Engineering Robust Server
Software

Server Software

IIIIIIIIII

IIIIIIIIII

Servers Software

Servers accept requests from clients
Exchange information (take requests, give responses)
Generally do much of the "computing"
We'll start with two example categories
Unix Daemons (sshd, httpq, ...)
Server side code in websites (Django)
So what is so special about server software?

Why is it different enough to be in the course title?

Most Code You Have Written

» Run on input, get output
Then done
« Error?
Print message and exit
Run by you

Trusts user

On one computer...

» Deals with one input at a time

Serial code

Don't care about performance

IIIIIIIIII

Servers: Different

Run "forever"

Implications of this?

while (true) {

IIIIIIIIII

IIIIIIIIII

Run Forever

Resource (memory, file descriptors,...) Leaks: Unacceptable

Restart Chrome every week b/c memory leak? Annoying

Restart Google every 5 minutes b/c memory leak? No way..

But you all are pros at writing leak-free code by now

IIIIIIIIII

Run Forever

How to handle errors?
abort? No way.
Report and keep going! Need to keep handling other requests
Log: (Generally accepted practice in industry: log everything!)
Nobody is watching terminal.
Want admins to know? Need log files (/var/log/...)
Inform user

Send (informative?) error response

Maybe more complex?

>
&
»7

Many server systems: more complex

Introduce more complexities in terms of running "forever"

IIIIIIIIII

Three Tier System

1. Presentation Tier ‘

2. Application Tier [==
(Business Logic) 3. Storage Tier

IIIIIIIIII

Maybe more complex?

»
v/ -

Maybe we want to upgrade v1.0 to v2.0

Now have v1.0 and v2.0 running at same time: difficulties?

IIIIIIIIII

What if we just shut everything down?

Hypothetical picture of
what would happen if
Google or Facebook
were down for 1 minute

»+ Couldn't we just shut the whole thing down, and upgrade?

IIIIIIIIII

Maybe more complex?

o =
-4

Maybe we want to upgrade v1.0 to v2.0

Version 1.0 data: accessed by v2.0 software..

IIIIIIIIII

Maybe more complex?

-4

Maybe we want to upgrade v1.0 to v2.0

Version 2.0 data, accessed by version 1.0 software...

Why is this a bigger problem?

IIIIIIIIII

IIIIIIIIII

v1.0 can handle v2.0 data

Easy: v1.0 and v2.0 have same data layout/constraints

Only add tields and/or tighten constraints
v1.0 has (nhame, grade) and v2.0 has (name, grade, bday)
v1.0 requires x >= 0 and v2.0 writes data with x > 0
v2.0 must be written to handle v1.0 data
e.g. missing bday
x =0

This is ok: we know these requirements when we write v2.0

13

What if v1.0 Cannot Handle v2.0 Data?

»+ Suppose we make some change that v1.0 cannot handle

v1.0 expects a field to be an int, but v2.0 writes arbitrary strings
(relaxes constraints)

- v2.0 removes/renames fields [hint: try not to do this!]

e Solution: make v1.9

» Writes v1.0 compatible data
» Can read/handle v2.0 data

» Spin up v1.9, until all v1.0s replaced
» Then spin up v2.0 to replace v1.9

IIIIIIIIII

14

IIIIIIIIII

Migrating Data?
Migrating Data is tricky

- E.g., change storage tier itself itself?
Reading:

How to Survive a Ground-up Rewrite Without Losing Your Sanity by Dan Milstein

15

http://onstartups.com/tabid/3339/bid/97052/How-To-Survive-a-Ground-Up-Rewrite-Without-Losing-Your-Sanity.aspx

Another Reason for Slow Rollout: Testing
/\

Speaking of Storage...

g

Our code is running happily, but what if...
A storage server fails? Temporarily or Permanently

This is what we will cover later in High Availability & Disaster Recovery

IIIIIIIIII

IIIIIIIIII

Another Major Issue: Configuration!

Code you have written:
Minimal, if any configuration. Likely read at startup
Servers:
Much more configuration: see /etc/ssh/sshd_contig, /etc/apache2/*, etc..

Re-read/change while running?

Warning: changing contig as dangerous as changing code!
Reading 2:

Google Compute Engine Incident #1600/

18

https://status.cloud.google.com/incident/compute/16007

Used By You vs Used By Many People
y y y %

Another major difference:

Things you have written: used by you
Server Software: used by (many?) other people...

Complexities?

IIIIIIIIII

Used By You vs Used By Many People

Py
Book Seat 2Aon
____________________ FeRe 1232 S

Nt

- Concurrency/Scalability
Many things going on at once in system

Need to handle many requests efficiently

IIIIIIIIII

Performance: | feel the need for speed

I.. —— e

| - ~'.\.¢\ |

» Performance: Users care about speed

- Want system to be fast! ——

+ From system perspective: —

« Many users |

« Want to be fast for all of them at once...

e Performance comes in two metrics:

» Latency: time to complete one request

» Throughput: requests/second
- Not the same, but they do interact...

» Let us look at non-software example...

|||||||||| 21

Latency vs Throughput

Here is a "road".

1 lane
/0 mph
/00 miles long

uuuuuuuuuu 22

Latency vs Throughput

Latency: 700 miles @ 70 mph= 10 hours to travel

IIIIIIIIII

Latency vs Throughput

Latency: 700 miles @ 70 mph= 10 hours to travel
Throughput: 1 car/ 10 hours = 0.000028 cars/second ?

IIIIIIIIII

Latency vs Throughput

Latency: 700 miles @ 70 mph= 10 hours to travel

ThroWecond 7

Throughput, for example: 0.3 cars / second

Pipeline of cars on the road at one time

IIIIIIIIII

Latency vs Throughput

- Different things: can affect one without changing other

Another lane? Throughput improves, latency unchanged

IIIIIIIIII

Latency vs Throughput

IIIIIIIIII

Different things: can affect one without changing other

Another lane? Throughput improves, latency unchanged

Shorter road? Throughput unchanged, latency improves

Latency vs Throughput

IIIIIIIIII

Different things: can affect one without changing other
Another lane? Throughput improves, latency unchanged
Shorter road? Throughput unchanged, latency improves

Cars drive faster? Both improve (*)

(*) Except that you need more space for safety...

So Which Do We Care About?

+ What matters? Latency or throughput?

From a user's perspective: latency

»+ From a system perspective, both matter

Need high throughput to get low latency for many users

Latency goes up with resource contention and queueing delays

» Back to our road example...

IIIIIIIIII

29

Latency vs Throughput

Heavy traffic, more cars merging in.. What happens?

IIIIIIIIII

Latency vs Throughput

IIIIIIIIII

Heavy traffic, more cars merging in.. What happens?

Latency goes up

Cars slow down due to resource (road space) contention

Latency vs Throughput

H
@

¢

Alternative: merge traffic lights

Traftic queues up (at on ramp)
Reduce resource contention (keep speeds higher)

|deally: maintain speed, extra latency comes in queue

IIIIIIIIII

32

Latency vs Throughput

I - 100 reqs/sec
R - 100 reqs/sec

_ - 100 reqs/sec
R - 100 reqs/sec

» Adding more systems won't help latency (probably)

350 reqs/sec

May experience resource contention (cache, locks, etc...)

IIIIIIIIII

33

Latency vs Throughput

100 reqs/sec

100 reqs/sec
500 reqs/sec

100 reqs/sec

100 reqs/sec

sy
e
-
sy

- System is oversubscribed: queuing delays add to latency

Adding more throughput would reduce latency!

IIIIIIIIII

Used By You vs Used By Many People
y y y %

Another complexity: trust

Are all those users out there good?

IIIIIIIIII

IIIIIIIIII

Might be evil (red eyes and fangs = euvil)
Steal information
Modity information

Use server for netarious purposes (spam,...)

 Distrust connection...

Adversary might eavesdrop (passively gather information)

Or tamper with connection (actively change what is sent)

IIIIIIIIII

Duke

U N I

VERS

(Mis-)Trust: DOS

TY

Malicious user may also attempt to deny serv

« DQOS = Denial of Service

ICE

38

Malicious user may also attempt to deny service
DOS = Denial of Service
DDOS = Distributed Denial of Service

IIIIIIIIII

What Does The Server Look Like?

Now, we've seen a bunch of differences in constraints/requirements

But what does the server itself look like?

...it depenas...
\ Always the answer in CE

IIIIIIIIII

Batch Servers

Client Server
Please run these 57 programs

Ok, sure

Status?
Finished 1,3. Started 2

+ Submit jobs (possibly in bulk)

» Server will do them later (when it can)

IIIIIIIIII

Batch Servers

+ Examples:

Sun Grid Engine, Condor, Platform LSF
+ Mostly queue requests
Possibly with priorities
+ Most concerned with throughput
Overhead latency << job latency

- Running code for user?

Generally more trust than most systems

IIIIIIIIII

Interactive Servers

Client Server
IS

B - 2200

. .. file1 file2
dir1 xyz abc

[user@host]:~S
cd dirf

B ednl__
<« luser@host].~/dirtS

user@host]:~/dir1

emacs Makefile

B emecsvokerle

» (Many ?) requests, sent/handled frequently

IIIIIIIIII

IIIIIIIIII

Interactive Servers

Examples:
sshd

Game servers (Fortnite, WoW, etc.)

Latency is critical

Web-servers similar,

» Just flurry of requests, then close connection

44

Database Servers / DBMS

Process queries from clients

Often must efficiently process many tuples to satisty query

» High tuple throughput -> low response latency
» Often have special 1O needs, require much RAM
» Quite a complex beast (topic of advanced database classes)

+ Examples: Postgres, MySQL, Oracle,....

|||||||||| 45

File Servers

- Put filesystem on remote server
« Why?
Use same files on many systems

E.g., login to any lab computer, have same home directory

+ Compute requirements << |O requirements

+ |O slower than compute anyways

+ Examples: NFS, AFS,...

IIIIIIIIII

Proxy Servers

Client Proxy Server

GET puppy.png

» Pass requests to "actual” server

IIIIIIIIII

47

...but really...all the same

while (true) {
req = accept 1ncoming request();

resp = process request (req);
send response (req, resp); 4 some P2
J Note really NE€

e Pretty much all of these have a unix daemon that

Accepts requests
Processes them

Sends responses

IIIIIIIIII

Coming soon: Unix Daemons

while (true)
req = accept 1ncoming request();
resp process request (req):;
send response (req, resp);

Soon: all the details of how to make this work
You'll write a particular type of Daemon

Will utilize 650 knowledge: concurrency + socket programming

IIIIIIIIII

Coming soon: Unix Daemons

while (true)
req = accept 1ncoming request();
resp process request (req):;
send response (req, resp);

}

Server side web development
How to process the request

Web-servers (Apache,...) have ways to "hook up" to code to
generate content

IIIIIIIIII

IIIIIIIIII

Coming Up...

Web Protocols & Technologies

Protocol/API/Server Concepts
Asynchronous requests
At least or at most once

ldempotent Operations

51

