
Brian Rogers / Duke ECE
Used with permission from Drew Hilton

Engineering Robust Server
Software

API/Protocol/Server Design Ideas

Important API/Protocol/Server Design Ideas
• Design for failure

• Design for asynchronous interfaces

• What does this mean?

• Don't trust anyone or anything

 2

How You Want Things: Synchronous

 3

I need a thing

How You Want Things: Synchronous

 4

I need a thing

Here is the thing

How You Want Things: Synchronous

 5

I need a thing

Here is the thing

I need a different thing

How You Want Things: Synchronous

 6

I need a different thing

Here is the other thing

I need a thing

Here is the thing

Synchronous Processing
• Synchronous processing is straight forward:

connection.send_message(request);

response = connection.read_response();

do_whatever(response);

but…

 7

Difficulty With Synchronous Behavior

 8

I need a thing

Here is the thing

Blocked waiting for response all this time
(Thread can't do anything else)

response = connection.read_response();

connection.send_message(request);

do_whatever(response);

Also May Not Get Response

 9

I need a thing

Stop & Think
• Send + Receiving:

• Take a moment to think up approaches for how we can receive data

• Constraint: cannot block this thread waiting for response!

• Pros and Cons of approach?

• Bonus: ties to names/concepts from 550?

 10

Receiving
• (1) Polling:

• Send just does:

connection.send_message(request);

connections.push_back(connection);

• Then we periodically try to receive:

for (auto &c: connections) {

 if (c.is_response_ready()) {

 response = connection.read_response();

 do_whatever(response);

 }

}

 11

Pros and Cons?

Receiving
• (2) Interrupts?

• What is user-land equivalent of interrupts?

 12

Receiving
• (2) Interrupts?

• What is user-land equivalent of interrupts? Signals

• This is not something you can do easily.

• TCP supports urgent data (delivers SIGURG)

• Sender must mark data urgent

• Not commonly used

• You could have sender do this

• but don't expect to e.g., have web clients mark all data urgent

• …but similar idea?

 13

Receiving
• (3) Spawn Another Thread To Receive:

• Send just:

connection.send_message(request);

spawn_thread(receive_data, connection);

• Receive is done in receive_data on other thread:

//blocking, but on its own thread

response = connection.read_response();

do_whatever(response);

 14

Pros and Cons?

Receiving
• (3) Dedicated receive threads?

• Pre-spawn some threads to receive

• Sender communicates state (what to do) to these threads

 15

Pros and Cons?

Also May Not Get Response

 16

I need a thing

X Failure->

- Power failure
- Crash
- Network disconnected
- …

Also May Not Get Response

 17

I need a thing

Here is the thing

XNetwork problems

Also May Not Get Response

 18

I need a thing

Here is the thing

X

But doesn't TCP guarantee delivery?

Also May Not Get Response

 19

I need a thing

Here is the thing

X

But doesn't TCP guarantee delivery?

Here is the thing

Here is the thing

X
X I give up………………..

No Way To Tell Where Failure Happened
• We cannot tell the difference between

• Data not reaching the receiver

• Data reaching the receiver, but ACK not reaching us

• Is that a big deal?

 20

Data Did Not Reach Receiver

 21

Transfer 3 bit coins from Alice to Bob

XTransfer 3 bit coins from Alice to Bob

XTransfer 3 bit coins from Alice to Bob

XTransfer 3 bit coins from Alice to Bob

X

ACK Did Not Reach Sender

 22

ACK

X

Transfer 3 bit coins from Alice to Bob

Transfer 3 bit coins from Alice to Bob

XTransfer 3 bit coins from Alice to Bob

XTransfer 3 bit coins from Alice to Bob

X

Two Generals Problem
• Famous problem: two generals

 23

Two Generals Problem

• I have a valley with the enemy army camped in it

 24

Two Generals Problem

• We have an army camped on each side, each with its own general

 25

Two Generals Problem

• If both generals attack together, they win

• If either attacks alone, they lose

 26

Two Generals Problem

• One wants to send a message to the other to attack

 27

A,
I will attack
at dawn if
you will
—L

Two Generals Problem

• But that messenger might get captured…

 28

A,
I will attack
at dawn if
you will
—L

Two Generals Problem

• So now we need an acknowledgement…

 29

A,
I will attack
at dawn if
you will
—L

L,
Yes, I will
attack
—A

Two Generals Problem

• But the ACK could get lost…

 30

A,
I will attack
at dawn if
you will
—L

L,
Yes, I will
attack
—A

Two Generals Problem

• Now our armies will be defeated…

 31

I never got an ACK.
My message was
lost. I should NOT
attack

I ACKed her
message. I MUST
attack.

Two Generals Problem

• Problem: we can never tell if our ACK got through

• ACK the ACKs? Need infinite number…

 32

I never got an ACK.
My message was
lost. I should NOT
attack

I ACKed her
message. I MUST
attack.

No Way To Tell Where Failure Happened
• We cannot tell the difference between

• Data not reaching the receiver

• Data reaching the receiver, but ACK not reaching us

• Why is this such a big deal?

• We don’t know whether the requested action was taken or not

 33

Would Like "Exactly Once,"…but…
• We can never ensure "exactly once" semantics

• Which is what we would really like:

• Ensure that receiver gets our message exactly once

• So what choices do we have?

 34

At Least Once / At Most Once
• At least once:

• We can know if receiver has gotten message at least once

• Receive an ACK—got it at least once

• May send need to send multiple times, may receive multiple times

• At most once:

• Send it once

• May or may not get it—-at most once semantics.

 35

At Least Once / At Most Once
• At least once:

• We can know if receiver has gotten message at least once

• Receive an ACK—got it at least once

• May send need to send multiple times, may receive multiple times

• At most once:

• Send it once

• May or may not get it—-at most once semantics.

 36

"But wait" you say…

At Least vs At Most Once
• TCP may send data multiple times (no ACK -> retransmission)

• We said multiple sending goes with at least once

• But application receives any piece of data at most once
• Once, unless connection fails

 37

At Least vs At Most Once
• TCP may send data multiple times (no ACK -> retransmission)

• We said multiple sending goes with at least once

• But application receives any piece of data at most once
• Once, unless connection fails

• TCP layer has sequence numbers

• Can identify duplicates, only passes data to application once

 38

At Least vs At Most Once
• TCP may send data multiple times (no ACK -> retransmission)

• We said multiple sending goes with at least once

• But application receives any piece of data at most once
• Once, unless connection fails

• TCP layer has sequence numbers

• Can identify duplicates, only passes data to application once

• This idea is key:

• Can receive same data multiple times

• But only act on it once

 39

FSMs + Idempotent Operations
• Two ideas that work together to handle asynchronous + failures

• Build protocols/APIs around idempotent operations

• Applying an operation multiple times is the same as applying it once
(i.e. ignore duplicates)

• Build implementations with FSMs

• Computation model where system keeps track of current ‘state’ during
operations and transitions to a next state based on an action/event.

 40

Example: Buy 5 widgets
• Online store, user asks to buy 5 widgets

• What do we need to do to fulfill this request?

 41

Buy 5 widgets

1. We accept the request + give it a unique ID

E.g., 123456789

 42

1

Buy 5 widgets

2. Send a request to our inventory management system

"req 87654: Reserve 5 widgets for transaction 123456789"

 43

1 2
Send request to reserve 5 widgets

Buy 5 widgets

3. Receive successful acknowledgement

"ack 87654: 5 widgets reserved for 123456789"

 44

1 2
Send request to reserve 5 widgets

3
ACK

Buy 5 widgets

4. Send Credit Card Charge request

External service: probably has its own unique ID?

 45

1 2
Send request to reserve 5 widgets

3
ACK

4
Charge CC $500

Buy 5 widgets

5. Receive confirmation of successful card charge

 46

1 2
Send request to reserve 5 widgets

3
ACK

4
Charge CC $500

5
ACK

Buy 5 widgets

6. Inform user of successful purchase

E.g., send email?

 47

1 2
Send request to reserve 5 widgets

3
rcv: ACK

4
Charge CC $500

5
rcv: ACK

6
Email user: order is…

Buy 5 widgets

7. Send request to warehouse to pack/ship

req: 8888 Send 5 widgets to 123 Fake St for order 123456789

 48

1 2
Send request to reserve 5 widgets

3
rcv: ACK

4
Charge CC $500

5
rcv: ACK

6
Email user: order is…

7
Send request to

pack/ship

Buy 5 widgets

8. Receive ACK

 Now done (other systems may still deal with things)

 49

1 2
Send request to reserve 5 widgets

3
rcv: ACK

4
Charge CC $500

5
rcv: ACK

6
Email user: order is…

7
Send request to

pack/ship
8 ACK

Buy 5 widgets

8. Receive ACK

 Now done (other systems may still deal with things)

 50

1 2
Send request to reserve 5 widgets

3
rcv: ACK

4
Charge CC $500

5
rcv: ACK

6
Email user: order is…

7
Send request to

pack/ship
8 ACK

But is that all there is to it?

Buy 5 widgets

8. Receive ACK

 Now done (other systems may still deal with things)

 51

1 2
Send request to reserve 5 widgets

3
rcv: ACK

4
Charge CC $500

5
rcv: ACK

6
Email user: order is…

7
Send request to

pack/ship
8 ACK

No things could go wrong at pretty much any step!

Buy 5 widgets

2. Message not ACKed? Re-send message

Receiver already has req 87654 -> Ignores message

 52

1 2
Send request to reserve 5 widgets

3
rcv: ACK

4
Charge CC $500

5
rcv: ACK

6
Email user: order is…

7
Send request to

pack/ship
8 ACKTimeout

Buy 5 widgets

2. Insufficient widgets in warehouse?

 Go to error state (inform user, retry later…)

 53

1 2
Send request to reserve 5 widgets

3
rcv: ACK

4
Charge CC $500

5
rcv: ACK

6
Email user: order is…

7
Send request to

pack/ship
8 ACKTimeout

2F

rcv: Failure

Buy 5 widgets

4. Timeout? Retry.

 54

1 2
Send request to reserve 5 widgets

3
rcv: ACK

4
Charge CC $500

5
rcv: ACK

6
Email user: order is…

7
Send request to

pack/ship
8 ACK

rcv: Failure

2F
Timeout Timeout

Buy 5 widgets

4. Card denied? (stolen, insufficient funds,…)

 Need to release reservation

 55

1 2
Send request to reserve 5 widgets

3
rcv: ACK

4
Charge CC $500

5
rcv: ACK

6
Email user: order is…

7
Send request to

pack/ship
8 ACK

2F 4F

rcv: Failure
Timeout Timeout

rcv: Failure

4RTimeout

Send: rel
4D

ACK

Buy 5 widgets

7. Timeout? Retry

What about other failures here?

 56

1 2
Send request to reserve 5 widgets

3
rcv: ACK

4
Charge CC $500

5
rcv: ACK

6
Email user: order is…

7
Send request to

pack/ship
8 ACK

2F 4F

rcv: Failure
Timeout Timeout

rcv: Failure

4RTimeout

Send: rel
4D

ACK

Timeout

Buy 5 widgets

No other failures here:

 Confirmed/reserved everything in advance

 57

1 2
Send request to reserve 5 widgets

3
rcv: ACK

4
Charge CC $500

5
rcv: ACK

6
Email user: order is…

7
Send request to

pack/ship
8 ACK

2F 4F

rcv: Failure
Timeout Timeout

rcv: Failure

4RTimeout

Send: rel
4D

ACK

Timeout

Buy 5 widgets

States 1, 3, 5, 6, and 4F: send message, go to next state

 58

1 2
Send request to reserve 5 widgets

3
rcv: ACK

4
Charge CC $500

5
rcv: ACK

6
Email user: order is…

7
Send request to

pack/ship
8 ACK

2F 4F

rcv: Failure
Timeout Timeout

rcv: Failure

4RTimeout

Send: rel
4D

ACK

Timeout

Buy 5 widgets

States 2, 4, 7, 4R: Wait to receive message (timeout -> retry)

 59

1 2
Send request to reserve 5 widgets

3
rcv: ACK

4
Charge CC $500

5
rcv: ACK

6
Email user: order is…

7
Send request to

pack/ship
8 ACK

2F 4F

rcv: Failure
Timeout Timeout

rcv: Failure

4RTimeout

Send: rel
4D

ACK

Timeout

Buy 5 widgets

States 8, 2F, 4D: finished.

 60

1 2
Send request to reserve 5 widgets

3
rcv: ACK

4
Charge CC $500

5
rcv: ACK

6
Email user: order is…

7
Send request to

pack/ship
8 ACK

2F 4F

rcv: Failure
Timeout Timeout

rcv: Failure

4RTimeout

Send: rel
4D

ACK

Timeout

Importance of Idempotence

Let us look at just this part and see why idempotence is so useful

 61

1 2
Send request to reserve 5 widgets

3
rcv: ACK

2F

rcv: Failure
Timeout

Normal Operation

 62

Order Processing Server Warehouse Server
add_request(1234,…)

87654: Reserve(5, "widget", 123456789)
reserve_item(req);

update_state(1234,2)
ACK

update_state(1234,3)

Normal Operation
Order Processing Server Warehouse Server

add_request(1234,…)

reserve_item(req);
update_state(1234,2)

ACK

update_state(1234,3)

1
2
3

4

5

6

7

8
9

What happens if server fails at any of these points?

Turned off, crashes, …

 63

87654: Reserve(5, "widget", 123456789)

Normal Operation
Order Processing Server Warehouse Server

add_request(1234,…)

reserve_item(req);
update_state(1234,2)

ACK

update_state(1234,3)

1
2
3

4

5

6

7

8
9

1: request not yet accept (not confirmed with client)

Client needs to re-send request (external API should use idempotency)

 64

87654: Reserve(5, "widget", 123456789)

Normal Operation
Order Processing Server Warehouse Server

add_request(1234,…)

reserve_item(req);
update_state(1234,2)

ACK

update_state(1234,3)

1
2
3

4

5

6

7

8
9

2: will just send message when server returns

 65

87654: Reserve(5, "widget", 123456789)

Normal Operation
Order Processing Server Warehouse Server

add_request(1234,…)

reserve_item(req);
update_state(1234,2)

ACK

update_state(1234,3)

1
2
3

4

5

6

7

8
9

3: will resend when server returns

Good thing warehouse will ignore duplicates!

 66

87654: Reserve(5, "widget", 123456789)

Normal Operation
Order Processing Server Warehouse Server

add_request(1234,…)

reserve_item(req);
update_state(1234,2)

ACK

update_state(1234,3)

1
2
3

4

5

6

7

8
9

4: depending on when server returns, might miss ACK.

Missed ACK? Will resend after timeout—idempotency helps here!

 67

87654: Reserve(5, "widget", 123456789)

Normal Operation
Order Processing Server Warehouse Server

add_request(1234,…)

reserve_item(req);
update_state(1234,2)

ACK

update_state(1234,3)

1
2
3

4

5

6

7

8
9

5: will resend after timeout

 68

87654: Reserve(5, "widget", 123456789)

Normal Operation
Order Processing Server Warehouse Server

add_request(1234,…)

reserve_item(req);
update_state(1234,2)

ACK

update_state(1234,3)

1
2
3

4

5

6

7

8
9

6: will just continue to next step after server returns

 69

87654: Reserve(5, "widget", 123456789)

Normal Operation
Order Processing Server Warehouse Server

add_request(1234,…)

reserve_item(req);
update_state(1234,2)

ACK

update_state(1234,3)

1
2
3

4

5

6

7

8
9

7: will never send ACK. order processor will retry

 70

87654: Reserve(5, "widget", 123456789)

Normal Operation
Order Processing Server Warehouse Server

add_request(1234,…)

reserve_item(req);
update_state(1234,2)

ACK

update_state(1234,3)

1
2
3

4

5

6

7

8
9

8: ACK never sent, order processor will retry, duplicate will be ignored

Note order processor can't distinguish 7 vs 8

 71

87654: Reserve(5, "widget", 123456789)

Normal Operation
Order Processing Server Warehouse Server

add_request(1234,…)

reserve_item(req);
update_state(1234,2)

ACK

update_state(1234,3)

1
2
3

4

5

6

7

8
9

9: done—nothing special happens

 72

87654: Reserve(5, "widget", 123456789)

Trust No One
• Another important consideration:

• Never trust clients

• Server should validate everything

• Client can forge any bit of request

• Trusting client = huge security hole!

• We will talk more about this when we get to security

• Especially authentication.

 73

