals over which synaptic
strengthening and weakening occur. Let the synaptic efficacy
or strength be referred to as weight and denoted by w. A is the
maximum amplitude of the change of weight due to a pair
of spikes. tpre and tpost denote firing times of the presynaptic
neuron and the postsynaptic neuron, respectively. Then, for
each set of neighboring spikes, the weight adjustment is given
by,

Δw = Ae[(tpre−tpost)τ], (7)

such that the connection weight increases when the post-
synaptic spike follows the presynaptic spike and the weight
decreases when the opposite occurs. The amplitude of the
adjustment Δw lessens as the time between the spikes
becomes larger, as is illustrated in Figure 1.
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Different methods can be used to identify the spikes that
give rise to the STDP mechanism. In this paper, the nearest-
spike STDP model [22] is adopted, by which, for every spike
of the presynaptic neuron, its nearest postsynaptic spike is
used to calculate the timing difference in (7), regardless of
whether it takes place before or after the presynaptic firing.
Then, from (7), the weight change due to one of the spikes of
the ith neuron is modeled by the rule

Δwi(Δti) =
{
A+eΔti/τ+ if Δti ≤ 0

A−e−Δti/τ− if Δti > 0,
(8)

where

Δti = t1,i − argmin
t2,k

∣∣t1,i − t2,k
∣∣. (9)

Δti is the firing time difference between the two neurons, t1,i

is the firing time of the presynaptic neuron, and t2,i is the
firing time of the postsynaptic neuron. The constants used
in this paper are τ+ = τ− = 20 ms, A+ = 0.006, and A− =
1.5A+, where A+ and A− determine the maximum amounts
of synaptic modification that occur when Δt is approximately
zero [21].

From (8), the firing time of the postsynaptic neuron is
chosen such that the absolute firing time difference between
the presynaptic neuron and the postsynaptic neuron, |t1,i −
t2,k|, is minimized. Therefore, the postsynaptic spike t2,k

that is nearest to the presynaptic firing time t1,i is used to
calculate the firing time difference Δti. The value of t2,k that
minimizes |t1,i − t2,k| can be found by comparing the firing
time difference of the two neurons. In order to obtain an
indirect learning method that does not rely on the direct
manipulation of the synaptic weights, in this paper, it is
assumed that the weights can only be modified according
to the STDP rule (8). Also, the training algorithm cannot
specify any of the terms in (8) directly but can only induce
the firing times in (8) by stimulating the input neurons, for
example, through controlled pulses of electric voltage or blue
light.

3. Adaptive Critic Architecture for
Indirect Reinforcement Learning

Many approaches have been proposed to train SNNs by
modifying the synaptic weights by means of reward signals or
by update rules inspired by reward-driven Hebbian learning
and modulation of STDP [5, 8]. However, these methods are
not applicable to approaches involving biological neuronal
networks (e.g., neuronal cultures grown in vitro), because
biological synaptic efficacies cannot be manipulated directly
by the training algorithm. Similarly, in nanoscale neuromor-
phic chips, the CMOS/memristor synaptic weights cannot
be manipulated directly but may be modified via controlled
programming voltages that induce a mechanism analogous
to STDP, as demonstrated in [10]. This paper presents an
approach for training an SNN through controlled input pulse
signals (e.g., voltages or blue light) that are generated by
a new deterministic and adaptive spike model presented in
Section 4.1.

The derivation of the training equations used to adapt
the proposed spike model and subsequent pulse signals are
demonstrated in Section 4.2 using a two-node LIF SNN. It
is shown that the synaptic weight can be updated by the
proposed indirect training method and driven precisely to
a desired value, by minimizing a function of the synaptic
weight error. It follows that, using a simple chain rule, the
same training equations can be used to minimize a function
of the decoded SNN output error, as is typically required by
supervised training. In this section, we show how the indirect
training method can be used for reinforcement learning,
using a critic SNN to modulate the STDP mechanisms
in an action SNN with synaptic weights that cannot be
manipulated directly (e.g., a biological neuronal network).

Let NNa represent an action SNN of LIF neurons,
exhibiting STDP and modeled as described in Section 2. It
is assumed that the weights of the action SNN cannot be
manipulated directly, and the only controls available to the
learning algorithm are the training signals (Figure 2), com-
prised of programming voltages that can be delivered using
a square wave or the Rademacher function (Section 4.1).
Now, let NNc denote a critic SNN of feedforward fully
connected HH neurons. In this architecture, schematized in
Figure 2, NNa is treated as a biological network and NNc is
treated as an artificial network implemented on a computer
or integrated circuit. Thus, the synaptic weights of NNc,
defined as wij , are directly adjustable, while the synaptic
efficacies of NNa can only be modified through a simulated
STDP mechanism which is modulated by the input spikes
from NNc. The algorithm presented in this section trains the
network by changing the values of wij inside NNc, which are
assumed to be bounded by a positive constant wmax such that
−wmax ≤ wij ≤ wmax, for all i, j.

In this paper, spike frequencies are used to code continu-
ous signals, and the leaky integrator

û = α
∑

tk∈Si(T)

eβ(tk−t)H(t − tk)− γ (10)

is used to decode spike trains and convert them into
continuous signals as required according to the architecture
in Figure 2 Where, α, β, and γ are user-specified constants,
H(·) is the Heaviside function, and Si(T) is the set of spiking
times of the output neuron. One advantage of the leaky
integrator decoder is its effectiveness of filtering inevitable
noise during the flight control without influencing the speed
of matching the continuous value with the target function.

3.1. Adaptive Critic Recurrence Relations. Typically, adaptive
critic algorithms are used to update the actor and critic
weights by computing a synaptic weight increment through
an optimization-based algorithm, such as backpropagation
([23], page 359). Therefore a new approach is required in
order to apply adaptive critics to SNNs in which changes
in the synaptic weights can occur only as a result of pre-
and postsynaptic neuronal activity. The training approach
presented in Section 4 can be combined with the policy
and value-iteration procedures described in this section
to supervise stimulation patterns in the action SNN such



Advances in Artificial Neural Systems 5

that the synaptic strengths, and subsequently their dynamic
mappings, are adapted according to the STDP rule in (8).

Suppose the action SNN is being trained to control
or model a dynamical system which obeys a nonlinear
differential equation of the form

ẋ(t) = f [x(t),u(t), t], (11)

where x ∈ X ⊂ Rn and u ∈ U ⊂ Rm denote the dynamical
system state and control inputs, respectively, and ẋ denotes
the derivative of x with respect to time. The model of the
dynamical system (11) may be unknown or imperfect and
may be improved upon over time by a system identification
(ID) algorithm. The macroscopic behavioral goals of the
plant can be expressed by the value function or cost-to-go

Vπ[x(tk)] =
t f −1∑
tk=t

L[x(tk),u(tk), x(tk + 1)], (12)

where u(tk) = π[x(tk)] is the unknown control law or
dynamic mapping to be learned by the action SNN, NNa.
Then, the cost-to-go in (12) can be used to represent the
future performance of the action network and dynamical
system, as is accrued from the present, tk, up to the final time,
t f , if subject to the present control law π[·]. The Lagrangian
L[·] represents instantaneous behavioral goals as a function
of x and u.

Since the dynamic mapping π[·] must be adapted over
time through the learning algorithm and an accurate plant
model may not be available, the cost-to-go typically is
unknown and is learned by the critic, NNc. Then, by
Bellman’s principle of optimality [24], at any time tk the
cost-to-go can be minimized online with respect to the
present control law, based on the known value of x(tk)
and predictions of x(tk + 1). The value of x(tk) is assumed
to be fully observable from the dynamical system at any
present time tk, and x(tk + 1) is predicted or estimated
from the approximation of the system’s dynamics (11),
based on the present values of the state and the control.
In [25], Howard showed that if iterative approximations
of the control law and optimal cost-to-go, denoted by π	
and V	 , respectively, are modified by a policy-improvement
routine and a value-determination operation, respectively,
they eventually converge to their optimal counterparts π∗

and V∗.
The policy-improvement routine states that, given a cost-

to-go function V(·,π	) corresponding to a control law π	 , an
improved control law π	+1 can be obtained as follows:

π	+1[x(tk)]=arg min
u∈U
{L[x(tk),u(tk), x(tk+1)]

+V[x(tk+1,π	)]},
(13)

such that V[x(tk),π	+1] ≤ V[x(tk),π	], for any x(tk).
Furthermore, the sequence of functions C = {π	 | 	 =
0, 1, 2, . . .} converges to the optimal control law π∗. The
value-determination operation states that given a control

law π(·), the cost-to-go can be updated according to the
following rule:

V	+1[x(tk+1),π]=L[x(tk),u(tk), x(tk+1)]+Vell[x(tk+1,π)],
(14)

such that the sequence of functions V = {V	 | 	 = 0, 1, 2, . . .}
converges to V∗.

Then, at every iteration cycle 	 of the adaptive critic
algorithm, the above policy and value-iteration procedures
can be used to in tandem to supervise training of the actor
and critic SNN; that is,

u(tk)←− NNa[	, x(tk)] ≈ π	[x(tk)], (15)

Vπ[x(tk)]←− NNc[	, x(tk),π] ≈ V	[x(tk),π], (16)

respectively where 	 = Mk and M is a positive constant
chosen based on the desired frequency of the updates. It can
be seen that, at 	 + 1, the desired mappings for NNa and
NNc, provided by (13) and (14), respectively, are based on
the actor and critic outputs at 	, and on x(tk+1), which can be
estimated from an available dynamical system model (11).
To accomplish (15) and (16), two error metrics defined as a
function of the actual (decoded) actor and critic outputs and
of the desired actor and critic outputs (13) and (14) must be
minimized by the chosen training algorithm, as explained in
the following subsection.

3.2. Action and Critic Network Training Algorithm. The
action and critic networks implemented in Figure 2 differ in
that while the critic network can be trained by a conventional
algorithm that manipulates the synaptic weights directly
(e.g., see [5, 15]), the action network must be trained by
inducing weight changes indirectly through STDP (8), such
that its (decoded) output û will closely match u in (15), for
all x ∈ X . Since the weights within NNa cannot be adjusted
directly, they are manipulated with training signals from
NNc. Connections are made between q pairs of action/critic
neurons which serve as outputs in NNc and inputs for
NNa (Figure 2). To provide feedback signals to the critic,
connections are also created between r pairs of neurons from
NNa to NNc. The information flow through the networks is
illustrated in Figure 2. Since it is not known what training
signals will produce the desired results in NNa, the critic
must also be trained to match Vπ in (16) for all x ∈ X and
u ∈ U .

Both updates (15) and (16) can be formulated as follows.
Let SNN[·] denote an action or critic network comprised
of multiple spiking neurons and STDP synapses. Then, as
shown in (15) and (16), SNN[·] must represent a desired
mapping between two vectors ξ ∈ Rp and y ∈ Rr :

y(tk) = g	[ξ(tk)]←− SNN[ξ(tk),W	(tk)] � ŷ(tk). (17)

The desired mapping g	 : Rp → Rr can be assumed known
and stationary during every iteration cycle 	 and is updated
by the policy/value-iteration routine. Let W	(tk) = {wij(tk)}
denote a matrix containing the SNN synaptic weights at time
tk. Then, for proper values of W	 , if the SNN is provided
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Figure 2: Adaptive critic architecture comprised of a critic network, NNc, and, an action network, NNa, to control a dynamical system.

with an observation of the input, ξl, encoded as n spike train
sequences Xl

i = {t̂i,κ : κ = 1, . . . ,Nl
i }, i = 1, . . . ,n, over a

time interval [tk, tk+τ] with the firing times at t̂i,κ, the decoded
output of the SNN must match the output yl = g	[ξl],
where since τ 	 (tk+1 − tk), Xl

i can be used to encode
instantaneous values of ξl at any tk. Then, the chosen SNN
training algorithm must modify the synaptic weights such
that a figure of merit representing distance is optimized at
the output space of the mapping in (17).

For the critic network, NNc, the synaptic weights are
adjusted manually, using the reward-modulated Hebbian
approach presented in [5, 15]. Because the target function
y is known for all values of ξ, the SNN output error (y− ŷ) is
also known and can be used as a feedback to the critic in the
form of an imitated chemical reward, r(t), that decays over
time with time constant τc. The critic reward is modeled as

r(t) =
[
b
(
ŷ, y

)
+ r(t − Δt)

]
e−(t−t̂i)

τc
, (18)

where for the critic y ∈ R. Therefore, the error function can
be defined as b( ŷ, y) = sgn(y− ŷ), where sgn(·) is the signum
function. Thus, the value of b(·) is positive when the critic’s
output is too low, and it is negative when the critic’s output
is too high.

For the action network,NNa, the synaptic weights cannot
be manipulated directly; therefore the distance between y
and the (decoded) SNN’s output ŷ is minimized with respect
to the parameters of the RBF spike model described in
the next section. From (17), we identify (tag) two sets of

neurons referred to as input and output neurons (Figure 2),
where each neuron in the set provides the response for one
element of ξ and y, respectively, in the form of a spike
train. It is assumed that the set of input neurons can be
induced to fire on command with very high precision over
a training time interval [tk, tk+τ], with τ < T 	 (tk+1 −
tk). The input neurons’ firings could be implemented in
practice by using local programming voltages with controlled
pulse width and height that are easily realizable both in
CMOS/memristor chips [10] and in neuronal networks
grown in vitro [26]. In order to induce STDP in a manner
that will improve the SNN representation of the mapping
in (17), the programming voltages are delivered based on
an optimized spiking sequence Sιi = {t̂i,κ : κ = 1, . . . ,Nι

i},
i = 1, . . . , q, during the ith time interval of the training
algorithm, [tι, tι+1].

Existing spike models [13, 14] cannot be used to generate
Sιi because they are stochastic and, as such, they do not allow
for precise timing of pre- and postsynaptic firings. As a result,
they may induce undesirable changes in the synaptic weights
by virtue of the STDP rule (7), illustrated in Figure 1, which
shows that a small difference in the arrival time of a pre- and
postsynaptic spike can obtain the opposite effect in terms of
the weight change Δw. Beside allowing for precise timing of
neuron firings, the new deterministic spike model presented
in the next section can be updated by the training algorithm,
by optimizing a corresponding continuous signal modeled
by a superposition of Gaussian radial basis functions (RBFs),
which is characterized by a set of adjustable parameters P =
{wk, ck,βk | k = 1, . . . ,N}, where wk is the height the RBF
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Figure 3: Model of two-node LIF spiking neural network.

pulse, ck is the center of RBF pulse, βk is the width of the
RBF pulse, and N is the number of RBF pulses. As shown in
the next section, the continuous RBF signal can be integrated
against a suitable averaging function in a leaky integrator
and then compared to a positive threshold, by means of
a leaky integrate-and-fire (LIF) sampler. Subsequently, a
precise pulse function with desired widths and intensity can
be generated at a sequence of time instants, t̂i,κ, during the
interval [tι, tι+1], that correspond to the centers of the RBF
signal specified by P. Thus, a set of optimal RBF parameters
P∗ used to generate Sιi can be determined by minimizing
a measure of the distance between the (decoded) SNN’s
output ŷ and the desired output y, computed by the policy-
improvement routine (13).

In the next section, the derivation of gradient equations
that can be used to minimize the SNN’s output error (y − ŷ)
with respect to P is illustrated by means of a two-node LIF
neural network, with STDP modeled as shown in Section 2.
Let P = {plk} denote a matrix of RBF parameters to be
adjusted by the training algorithm. It can be easily shown that
the minimization of an error function E(y − ŷ) with respect
to the elements of P when y is a known constant can be
accomplished using the gradients ∂ŷ/∂plk, or some function
thereof, based on the chosen unconstrained minimization
algorithm [27]. As shown in (17), for a given input ξl the
only SNN variables to be optimized are the synaptic weights
wij . From the STDP rule (7), the weights are a function of the
parameters plk, which determine the input spike sequence
(or training signal) to the SNN (Figure 3). By virtue of the
chain rule of differentiation, it follows that

∂ŷ

∂plk
= ∂ŷ

∂wi j

∂wi j

∂plk
. (19)

Since ∂ŷ/∂wi j can be computed from the SNN model
(Section 2), it follows that if a training algorithm can
successfully modify the synaptic weights wij using the
proposed spike model, it also can successfully modify ŷ,
simply by redefining the error function. In other words,
if a training algorithm can successfully train the synaptic
weights of an SNN using the gradient ∂wij /∂plk, it follows
that it can also train the SNN using the gradient ∂ŷ/∂plk,
since the component ∂ŷ/∂wi j is known and given by the
SNN equations (1)–(5). Based on this property, the novel
spike model and indirect training algorithm are illustrated
by training the synaptic weight of a two-node LIF SNN to
meet a desired value w∗, without direct manipulation.

4. Indirect Training Methodology

Consider the two-node LIF SNN schematized in Figure 3,
modeled using the approach described in Section 2. s(t)
represents the input given to the LIF sampler, and S(t)
denotes the corresponding LIF sampler’s output. Based on
the approach presented in Section 3, the SNN synaptic
strength w21, representing the synaptic efficacy for a pre-
synaptic neuron (labeled by i = 1) and a postsynaptic
neuron (labeled by i = 2) cannot be modified directly by
the training algorithm but can only change as a result of
the STDP mechanism described in Section 2. In place of
controlling w21, the goal of the indirect training algorithm
is to determine a spike train that can be used to stimulate the
input neuron (i = 1) using Iinj, thereby inducing it to spike,
such that the synaptic weight w21 changes from an initial
(random) value to a desired value w∗.

For this purpose, we introduce a continuous spike
model comprised of a superposition of Gaussian radial basis
functions (RBFs):

s(t) =
N∑
k=1

wk exp
[
−βk(‖t − ck‖)2

]
, (20)

where wk determines the height of the kth RBF, which will
decide the constant current input Iinj. βk determines the
width of the kth RBF and ck determines the center of the kth
RBF, where k = 1, . . . ,N and N is the number of RBFs. Thus,
the set of RBF adjustable parameters is P = {wk, ck,βk | k =
1, . . . ,N}. A spike train can be obtained from the continuous
spike model (20) by processing s using a suitable LIF sampler
that outputs a square pulse function S(t) with the same
heights, widths, and centers, as the RBF spike model (20).

In this two-node SNN model, there is no synaptic current
sent to the first neuron because there are no presynaptic
neurons connected to it. Rather, the input for the first neuron
is the square pulse function provided by the output of the
LIF sampler. Therefore, during one square pulse, the input,
Iinj(t), to neuron i = 1 can be viewed as a constant, which for
our case is h, the height of the RBF. For a fixed threshold and
a constant input, the time it takes for the first neuron to fire
(or a spike to be generated) is

T = −τm ln
[

1− θ

hRm

]
(hRm > θ), (21)

where θ is the potential difference between the spike
generating threshold, Vth, and the resting potential, V0; that
is, θ = Vth − V0. h is the height of input square pulse, Rm

is the resistance of the membrane, and τm is the passive-
membrane time constant [20]. Thus, from (21), the value of
T can be controlled by adjusting h. We allow the first neuron
to fire near the end of a square pulse by inputting a spike
sequence generated by an RBF model with a suitable width
and height. Then, the firing times of the first neuron can be
easily adjusted by altering the centers of the RBF.
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Figure 4: Membrane potential of the two neurons in the SNN in Figure 3.
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Figure 5: Deterministic spike model signals.

In this simple example, it is assumed that the synapse is
of the excitatory type. Therefore, (4) can be written as,

Is(t) = CmaE

kt∑
k=k0

δ
(
t − t1,k − τd

)
, (22)

where τd is a known constant that represents the conduction
delay of the synaptic current from neuron i = 1 and t1,k are
the firing times of the first neuron. k0 is the index of the spike
of the first neuron, which occurs after the previous spike of
the second neuron, and kt is the index of the spike of the first
neuron, which provokes the firing time of the second neuron.
The only input to the second neuron is the synaptic current
defined in (22). Therefore, substituting (22) and (2) into (1)
results in the following equation for the membrane potential,

Cm
dv(t)
dt

= −Cm

τm
[v(t)−V0] + CmaE

kt∑
k=k0

δ
(
t − t1,k − τd

)
.

(23)

Solving (23) for the membrane potential of the second
neuron provides the response of neuron i = 2,

v(t) = V0 +
kt∑

k=k0

aE exp
[
− t − t1,k − τd

τm

]
H
(
t − t1,k − τd

)
,

(24)

where H(·) is the Heaviside function. Whenever the mem-
brane potential in (24) exceeds the threshold Vth, the second

neuron fires, and the membrane potential v(t) is then set
instantly equal to V0. It follows that the firing times of the
second neuron t2, j can be written as a function of the firing
times of the first neuron,

t2, j =
(
t1,kt + τd

)
H

⎧⎨
⎩

kt∑
k=k0

aE exp
[
− t2, j − t1,k − τd

τm

]

×H
(
t2, j − t1,k − τd

)
− (Vth −V0)

⎫⎬
⎭,

(25)

where j is the index of the firing times. In addition, the
membrane potentials of the first neuron and the second
neuron can be calculated using (24) and (21).

An example of the membrane potential time history for
the two neurons is plotted in Figure 4, where the square
pulse function S used to stimulate the first neuron is plotted
along with the neurons’ membrane potentials v1 and v2. The
red dots denote the firing times and potentials for the two
neurons. It can be seen from Figure 4 that, with this input,
the first neuron fires five times and the second neuron fires
one time. In this SNN, the input to the second neuron is
given only by the synaptic current caused by the firing of
the first neuron. It can be seen that only when the second
and third firing times of the first neuron are very close, the
membrane potential of the second neuron increases over the
threshold, causing it to fire, whereas the fourth and fifth
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Figure 6: Optimized input spike train and indirect weight changes brought about by STDP.

0
1000 2000 3000 4000 5000 6000 70000

100

200

300

400

500

600

t

RBF function

S(
t)

Figure 7: Optimized RBF spike model for the SNN in Figure 3.
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Figure 8: Square wave obtained by the LIF sampler, for the RBF
spike model in Figure 7.

firing times of the first neuron are too far apart to cause firing
of the second neuron.

4.1. Deterministic Spike Model. The deterministic spike
model consists of a continuous RBF model in the form
(20) combined with an LIF sampler that converts the RBF
into a square wave function. The LIF sampler developed
in [28] for the approximate reconstruction of bandlimited

functions is adopted, which converts any continuous signal
f (t) into a square wave function by integrating it against an
averaging function uk,z(t). The integrated result is compared
to a positive threshold and a negative threshold, such that
when either one of the two thresholds is reached, a pulse
is generated at time tk = z. The value of the integrator is
then reset and the process repeats. In this paper, the averaging
function uk,z(t) is chosen to be the exponential eα(t−z)X[tk ,z],
where XI is the characteristic function of I and α > 0 is a
constant that models the leakage of the integrator, as due to
practical implementations [28]. Then, the LIF sampler firing
condition that generates the square wave (or sequence of
pulses) is

±θ =
∫ tk+1

tk
f (t)eα(t−tk+1)dt �

〈
f ,uk

〉
, (26)

where tk is the time instant of the sample, tk+1 is the next
time instant of the sample, uk is the averaging function, θ
is the threshold value, and α is the leakage of the integrator.
The output of the LIF sampler can be expressed in terms of
the time instants at which the integral reaches the threshold,
{t0, . . . , tn}, and by the samples q1, . . . , qn, defined as

qj �
∫ t j−1

t j
f (x)eα(x−t j )dx, for 1 ≤ j ≤ n. (27)

From (26), it follows that |qj| = θ. By adjusting the
parameters of the LIF sampler, it is possible to convert the
RBF signal in (20) to a square wave comprised of pulses with
the same width, height, and centers as the RBFs in (20). Thus,
by using the RBF spike model in (26) with suitable widths
and heights, it is possible to induce the first neuron to fire
shortly before the end of each pulse of the square-pulse func-
tion (also considering the refractory period of the neuron).
For simplicity, in this example, it is assumed that the heights
wk and widths βk are known positive constants of equal
magnitudes for all k. Then, the centers of the RBF comprise
the set of adjustable parameters, P = {ck | k = 1, . . . ,N}, to
be optimized. The same approach can be easily extended to a
case where all of the RBF parameters are adapted.
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Figure 9: Indirect weight changes brought about by STDP and corresponding deviation from w∗ = 2.8, for the SNN in Figure 3 stimulated
using the input spike train in Figure 7.
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It can be shown using the LIF SNN model in Section 2
that, under the aforementioned assumptions, the firing times
of the first neuron satisfy the constraints,

t1,k ≤ ck +
β

2
,

t1,k + Δabs ≥ ck +
β

2
,

(28)

where Δabs is an absolute refractory time of the neuron.
Then, the firing times of the first neuron can be written as
a function of the RBF centers, ck. By design, the first neuron
fires after the same time interval, relative to each square pulse

S(
t)
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Figure 12: Square wave obtained from the LIF sampler, using the
optimized RBF spike model in Figure 11.

(Figure 4), due to the chosen RBF heights and widths. Then,
the firing times of the first neuron can be written as,

t1,k = ck − β

2
+ T , (29)

where t1,k denotes the firing times of the first neuron, ck are
the centers of the RBF, β is the constant width of the RBF, and
T is given by (21).

The RBF spike model is demonstrated in Figure 5, where
an example of RBF output obtained from (20) is plotted and,
after being fed to the LIF sampler, produces a corresponding
square wave which can be used as controlled pulse. It can
be seen that the centers of the RBFs precisely determine the
times at which a pulse occurs in the square wave and that
the square wave maintains the desired constant width and
magnitude for all k. The next subsection illustrates how,
by adapting the continuous RBF spike model in (20), it is
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Figure 13: Indirect weight changes brought about by STDP and corresponding error functions, for the SNN in Figure 10 stimulated using
the input spike train in Figure 12.

possible to minimize a desired error function and train the
synaptic weight of the SNN without directly manipulating it.

4.2. Indirect Training Equations. As explained in Section 2.2,
it is assumed that the synaptic weight w21 can only be
modified by controlling the activity of the SNN input
neuron(s), with i = 1, and that it obeys the nearest-spike
STDP model in (8). Over time, the synaptic weight can
change repeatedly, and therefore its final value can be written
as the sum of all incremental changes that have occurred over
the time interval [tι, tι+1],

w21(t) =
M∏
i=1

w0(1 + Δwi), (30)

where, for the two-neuron SNN in Figure 3, Δw1, . . . ,ΔwM

are due to M pairs of pre- and postsynaptic spikes that occur
at any time t ∈ [tι, tι+1]. Every weight increment Δwi is
induced via STDP and, thus, obeys equation (8). Since the
firing times in (8) depend on the centers of the RBF input
through (21)–(29), it follows that every weight increment
Δwi is a function of the RBF centers. In this example, the
constraints (28) can be written as,

β

2
<c1, cN +

β

2
<t f , ck+β<ck+1, for k=1, . . . ,N ,

(31)

where, from Figure 5, N = 5.
A training-error function is defined in terms of the

desired synaptic weight w∗ and the actual value of the
synaptic weight w21(t). While different forms of error
function may be used, the chosen form determines the
complexity of the derivation of the training gradients. It
was found that the most convenient form of training-error
function can be derived from the ratio of the actual weight
over the desired weight,

e(t) = w21(t)
w∗

, (32)

where w21(t) is the weight value at time t ∈ [tι, tι+1], obtained
from all previous spikes. As explained in Section 3, w∗ can
be viewed as the weight that leads to desired output ŷ for a
given input ξ. It can be seen that when w21 is equal to w∗, e
is equal to one. Plugging (30) into (36), the weight ratio can
be rewritten as,

e(t) = 1
w∗

M∏
i=1

w0(1 + Δwi), (33)

and the error between w21 and w∗ can be minimized by
minimizing the natural logarithm of the ratio (33):

E(t) � ln[e(t)] = ln(w0) + ln(1 + Δw1)

+ · · · + ln(1 + ΔwM)− ln(w∗).
(34)

As is typical of all optimization problems, minimizing a
quadratic form presents several advantages [29]. Therefore,
at any time t ∈ [tι, tι+1], the indirect training algorithm seeks
to minimize the quadratic training-error function:

J(t) � E(t)2 = {ln[e(t)]}2 = {ln(w0) + ln(1 + Δw1)

+ · · · + ln(1 + ΔwM)

− ln(w∗)
}2
.

(35)

Then, indirect training can be formulated as an uncon-
strained optimization problem in which J is to be minimized
with respect to the RBF centers, or P = {ck : ck ∈ [tι, tι+1]}.
Any gradient-based numerical optimization algorithm can
be utilized for this purpose. The analytical form of the
gradient ∂J/∂ck depends on the form of the spike patterns.
The following subsection derives this gradient analytically for
one example of spike patterns and demonstrates that, using
this gradient, the synaptic weight can be trained indirectly
to meet the desired value w∗ exactly. The same results were
derived and demonstrated numerically for all other possible
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spike patterns, but they are omitted here for brevity. Another
representation of error e′(t) is defined below to make the
convergence of error more understandable in figures,

e′(t) = ∣∣w21 −w∗
∣∣. (36)

where, | · | denotes the absolute value.

4.3. Derivation of Gradient Equations for Indirect Training.
Consider the case in which M = 5, w∗ = 1.72, and 2aE >
Vth − V0 > aE, which results in a two-node SNN (Figure 3)
in which neuron i = 1 must fire at least two times in order
for neuron i = 2 to fire. An example of such a spike pattern
is shown in Figure 6, where N1 and N2 denote spike trains
of neuron i = 1 and i = 2, respectively. In this case, the
first neuron fires five times, and the second neuron fires two
times. The firing time of the first neuron is controlled by the
RBF spike model described in Section 4.1. In Figure 6, ti,k
denotes the kth firing time of the ith neuron with k ∈ Ii,
where Ii = {k = 1, . . . , 5} is an index set for the firing times
and i is the index labeling the neurons. In this example, the
second neuron fires after t1,3 and t1,5, because t1,2, t1,3 and t1,4,
t1,5 are close enough to cause the membrane potential of the
second neuron, v2, to exceed the threshold.

Initially, the synaptic weight is equal to 1.7. The weight
change is discontinuous due to the discrete property of
spikes. As shown in Figure 6, the weight increases three times
at t1,3 +τd, decreases at t1,4, and increases again at t1,5 +τd. For
this example, the synaptic weight changes in five increments:

Δw1 = A+ exp
(
t1,1

τ+

)
exp

(−t1,3

τ+

)
exp

(−τd
τ+

)

Δw2 = A+ exp
(
t1,2

τ+

)
exp

(−t1,3

τ+

)
exp

(−τd
τ+

)

Δw3 = A+ exp
(−τd

τ+

)

Δw4 = −A− exp
(
t1,3

τ−

)
exp

(−t1,4

τ−

)
exp

(
τd
τ−

)

Δw5 = A+ exp
(−τd

τ+

)
.

(37)

When the equations above are substituted in (35), the
training-error function can be written as

J =
{

ln(w0) + ln
[

1 + A+ exp
(
t1,1

τ+

)
exp

(−t1,3

τ+

)
exp

(−τd
τ+

)]

+ ln
[

1 + A+ exp
(
t1,2

τ+

)
exp

(−t1,3

τ+

)
exp

(−τd
τ+

)]

+ ln
[

1 + A+ exp
(−τd

τ+

)]

+ ln
[

1− A− exp
(
t1,3

τ−

)
exp

(−t1,4

τ−

)
exp

(
τd
τ−

)]

+ ln
[

1 + A+ exp
(−τd

τ+

)]
− ln(w∗)

}2

.

(38)

Then, the gradients of J with respect to the RBF centers are

given by

∂J

∂c1
= ∂E2

∂c1
= ∂E2

∂t1,1
= 2E

[
Δw1

τ+(1 + Δw1)

]

∂J

∂c2
= ∂

(
E2
)

∂c2
= ∂E2

∂t1,2
= 2E

[
Δw2

τ+(1 + Δw2)

]

∂J

∂c3
= ∂E2

∂c3
= ∂E2

∂t1,3

= 2E
[ −Δw1

τ+(1 + Δw1)
+

−Δw2

τ+(1 + Δw2)
+

Δw4

τ−(1 + Δw4)

]

∂J

∂c4
= ∂E2

∂c4
= ∂E2

∂t1,4
= 2E

[ −Δw4

τ−(1 + Δw4)

]

∂J

∂c5
= ∂E2

∂c5
= ∂E2

∂t1,5
= 0.

(39)

Using the above gradients, the optimal values of c1, . . . , c5

can be obtained by minimizing J using a gradient-based
numerical algorithm such as Newton’s method.

An example of indirect learning algorithm implemen-
tation is shown in Figure 6, where the RBF-adjustable
parameters (which, in this case, coincide with the firing times
of neuron i = 1) are optimized to induce a change in the
synaptic weight w21 from an initial value of 1.704, to a desired
value w∗ = 1.72. Another example, for which the gradient
equations are omitted for brevity, is shown in Figures 7–
9. In this case, the desired weight value w∗ = 2.8 is far
from the initial weight w21(tι) = 3.5, and thus N = 43
spikes are required to train the SNN. The optimal RBF input
and corresponding controlled pulse used to stimulate neuron
i = 1 are shown in Figures 7 and 8, respectively. The time
history of the weight w21 is plotted in Figure 9(a), along with
the corresponding deviation from w∗ plotted in Figure 9(b).

5. Generalized Form of Gradient Equations for
Indirect Training

A more general form of the gradient equations can be found
by rewriting the response of the membrane potential for
neuron i = 2 in (24), as follows,

v(t) = V0 +
b∑

k=a
aE exp

[
− t − t1,k − τd

τm

]
H
(
t − t1,k − τd

)
,

(40)

where t1,k denotes the kth firing time of neuron i = 1. Then,
the gradients of the training objective function (35) with
respect to the centers of the RBF spike model for M = 5 are
given by the equations in the Appendix, which are obtained
in terms of the two functions,

g+

(
t1,i, t1, j

)
= A+ exp

(
t1,i

τ+

)
exp

(−t1, j

τ+

)
exp

(−τd
τ+

)
,

g−
(
t1,i, t1, j

)
= −A− exp

(
t1,i

τ−

)
exp

(−t1, j

τ−

)
exp

(
τd
τ−

)
,

(41)

where t1,i, t1, j are two distinct firing times of neuron i = 1.
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The methodology presented in Section 4 can also be
extended to larger SNNs, although in this case it may be
more convenient to compute the gradients of the objective
function numerically. As an example, consider the three-
neuron SNN in Figure 10, modeled by the approach in
Section 2 and with two synaptic weights w21 and w23 that
each obey the STDP mechanism in (8). Suppose that the
desired values of the synaptic weights are w∗21 = 4.1 and
w∗23 = 2.8. Using the indirect learning method presented
in this paper, and the gradient provided in the Appendix, a
training-error function formulated in terms of the deviations
of w21(t) and w23(t) from w∗21 and w∗23, respectively, can be
minimized with respect to the parameters (centers) P of the
RBF spike model (20).

Once the optimal RBF spike model, plotted in Figure 11,
is fed to the LIF sampler, the controlled pulse plotted
in Figure 12 is obtained and implemented via Iinj. The
controlled pulse is thus used to stimulate neuron i = 1 at
precise instants in time that corresponds to centers of the
optimal RBF spike model. By this approach, w21(t) can be
made to converge to the desired value w∗21. The same method
is implemented to stimulate neuron i = 2 to make the value
of w23(t) converge to w∗23. The time histories of the weight
values w21(t) and w23(t), obtained by the indirect training
algorithm are plotted in Figure 13(a). As is also shown by
the corresponding training errors, plotted in Figure 13(b),
the SNN weights over time converge to the desired values,
that is w∗21 = 4.1 and w∗23 = 2.8. These results demonstrate
that, even for larger SNNs, the indirect training method
presented in this paper is capable of modifying synaptic
weights until they meet their desired values, without direct
manipulation. Since this indirect training algorithm only
relies on modulating the activity of the input neurons via
controlled input spike trains, it also has the potential of
being realizable in vitro and in silico to train biological
neuronal networks and CMOS/memristor nanoscale chips,
respectively.

6. Summary and Conclusion

Recently, several algorithms have been proposed for training
spiking neural networks through biologically plausible learn-
ing mechanisms, such as spike-timing-dependent synaptic
plasticity. These algorithms, however, rely on being able to
modify the synaptic weights directly or STDP. In other words,
they minimize a desired objective function with respect to
weight increments that are assumed to be controllable and,

thus, are decided by a weight update rule, and then are
implemented directly by the training algorithm. In several
potential applications of spiking neural networks, synaptic
weights cannot be manipulated directly but change over time
by virtue of pre- and postsynaptic neural activity. In these
applications, the activity of selected input neurons can be
controlled via programming voltages or pulses of blue light
that induce precise spiking of the input neurons, at precise
moments in time.

This paper presents an indirect learning method that
induces changes in the synaptic weights by modulating spike-
timing-dependent plasticity using controlled input spike
trains, in lieu of the weight increments. The key difficulty to
be overcome is that indirect learning seeks to adapt a pulse
signal, such as a square wave or Rademacher function, in
place of continuous-valued weights. Pulse signals that can
be delivered to stimulate input neurons and cause them to
spike, such as blue light patterns or programming voltages,
are represented by piece-wise continuous, multi-valued (or
many-to-one), and nondifferentiable functions that are not
well suited to numerical optimization. Furthermore, stimu-
lation patterns typically are generated by spike models that
are stochastic, such as the Poisson spike model. Therefore,
even when the spike model is optimized, it does not allow
for precise timing of pre- and post-synaptic firings, and as
a result, may induce undesirable changes in the synaptic
weights. This paper presents a deterministic and adaptive
spike model derived from radial basis functions and a leaky
integrate-and-fire sampler. This spike model can be easily
optimized to determine the sequence of spike timings that
minimizes a desired objective function and, then, used to
stimulate input neurons. The results demonstrate that this
methodology is capable of inducing the desired synaptic
plasticity in the network and modify synaptic weights to
meet their desired values only by virtue of controlled
input spike trains that are realizable both in biological
neuronal networks and in CMOS/memristor nanoscale
chips.

Appendix

The gradients of the training objective function can be
derived as follows. The membrane potential of neuron 2 is
denoted by vi. j(t), where the membrane potential can only
be affected by presynaptic spikes that occur within the time
interval [t1.i, t1, j].
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