
Docker Presentation

What is Docker
Before Docker: install all dependencies on new machine on your
After Docker: easily to deploy same application on new VM
⁃ Docker also offers security benefits, which I will not be covering today and Brian will be
later in the semester

Docker Architecture
Docker is a client server architecture:
1. Docker CLI (command line interface) is the client
2. Docker daemon is the server

The Docker daemon runs on your host OS and does all of the heavy lifting with creating and
manning containers, images, networks and volumes
The daemon has a REST API that users can use to communicate with the daemon. The Docker
CLI makes the requisite REST API calls to interact with the daemon.

Docker Architecture (2)
Here’s another photo illustrating the different components of Docker. Here you can see a 3rd
component: the registry
Docker registry is a cloud repository that stores different Docker images that users can use in
their own project. We will be talking more about how these public images are being used in
Docker projects later

What is a Dockerfile?
Here we can see an example of a Dockerfile. You all received a Dockerfile for HW1. Now a
Dockerfile contains the commands needed to assemble a Docker image. So the commands in
the Dockerfile are ran by Docker to build a Docker image that’s needed for your application

What is a Docker Image?
The obvious next question is what is a Docker image? (Read Slide) An image is an innert,
immutable file that represents a snapshot of a container. It a static specification of what the
container should be in runtime, including the application code inside the container and runtime
configuration settings. A Docker image is the piece of software that holds all of the
dependencies and libraries necessary to run an application. You might be thinking what is a
container vs an image, but I will be covering that in a few slides.

Docker Image Layers
(Read slide)
As we can see, 1 layer is built for each instruction in the Dockerfile. Layers of a Docker image
are essentially just files generated from running some command. Each instruction in a
Dockerfile creates a filesystem layer that describes the differences in the filesystem before and
after execution of the corresponding instruction. Docker is built to make an image out of

separate layers and to stack them together to form an image. Every time a layer is built, Docker
stores it on the host OS. This layering system and storing of different layers is really useful in
saving disk space, and reduce the time to build images as we’ll see in the next few slides.

Docker Image Layers (2/3)
If we look in this example we can see a Dockerfile and the corresponding history when building
that image. We can see each layer and its ID. If we go to the next slide, we have another
Dockerfile that is almost the same but the last line is different. Now after building and looking
at the history for this image, we will notice that the 5 out the 6 layers in this new image are the
same. Only the layer corresponding to the last instruction is different. This means that
previously downloaded or built layers were saved by Docker and re-used. By doing so, Docker
saves disk space, and quickens the build process.

DockerHub Images
DockerHub is a repository of images that developers can use. These are stable and secure
images available to the public. Instead of building our own custom Docker image, we can just
pull a whole image from DockerHub. These images are based off Dockerfiles built by someone
else who had already gone through the effort of figuring out what dependencies are needed to
build the image of interest. Examples of common images are proxy server images, database
images, etc. Check DockerHub to see what’s available! It’s always recommended to look for
images on DockerHub first before making your own custom image, since sometimes they are
stable and secure.

What is a Docker Container?
(Read slide)
A container is a runtime object. It is based on the image and represents the portable
encapsulation of an environment. So a container is built off an image using the run command. A
container is different from an image in that it is dynamic and can actually be written to

Docker Images vs Containers
The main difference between a container and an image is the top writable layer. This top
writable layer allows users to interact with a container and for data to actually be written and
stored in a container.
The fact that containers each have their own writable layer also multiple containers to be based
off the same image. So you can have a Docker setup where you want multiple containers to
built from the same image. That is doable since they can be based off the same image, but each
container has its own unique data state. They do not share data, unless you explicitly set up
your containers in a way to do.

What is a Data Volume?
Docker data volumes are specially designed directories in a container. The 2 main purposes
they are used are for 1. Persistent data storage and for 2. Mounting host directories.

For data storage, there could be scenarios where we have to kill all of our containers on our
machine but we don’t want certain data to be lost. Data volumes are saved on a host OS even
when a container is stopped. A common use case is setting up a data volume for your database
container. Maybe you want to run your application on a new host but don’t want to lose your
data. There are ways to transfer the data from your data volume on one host OS to another,
and restore the data in your database container

Mounting host directories is a very powerful use case. Usually your container is isolated from
the host OS. This means you have to manually go into the container through the Docker CLI to
make changes.When we mount a host directory as a data volume, what happens is if we make
changes to that host directory, those same changes will be reflected somewhere in the
container. This is useful in use cases with development where you regularly modify a file
outside of your container on the host OS and want those changes to be reflected in the
container. I will go over how that’s useful later in the presentation.

Building your Own Docker Image
So we now have all of the tools to better understand what’s going on in a custom Dockerfile,
specifically the one handed out to all students for HW1. So here we will just go line by line
explaining what’s happening

1. Pulling python 3 image from Docker Hub: Django is Python based so we need an
environment that has Python installed —> we elect to use an image from Docker Hub since it’s
stable and it’s already been made for us
2. This just ensures that any logs created by the container are piped to the Terminal and
printed to standard output
3. Creates a /code directory within the container
4. Sets your working directory as /code. This command sets a specific path in one spot and
any RUN or COPY instructions will execute in the context of the WORKDIR.
5. Add req.txt to new directory
6. Here we didn’t have to specify a path for requirements.txt, it assumes to look in /code
since that’s our WORKDIR. This line installs all dependencies on that text file. Note that you
should use the “pip freeze” command with a virtual environment and pipe the output to a
requirements.txt file to build your list of dependencies
7. This line just adds all of the project files in your current working directory to the code
directory. So this container will have all of the project files for our project inside it’s /code
directory.

What is Docker Compose?
(Read Slide)
So a lot of applications require the use of multiple containers. For example, you could have a
separate database container from a container running your web application. Before Docker
Compose and later versions of Docker, developers had to explicitly create links between
different containers using the Docker CLI. Since Docker Compose was made, building multi-

container Docker applications and making sure they can communicate has become much
easier.

Docker Container Networking
If we have multiple Docker containers they have to communicate in some way. Docker’s
developers came up with a way to make that easy! (Depending on our use case).

The Bridge network (the default network) is installed on the OS when Docker is installed. Unless
explicitly specified, each container that runs on a host OS will be connected to this network.
This network is primarily used to allow containers on the same host OS to communicate.

To allow containers to communicate to one another, each container thinks it has its own set of
ports. We can specify on what port each container should be listening to in order to receive
information from a different container. We can also bind a container port to an actual port on
the host OS to allow users in the outside world to communicate with a container. We’ll see
both in the next slide.

Using Docker Compose
Here you can see the .YML file given to everyone for HW1. The way you define a .yml file is to
first specify the version, in this case we are using 2 since it’s stable and we don’t need any of
the functionalities in the latter releases. After doing so you need to specify the services you are
building. A service is a distinct group of containers of the same image:tag. I say group because
technically, we can configure multiple containers to run for each type of service. When you
specify a distinct service in a .YML file, that means a container will be spawned for that service
when you run sudo docker-compose up.

Db: This service handles our postgres database. This is our database container

Web: This is our container running our actual Django application.
Build: This is used to specify where our Dockerfile is to build the image to use to spawn this
container. We need to specify this since we are not basing this container off a DockerHub
image.
User: This specifies what user will be running this container. Brian will talk more about this, but
unless specified otherwise, Docker containers are run from a user with root privileges. From a
security standpoint, you do not want this. If someone hacks your application and takes control
of your container, they now have control of a user with root privileges who can do virtually
anything on your container. By specifying nobody as our user, we are running this container as
a user with non-root privileges.
command: This is used to specify what command to run when the container begins to run. So
every time this container is built, or spun up, it will make migrations to the database, migrate
them and run the test Django server.
Volumes: This command specifies what data volumes we would like to have in this container.
Here we are mounting the folder “web-app” as a data volume and mapping it to the code
directory in this container. We created a /code directory for the image for this container if you

remember our Dockerfile. What this does is, after you built your Docker containers and you
want to keep developing, you can spin down your containers. Then, you can make changes to
the project files in the web-app folder which containers your project files. After doing so, you
can spin up your container and those changes will be reflected in your container because /web-
app maps to the /code directory. If we did not do this, every time you made a change the web-
app project files, you wouldn’t see a change reflected in the container. This allows you to not
have to continually destroy your container and rebuild it every time you want to make changes
to the container during development.
Expose: This command is used to specify what port this container should listen on for
connections. Here we are specifying that the web container should listen on port 8000 for
connections.
Depends on: This line specifies that the database container should be spun up before the web
container since web depends on it

Nginx: This service is used to build reverse proxy server container. You’ll learn more about
these later when you do HW2 but proxy servers essentially load balance and can cache
commonly used requests. I encourage you to look more into what the advantages are of a
reverse proxy server, but they are used to speed up connections to web applications among
other things.

Here we can see we are pulling the nginx latest image from DockerHub to use to build this
container.
Ports: Here we are binding a container port to a host port. We are binding port 8000 on the
container to the host’s actual port 8000. So when users connect to port 8000 on this VM, they
are actually connecting to the nginx container initially. This container then directs traffic to the
web service who is listening for connections on its own port 8000. If you are asking how this
occurs, this is due to the configuration file that we gave you in the nginx directory.

You can see we mounted the config directory to the config file stored in the nginx container.
This allows any changes we make to that file to make changes to the config file in the nginx
container. Finally we made it depend on the web container, since traffic cannot be rerouted to
the Django application unless that container is spun up.

Docker Compose (2.0)
This is the 2nd compose file released by Brian that solves some Docker issues that may come up.
We can see that a data volume was created for the database. This is just a good practice to
backup your database data. Anything written to that directory will be stored in a data volume.
Docker native stores postgresql data to the folder /var/lib/postgresql/data so this setup will
also save any data stored there to a data volume which can then be used to restore our
database.

The main difference we see here is the fact that we have an extra service web-init.

The web-init service is similar to the web service but is used as a hack to make sure docker-
compose up runs cleanly. In our old setup, if we ran docker-compose up, and no images were
built or downloaded previously, that command would attempt to download or build each image.
After building each image, Docker would attempt to spin up each container. The issue at hand is
the web container usually is spun up before the db container and will attempt to connect to the
db container and may throw a Connection Refused error. One way of getting around this error
is by using a separate service web-init.

Web-init: This service is built off our custom Dockerfile but will run the initserver.sh Bash
script when its container is spun up. If we look at that script, it makes migrations, migrates then
and also has a while loop containing a sleep command. This sleep command gives the database
container enough time to be spun up. We created this service to handle migrations as well as wait
enough time for the database container to be spun up.

We also notice that we mounted the /web-app folder as a data volume to the /code directory in
this service. If we look at the web container we did the same data volume mounting. This ensures
that any code changes will update both of these services. Additionally, I believe any migrations
that will be created in the web-init command will now be reflected in the /web-app folder which
will then be reflected in the /code directory of the web container.

The other change we see is that the web container runs the runserver.sh Bash script. If we look
at it, we see that this server just runs the run server command to actually run the Django
application.

Useful References
Any questions?

