Engineering Robust Server

Software
APIl/Protocol/Server Design |deas

IIIIIIIIII



Important APl/Protocol/Server Design Ideas

e Design for failure

e Design tor asynchronous interfaces

e \What does this mean?

e Don't trust anyone or anything

IIIIIIIIII



How You Want Things: Synchronous

IIIIIIIIII



How You Want Things: Synchronous

IIIIIIIIII



How You Want Things: Synchronous

IIIIIIIIII



How You Want Things: Synchronous

A Here is the thing e
.................................... I ne -
____________________________ °d a different thin
Here ]S the Other th]ng ............................... »

||||||||||



Synchronous Processing

e Synchronous processing is straight forward:

connection.send message (request) ;
response = connection.read response()

do whatever (response) ;

but. ..

IIIIIIIIII



Difficulty With Synchronous Behavior

connection.send message (request) ;

:‘ ........................... / need a Fhi.-
" |response = connéction.read re&sponse();

Blocked waiting for response all this time
(Thread can't do anything else)

IIIIIIIIII



Also May Not Get Response

IIIIIIIIII



Stop & Think

e Send + Receiving:
e Take a moment to think up approaches for how we can receive data
e Constraint: cannot block this thread waiting for response!
e Pros and Cons of approach?

e Bonus: ties to names/concepts from 5507

IIIIIIIIII

10



IIIIIIIIII

Receiving

(1) Polling: Pros and Cons?

e Send just does:

connection.send message (request) ;

connections.push back (connection);

e Then we periodically try to receive:

for (auto &c: connections) {
1f (c.1s response ready()) {
response = connection.read response();

do whatever (response);

11



Receiving

e (2) Interrupts?

e What is user-land equivalent of interrupts?

IIIIIIIIII

12



Receiving

e (2) Interrupts?
e What is user-land equivalent of interrupts? Signals
e This is not something you can do easily.
e TCP supports urgent data (delivers SIGURG)
e Sender must mark data urgent
e Not commonly used
e You could have sender do this
e butdon't expect to e.g., have web clients mark all data urgent

e ...butsimilaridea?

IIIIIIIIII



Receiving

e (3) Spawn Another Thread To Receive:
e Send just:

connection.send message (request) ;

spawn thread(recelve data, connection);

e Receive is done in receive data on other thread:

//blocking, but on its own thread
response = connection.read response()

do whatever (response) ;

IIIIIIIIII

Pros and Cons?

4

14



IIIIIIIIII

Receiving

(3) Dedicated receive threads? Pros and Cons?

Pre-spawn some threads to receive

Sender communicates state (what to do) to these threads

15



Also May Not Get Response

Failure->
- Power failure

- Crash
- Network disconnected

IIIIIIIIII



Also May Not Get Response

IIIIIIIIII



Also M
a
y Not Get Respo
nse

IIIIIIIIIIIIIIIIIIIIII

UN
|||||||
Y



Also May Not Get Response

............................. ne
.................................... ,ed * thing
But doesn't TCP guarantee delivery? """
....... .
vere V3 ne t‘m“% ................
X P : She e
HETE ™ e
X‘\’\ere‘\S he t“\“% ...............
e
°°°°°° | give up

IIIIIIIIII



No Way To Tell Where Failure Happened

e \We cannot tell the difference between
e Data not reaching the receiver

e Data reaching the receiver, but ACK not reaching us

e Isthat a big deal?

IIIIIIIIII

20



Data Did Not Reach Receiver

21



ACK Did Not Reach Sender

IIIIIIIIII



Two Generals Problem

e Famous problem: two generals

IIIIIIIIII

23



Two Generals Problem

24



Two Generals Problem

25



Two Generals Problem

e It both generals attack together, they win

e It either attacks alone, they lose

IIIIIIIIII

26



e One wants to send a message to the other to attack

IIIIIIIIII

Two Generals Problem

M
4 S
‘ ‘ \

| will attack
at dawn if

you will
—L

27



Two Generals Problem

: A
| will attack
at dawn if

you will
—L

e But that messenger might get captured...

IIIIIIIIII



Two Generals Problem

| A
| will attack L,
at dawn if Yes, | will
you will attack

e So now we need an acknowledgement...

IIIIIIIIII



e Butthe ACK could get lost...

IIIIIIIIII

Two Generals Problem

you will
—L

L,
Yes, | will
attack
—A

30



Two Generals Problem

“ :

| = |l never got an ACK.
My message was | ACKed her
lost. | should NOT message. | MUST
attack attack.

e Now our armies will be defeated...

IIIIIIIIII



Two Generals Problem

“ :

| = |l never got an ACK.
My message was | ACKed her
lost. | should NOT message. | MUST
attack attack.

e Problem: we can never tell it our ACK got through
e ACK the ACKs? Need infinite number...

IIIIIIIIII



No Way To Tell Where Failure Happened

e \We cannot tell the difference between
e Data not reaching the receiver

e Data reaching the receiver, but ACK not reaching us

e Why is this such a big deal?

e We don't know whether the requested action was taken or not

IIIIIIIIII

33



Would Like "Exactly Once,"...but...

e We can never ensure "exactly once" semantics
e Which is what we would really like:

e Ensure that receiver gets our message exactly once

e So what choices do we have?

IIIIIIIIII

34



IIIIIIIIII

At Least Once / At Most Once

At least once:

e We can know if receiver has gotten message at least once
e Receive an ACK—qgot it at least once

e May send need to send multiple times, may receive multiple times

At most once:

e Send it once

e May or may not get it—-at most once semantics.

35



IIIIIIIIII

At Least Once / At Most Once

At least once:

e We can know if receiver has gotten message at least once

e Receive an ACK—qgot it at least once

e| May send need to send multiple times, may receive multiple times

At most once:

e Send it once

e May or may not get it—-at Alost once semantics.

"But wait” you say...

36



At Least vs At Most Once

e TCP may send data multiple times (no ACK -> retransmission)

e We said multiple sending goes with at least once

e But application receives any piece of data at most once

¢ Once, unless connection tails

IIIIIIIIII

37



At Least vs At Most Once

e TCP may send data multiple times (no ACK -> retransmission)

e We said multiple sending goes with at least once

e But application receives any piece of data at most once

¢ Once, unless connection tails

e TCP layer has sequence numbers

e Can identity duplicates, only passes data to application once

IIIIIIIIII

38



At Least vs At Most Once

e TCP may send data multiple times (no ACK -> retransmission)

e We said multiple sending goes with at least once

e But application receives any piece of data at most once

e Once, unless connection ftails
e TCP layer has sequence numbers

e Can identify duplicates, only passes data to application once
e Thisidea is key:

e Can receive same data multiple times

e Butonlyact onitonce

IIIIIIIIII



FSMs + Idempotent Operations

e Two ideas that work together to handle asynchronous + failures
e Build protocols/APls around idempotent operations

e Applying an operation multiple times is the same as applying it once
(i.e. ignore duplicates)

e Build implementations with FSMs

e Computation model where system keeps track of current ‘state’ during
operations and transitions to a next state based on an action/event.

|||||||||| 40



Example: Buy 5 widgets

e Online store, user asks to buy 5 widgets

e What do we need to do to tultill this request?

IIIIIIIIII

41



Buy 5 widgets

1. We accept the request + give it a unique ID
E.g., 123456789

IIIIIIIIII



2. Send a request to our inventory management system
"req 87654: Reserve 5 widgets for transaction 123456789"

IIIIIIIIII



Buy 5 widgets

3. Receive successful acknowledgement

"ack 87654: 5 widgets reserved for 123456789"

IIIIIIIIII



Buy 5 widgets

4. Send Credit Card Charge request

External service: probably has its own unique ID?

IIIIIIIIII



Buy 5 widgets

' LS
o resernve 5 Widge

0
\ cend reauc est ACK 20

Charge CC3 ACK

Sl G

5. Receive confirmation of successtul card charge

IIIIIIIIII

46



Buy 5 widgets
W\dge\'.s
\ send rea” Strcv charge CC 3 0\/ ACK  gpmail user

s e

Orde( .\S...

6. Inform user of successtul purchase

E.g., send email?

IIIIIIIIII



Buy 5 widgets

W\dge\'.s
\/e
¢ to reset §500 ord
\ Send redu® (V- % charge CC 3220 ACK gpmail user

/. Send request to warehouse to pack/ship

req: 8888 Send 5 widgets to 123 Fake St for order 123456789

IIIIIIIIII



Buy 5 widgets
W\dge\'.s
\ send reat Strc\/ charge €€ 2 0\/ ACK  gpail usel:

(O —

e
%ihlzuest to
8 ) 4ck

Orde( .\S...

8. Receive ACK

Now done (other systems may still deal with things)

|||||||||| 49



Buy 5 widgets
W\dge\'.s
\ send reat Strc\/ charge €€ 2 0\/ ACK  gpail usel:

(O —

e
%ihlzuest to
8 ) 4ck

Orde( .\S...

But is that all there is to it?

8. Receive ACK

Now done (other systems may still deal with things)

|||||||| 50



Buy 5 widgets

(ve 2 W‘dgets is
user* order 1>

=
\ d feqU est 101 coe C ACK  email
Sen V- %f % Charg (C\l : Em :
P){/gshlzuest to
8 ) 4ck

No things could go wrong at pretty much any step!

8. Receive ACK

Now done (other systems may still deal with things)

|||||||||| 51



Buy 5 widgets

{ Lo 1€
\ Send requ g (CV" % Chafge:c' rC\/ ACK Em

Timeout

2. Message not ACKed? Re-send message

Receiver already has req 87654 -> Ignores message

IIIIIIIIII



2. Insufficient widgets in warehouse?

Go to error state (inform user, retry later...)

|||||||| 53



Buy 5 widgets

5 W\dge\'.s

\ : Send Ve:qUeStt ?f Charge CC 3 0\/ ACK gmail user:

e
. U %hlzuest to
@neout ° ACk

Orde\‘ .\S...

|||||||||| 54



Timeout &/

J.
7
4. Card denied? (stolen, insufficient funds,...)

Need to release reservation

|||||||||| 55



/. Timeout? Retry

What about other failures here?

|||||||||| 56



Timeout

No other failures here:

Contirmed/reserved everything in advance

|||||||||| 57



Buy 5 widgets

5 .
. r 1S..-
\ . | 95 0,. ' -OrdeTimeout

Timeout

IIIIIIIIII



Buy 5 widgets

Timeout

|||||||||| 59



Buy 5 widgets

Timeout

Timeout

States 8, 2F 4D: tinished.

|||||||||| 60



Importance of Idempotence

61



Order Processing Server

IIIIIIIIII

—- add_request(1234,...)
87654: Reserve(5’ .

— update_state(1234, 3)

Normal Operation

Warehouse Server

lllllllllllll

62



Normal Operation

Order Processing Server Warehouse Server

—- add_request(1234,...)
2 —> 87654: R

/.
e_item(req);

8

— update_state(1234, 3)

What happens it server fails at any of these points?

Turned oft, crashes, ...

|||||||||| 63



Normal Operation

Order Processing Server Warehouse Server
1 —- add_request(1234,...)
2 — . 87654: .
S — 4: Reserve(5, widget"

/.
e_item(req);

8

— update_state(1234, 3)

1: request not yet accept (not confirmed with client)

Client needs to re-send request (external APl should use idempotency)

|||||||||| 64



Normal Operation

Order Processing Server Warehouse Server

—- add_request(1234,...)
2 —> 87654: R

/.
e_item(req);

8

— update_state(1234, 3)

2: will just send message when server returns

|||||||||| 65



Normal Operation

Order Processing Server Warehouse Server

—- add_request(1234,...)
2 —> 87654: R

/.
e_item(req);

8

— update_state(1234, 3)

3: will resend when server returns

Good thing warehouse will ignore duplicates!

|||||||||| 66



Normal Operation

Order Processing Server Warehouse Server

—- add_request(1234,...)
2 —> 87654: R

/.
e_item(req);

8

— update_state(1234, 3)

4: depending on when server returns, might miss ACK.

Missed ACK? Will resend after timeout—idempotency helps here!

|||||||||| 67



Normal Operation

Order Processing Server Warehouse Server

—- add_request(1234,...)
2 —> 87654: R

/.
e_item(req);

8

— update_state(1234, 3)

5: will resend after timeout

|||||||||| 68



Normal Operation

Order Processing Server Warehouse Server

—- add_request(1234,...)
2 —> 87654: R

/.
e_item(req);

8

— update_state(1234, 3)

6: will just continue to next step after server returns

|||||||||| 69



Normal Operation

Order Processing Server Warehouse Server

—- add_request(1234,...)
2 —> 87654: R

/.
e_item(req);

8

— update_state(1234, 3)

/: will never send ACK. order processor will retry

|||||||||| /0



Normal Operation

Order Processing Server Warehouse Server

—- add_request(1234,...)
2 —> 87654: R

/.
e_item(req);

8

— update_state(1234, 3)

8: ACK never sent, order processor will retry, duplicate will be ignored

Note order processor can't distinguish 7 vs 8

|||||||||| /1



Normal Operation

Order Processing Server Warehouse Server

—- add_request(1234,...)
2 —> 87654: R

/.
e_item(req);

8

— update_state(1234, 3)

9: done—nothing special happens

|||||||||| 72



Trust No One

e Another important consideration:

e Never trust clients

e Server should validate everything
e Client can forge any bit of request

e Trusting client = huge security holel

e We will talk more about this when we get to security

e Especially authentication.

IIIIIIIIII

/3



