
Brian Rogers

Duke ECE

Used with permission from Drew Hilton

Engineering Robust Server
Software
Introduction

Welcome To ERSS!
• Welcome to Engineering Robust Server Software (ERSS)

• Introductions:

• Instructor: Brian Rogers

• Adjunct faculty at Duke, day job as a processor architect in industry

• Also have recently taught ECE 650 and ECE 565

• Teaching Assistants: Longhao Zhu, Evan Li, Zixu Geng, Kaixin Lu

• Important - course website is here:

• https://people.duke.edu/~bmr23/ece568/

• Ed: questions/answers

• Post all of your questions here

• Questions must be “public” unless good reasons otherwise

• No code or copyable answers in public posts!

• Canvas: submission of certain parts of assignments, grade book

2

https://people.duke.edu/~bmr23/ece568/

Assumptions Going Into This Class
• I assume you want to be a software development professional

• I assume you are taking 650 (or have equivalent preparation)

• You are competent C programmer (Mastery of 551 material)

• You know basic systems concepts: caching, instructions, etc… (550)

• If not in 650, you know or are learning:

• Programming with pthreads

• Networking

• Relational databases (Postgresql, in particular)

• I assume you are eager to learn this material, and write a bunch of code

• I assume you can consult documentation, try things out, etc.

• In lectures, we will learn cover concepts and practices

• In assignments, you will be doing independent learning, experiments, etc.

3

What is this class about?
• Engineering Robust Server Software

• Software: This class is all about software

• Hardware may come up in regards to how it affects SW performance

• Engineering: Designing and building systems

• This is an engineering class, so expect to build a lot of software

• Focus on useful things in real world

• Robust: Stands up in the face of adversity

• Badly formed user inputs, many requests at once, evil users…

• Server: handles requests from clients

• Different constraints from most programs you have written
4

Server Software
• Servers come in a wide range of "flavors"

• We are going to consider two major ones

• UNIX daemons: sshd, httpd, …

• C/C++, systems programming…

• Web-sites: writing the server side logic for a website

• Django, databases

• Three major themes

• Security

• Resilience

• Scalability
5

Five Major Parts To Semester
• [1] Intro

• Requirements/constraints/differences from other software

• Protocols

• Unix Daemons

• DJango/website/AJAX basics

• Containers

6

See course website for schedule details

Five Major Parts To Semester
• [2] Resilience

• Error handling, exception models/safety

• High-availability/disaster recovery

7

See course website for schedule details

Five Major Parts To Semester
• [3] Security

• Cryptography basics

• Common attacks/vulnerability types

• (e.g., SQL injection, privilege escalation, …)

• Famous vulnerabilities: Heartbleed, Dirty COW, Apple goto

• Defense in Depth

8

See course website for schedule details

Interlude
• Midterm exam

• Spring break

9

See course website for schedule details

Five Major Parts To Semester
• [4] Performance/Scalability

• Non-blocking IO

• C++ atomics, memory model

• Serialization bottlenecks

• Locking granularity

• "hidden" locks

• Load balancing

• Load testing

• IO Scalability

10

See course website for schedule details

Five Major Parts To Semester
• [5] "Topics" Guest Lectures & Class Wrap-up

• Intended to supplement the class topics

• Also provide a perspective of real-world SW engineering

11

See course website for schedule details

What Will You Do?
• 4 Homeworks:

• See course site for due dates

• Programming

• Different partner for each homework (groups of 2)

• Thinking about and write down "dangers"

• Revisit as semester progresses

• Example Assignments:

• Simple Website (Django)

• Caching Http Proxy (Unix Daemon in C)

• Exchange Matching (Pair "Buy" with "Sell" orders)

12

What Will You Do? (cont'd)
• 1 Midterm

• 1 Final

• 1 Project

• Do in pairs (may select partner from prior homework)

• Half class: e-commerce site ("Amazon")

• Half class: shipping site ("UPS")

• Systems have to interact

13

See course website for schedule details

"Danger" Log
• Critical programming skill: "spidey sense"

• As you write, internal mental warning of danger

• "What if the user …"

• "What if we run out of memory…"

• "What if this fails…"

• "What if…"

• As you code, think of these, write them down

• Submit a text file with your thoughts

• Particular focus on class themes (security, resilience, scalability)

14

THE USER MIGHT BE
EVIL! OR WORSE,

STUPID!

AND WHAT IF THE
COMPUTER SUCKS?

"Danger" Log 2.0
• As you learn new things, revisit old assignments

• Look at code:

• What should you have worried about?

• Look at danger logs:

• What could you have done about these dangers?

• Update log with new thoughts ~weekly.

15

Pair Programming
• Highly recommended development model: pair programming

• Not just "doing assignment with a partner"

• Partners work on code at same time

• One is "driver"

• The other "navigator"

• Switch roles frequently/as needed

• Driver: writes code

• Navigator: watches

• Looks for errors, danger, thinks about bigger picture..

16

Pair Programming
• Useful tool: screen (or tmux)

• Multiplex terminal session

• Can have two terminals connected to one logical terminal

• Both of you can look at, edit code from your own laptops

• Facilitates switching driver/navigator

• (Zoom is also fine too)

• Recommend to be on voice chat of some sort

• Typing too slow (i.e. instant messaging)

17

Semester Timeline
• To help visualize how you will need to budget your time

18

Weeks:

HW #1
HW #2

HW #3

HW #4

Project Partners

& Spec Project

Finish Most

of HW3

Early

Spring

Break

Deadlines cannot be extended

or else the semester schedule becomes

too compressed!

Midterm

Recommended Assignment Practices
• Find partner & make a plan within 48 hours of assignment

• Identify major pieces to implement or questions to answer

• What steps are needed to architect, develop and test pieces?

• What will testing strategy be? Creation of test cases in plan

• Make a schedule timeline based on this info

• Stick to the schedule!

• Adjust timeline if things don’t go exactly to plan

• Learning happens best with steady, planned progress

• You want to hit questions / issues early so you have time to think

• You don’t want to be tempted to take short-cuts

19

Project: High-level View

E-commerce
site

Shipping

site"Warehouse" "Trucks"

web interface to userweb interface to user

20

Project: High-level View

• I will define these protocols/implement these parts…

• I'll give you a protocol spec

• …but you should be resilient to anything

• After all, that is a goal of this class

"Warehouse" "Trucks"

21

Project: High-level View

• You will do either the red (e-commerce) or the blue (shipping)

• Protocol between them? Defined by your interoperability group

E-commerce
site

Shipping

site

22

Project: High-level View

• 4 groups (8 people) = 1 interoperability group

• Both e-commerce sites must work with both/either shipping site.

• 8 of you define protocol

E-commerce
site 1

Shipping

site 1

E-commerce
site 2

Shipping

site 2

23

Where will you do it?
• You will each have your own server

• You get root on it, you administer it

• OIT VMs

• Go to https://vcm.duke.edu/

• Select an Ubuntu machine (Ubuntu 20.04)

• Login with netid

• Initially will use the VM you create

• Later in the semester (HW #4 and Project) we’ll use some multi-core
VMs allocated for course (you’ll select “ECE 568 Spring 2025”)

24

https://vcm.duke.edu/

Choose Reserve a VM in Lower Middle

25

Reserve a VM

26

For later in the semester

Use this for now

Next Steps
• Login to your server

• Username/password: NetID of the creator of it

• Setup a user account w/ sudo

• sudo adduser name

• sudo adduser name sudo

• Now you can ssh in as name

• Recommended: setup ssh key pair

• https://vcm.duke.edu/help/23

27

https://vcm.duke.edu/help/23

Install Software!

• Your server: fresh image, not much software installed

• sudo apt-get install package

28

Packages you probably want to install
• For C development: gcc g++ make valgrind

• For editing: emacs screen

• For source control: git

• Database: postgresql libpq-dev

• For Django: python python3-pip

• Then do: sudo pip3 install django psycopg2

• Then django-admin --version should give 5.1.4

• Libraries: libssl-dev libxerces-c-dev libpqxx-dev

• Documentation: manpages-posix-dev

29

Note when working
through the Django
tutorial, where it
mentions using
‘python’ commands,
you may need to use
‘python3’

Recommended Server Setup [Optional]
• Set up your "dot files"

• ~/.emacs : emacs configuration

• ~/.profile : commands read on login

export EDITOR='emacs -nw'

export VISUAL='emacs -nw'

• Setup ssh key pair(s)

• Login without password: private key authenticates

• Pick somewhere to backup your work

• Keep a git remote on another computer

30

Grading
• Grade Breakdown:

• Homeworks: 28%

• Project: 22%

• Midterm: 20%

• Final: 30%

• Letter grade: A-

[90,93)

A

[93,97)

A+

[97,∞)

B-

[80,83)

B

[83,87)

B+

[87,90)

C-

[70,73)

C

[73,77)

C+

[77,80)

D-

[60,63)

D

[63,67)

D+

[67,70)

F

(-∞,70) 31

Regrades:

* All regrade requests must be in writing

* After getting feedback with the TA, if you still have

concerns, contact the instructor

* All regrade requests must be submitted no later than 1

week after the assignment was returned to you.

Late Assignment Submission
• Increasing penalty for each day late

• 0-24 hours late: score * 0.9

• 24-48 hours late: score * 0.8

• 48-72 hours late: score * 0.6

• Allows moderate penalty for small amount of lateness

• No submissions accepted after 3 days late (72 hours)

• We need to have all assignments by then for grading timeliness

• You’ll need to be free to move on to the next assignment

32

Academic Integrity
• Your work is expected to be your own (for midterm & final exam)

• Or yours and your partner’s (for homework / project)

• Do not be tempted to use or look for unreasonable help (i.e. code of other
groups or code found online)

• If unsure, ask me

• Do not look at or use code you may find online which implements the same
thing or something very close to what you are implementing

• We use code similarity checking tools to do automated checking for this

• These tools are very good at flagging irregularities

• This is another reason to start early and make steady progress!

• Do not be tempted to take shortcuts

33

RFCs
• Many standards are in the form of RFCs

• You SHOULD spend some time reading RFCs this semester

• …and may effectively write one during your project

• Start with this one (describes MUST/MAY/SHOULD etc in RFCs)

• https://tools.ietf.org/html/rfc2119

34

https://tools.ietf.org/html/rfc2119

Next Time..
• Let’s look at class page…

• Wrap up for this time:

• Questions?

• Find partners for homework 1

• Use “find a teammate” pinned post on Ed Discussion

• Look at Django and Docker tutorials

• Next time:

• Start talking about server software

35

