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Abstract 

The sensitivity of Quantitative flash-Flood Estimates (QFEs) and Quantitative flash-Flood 

Forecasts (QFFs) to Quantitative Precipitation Estimates (QPEs) and Quantitative Precipitation 

Forecasts (QPFs) in mountainous regions was investigated for the passage of Tropical Storm Fay, 

2008 over the Southern Appalachian Mountains in North Carolina, USA. QFEs and QFFs were 

generated by an uncalibrated high-resolution hydrologic model (250×250 m
2
) with coupled 

surface-subsurface physics and rainfall forcing from the National Severe Storms Laboratory 

Next Generation Multi-sensor QPE (Q2) spatial rainfall (1×1km
2
) product, and from the 

operational QPF product from the National Weather Service National Digital Forecast Database 

(NDFD, 5×5 km
2
).   Optimal QPE products (Q2+) were derived by merging Q2 with rainfall 

observations from a high density raingauge network in the Great Smoky Mountains (GSMRGN) 

and subsequently used as “rainfall truth” to characterize operational QPF and QFE errors in three 

headwater catchments with different topographic and hydro-geomorphic characteristics.  

Deterministic QFE results agree well with observations regarding total water volume and peak 

flow, and with Nash-Sutcliffe coefficients 0.8-0.9 indicating that the distributed model without 

calibration captures well the dominant physical processes.  The impact of Q2+ uncertainty with 

regard to the space-time structure of storm rainfall was subsequently evaluated through Monte 

Carlo replicates of the QPEs to generate QFE distributions.   For long lasting events with several 

cells of heavy rainfall embedded in otherwise light to moderate rainfall such as Tropical Storms, 

the propagation of uncertainty from rainfall to flood response is highly non-linear, and exhibits 

strong dependence on basin physiography, soil moisture conditions (transient basin storage 

capacity), and runoff generation and conveyance mechanisms (overland flow, interflow and 

baseflow).  The use of distributed physically-based models which can predict not only stream 
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discharge but also the space-time distribution of runoff components should be therefore 

advantageous over threshold approaches in operational quantitative flash flood forecasting and 

associated hazards (landslides and debris flows).  The ultimate objective of this work however is 

to assess QFF propects in ungauged basins, and the utility of satellite data to improve short lead-

time forecasts and nowcasts.  To this end, operational QFF at 6-1 hour lead times during Fay was 

simulated using the 3D-LSHM driven by precipitation composites consisting of Q2 QPE and 

NDFD QPF after which showed ubiquitous lack of useful skill. Potential gains in QFF 

performance by merging satellite overpass observations to operational QPF were examined next 

for two adjacent catchments.  The results show that merging of satellite observations into 

operational QPE/QPF could significantly improve the utility and precision of current operational 

QFF guidance, where the timing of heavy rainfall and satellite overpass are very close, but that 

the improvement depends strongly on storm-dependent and basin-specific rainfall-runoff 

dynamics. 

 

Keywords: 

Quantitative flash-Flood Estimate (QFE); Quantitative flash-Flood Forecast (QFF); Distributed 

hydrological modeling; Radar-based Quantitative Precipitation Estimate (QPE); Quantitative 

Precipitation Forecast(QPF);  Global Precipitation Measurement (GPM) Mission. 
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1. Introduction 

Floods are one of the major reasons for death caused by weather-related hazards in the USA, 

and most flood-related deaths are attributed to flash floods (Ashley and Ashley, 2008; French et 

al., 1983). For operational purposes, flash floods are rapid fluvial flooding events that are 

characterized by the time to peak of the hydrograph being less than or equal to six hours 

(Georgakakos and Hudlow, 1984; NWS, 2010).  Flash floods are usually generated by intense 

and persistent rainfall and typically occur in mountainous regions, where steep slopes and small 

catchment areas lead to short rainfall-runoff response times. Flash floods can trigger debris flows 

and landslides, especially in unstable mountain slopes causing severe damage to people, 

infrastructure and property.  There is large variability of precipitation both in space and time over 

complex topography, which in turn is poorly monitored by operational networks due to 

remoteness and difficult access (Barros, 2012; Barros and Lettenmaier, 1993; Viviroli et al., 

2011). Short time-scales and space-time heterogeneity conspire to make Quantitative flash-Flood 

Forecasting (QFF) in mountainous regions especially challenging. The objective of this study is 

to investigate QFF utility over topographically complex regions using an uncalibrated  

physically-based fully-distributed hydrological model (3D-LSHM) forced by rainfall fields 

derived from Quantitative Precipitation Estimate (QPE) (Q2) and operational Quantitative 

Precipitation Forecast (QPF) products, and to characterize the potential benefits that timely 

satellite observations can provide to flash flood forecasting.  In particular, the focus is on long 

duration events such as tropical storms characterized by transient cells of high intensity rainfall 

embedded within persistent light and moderate rainfall that can produce multiple flash floods and 

associated hazards at the regional scale.   
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In the United States, the accuracy of QPE has shown pronounced progress over the past 

decade thanks to the improvement in radar real-time precipitation retrieval techniques and the 

development of the ground-based Next Generation Weather Radar (NEXRAD) system, 

consisting of 159 Weather Surveillance Radar-1988 Doppler (WSR-88D) across the USA, and 

currently in the process of being upgraded to dual–polarization 

(http://www.roc.noaa.gov/WSR88D/dualpol). However, radar-based QPE is strongly affected by 

systematic radar noise, the quality of retrieval algorithms (e.g. the  Z-R (reflectivity-rainfall) 

relationships), and terrain complexity (e.g. over-shooting effects when radars scan well above the 

terrain and the radar beams miss low-level rainfall, and ground clutter effects otherwise), 

resulting in significant overestimation or underestimation of precipitation (Prat and Barros, 

2010a; Borga and Tonelli, 2000; Smith and Krajewski, 1991; Smith et al., 1996; Steiner et al., 

1999; Young et al., 1999). Although many adjustment methods have been developed and applied 

to improve radar-based QPE, such as the probability matching method (Rosenfeld et al., 1994; 

Rosenfeld et al., 1993), mean field bias correction (Seo et al., 1999; Seo and Smith, 1992; Smith 

and Krajewski, 1991; Steiner et al., 1999), radar-gauge merging methods (Seo, 1998a; Seo, 

1998b), and local gauge bias correction (Seo et al., 2000; Seo and Breidenbach, 2002),  the 

question of space-time non-stationary of precipitation over topographically complex terrain 

remains largely to unresolved.  Furthermore, despite recent NWP (Numerical Weather Prediction) 

improvements, including data assimilation and higher spatial resolution, QPF skill at the time (< 

6 hours) and spatial scales that matter in mountainous regions remain largely inadequate (Ebert 

and McBride, 2000; Gourley et al., 2012; Olson et al., 1995). Additionally, fast evolution of 

convective systems (such as tropical storms and mesoscale convective systems) coupled with 

orographic effects that enhance the spatial variability of precipitation significantly further 
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compounds the challenge (Sun and Barros, 2012). Indeed, the NWP-based forecast skill of 

convective rainfall at the sub-daily (storm time-scale) even in relatively flat areas is very low (e.g. 

Tao and Barros, 2010).  Automated Flood Warning Systems (http://afws.erh.noaa.gov/afws/) 

consisting of raingauges that detect high intensity rainfall near the ground surface remain the 

most effective approach to guide flash-flood warnings in remote mountainous regions (for 

example, there are only 53 such gauges at elevations above 1,000 m in the Appalachian 

Mountains in North Carolina).  AFWS gauge networks tend to be placed upstream of highly 

populated areas where flash-floods are expected based on climatology, however because the data 

are used for issuing (mainly qualitative) public safety warnings, the low accuracy and sparseness 

of such networks limits their applicability for QPE purposes. Reed et al. (2007) provide a review 

of various approaches to flash flood forecasting and operational Flash Flood Guidance used to 

issue public warnings, and proposed the use of a distributed model and an improved threshold 

frequency based approach to improve operational QFF skill at ungauged locations.  They also 

addressed the question of flood forecasting skill using calibrated versus uncalibrated hydrologic 

models.  Because model calibration is highly sensitive to the space-time accuracy of the 

precipitation forcing (e.g. Bindlish and Barros, 2002), which is highly nonstationary at the spatial 

scales of flash-floods, and more so in complex terrain (e.g. Zocatelli et al. 2010), understanding 

the actual skill of QFF and QFE operations independent of the rainfall used for model calibration 

remains a daunting challenge (Looper et al., 2012; Gourley et al. 2011).  Generally, there is 

broad agreement that rainfall and its organization in space and time is the necessary, though not 

sufficient, condition to robust flood forecasting skill.   It is further necessary, however, to 

transfer rainfall to runoff response.  In ungauged basins, only physically-based models 

unencumbered by calibration offer the prospect of useful predictability.              
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High-density, high-accuracy rainfall monitoring networks such as the Precipitation 

Measurement Mission (PMM) gauge network in the Great Smoky Mountains (Prat and Barros, 

2010a) offer an optimal path to QPE that can be evaluated though water balance accounting at 

different temporal and spatial scales using river discharge observations, as well as soil moisture 

data, surface flux estimates from hydrometeorological towers and soil moisture observations 

when available. However, installation and maintenance costs of high density science grade 

raingauge networks or small radars in the inner regions of complex topography are prohibitive, 

and in some cases not realistically possible to maintain or access.  Satellite based observations of 

precipitation (e.g. TRMM –Tropical Rainfall Measurement Mission and the upcoming GPM- 

Global Precipitation Measurement Mission) are the alternative path for rainfall monitoring.  

Limitations of satellite-based observations include satellite revisit time (temporal sampling), 

spatial resolution (at best on the order of 2-4 km or larger), and, not unlike any other sensor, 

measurement error and retrieval error (Ebert et al., 2007; Huffman et al., 2007; Tao and Barros, 

2010).  On the other hand, satellite-based observations are available globally including the vast 

array of ungauged basins around the world. There is great optimism in operational hydrology 

with regard to the potential of frequent satellite-based precipitation observations to improve 

flood forecasting performance that is critical to address flood warning and emergency 

management challenges due to the small time-scales associated with floods (e.g., Collier, 2007; 

Wardah et al., 2008). 

In this study, we conduct an assessment of current operational QFF skill in mountainous 

regions, and investigate the potential benefits of the upcoming GPM mission.  A note of caution 

is warranted to explain that the research presented here was not conducted in the precise context 

under which actual operational forecasts are made in the United States or elsewhere, which 
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typically relies on regionally customized forecasting tools as well as expert forecasters. Rather, 

the research presented here is representative of the state-of-the-science from data and modeling 

points of view. First, we improve on an existing high-resolution (1km
2
) QPE product, Q2 (Next 

generation QPE, reference (Vasiloff et al., 2007), using information from its space-time error 

structure estimated from raingauge data in the Great Smoky Mountains. This enables 

documenting the sensitivity of flood response in catchments with different geomorphic and 

hydrogeological properties to the space-time variability of rainfall.  QFE and QFF skill are 

evaluated by comparing hydrologic simulations using existing QPE and QPF against those 

obtained using the improved QPE. Furthermore, we investigate the utilization of satellite 

information for improving flash flood forecasts. We will examine the value of merging satellite 

rainfall products, specifically simulated GPM-like (Global Precipitation Measurement mission) 

products, and operational QPE to improve the utility of flash flood forecasting. 

In the United States, River Forecast Centers (RFCs) rely on deterministic hydrologic models 

for both estimating and predicting flash floods. In very small basins, warnings are made based on 

whether event cumulative rainfall has reached a certain threshold.  Hydrological models used for 

flood modeling encompass the so-called “black-box” data-driven models, lumped-conceptual 

models, and physically-based distributed hydrological models. Lumped-conceptual models 

currently are the most commonly used for operational flood modeling and forecasting due to 

their simplicity. Physically-based and fully-distributed hydrological models in principle do not 

require calibration because physical parameters can be explicitly derived from ancillary data (if 

available), thus lowering the danger of over-parameterization that is inescapable for both 

lumped-conceptual models and semi-distributed hydrologic models.  Carpenter and Georgakakos 

(2006) and  Moore et al. (2006) have demonstrated that physically-based distributed hydrological 
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models show superior performance in the case of extreme flood events than lumped rainfall-

runoff models.  Smith et al. (2012) conducted an extensive multi-model intercomparison and 

concluded that 1) calibrated distributed models provided improved hydrograph simulations 

compared to calibrated lumped models especially in interior basins with the added value of  

simulating spatially distributed soil moisture fields and observing the water balance; and 2) some 

uncalibrated distributed models perform better than calibrated distributed models.  Here, we rely 

on a high-resolution distributed Land-Surface Hydrological Model (3D-LSHM) with coupled 

surface-subsurface physics that was used previously in the Appalachians with success (Yildiz 

and Barros, 2005, 2007 and 2009) to elucidate the predictability of flash floods in the Great 

Smoky Mountains as described above.   In particular, we focus on the case of Tropical Storm 

Fay in August 2008 which caused extensive flooding, deaths and much damage  in the South 

East and Mid-Atlantic states (Verdi and Holt, 2010).    

The organization of the manuscript is as follows. Section 2 describes the study area and the 

storm event of interest.  Section 3 describes the hydrologic model and essential forcing data.  

Section 4 describes the rainfall datasets used in this study, including raingauge observations, and 

Q2 and the National Digital Forecast Database (NDFD) QPF products, as well as error analysis. 

Two adjustment techniques aimed at improving accuracy of Q2 are proposed based on the error 

analysis.  The spatial-temporal downscaling method applied to Q2 and QPF products to the 

spatial and temporal resolution required for the flood simulation is also described in Section 4. 

Section 5 presents the QFE experiments over three headwater catchments driven by Q2 and 

adjusted Q2 rainfall fields, including uncertainty analyses through Monte Carlo simulations. 

Section 6 discusses the QFF simulations produced by the 3D-LSHM driven by the combination 

of QPE and QPF, with emphasis on discussing the possibility of predicting flash flood accurately 
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and improving QFF by incorporating satellite information into QPE in near real-time. The 

quantitative evaluation of QFE and QFF are given in Section 7.  Section 8 consists of Summary 

and Discussion. 

2. Case Study 

2.1 Study area  

Flash-flood events are frequent in areas of steep terrain in the western U.S. and the 

Appalachians, with basin size ranging from 10 to 125km2 (Kelsch, 2002) and larger headwater 

catchments (< 300 km
2
) depending on basin hydro-geomorphic characteristics which can 

strongly affect rainfall-runoff response times (e.g. Reed et al. 2007, Zoccatelli et al. 2010). In 

this study, we focus on three headwater catchments of the Pigeon River over Haywood County 

located in the Southern Appalachians in North Carolina, USA. The Pigeon River flows northwest 

through the county and into Tennessee, where it becomes a tributary of the French Broad River 

and the Little Tennessee. Considering flood records, catchment size and the existence of various 

dams in Haywood County, three small headwater basins were selected for this study: the 

Cataloochee Creek Basin (CCB) in the Great Smoky Mountains National Park, the West Fork 

Pigeon River Basin (WFPRB) and the East Fork Pigeon River Basin (EFPRB), delineated in 

black polygons in Figure 1.  The WFPRB and EFPRB have drainage areas of 71km
2
 and 131km

2
, 

respectively. The Cataloochee Creek is a small tributary to the Pigeon River with a drainage area 

of 128km
2
. Stream gauges at the outlet of each of the three basins are regularly maintained by the 

USGS (United States Geological Survey). The Pigeon River basin landscape is characterized by 

intermediate and high mountains covered by very dense forest, with gentle to very steep slopes, 

with elevations ranging between 400m and 2,000m (Figure 1). Terraces and flood plains have 
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slopes ranging from nearly level to moderately steep.  Compared to the WFPRB and EFPRB, the 

CCB features relatively flat slopes and deep soils, including substantial alluvial deposits built 

over time due to intense landslide activity. The major soil types are Edneyville-Chestnut 

complex soil, Plott fine sandy loam, Wayah sandy loam and eroded Wayah loam soil (Allison et 

al., 1997). The spatial distribution of dominant soil texture extracted from the State Soil 

Geographic (STATSGO) database over Haywood County is shown Figure 2 (left), and the 

dominant vegetation is deciduous and mixed forest as shown by the land cover map in Figure 2 

(right). The climate over the study area is subject to moisture-rich winds from the Gulf of 

Mexico and varies greatly from the high mountains to the flood plains along rivers. Antecedent 

research has demonstrated that the orographic rainfall enhancement is on the order of 60% at 

ridge locations compared  with valley locations for concurrent rain events (Prat and Barros, 

2010a). The historical average annual precipitation is ranges between 1060 mm and 2000 mm, 

evenly distributed throughout the year (Allison et al., 1997).  Landslide hazard risk assessments 

indicate that up to 50% of the area of the Pigeon River is highly unstable, and that value 

increases up to 80-90% for the three headwater catchments examined here (Witt, 2005). 

2.2 Tropical Storm Fay 

Tropical Storm Fay originated from a tropical wave off the coast of Africa on August 7
th

, 

2008, and it developed into a very strong as it moved westward across the Atlantic causing heavy 

rainfall in Florida and in the Southeast US generally (Verdi and Holt, 2010). Although the storm 

already had weakened before reaching North Carolina, its remnants produced widespread 

flooding in the Piedmont and in the Appalachians due to prolonged and heavy rainfall over a 

four-day period on August 25
th

 -28
th

, 2008.  The total storm rainfall amounts were close to 

100mm (~ 4 in) over the northern ridges of the Pigeon river basin and about 200mm (~ 8 in) over 
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the south and east facing ridges, with witness reports of a large flash-flood at 00:05 UTC on 

August 27
th

 in the town of Clyde
1
. T The rainfall threshold for landslide and debris flows based 

on the historical record is 125 mm over a 24 hour period (Witt, 2005).  The groundwater table 

rose by about 0.75m during Fay, according to the only USGS monitoring well located in 

Haywood County (HW-047).  This is indicative of the strength for surface-groundwater 

interactions in the basin, despite its location on the Blue Ridge physiographic province (Brahana 

et al. 1986).   

3. Model and Data description 

3.1 Three-Dimensional Land Surface Hydrology Model (3D-LSHM) 

A fully-distributed and physically-based hydrologic model, the 3D-LSHM, is used in this 

research. The 3D-LSHM was originally developed as column model for investigating land-

atmosphere interactions (Barros, 1995), and has evolved over the years into a distributed 

hydrologic model solving the coupled water and energy balance equations including coupled 

surface-subsurface interactions (Devonec and Barros, 2002; Yildiz, 2001; Yildiz and Barros, 

2005 and 2007; Yildiz and Barros, 2009).  The 3D-LSHM consists of three coupled modules: a 

vertical Land Surface Hydrology Model (LSHM), a two-dimensional Surface Flow Routing 

Model (SFRM), and a two-dimensional Lateral Subsurface Flow Routing Model (LSFRM). 

There is no interaction between the local and regional groundwater systems. At each location, the 

vertical soil column consists of both an unsaturated zone and a conditionally saturated zone. The 

unsaturated zone is discretized into three layers, of which the 1
st
 layer is the superficial soil zone 

at the land–atmosphere interface, the 2
nd

 and 3
rd

 layers are root layers. Overland flow is 

                                                 
1
 http://www4.ncdc.noaa.gov/cgi-win/wwcgi.dll?wwevent~ShowEvent~727000 
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estimated either from rainfall excess (Horton) mechanism or saturation excess (Dunne) 

mechanism for each grid element at each time step and routed by the SFRM, which relies on a 

one-dimensional kinematic wave approximation along the down-slope direction, assuming a 

linear flow surface across grid cells (Yildiz and Barros, 2007). The Muskingum-Cunge method 

of variable parameters (Ponce and Yevjevich, 1978) is utilized for the channel routing without 

significant backwater effects. Subsurface flow, comprising interflow and baseflow, is then 

laterally routed by the LSFRM. A multi-cell approach (Bear, 1979) is adopted and modified for 

subsurface flow routing.  A more detailed description of the model can be found in (Yildiz, 2001; 

Devonec and Barros, 2002; Yildiz and Barros, 2005, 2007 and 2009).   

3.2 Meteorological forcing data and other auxiliary data 

The Digital Elevation Model (DEM) was obtained from the National Elevation Dataset 

(NED) at 3arcsec resolution and subsequently averaged to match model resolution (250 m). Soil 

parameters (i.e. saturated hydraulic conductivity Ksat, porosity φ, field capacity θfc and wilting 

point θwp) were extracted from the STATSGO database. The extracted soil surface texture map 

(Figure 2) indicates that the dominant soils over the three headwater catchments are gravelly 

loam, sandy loam, fine sandy loam and moderately permeable loam. The minimum value of 

vertical sarturated hyraulic conductivity of the top 10 standard soil layers in STATSGO is used 

for aggregated soil layers assuming the layer with minimum hydraulic conductivity controls the 

time-scale of overall hydrological response.  The predominant values of other soil properties, 

such as porosity, field capacity and wilting point, were used for the multiple soil layers. Leaf 

Area Index (LAI) and albedo were generated from MODIS MCD15A2
2

 and MCD43B3
3
 

                                                 
2
 MODIS/Terra+Aqua Leaf Area Index/FPAR 8-Day L4 Global 1km SIN Grid V005 

3
 MODIS/Terra+Aqua Albedo 16-Day L3 Global 1km SIN Grid V005 
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products respectively. Fractional vegetation cover was estimated from LAI, based on an 

empirical relationship (Choudhury, 1987; French et al., 2003).  

Meteorological forcing data were extracted and downscaled from NCEP North American 

Regional Reanalysis (NARR) (Mesinger et al., 2006), including air temperature, air pressure, 

wind velocity, radiation, and specific humidity. NARR fields of forcing variables are available at 

32-km spatial resolution and 3-hour temporal resolution.  The nearest-neighbor method was 

utilized to interpolate NARR fields to higher spatial resolution, and linear interpolation was 

applied to interpolate in time. Other parameters were specified based on personal inspection and 

a survey of the literature and prior studies in the Appalachians (Campbell, 1974; Chow, 1959; 

Clapp and Hornberger, 1978; Dickinson et al., 1993; Jackson, 1981; Price et al., 2010 and 2011; 

Yildiz and Barros, 2005, 2007, and 2009). 

4. Rainfall Datasets 

4.1 Raingauge Observations 

Hourly rainfall measurements were assembled from three categories of raingauge 

observations. The first is the high-quality controlled rainfall dataset from the 1st phase of the 

Precipitation Measuring Mission (PMM) rain-gauge network in the Great Smoky Mountains 

(GSMRGN). GSMRGN gauges were installed at mid to high elevations (ranging from 1150m to 

1920m) along exposed ridges in the Southern Appalachians (Figure 1), where no antecedent 

raingauge measurements were obtained before the summer of 2007,  and includes 32 tipping 

bucket raingauge locations (Prat and Barros, 2010a).  At the time of Tropical Storm Fay, 20 

raingauges were in operation. The second and third datasets were obtained from the Environment 

and Climate Observing Network (ECONet) and Hydrometeorology Automated Data System 
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(HADS), respectively.  HADS precipitation datasets are one of the major sources of raingauge 

observations used to derive the multi-sensor QPE fields (Kim et al., 2009; Nelson et al., 2010; 

Seo, 1998b; Seo and Breidenbach, 2002), and will be used together with other rain-gauge 

observations in this study to adjust QPE in the Pigeon river basin.  Both ECONet and HADS are 

installed at low elevations or in valleys and thus augment the PMM GSMRGN data as illustrated 

in Figure 1.  Locations and elevations of GSMRGN, ECONet and HADS raingauges referenced 

in this study are shown in Table 1.  

4.2 The Next-generation QPE products (Q2) 

The National Mosaic and Multi-sensor QPE (NMQ) project at the National Oceanic and 

Atmospheric Administration (NOAA) National Severe Storms Laboratory (NSSL) operationally 

provide the Next Generation Multi-sensor QPE (Q2) that encompasses hourly radar-based and 

gauge-adjusted rainfall fields at high spatial resolution (1×1km
2
) (Vasiloff et al., 2007). Vasiloff 

(2009) reported that Q2 data tend to underestimate rainfall significantly for convective storms.  

Factors responsible for the underestimation include strong winds, the vertical reflectivity 

gradient of radar, radar scan over-shooting problems, and the radar retrieval algorithm.  In 

regions of complex terrain such as the region of this study, the Q2 product reflects the scarcity 

raingauge observations.  In this study, hourly radar-based and local gauge-corrected Hybrid Scan 

Reflectivity (HSR) products (Q2RAD_HSR_GC) were obtained from NSSL, and further 

adjusted using the raingauge observations from GSMRGN, as well as ECONet and HADS.  

4.2.1 Assessing Q2 products based on gauge observations 

To evaluate Q2 products, hourly radar-based and gauged-corrected rainfall accumulation 

products Q2RAD_HSR_GC (Q2 in short) were compared to rain-gauge observations over 

Haywood County from Aug.25 to Aug.28, 2008. The comparisons of Q2 data (1×1km
2
) with 
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raingauge observations are shown in Figure 3a, in terms of both accumulation (mm) and rainfall 

intensity (mm/hr) during the storm event. Figure 3a.1) shows that the cumulative precipitation 

totals from Q2 are at least 50% below raingauge observations. Note the large spatial variability 

of rainfall as indicated by the spread of gauge rainfall traces. Q2 underestimates rainfall rate 

significantly, not surprisingly due to the lack of reliable NEXRAD observations in the area, 

especially for the very heavy rainfall events (rainfall rate > 20 mm/hr, Figure 3a.2). In addition, 

Q2 also misses many occurrences of light precipitation (<5mm/hr), as shown by the symbols on 

or very near the x-axis.  This behavior is consistent throughout the year (not shown).  Table 2 

summarizes the root mean square error (RMSE) computed from Q2 and hourly rainfall rate 

observed by raingauges. The overall Q2 RMSE is as large as 2.18 mm/hr.    

The inaccuracies of spatial QPE originate from two sources. First, large errors in rainfall 

estimates are attributed to systematic noise of WSR-88D as well as the local problems due to 

terrain complexity (e.g. the over-shooting or beam blockage) (Smith et al., 1996; Young et al., 

1999). Secondly, the Z-R algorithm that converts WSR-88D reflectivity factor measurements to 

rainfall rate is subject to inaccuracy (Pratt and Barros, 2009; Fulton et al., 1998).  Q2 is obtained 

through systematic bias correction and local gauge correction using HADS observations (Seo, 

1998a; 1998b; Smith and Krajewski, 1991). Nevertheless, spatial variability and change in 

rainfall intensity associated with orographic modulation of the vertical structure of clouds and 

rainfall over mountainous regions can only be marginally captured by Q2, which is the reason 

why the RMSE computed from HADS is still very large for this particular storm, as shown in 

Table 2. Here, two simple methods regression based methods are employed to improve the Q2 

accuracy particularly for Tropical Storm Fay taking advantage of the high-density rain-gauge 

network in the Pigeon river basin.    
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4.2.2 Adjustment of Q2 based on gauge observations 

1) Linear regression (LR) adjustment 

Linear regression of hourly raingauge observations and Q2 data results can be expressed in 

terms of the regression relationship, 

 ( ) ( ), ,t t

g g g r g gR i j R i jκ ε= +  (1) 

where 
t

gR  represent the raingauge measurements at time step t , and t

rR  represents Q2 rainfall at 

the pixels ( ),g gi j  corresponding to raingauge locations at the same time step. Subsequently, the 

resultant regression relationship was applied to Q2 data retrospectively over the whole area, 

 ( ) ( )* , ,t t

rR i j R i jκ ε= +  (2) 

where ( )* ,tR i j  is the adjusted Q2 rainfall over the area at time step t . In the case where no 

rainfall is observed by raingauges but rainfall is present in Q2, which could be explained by 

instances of hail or associated with very light rainfall (less than the minimum tipping amount of 

raingauge 0.253mm), ( )* ,tR i j  matches ( ),t

rR i j . For the case when rain gauges detect rainfall 

but null-rainfall is observed by Q2 over the basin, or Q2 data are missing at that time, ( )* ,tR i j  is 

replaced with the areal rainfall derived from rain-gauge observations by inverse distance 

weighted (IDW) interpolation. Although this simple LR method improves the accuracy of Q2 in 

terms of both precipitation rate and accumulation, there is an implicit assumption of spatial 

stationarity that will be addressed later. 

The comparisons between rain-gauge observations and the adjusted Q2 data using the LR 

method (Q2+_All hereafter, ‘All’ indicates all the gauges) are shown in Figure 3b.  The 
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computed RMSE is reported in Table 2. This adjustment proves to be effective in adjusting the 

rainfall rates as compared to Q2, yielding a much lower overall RMSE (1.35mm/hr) and 

cumulative precipitation close to the raingauge observations (Figure 3b.1). However, this method 

neglects landform and elevation dependencies, such as ridge-valley gradients. That is, Q2+_All 

data are prone to potential overestimation for heavy rainfall and underestimation for light rainfall 

as suggested by Figure 3-b.2. 

2) Moving contour-interval (MCI_LR) adjustment 

Assuming that spatial variability in precipitation is dominated by orographic effects and less 

affected by the scale of the rain producing clouds at eth spatial scale of the Pigeon river basin, 

the bias in rainfall estimation should therefore be strongly related to the local elevation (Prat and 

Barros 2010a). Based on this assumption, a moving contour-interval method is applied to 

account partially for the spatial non-stationarity in orographic precipitation effects. Specifically, 

moving contour-intervals of 500m elevation are specified between the ridges and the valleys. 

Only raingauges that are within a particular contour-interval will be utilized to adjust Q2 pixels 

in that interval. Otherwise, the adjustment procedure is similar to the LR method above. A lower 

threshold of 900m and an upper threshold of 1600m are defined to make sure the number of 

raingauges representative of valley and ridge conditions is larger than five, thus assuring that the 

regression equation is well-conditioned.  

The comparisons between raingauge observations and this adjusted Q2 data using the 

moving contour-interval method (Q2+_H/L hereafter, ‘H/L’ indicates gauges at High and Low 

elevations) are shown in Figure 3c. The RMSEs are also presented in Table 2. The Q2+_H/L 

data are generally superior to those obtained by the LR method, especially for valley and ridge 

locations consistent with a much smaller RMSE for GSMRGN and HADS gauges (1.19mm/hr vs. 
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1.35mm/hr, and 0.93mm/hr vs. 1.44mm/hr), whereas the RMSE for low elevation stations 

(ECONet) is comparable to that from LR method (0.88mm/hr vs. 0.85mm/hr). The range of 

cumulative precipitation of Q2+_H/L is closer to that of raingauge observations in Figure 3c.1) 

compared to Q2+_All, with particular improvement for large accumulations.  

The spatial distribution of precipitation accumulation for Fay is shown in Figure 4, including 

the original Q2 data and the two adjusted Q2 datasets (Q2+). Overall, the original Q2 product 

severely underestimates rainfall intensities and accumulation, while the Q2+ datasets show much 

higher accumulations especially at higher elevations. In particular, Q2+_H/L demonstrate 

slightly better spatial variability than Q2+_All, indicated by stronger ridge-valley gradients.  The 

hourly adjustment ensures a dynamic correction of the Q2 rainfall fields halving the overall 

RMSE to 1.35mm/hr and 1.13mm/hr for Q2+_All and Q2+_H/L respectively. The Q2+ datasets 

are considered hereafter as the reference rainfall for this study, that is the best estimates of the 

true rainfall. 

4.3 The NDFD QPF products 

4.3.1 QPF performance for Tropical Storm Fay 

The National Digital Forecast Database (NDFD) of the National Weather Service (NWS) 

provides the expected quantitative precipitation forecast (QPF) at 5×5 km
2
 resolution 

accumulated during each six-hour period. QPF is first created by Weather Forecast Offices 

(WFOs) nationwide based on guidance from NCEP’s Hydrometeorological Prediction Center 

(HPC), and subsequently further updated by the WFOs according to real-time 

hydrometeorological observations or new model guidance received, and finally forwarded and 

incorporated into NDFD (National Weather Service, 1999). QPF for six-hour accumulations 
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beginning and ending at 00:00, 06:00, 12:00 and 18:00 were obtained from NDFD
4
 for Tropical 

Storm Fay. Note that the local WFOs across the country update forecasts at different scheduled 

times, and the NDFD mosaics and merges forecasts from all WFOs every hour to incorporate 

new updates nationwide. Thus, even though the QPF guidance from the WFOs is not updated 

hourly (for example, NWS Eastern Region WFOs generally update forecasts every three hours), 

the NDFD provides hourly updates of the six-hour QPF products. For extreme weather events 

(e.g. Tropical Storm Fay), the WFOs update QPF more frequently and thus the six-hour QPF can 

change in an hourly basis, whereas that might be different for a moderate event. As time evolves, 

the QPF for the same six-hourly period can increase dramatically as more observations become 

available.  

Spatial QPFs over the Southern Appalachians for a six-hour period (12:00~18:00 UTC on 

August 26, 2008) are shown in Figure 5 for 6, 3 and one-hour lead-times. The meteorological 

observations or new model guidance received at 09:00am at the local WFO might show very 

high probability of occurrence of convection, thus forecasters updated the rainfall forecast 

amount for the 12:00~18:00 interval to nearly twice the magnitude of the previous QPF. As the 

NDFD is updated hourly, though not uniformly so around the country, the 1-hour lead-time QPF 

should be the most accurate prediction. A series of QPFs with one-hour lead time on Aug. 26 and 

27 are shown in Figure 6 to illustrate the best predictions of Fay’s evolution over the region. The 

1-hour lead-time QPF suggests that convection would be present in the region of study between 

12:00~18:00 on Aug. 26, and then  move northeastward. The spatial QPF patterns show that the 

heaviest rainfall was forecast over the eastern ridges of the Southern Appalachians spanning the 

WFPRB and the EFPRB.   

                                                 
4
 http://has.ncdc.noaa.gov/pls/plhas/HAS.FileAppSelect?datasetname=9959 
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4.3.2 Assessing NDFD QPF products  

Evaluation or verification of QPF is a challenging proposition. Many verification methods 

have been proposed to assess spatial QPF in terms of rainfall intensity errors, structure errors,  

and skill scores such as the number of hits, misses, false alarms, and correct negatives (Gilleland 

et al., 2009). We will focus on assessing two essential characteristics of QPF that are of most 

importance for flash-flood forecasting, namely intensity magnitude and convective timing, 

through the comparison of QPF with raingauge observations and also QPE (both Q2 and Q2+). 

To evaluate the performance of QPF for Fay with respect to the timing of heavy rainfall, that 

is when convective activity is present, an intercomparison between QPF and raingauge 

observations was conducted. The six-hour rainfall amounts observed by raingauges were first 

calculated, according to the same six-hour schedule as that of the NDFD QPF. Because the QPF 

data have coarse spatial resolution, raingauge observations within the same QPF grid were first 

averaged, and then compared with QPF. To compare QPF against Q2 and Q2+, the 

corresponding six-hour precipitation accumulations were calculated from Q2 pixels (1km) and 

then uniformly distributed to NDFD QPF grids (5km).  

 Figures 7 and 8 show the comparison between averaged six-hour rainfall amounts from the 

raingauges, Q2, Q2+ and the areal-averaged QPFs with six and one-hour lead times. It is clear 

that some updates applied to the QPF are incorrect, and thus cause underestimation or 

overestimation of rainfall. Nevertheless, overall, the one hour lead time QPF outperforms the  

six-hour lead time QPF.  The scatter plot embedded in Figure 7 compares 1-hour lead time QPFs 

against the averaged six-hour rainfall from the gauges within the corresponding QPF grids.  Note 

the split of the points above and below the one-to-one line and the concentration of points near 

the y-axis or the x-axis indicating both overestimation and underestimation at different times 
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reflecting temporal off-sets. Because the timing of convective cells and their spatial trajectories 

are very difficult to predict, it is not unexpected that the QPFs exhibit a delay or anticipation 

error with regard to the forecasted convection time. For example, the QPF predicts convection 

between 12:00~18:00 UTC on Aug.26. However, the raingauge observations indicate that most 

convection took place between 18:00 and midnight on Aug.26, thus an anticipation error (false 

alarm). The update in the 1-hour lead time QPF for 12:00~18:00 on Aug.26 (Figure 7 b) stands 

out due to its large overestimation of precipitation, surpassing in magnitude the six-hour lead 

time QPF, and also both the Q2 and Q2+ datasets. Figure 8 reveals clearly that in some other 

cases, the NDFD QPF underestimated precipitation severely compared to Q2 datasets, and 

especially with respect to the Q2+ data.  Because the Q2 and Q2+ data sets are not affected by 

the QPF convection timing error discussed earlier, the one-hour lead time QPF overestimation 

error is therefore a timing error.   

Furthermore, the QPF shows consistently larger rainfall than Q2 especially after the storm 

peak (within 18:00 on 26 ~ 00:00 on 27 Aug.) is raeched as indicated by larger black bars versus 

blue bars in Figure 7. Interestingly, even though QPF underestimates rainfall compared to the 

near-truth rainfall observations (Q2+) and does not capture Fay’s space-time variability, it is 

closer to Q2+ than Q2. This is a positive sign as it indicates that the NWP forecasts upon which 

QPF is based describe the temporal evolution of the storm correctly, even if they do not capture 

the space-time patterns correctly.  

4.4 Spatial-temporal downscaling 

For convective storms, the storm position within a catchment is critical to the occurrence of 

flooding (Moore et al., 2006). Thus a nearest-neighbor interpolation was applied to downscale 

rainfall fields at 1km resolution to high-resolution (250m×250m) in order to preserve the spatial 
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position of precipitation structures and to impose mass conservation.  Then, the five-miunte 

rainfall rates were estimated by a time-disaggregation procedure to distribute the hourly rainfall 

over the 12 five- minute intervals in each hour. Specifically, the 5-min rainfall intensity was 

generated from the Q2 datasets using ,t i j ip f P= , where tp  is the rainfall rate at the t
th

 time step 

(mm/5min), and ( 1) 12t j i= + − × . ,i jf is a rainfall intensity fraction (RIF) at the j
th

 5min of the 

i
th

 hour. iP is the accumulated Q2 rainfall during the i
th

 hour (mm/hr). ,

g g

i j t if p P= was obtained 

from the rain-gauge tip series, where g indicates raingauge data.   Clearly, this approach could 

not be pursed in ungauged basins.  The point here is to investigate QFF skill where data are 

available, so that QFF prospects in ungauged locations can be assessed. 

Based on QPE (Q2) and QPF from NDFD, it is then feasible to predict streamflow in 

advance by forcing the 3D-LSHM with the historical, near real-time and predicted rainfall time 

series. To reconstruct the time-series of rainfall fields, historical and real-time QPE were derived 

from Q2 datasets assuming that data latency (i.e. processing time required for gauge correction at 

NSSL) is negligible. QPF was then used beyond the current/forecasting time. The conceptual 

configuration of this reconstruction is shown in Figure 9. As time evolved, updated QPF was 

incorporated and the length of QPE forcing extended to the forecasting time. To create rainfall 

input for the 3D-LSHM, six-hour QPF fields were linearly interpolated into hourly rainfall rates 

at the spatial resolution of the original NDFD grids (5km) first, and then interpolated into rainfall 

rates at 1km resolution using a nearest neighbor interpolation method. Lastly, rainfall fields at 5-

min and 250m resolution were generated from the reconstructed hourly rainfall data using RIF 

and interpolated from the 1km data resolution of Q2 using a nearest-neighbor method, as 

previously described.   
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5. Quantitative flash-Flood Estimates (QFEs) based on QPE  

5.1 QFE based on Q2 and Q2+  

The 3D-LSHM was used to produce deterministic Quantitative flash-Flood Estimates (QFEs) 

during Tropical Storm Fay over the three headwater catchments of the Pigeon River described 

above: the Cataloochee Creek Basin (CCB), the West Fork Pigeon River Basin (WFPRB), and 

the East Fork Pigeon River Basin (EFPRB). Model simulations were conducted at 250m×250m 

spatial resolution and 5-min timesteps for the three basins.   

5.1.1 Cataloochee Creek Basin (CCB) 

The CCB has a drainage area of 128km
2
 and features a wide flat valley with deep soil and 

alluvial deposits. The dominant soil texture is fine sandy loam and loam (Figure 2), with large 

saturated hydraulic conductivity Ksat as 2.8×10
-5

m/s at ridge and 0.9×10
-5

m/s at valley, porosity φ 

ranging from 0.434 to 0.491, field capacity θfc ranging from 0.159 to 0.259 and wilting point θwp 

ranging from 0.081 to 0.163 (Table 3).  The CCB is located in the Great Smoky Mountain 

National Park, covered by very dense forest (mainly deciduous forest, Figure 2) with thick and 

humid top soil layers (cloud immersion is frequent). The first permeable soil layer of 15cm is 

above a less permeable root zone comprising the 2
nd

 and 3
rd

 layers of 50cm and 80cm 

respectively. A base layer of 1m constituted by alluvial deposits lay underneath the vadose zone.  

Simulated hydrographs (QFEs) by the 3D-LSHM driven by precipitation datasets (Q2 and 

Q2+) over CCB are shown in Figure 10a. The estimated streamflows and the flow components 

for the Q2+_H/L simualtions are presented in Figure 10b. The performance of all simulations 

was assesed by estimating peak discharge, peak time, and total discharge volume errors (Table 4), 

as well as the relative contributions of overland flow, interflow and baseflow components to the 
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total discharge for each simulation. For the QFEs forced by Q2+ datasets, the peak time of the 

simulated hydrographs are close to the observations with timing errors as measured by the 

difference between actual and forecast time-to-peak as small as -0.17hr (about 10 minutes) and -

0.33hr (about 20 minutes) for Q2+_All and Q2+_H/L respectively. Meanwhile, peak value errors 

are with 10% of the observed peak flow, especially for the QFE driven by Q2+_H/L, the peak 

error is less than 3%. Note that timing and peak flow errors are respectively larger and smaller 

for the Q2+_H/L, which suggests that the contour based regression is capturing well spatial 

differences in rainfall intensity fraction (RIF) but not the temporal evolution of the storm over 

the catchment (see also small negative bias at very high rainfall rates in Figure 3).  There is also 

very good agreement with regard to the falling limbs of the hydrographs and overall recession 

curves (Figure 10a). The time delay in the rising limb is explained by imperfect initial conditions 

in terms of soil moisture (no observations were available, so a representative climatologic value 

was used), and the fact that even at the relatively high spatial resolution the stream network fails 

to capture the lower order streams and in particular rills and depressions where flows tend to 

concentrate during such extreme events. Figure 10b shows that interflow (blue line) is the 

dominant flow component in the CCB throughout the storm duration. Overland flow remained 

small until the extremely heavy rainfall occurred around midnight on Aug.26 soon after it peaked, 

albeit with much lower values than the interflow. The peak time of streamflow is nearly 

concurrent to that of interflow. In fact, as shown in Table 4, interflow contributes around 60% of 

the total volume of streamflow generated by the 3D-LSHM driven by the Q2+ datasets. The 

large interflow contribution to streamflow is consistent with the basin’s geomorphology and low 

elevation alluvial deposits.  
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Note that overall volume errors are smaller in the case of Q2+_H/L rainfall forcing (0.34%, 

Table 4). These QPE fields explicitly incorporate the differences between ridge and valley 

precipitation, and therefore a more accurate description of the spatial variability of rainfall in the 

CCB can capture the differences between hillslope response (shallow soils, steep slopes) and 

valley response (deeper soils, flat slopes). Geomorphic characteristics are therefore a key control 

in rainfall-runoff response in the CCB. In addition, the simulation driven by Q2+_All has a 

smaller total volume of streamflow (indicated by negative volume errors -4.66% in Table 4), 

because the LR method tends to underestimate lower rainfall rates (e.g. ≤5mm/hr) which are 

dominant over the CCB during Fay.  Frequent landslide activity in the highly unstable slopes of 

the CCB can be traced to the combined interflow and baseflow controls of rainfall-runoff 

response which account for roughly 95% of  the discharge.  

5.1.2 West Fork Pigeon River Basin (WFPRB) 

The WFPRB has a small drainage area (71km
2
) and is characterized by steep and narrow 

stream channels. Gravelly loam dominates the high elevation ridges and sandy loam is the 

dominant soil type in the valley (Figure 2). Consequently, the saturated hydraulic conductivity is 

large over the ridges (Ksat ~ 2.8×10
-5

m/s), and smaller in the valleys (Ksat ~ 0.9×10
-5

m/s) in the 

valley (Table 3).  Ridge soils are thin (top soil layer is about 5cm deep) and have high porosity φ 

(0.513), low field capacity θfc (0.207) and low wilting point θwp (0.093).   

QFEs simulated over the WFPRB from 3D-LSHM driven by Q2 and Q2+ datasets are 

shown in Figure 11a. The apportionment of discahrge among overland flow, interflow and 

baseflow is shown in Figure 11b for simulatiosn driven by Q2+_All.  As it can be seen from the 

figure, streamflow simulations driven by Q2+ capture the peak value, peak time and falling limb 

very well, showing time-to-peak error about 1% and also very small peak errors (Table 4). Due 
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to the thinner soils overlaying bedrock (thus less subsurface storage), substantial overland flow 

occurred in the presence of heavy rainfall and baseflwo is very small. The sharp overland flow 

hydrograph is consistent with fast response in steep slopes and steep channels. Thus, overland 

flow makes an important contribution to peak discharge in contrast with the CCB. Note that the 

predominant component of streamflow over the WFPRB is still interflow, accounting for a large 

portion (in excess of 56%) of the total volume, whereas baseflow is very small (Table 4).  The 

simulation driven by Q2+_All shows generally better performance than that by Q2+_H/L, and 

the total flow volume is very close to the observed mangnitude (about 0.17% error). The 

precipitation gradients in the WFPRB are small and the catchment received a moderate amount 

of rainfall during Fay, and therefore Q2+_All is the more appropriate rainfall forcing since the 

adjustment represents the overall correction.  

5.1.3 East Fork Pigeon River Basin (EFPRB) 

The EFPRB has similar relief as the WFPRB along the ridges but is characterized by a much 

wider and longer central valley (Figure 1 and Figure 2). The dominant land cover is also 

deciduous and mixed forest, but with fractional pasture and extensively developed areas in the 

flatter areas of the valley (Figure 2). The higher elevations and more sparse vegetation result in 

much drier initial soil moisture conditions at this time of year over EFPRB (initialized as 20%, 

30% and 40% for the three layers respectively). Soil properties over the EFPRB are quite similar 

to the WFPRB (Figure 2). The major difference between the EFPRB and the WFPRB is in the 

depth of the top soil layer (10cm in the EFPRB). The large Ksat, high porosity, thicker and drier 

soils explain the slower response of the hydrograph as there is significant avaiable subsurface 

storage when the storm arrives.  
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Comparisons between simulations (QFEs) and observations over the EFPRB are provided in 

Figure 12a, and flow apportionment for the simulation driven by Q2+_H/L is shown in Figure 

12b.   The QFEs forced by Q2+ agree well with the observed hydrograph in terms of peak time, 

peak value and total water volume, with significant improvements in nowcasting errors using 

adjusted rainfall datasets (Q2+) as compared to Q2 (Table 4). Figure 12b shows that interflow is 

the faster and dominant contribution to streamflow regarding both flow rate and total volume. 

The fast timing of the interflow response reflects the contributions from the steep slopes along 

the ridges. However, it is the deep soils and wide valley landscape, similar to the CCB, which 

explain the magnitude of interflow.  

In Table 4, the highlighted error metrics indicate the best performance of QFE for each term. 

Note that there are significant improvements in peak values and water volumes of QFEs for the 

three basins using Q2+ datasets compared to the QFE driven by Q2 as expected. As for the time-

to-peak error, the QFEs driven by Q2+_All have the smallest errors over the CCB and EFPRB, 

respectively 0.17hr (about 10 minutes) and 0.58hr (about 35 minutes) at the outlet. Over the 

WFPRB, the time-to-peak error is on the order of one hour, and the smaller magnitude of time-

to-peak error is from the QFE driven by Q2. However, the sign of the error is negative (-0.83hr) 

where is positive for the Q2+ QFE.  This illustrates the importance of space-time organization at 

very small scales, and the implications of using all network raingauges to derive Q2+ as opposed 

to a selected number within and in close vicinity to the basin.  That is, bias correction should be 

conducted at even finer scales. Nevertheless, positive errors are always preferable for operational 

flash-flooding nowcasts. It should be also stressed that the QFEs with the smallest peak value 

error and water volume error do not always show the best peak time, for example the QFE driven 

by Q2+_H/L over the EFPRB has the smallest error in peak value and also good estimation of 
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water volume, but it exhibits a slightly larger error in the peak time (0.67hr, about 40 min) 

compared to the QFE driven by Q2+_All (0.58 hr, or about 35 min). Further quantitative 

evaluation of the QFE performance is presented in Section 7. 

5.2 Uncertainty Analysis 

As stated in Section 4, the LR method can potentially overestimate heavy rainfall and 

underestimate light rainfall due to the assumption of spatial stationary. A number of stochastic 

methods based on probabilistic models have been proposed to model the temporal-spatial 

characteristics of rainfall fields to evaluate the impact of uncertainty in rainfall input on 

hydrological response (Nikolopoulos et al., 2010; Schroter et al., 2011). In our study, both of the 

adjustment methods (LR and MCI_LR) are based on linear regression models, which minimize 

the sum of the squared errors (SSE) between rain-gauge observations and radar-based rainfall 

fields and provide ‘best fit’ predictors over the basins, assuming that the observation errors are 

uncorrelated and normally distributed with mean zero and constant variances. Though the 

comparison results in terms of both rainfall rate and accumulation demonstrate significant 

improvements in Q2+ data, characteristics of the uncertainty in these rainfall datasets pertaining 

to how they were derived from the same baseline product (Q2) and the same observations are yet 

to be identified. In particular, the propagation of this uncertainty in the hydrologic model and 

how that translates into QFE uncertainty needs to be evaluated.  

For this purpose, the uncertainty and variability of rainfall were assumed first to be normally 

distributed (e.g. within 95% confidence intervals of regression models) for each pixel at each 

hour. Second, the impacts of the uncertainty in the rainfall fields on hydrological response were 

evaluated through Monte Carlo simulations. Rainfall replicates were randomly sampled from the 

normal distribution with mean as the optimal predictor and standard deviation as one third of the 



32 

 

confidence interval (including 99.7% of the distribution) for each pixel at each time step. In this 

way, rainfall replicates account for the spatial uncertainty and variability, while maintaining the 

temporal structure of rainfall. The same procedure was repeated for Q2+_All and Q2+_H/L. 

Figure 13 shows 100 rainfall replicates sampled from the 95% confidence intervals of the 

regression models at the pixels with raingauges, representing the rainfall variation. The variation 

generated from Q2+_H/L is larger than Q2+_All for the same confidence interval because 

Q2+_All utilized data from all the gauges, and thus the regression models were relatively more 

stable compared to Q2+_H/L. These 100 rainfall replicates as well as the confidence bounds at 

95%, 70% and 50% were used to force the 3D-LSHM and to evaluate the impact of rainfall 

uncertainty on runoff response. The resultant simulations over WFPRB and EFPRB are shown in 

Figure 14, as well as the estimated streamflow forced by Q2+_All or Q2+_H/L.  

As it can be seen from Figure 14, the simulation ensembles (blue dash lines) over the 

WFPRB (upper) and the EFPRB (bottom) show small discrepancies against the simulated 

hydrograph forced by Q2+_All or Q2+_H/L (red lines), both of which fall within the uncertainty 

bounds of rainfall generated at 95%, 70% and 50% confidence intervals (CI, shaded areas).  

However, note the spread around peak flows and falling limbs, embedded in large shaded areas 

indicating wide variation in streamflow volume. That is, rainfall uncertainty effects are 

magnified after most of the basin is hydrologically engaged by the storm.  The impacts of 

uncertainty in rainfall on streamflow over the EFPRB are much larger than in the WFPRB.  This 

is attributed to the fact that no raingauge exists over the EFPRB (out of the GSMRN, HADS and 

ECONet networks), and thus the regression models cannot capture the actual space-time 

structure of rainfall.  
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The scatter plot of relative errors in peak flow versus the corresponding RMSE calculated 

from the 100 rainfall replicates are given in Figure 15. The relative errors in peak flow were 

calculated as [100×(Pest-Pobs)/Pobs], where Pest is the estimated streamflow peak and Pobs is the 

observed peak flow. Because the observed streamflow records are available at 15 minute 

intervals, whereas the simulation timestep is 5 minutes, the simulated 5-min streamflow time-

series were averaged to 15 minutes, and then smoothed using a four-step (20 minutes) window to 

ensure continuity. It is apparent that the RMSE from replicates corresponding to the 50% CI 

(yellow) are smaller than those for larger CIs of the regression models. Nevertheless, the relative 

errors of simulated peak associated with Q2+_H/L are much smaller (within ±10%) than those 

with Q2+_All over EFPRB. The opposite is true over the WFPRB, consistent with the discussion 

in Section 5.1 above. Yet, there is no obvious increase in the relative errors in peak flow as the 

RMSE of rainfall increases. The dotted areas demonstrate that the error propagation through the 

hydrological model is highly non-linear. Larger ranges of RMSE for Q2+_H/L than for Q2+_All 

indicate larger uncertainty in the Q2+_H/L dataset (Figure 15b and 15d), which translates into 

relative errors in peak flow with ranges on the order of 20% for both WFPRB and EFPRB. In 

contrast, uncertainty in Q2+_All (Figures 15a and 15c) corresponds to relative errors within the 

10% range for WFPRB (-5%~5%) and also 20% for EFPRB (0%~20%). Therefore, the 

propagation of rainfall uncertainty through the 3D-LSHM can be explained by basin 

geomorphological attributes and hydrologic conditions. 

6. Quantitative flash-Flood Forecasts (QFFs) based on QPE and QPF 

The success in nowcasting (QFE) streamflow response for Fay encourages the investigation 

of Quantitative flash-Flood Forecasts (QFFs) in the Great Smoky Mountains driven by the 
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combination of historical and real-time QPE and future QPF time series.  Clearly, streamflow 

forecast skill is strongly dependent on the hydrologic model. However, as documented in 

Sections 4 and 5, the performance of the hydrologic model is determined to first order by the 

rainfall forcing. The value added by near realtime satellite-based remote sensing products into 

operational QPE (Q2) will also be assessed to show the possibility to obtain benefits of satellite 

products for flash flood forecasting.  

Because of their unimpeded view of precipitation systems from the top, there has been great 

expectation with regard to the utility of satellite products for improving flood forecasting 

performance especially for fast response events and in regions of complex terrain (Collier, 2007). 

Here, we demonstrate the potential value of Global Precipitation Measurement (GPM) mission 

observations in the Southern Appalachians to improve flash flood forecasting. GPM, scheduled 

for launch in February 2014, will provide frequent (about every 3-6 hours overpass revisit 

interval) enhanced precipitation observations (Hou et al., 2008; Neeck et al., 2010; Tapiador et 

al., 2011). For this purpose, a simple GPM OSS (Observing System Simulator) concept that 

relies on the assumption that the GPM rainfall retrieval algorithms and observations would yield 

rainfall fields that match the Q2+ datasets at the time of overpass was implemented. Specifically, 

GPM proxy data were generated by sampling Q2+_All and Q2+_H/L every three hours 

assuming negligible error. The proxy GPM products were subsequently nudged to Q2 in real 

time, and the merged product is used as QPE for each forecasting time as illustrated in Figure 9.   

Figure 16 shows the merged Q2 with proxy GPM over the WFPRB (a) and EFPRB (b).  

Consider a time sequence (SSSSSS) where S is a pixel value of Q2+ rainfall on the GPM 

trajectory at the time of overpass, and X is the corresponding Q2 value.  The notation 

Q2&GPM# is intended to indicate that Q2 datasets incorporated the available GPM products 
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generated by sampling from Q2+ according to three sampling order denoted by #: Q2&GPM1 

(green) refers to the merged (SXXSXX) sequence, Q2&GPM2 (blue) refers to (XSXXSX), and 

Q2&GPM3 (red) refers to (XXSXXS).   

 There has been extensive work on assessing satellite error metrics of satellite rainfall and its 

implications for real-time hydrological applications at various spatial and temporal scales (e.g. 

Gourley et al., 2011; Hossain and Huffman 2008;  Hossain and Anagnostou, 2006; Hossain et al., 

2004; Nijssen and Lettemnmaier 2004; and many others).  Previously, Pratt and Barros (2010b) 

conducted error analysis of TRMM PR (Precipitation Radar) rainfall estimates specifically 

focusing on Tropical Storm Fay, which could be used as a basis to derive a satellite rainfall error 

and bias correction models.   However, here, the focus is on the importance of satellite revisit 

times alone, and observational errors at the time of overpass are assumed negligible for 

simplicity.  The QPE is based on Q2 alone, because in standard operational circumstances there 

will not be a high density raingauge network available, and greatest value from satellite 

information is to be gained in ungauged basins.  

Only QFF produced by the rainfall incorporated into GPM products generated from Q2+_All 

for WFPRB and from Q2+_H/L for EFPRB are examined next (Figures 17 and 18). In Figures 

17 and 18, the point where the dashed line changes to solid line represents the forecast issue time 

or current time tc. Before time tc rainfall forcing is the QPE (Q2 without or without satellite 

information), and after tc the rainfall forcing is QPF. The predicted streamflow (QFF) at time t 

(x-axis) has a lead time (t-tc). The predicted streamflow (QFF) at time t (x-axis) has a lead time 

(t-tc). The forecast hydrographs in green, blue and red represent the streamflow forecasts forced 

by Q2&GPM# corresponding to sampling order # as displayed in Figure 16. 
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Figures 17 and 18 show that the Q2-QPF driven QFFs (yellow lines) severely underestimate 

both the peak and volume of the river flow, even though QFFs increase somewhat at some 

particular forecasting times which can be attributed to the QPF overestimation discussed in 

Section 4.3. The lack of QFF skill documented here is not unexpected (National Research 

Council, 2005).  

Three QFFs made at 12:00am on Aug.26 and at 00:00am on Aug.27 are shown. Figure 17 

demonstrates clearly that the QFF performance in the WFPRB is significantly better with the 

incorporation of GPM observations, in particular note the improvement in the QFF issued at 

00:00am on Aug.27. Although the satellite proxy observations cannot resolve the problem of 

missing rainfall as it can be seen from the difference of cumulative precipitation, the streamflow 

nowcast shows strong peak response, with peak flow and peak time consistent with observations. 

In this case, the key factor is the concurrence of the precipitation system and satellite overpass 

over the basin.   

Unlike the significant improvements in QFF over the WFPRB, the streamflow forecasts over 

the EFPRB exhibit minimum improvement between the simulations with and without the GPM 

proxy observations (Figure 18). Because of Fay’s persistent rainfall over the EFPRB (Figure 16), 

the instantaneous satellite observations do not add significant new information as compared to 

that that is available in the QPE. In addition, a very important physical control of flash flood 

response is missing: that is, the soil moisture condition at the forecasting time which depends on 

the prior rainfall-runoff response history.  That is, the lack of improvement for the EFPRB with 

an area about twice that of the WFPRB has not to do with spatial scale per se, or with rainfall 

forcing alone, but with the ability to capture the space-time evolution of the dominant 

hydrological processes.  This suggests that continuous hydrological simulation of such basins 
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through improving estimates of soil moisture fields at high spatial resolution for example 

assimilating soil moisture data would have a significant impact on assessing flash flooding 

potential, and on QFF skill. Nevertheless, the absolute magnitude of peak flows generated for 

Q2&GPM# (green, blue and red line) are more than twice the peak value of  the yellow line 

(Q2), and have better peak timings as well, despite the severe underestimation and time delay. 

The QPF influences the QFF accuracy substantially. Note that the cumulative precipitation in a) 

at the end of simulation period is always much larger than that in b) both in Figure 17 and 18, 

which is attributed to the overestimation of QPF with large lead times on the one hand, and the 

Q2 systematic underestimation on the other  (see discussion in Section 4). As time evolves, QPF 

is replaced by Q2 as forecasts become hindcasts, and the QFF becomes even worse for some 

situations. For instance the hindcast at 00:00am on Aug.29 is poorer than that at 00:00am on 

Aug. 27 over the EFPRB (Figure 18). By contrast, the merging of GPM proxy observations with 

Q2 always leads to improvements, independently of whether the overpasss is concurrent with 

heavy rainfall or not for both WFPRB and EFPRB.  Shorter satellite revisit times would lead to 

increasingly improved QFF, which may be achieved in the future by multiple platforms.   

7. QFE and QFF Performance Metrics for Tropical Storm Fay 

To evaluate the performance of both QFE and QFF quantitatively, error statistics associated 

with flash-flood nowcasts and forecasts are computed and compared. In this study, three error 

indices are used to evaluate the performance of QFE and QFF for Fay, namely Root Mean 

Square Error (RMSE), RMSE-observations standard deviation ratio (RSR) and Nash-Sutcliffe 

efficiency (NSE). The RMSE is a commonly used error index for evaluating operational flood 

forecasts, e.g. verification of river forecasting (Demargne et al., 2009). The RSR is a RMSE 
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normalized by the standard deviation of the observations (Moriasi et al., 2007). The NSE is a 

widely used indictor for evaluating the goodness of simulation compared to observations (Nash 

and Sutcliffe, 1970). These error indices are modified to account for the forecast errors with 

respect to variant lead times, as shown in Equations (3) to (5): 
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where je  indicates forecast error for lead time j,  ˆ
ijQ is the forecasted streamflow at time step i 

with a lead time j, while iQ  means the observation at time step i and Q  is the mean of 

observations. N represents the total number of observations. Both RMSE and RSR are always 

larger than or equal to zero, while NSE ranges from -∞ to 1. The lower the RMSE and RSR, the 

better the forecasting performance. For the NSE, the closer the values are to unity the better the 

performance, and positive NSE values are indicative of useful (acceptable) performance (Moriasi 

et al., 2007).   In the literature, error statistics are calculated typically for daily streamflows and 

larger basins, whereas the error metrics are calculated for each basin using 15-min time-series of 

both observations and forecasts as described next.  

To calculate the error metrics, the estimated and forecasted 5-min streamflow time-series 

were averaged to the 15-minute temporal resolution of the observations as described in Section 
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5.2. For nowcasts, the QFF is actually a QFE at the forecasting time. Table 5 presents the 

summary of QFE error indices for Fay. Both RMSE and RSR with Q2+ as the rainfall forcing 

are reduced to less than half of the value when using Q2, especially for EFPRB. Likewise, 

tremendous improvements are found in the NSE values for Q2+ which become very close to 1, 

whereas NSE values were negative for Q2 driven QFE. Confirming earlier assertions, Q2+_All 

is the best dataset for WFPRB while Q2+_H/L is best for EFPRB, indicated by the highest NSE 

of 0.82 for the QFE forced by Q2+_All over the WFPRB, and the highest NSE of 0.90 for the 

QFE forced by Q2+_H/L over the EFPRB. These values are remarkable considering the time-

scales of interest in this study, and confirm the high level of performance of the 3D-LSHM 

without calibration. 

A summary of the error statistics of QFFs over the WFPRB and the EFPRB for a range of 

lead times are displayed in Figure 19.   All error statistics become worse with increasing lead 

times up to six hours, which is usually taken as the upper limit of the characteristic response time 

of flash floods. For the WFPRB, both the RMSE and RSR are reduced while the NSE increases 

substantially comparing to the error indices of QFF without GPM information. It should be 

stressed that the NSE of the QFF generated by the 3D-LSHM driven by Q2&GPM2 

(Q2+_All)_QPF is actually positive, though small, thus implying that the forecast skill is useful. 

In contrast to the WFPRB, all the QFF error statistics only improve marginally over the EFPRB 

with GPM as expected from the analysis in Section 6. In addition, error metrics do not change 

significantly with increasing lead time, which means that the overall forecast skill is poor.  

Overall, the results for the two Q2+ datasets are consistent with the conclusions in Sections 

4 and 5.  The difference between the two different revisiting times (GPM2 vs. GPM3) for these 

two adjacent catchments shows that the ability to capture large rainfall variability both in space 
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and time is essential for producing accurate unbiased QFF, and that increased overpass frequency 

should lead to improved forecasts.  Due to the multi-satellite, multi-sensor architecture of GPM, 

and the increasing number of active geostationary weather satellites, there is great potential to 

engineer higher frequency rainfall observing schemes over regions of the world with higher 

overpass density (Hou et al. 2008). 

8. Summary and Discussion 

A detailed investigation of the relationship between space-time variability of rainfall and 

flashflood forecasting in regions of complex topography was conducted using a high-resolution 

physically-based hydrological model (3D-LSHM) driven by operational QPE and QPF for 

Tropical Storm Fay. The operational QPE product Q2 was adjusted based on error structures 

derived from the comparison between rain-gauge network observations and hourly Q2 rainfall 

fields. The adjusted rainfall datasets (Q2+) show significant improvement, with remarkable 

reduction in the RMSE of hourly rainfall, especially when the ridge–valley rainfall gradients that 

result from linear orographic effects were taken into consideration.  

The QFEs produced by the 3D-LSHM driven by Q2+ rainfall fields over three small 

headwater catchments of the Pigeon River in the Southern Appalachians agree well with 

observations in terms of both peak characteristics and total flow volume with NSE values close 

to 0.9, which indicates that flash floods are predictable using the uncalibrated model given 

reasonable rainfall forcing. Furthermore, we show that a critical factor of predictability is the 

model’s ability to capture the interflow regimes of the different basins.  This is consistent with 

Flugel and Smith (1999) who argued that interflow is the dominant rainfall-runoff response 

process in headwater catchments. Two geomorphic treats are favorable for the generation of 
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significant interflow: deep soils in flat and wide valleys (e.g. CCB and EFPRB), and thin soils in 

very steep slopes and narrow valleys (e.g. WFPRB). Though the generation mechanism is 

different depending on basin hydro-geomorphic properties, the contribution of interflow to total 

discharge was dominant (50%~70%), with higher values for the CCB. It is therefore critical to 

correctly estimate flow components of streamflow not only river discharge, as different water 

pathways are linked to other hydrometeorological mountain hazards, e.g. debris flows, mudflows 

and landslides (Witt, 2005; Wooten et al., 2008; Liao et al. 2011). This is particularly important 

in the case of long-duration regional-scale events such as tropical storms and hurricanes that 

engage multiple basins and different sectors of the same basin at different times.   

 Propagation of space-time uncertainty in rainfall to streamflow estimation by the hydrologic 

model was assessed through Monte Carlo simulations. The results show that the propagation of 

uncertainty in rainfall through the hydrological model is highly non-linear, and depends on basin 

hydro-geomorphology and the evolution of soil moisture conditions with time. Figures 20a and 

20b show rainfall and soil moisture fields in the top three layers corresponding to the 70% CI 

bounds and ensemble mean for the Monte Carlo simulations over the EFPRB at two selected 

times (see Figure 14).  Note the uncertainty in the spatial distribution of soil moisture, the 

gradients of which reflect the spatial organization of large interflow that in turn can trigger 

landslides.  This illustrates the importance of distributed hydrologic modeling for a 

comprehensive assessment of natural hazards in mountainous regions.   

Deterministic operational QFFs during the passage of Tropical Storm Fay over the Pigeon 

River basin were simulated using Q2 QPE and NDFD QPF to examine QFF performance in the 

WFPRB and the EFPRB.  The utility of introducing satellite rainfall observations into QPE for 

improving flash flood forecasting was subsequently evaluated by merging GPM-like rainfall 
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fields with Q2 at scheduled overpass times.  The results show that significant improvements 

estimated from ground-based radar can improve the accuracy of QFF significantly for the 

WFPRB.  Even when the three-hour revisit times are such that the peak rainfall periods are 

missed, the forecasts still represent an improvement over current guidance.   This was not the 

case for the EFPRB, in which case the evolution of soil moisture conditions across the basin 

during the actual event is critical to determine the timing of flash flood response.  Thus, the 

improvement depends strongly on storm-dependent and basin-specific rainfall-runoff dynamics 

suggesting that a continuous simulation approach in contrast to the threshold based approach that 

is often used in operational Flash Flood Guidance.  

Whereas the current study was conducted with the access to a high density, science-grade 

raingauge network over the region, the QFF demonstration is illustrative of expected 

performance in ungauged basins.   As suggested by previous studies, approaches to improve QPF 

through post-processing using for example artificial neural networks (ANN) and Model Output 

Statistics (MOS)  (Kuligowski and Barros, 1998a and 1998b).  Kim and Barros (2001) showed 

that far- range satellite-based observations [both rainfall and storm structure] could be used along 

with remote ground-based information [profilers and raingauges] in data-driven models (ANN 

specifically) to improve the skill and lead-times (18-24 hours) of flood forecasts in the Northern 

Appalachian Mountains, albeit for larger basins [750 - ~9,000 km
2
].  These approaches indicate 

that a global-scale warning and emergency response system of hydrometeorological hazards (e.g. 

Hong et al. 2007; Hossain 2006) is within reach as access to multisensor satellite observations 

including rainfall (GPM), storm structure (GPM and JPSS- Joint Polar satellite System, 

http://www.nesdis.noaa.gov/jpss/], and soil moisture [e.g. SMAP- Soil Moisture Active Passive 

mission, http://cce.nasa.gov/pdfs/SMAP.pdf] on the one hand, and high–resolution QPF from 
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numerical weather prediction models (e.g. Sun and Barros 2012), and high-resolution QFF from 

uncalibrated distributed hydrologic models with data assimilation are less and less constrained by 

computational resources. [For example, a parallelized implementation of the 3D-LSHM can 

conduct concurrent simulations for various watersheds such as those described here with 

latencies of minutes.]   
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Table 1 - Location and elevation of raingauges referenced in this study, and the corresponding 

cumulative precipitation during the Fay. 

 

  

NO. Site Lat. Lon. Elev.(m) Acc.(mm) 

Site ID. Type 

1 RG001 

GSMRGN 

35.40 -82.91 1156 177.79 

2 RG002 35.42 -82.97 1731 163.01 

3 RG003 35.38 -82.92 1609 186.19 

4 RG004 35.37 -82.99 1922 214.16 

5 RG005 35.41 -82.96 1520 186.32 

6 RG006 35.38 -82.97 1737 186.44 

7 RG007 35.46 -82.95 1478 159.20 

8 RG100 35.59 -83.07 1495 127.90 

9 RG101 35.58 -83.09 1520 121.32 

10 RG102 35.56 -83.10 1635 103.94 

11 RG103 35.55 -83.12 1688 103.73 

12 RG104 35.55 -83.09 1584 58.23 

13 RG105 35.64 -83.04 1345 117.31 

14 RG106 35.43 -83.03 1210 112.80 

15 RG107 35.57 -82.91 1359 144.19 

16 RG108 35.55 -82.99 1277 123.28 

17 RG109 35.50 -83.04 1500 119.60 

18 RG110 35.55 -83.15 1563 123.82 

19 RG111 35.73 -82.95 1394 67.94 

20 RG112 35.75 -82.96 1184 95.01 

21 WAYN ECONET 35.49 -82.97 840 121.41 

22 CEPN7 

HADS 

35.46 -82.87 818 170.43 

23 CTNN7 35.55 -82.83 863 180.34 

24 DARN7 35.35 -82.78 1002 239.27 

25 LLDN7 35.42 -82.92 896 158.50 

26 WAVN7 35.43 -83.01 943 114.81 

27 WLTN7 35.70 -83.04 735 101.09 
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Table 2 – Summary of the RMSE computed from observed rainfall rate (mm/hr) and Q2 product 

before and after adjustment. 

 RMSE(mm/hr) 

QPE GSMRGN ECONET HADS All 

Q2 2.00 1.67 2.78 2.18 

Q2+_All 1.35 0.85 1.44 1.35 

Q2+_H/L 1.19 0.88 0.93 1.13 
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Table 3 – Major parameters specified in LSHM for three soil layers. 

 

 

 CCB WFPRB EFPRB 

Soil Geometry(m) 0.15-0.50-0.80 0.05-0.30-0.50 0.10-0.30-0.50 

Ksat (min.~max.) 0.9~2.8×10
-5

m/s 0.9~2.8×10
-5

m/s 0.9~2.8×10
-5

m/s 

Porosity (min.~max.) 0.43~0.49 0.48~0.51 0.48~0.51 

Field Capacity (min.~max.) 0.16~0.26 0.21~0.22 0.21~0.26 

Wilting Point (min.~max.) 0.081~0.163 0.09~0.13 0.09~0.16 
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Table 4 – Error Summary of QFE (nowcast) performance
#
 

Basin 

Forcing 

Rainfall 

Datasets 

 

Time-to-Peak (hr.) 

[Error=(Tp
est
- Tp

obs
)] 

Peak Flow (%)* 

[Error= (Qp
est
- Qp

obs
)/ Qp

obs
]  

Flow Vol ( %)* 

[Error=(Vest-Vobs)/ Vobs] 

Flow Apportionment (%) 

Overland Interflow Baseflow 

CCB 

Q2 5.83 -92.27 -60.36 0.13 12.62 87.25 

Q2+_All -0.17 -7.20 -4.66 3.30 59.01 37.69 

Q2+_H/L -0.33 2.59 0.34 3.97 60.35 35.68 

WFPRB
+
 

Q2 -0.83 -77.66 -86.93 20.02 42.08 37.90 

Q2+_All 1.08 8.33 -0.17 39.21 56.02 4.77 

Q2+_H/L 1.00 19.74 -0.94 38.02 57.13 4.85 

EFPRB 

Q2 17.33 -99.48 -95.66 0.00 19.93 80.07 

Q2+_All 0.58 11.69 2.54 24.08 72.39 3.53 

Q2+_H/L 0.67 0.91 1.87 25.77 70.53 3.70 

#
The error index indicating the best performance of QFEs for each term is highlighted in bold. 

*
Negative values indicate underestimation and positive values mean overestimation. 

+
There are double peaks for the WFPRB, the calculations were performed with respect to the major peak.  
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Table 5 – Error Index of QFE (nowcast) performance 

Basins WFPRB EFPRB 

QFE By: RMSE RSR NSE RMSE RSR NSE 

Q2 31.97 1.07 -0.15 39.94 1.22 -0.49 

Q2+_All 12.60 0.42 0.82 12.47 0.38 0.86 

Q2+_H/L 13.78 0.46 0.79 10.50 0.32 0.90 
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Figure 1 – Topography, major rivers and raingauges over Pigeon River basin in North Carolina. The CCB (Cataloochee Creek 

Basin), WFPRB (West Fork Pigeon River Basin) and EFPRB (East Fork Pigeon River Basin) are illustrated by black 

polygons. [ECONET - Environment and Climate Observing Network; HADS - Hydrometeorology Automated Data 

System; PMM GSMRGN - Precipitation Measuring Mission (PMM) rain-gauge network in the Great Smoky Mountains; 

MRR - MicroRain Radar.] 
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Figure 2 – Soil texture (left) derived from STATSGO and land cover map (right) derived from National Land Cover Database 

(NLCD) over Haywood County. CCB, WFPRB and EFPRB are illustrated by cyan polygons. 
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Figure 3 - Comparison between rain-gauge observations and Q2 (a.*), Q2+_All (b.*), and Q2+_H/L (c.*)) during Tropical Storm 

Fay. 
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Figure 4 – Spatial distribution of precipitation accumulation for Q2 (a), Q2+_All (b) and Q2+_H/L (c) during Tropical Storm Fay 

(Aug.25-28, 2008). 
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Figure 5 – Six-hourly QPF accumulation for 12:00~18:00 (UTC) on August 26, 2008, provided by NDFD. Note that even though 

NDFD updates national mosaic hourly, the new information was incorporated into QPF by WFO at 09:00AM. The Pigeon 

River is the basin with the marked river network. 
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Figure 6 – Six-hourly QPF accumulation with one hour lead time on August 26 (left) and August 27 (right), 2008. 
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Figure 7 – Comparison between areal averaged six-hour QPF and Q2 datasets over Haywood County, including Q2 and Q2+ 

datasets. Time axis represents date and the beginning of forecast period (DDHH). The upper plot shows 6-hr lead time QPF 

(a), the bottom plot shows 1-hr lead time QPF (b). The embedded figure shows comparison between 1-hr lead time six-hour 

QPFs and the averaged six-hour rainfall amount observed by the raingauges located in the corresponding QPF grids. 
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Figure 8 – Comparison between six-hour QPF and Q2 datasets at NDFD pixels (5km) over the Haywood County area.  The left 

panel shows the 6-hr lead time QPF (a), while the right panel shows the 1-hr lead time QPF (b). The pink numbers indicate 

the selected six-hour QPF time (DDHH) corresponding to the symbols. 
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Figure 9 – The conceptual configuration of reconstructing rainfall fields for QFF, where QPE can be Q2 or Q2 incorporated 

available GPM products. 
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Figure 10 – The comparison between QFEs over the CCB generated from the 3D-LSHM driven by three different rainfall 

datasets are shown in (a); the flow components of estimated streamflow forced by Q2+_H/L are shown in (b). The upper and 

right axis in (b) indicate basin areal averaged storm hyetograph. 
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Figure 11 – The comparison between QFEs over the WFPRB generated from the 3D-LSHM driven by three different rainfall 

datasets are shown in (a); the flow components of estimated streamflow forced by Q2+_All are shown in (b). The upper and 

right axis in (b) indicate basin areal averaged storm hyetograph. 
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Figure 12 – The comparison between QFEs over the EFPRB generated from the 3D-LSHM driven by three different rainfall 

datasets are shown in (a); the flow components of estimated streamflow forced by Q2+_H/L are shown in (b). The upper and 

right axis in (b) indicate basin areal averaged storm hyetograph. 
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Figure 13 – Example of rainfall uncertainty for Q2+_All (a) and Q2+_H/L (b) associated with regression models at each hour; 

smaller symbols indicate the rainfall replicates sampled from the 95% confidence intervals of regression models. 
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Figure 14 – The observed hydrographs (black) and simulated QFEs (red) forced by Q2+_All in left panel (a and c) and Q2+_H/L 

in right panel (b and d) over the WFPRB (upper) and EFPRB (lower); The ensembles of simulated QFEs forced by rainfall 

replicates are indicated by blue dash lines; Shaded gray, green and yellow areas are the uncertainty estimates of simulated 

streamflow for the 95%, 70% and 50% confidence intervals (CI), respectively. 

 

 

 



74 

 

 

Figure 15 – Relative errors in peak flow versus the corresponding RMSE of rainfall replicates sampled from 95%, 70% and 50% 

confidence interval (CI) associated with Q2+_All (a and c) and Q2+_H/L (b and d) over the WFPRB (upper) and EFPRB 

(lower). 
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Figure 16 – The combination of Q2 with simulated GPM rainfall sampling from Q2+_All over the WFPRB (a), and with 

simulated GPM rainfall sampling from Q2+_H/L over the EFPRB (b). GPM# refers to the three different 3-hour sampling 

schemes indicated by green, blue and red lines. 

 

 
 

 

 

 

 
 



76 

 

Figure 17 – Quantitative Flash-Flood Forecasts (QFFs) by 3D-LSHM driven by the combination of Q2&GPM#+QPF over the 

WFPRB. GPM were obtained by sampling the Q2+_All dataset. Two QFFs made at 12:00am on 26 Aug. and 00:00am on 

27 Aug. are shown by a) and b) respectively. 
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Figure 18 – Quantitative Flash-Flood Forecasts (QFFs) by 3D-LSHM driven by the combination of Q2&GPM#+QPF over the 

EFPRB. GPM were obtained by sampling the Q2+_H/L dataset. Two QFFs made at 12:00am on 26 Aug. and 00:00am on 

27 Aug. are shown by a) and b) respectively. 
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Figure 19 – Error statistics for QFF including RMSE, RSR and NSE for different lead times over the WFPRB (left) and EFPRB 

(right), calculated using 15min time-series. 
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Figure 20 – Spatial rainfall for the 70% CI upper and lower bounds, and ensemble mean for the Monte Carlo simulations over the 

EFPRB at two selected times (a and b); and the corresponding soil moisture fields simulated in the top three layers. 
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