
Brian Rogers Duke ECE
Used with permission from Drew Hilton

Engineering Robust Server
Software

Web Protocols and Technologies

Web Protocols
• REST Principles

• HTTP

• Data: XML, HTML, JSON

• Manipulation: JavaScript

2

Recall: Server Big Picture

• Let's remember our view of the world

3

Web Protocol Design

• How should such a protocol be designed?

4

GET Awesome.stuff

Here is Awesome.stuff

REST Principles

• REpresentational State Transfer:

• Let us derive the principles…

• Principle 1 (easy): Client/Server architecture

5

GET Awesome.stuff

Here is Awesome.stuff

REST Principles

• Suppose two requests go to two different servers

• Why? Balance Load!

• What does this say about protocol design?

6

Request 1

Response 1
Request 2

Response 2

REST Principle 2: Stateless
• Protocol principle: stateless

• Server side code does not remember anything about previous request

• Each request needs all information to proceed

• But wait… servers have to have some state, right?

7https://xkcd.com/869/

REST Principles

• State: only in storage tier

• User booked a flight: goes into storage tier (not application tier)

8

Request 1

Response 1
Request 2

Response 2

State here
No State Here

Stateless: Implications
• Need to identify user: include in request

• But…

9

Stateless: Implications
• Need to identify user: include in request

• But…don't we distrust everything from client?

10

Stateless: Implications
• Need to identify user: include in request

• But…don't we distrust everything from client?

• Yes! Distrust client:

• Give session ID at login

• Client must provide session ID with each request

• Session ID should be hard to forge

• How do you validate session ID?

• Have it be a big random string that we compare to our database
(session cookies) or

• Have it be cryptographically signed (Javascript Web Tokens (JWTs))

11

REST Principles

• Suppose many people want the same resource?

• Asking for it frequently

• What implication does this have?

12

GET funnyCat.mp4

GET funnyCat.mp4

GET funnyCat.mp4

GET funnyCat.mp4

Or Maybe…

• Many people at Duke decide to watch same video

• What implications does this have?

• How can we address this issue?

13

Internet

Or Maybe…

• Would like to cache responses

• Reduce bandwidth + latency

• Reduce load on servers

• But, what difficulties?
14

Internet

Cache

Principle 3: Cacheability
• Responses should be cacheable

• …Except when this creates problems

• Explicit cache control

• Label responses as non-cacheable

• Label responses as expiring at a certain time

• Provide a way to validate that response is still current

15

REST Principles

• Speaking of caches and load balancing..

16

REST Principles

• Speaking of caches and load balancing..

• We decide to add a cache and a hw load balancer…

17

Cache LB

REST Principles

• Speaking of caches and load balancing..

• We decide to add a cache and a hw load balancer (LB)…

• And maybe some other things (e.g., IDS - Intrusion Detection System)

18

Cache LBIDS

REST Principles

• What should client do differently in response to changes?

19

Cache LBIDS

Principle 4: Transparently Layered System

• Principle 4: Transparently Layered System

• Client should do nothing differently

20

Cache LBIDS

REST Principles

• Storage Tier: has data we want to manipulate

21

REST Principles

• Storage Tier: has data we want to manipulate

• E.g., table of seats on flights + who booked them (or nobody)

22

FlightNum SeatNum BookedBy

1234 1A

1234 1B FRX345

1234 1C JMN895

1234 1D

Should client know about this?

REST Principles

• No (for many reasons)

• …but needs to be able to manipulate that resource

23

FlightNum SeatNum BookedBy

1234 1A

1234 1B FRX345

1234 1C JMN895

1234 1D

Should client know about this?

Sub-principle 5.1: Manipulate Representations
• Manipulate representations of resources

• Client gets a representation of the resource (XML, JSON,…)

• Works with that representation

• And can make any appropriate changes based on what it has

• E.g., book a seat (send back XML, JSON, etc…) request

24

Remainder of Principle 5

• How does client even know flight numbers?

• How does it refer to particular flight?

25

FlightNum SeatNum BookedBy

1234 1A

1234 1B FRX345

1234 1C JMN895

1234 1D

Principle 5: Uniform Interface
• Manipulate representations of resources

• HTML, XML, JSON,…

• Uniform resource identification in request

• HTTP: /flights /flights/1234/seats

• Self-descriptive messages

• Messages have metadata

• e.g. HTML: MIME type (text/html, image/jpeg, application/zip, etc.)

• "Hypermedia As The Engine Of Application State"

• Can "find" other (appropriate) resources from root

• In HTML: hyperlinks

26

Principle 6 (Optional): Code on Demand
• Server can send code to client

• E.g., Can send JavaScript to client to run client-side code

27

HTTP and REST

• HTTP protocol obeys REST principles

• But could make other protocols that are RESTful too

• Speaking of HTTP…

28

REST

HTTP

The Life of a Web Request
• I enter a URL in my browser…

29

The Life of a Web Request

• Browser sends an HTTP "GET" request to the server

• Which is running a web server daemon, listening on port 80

30

GET / HTTP/1.1
User-Agent: Wget/1.17.1 (linux-gnu)
Accept: */*
Accept-Encoding: identity
Host: adhilton.pratt.duke.edu
Connection: Keep-Alive

HTTP Request Basics
• HTTP Requests have a "verb" and a URI (and then a version number)

GET / HTTP/1.1
POST /home/drew HTTP/1.1
PUT /foo/bar/xyz HTTP/1.1
DELETE /blah/blah/blah HTTP/1.1

• Read about HTTP "verbs" (aka methods):
• https://tools.ietf.org/html/rfc7231#section-4.3

• Most common for web browsers: GET + POST
• Others useful for web-based APIs

31

RFC 7231 will be your best friend on hwk2

https://tools.ietf.org/html/rfc7231#section-4.3

The Life of a Web Request

• Server responds (in this case: 200 OK)

• With headers and data

• The data (in this case) is HTML—could be anything (JSON, XML, image,…)

32

HTTP/1.1 200 OK
Date: Tue, 17 Jan 2017 02:08:36 GMT
Server: Apache/2.2.15 (Scientific Linux)
Etag: "1484618676-0"
Content-Language: en
Cache-Control: public, max-age=3600
Last-Modified: Tue, 17 Jan 2017 02:04:36 GMT
Expires: Sun, 19 Nov 1978 05:00:00 GMT
Content-Type: text/html; charset=utf-8
….

HTTP Responses
• Responses come with response code

• 1xx = informational

• 2xx = successful

• 3xx = redirection

• 4xx = error

• …

• https://tools.ietf.org/html/rfc7231#section-6

• Headers, give meta-data about response

• E.g, content length, encoding,…

• Also, (if appropriate), the data

33

https://tools.ietf.org/html/rfc7231#section-6

So What Do We Transfer?
• Could transfer pretty much anything over HTTP

• HTML

• CSS

• XML

• JSON

• Text

• Images

• Videos

• ….

34

So What Do We Transfer?
• Could transfer pretty much anything over HTTP

• HTML - describes content

• CSS

• XML

• JSON

• Text

• Images

• Videos

• ….

35

So What Do We Transfer?
• Could transfer pretty much anything over HTTP

• HTML - describes content

• CSS - describes styling

• XML

• JSON

• Text

• Images

• Videos

• ….

36

So What Do We Transfer?
• Could transfer pretty much anything over HTTP

• HTML - describes content

• CSS - describes styling

• XML - good for APIs

• JSON - good for APIs

• Text

• Images

• Videos

• ….

37

Web Technologies

• Note: we are NOT focusing on front-end stuff

• This is not a UI/UX class

• Strongly encouraged to make things look nice (show off your work)

38

HTML

CSS JavaScript

Content
 - Tree structured data

Code: Manipulate HTML
 - Alter tree (DOM)

Style
 - How to draw elements

Use library
 - e.g., Bootstrap

- Server code will generate from data
 (Probably use templates)

HTML

• Hypertext Markup Language:

• Not a programming language (does not execute things)

• Marks up content (describes how to format it)

39

<!DOCTYPE html>
<html>
 <head>
 <title>A Page</title>
 </head>
 <body>
 Hello World
 </body>
</html>

Fancier Page?
• Most common fancier things:

• link text

• <div> … </div>

• <p> … </p>

• <h1>…</h1> <h2>…</h2> etc

• thing1 thing 2 …

• thing1 thing 2 …

•

• https://developer.mozilla.org/en-US/docs/Web/HTML/Element

40

https://developer.mozilla.org/en-US/docs/Web/HTML/Element

Elements can have Attributes
• link text

•

• A few interesting ones:

• class: for use with CSS

• name: for use with forms

• id: for use with JavaScript (also CSS)

• https://developer.mozilla.org/en-US/docs/Web/HTML/Attributes

41

https://developer.mozilla.org/en-US/docs/Web/HTML/Attributes

HTML Forms
• Often we want to submit data to the server

• E.g., when the user presses a "submit" button

• Use HTML "forms"

• Use <form> tag to enclose the inputs for the form

• Has attributes of where to send data, whether to GET or POST

• Put input elements (and others) inside:

• <textarea>, <select>, <button>, <input>, …

• Give each input a name attribute

• Will be how you identify which data is which on the server

42

Cascading Style Sheets

• Even if we put more stuff on our page, it doesn't look nice
43

<!DOCTYPE html>
<html>
 <head>
 <title>Another Page</title>
 </head>
 <body>
 <h1>Please Login</h1>
 <form>
 Username: <input> </input>

 Password: <input> </input>

 <button>Login</button>
 </form>
 </body>
</html>

With CSS…

• CSS lets us change how the browser styles the HTML

• Positioning, colors, shapes, font sizes,…

44

CSS Basics

• Can re-style any occurrence of a tag (e.g., body, h1…)

45

body {
 background: #001A57;
}

h1 {
 text-align: center;
 color: #001A57;
}

CSS Basics

• Can re-style a tag by class

46

div.container {
 border: 1px solid gray;
 background: #E5E5E5;
 margin: auto;
 min-width: 350px;
 max-width: 600px;
}
div.box {
 border: 1px solid gray;
 margin: auto;
 padding: 15px 2px;
}

 <div class="container">
 <h1>Please Login</h1>
 <div class="box">

CSS Basics

• Can re-style by class (can use with any tag)

47

.label {
 font-size: 20px;
 color: #001A57;
}

CSS Basics: Include External Stylesheet

• Generally want to load CSS from another file (on server)

• Lets you easily use same style for many pages (same look + feel)

• Lets you easily change style of all pages at once

48

<html>
 <head>
 <title>Another Page</title>
 <link type="text/css" rel="stylesheet" href="style.css" />
 </head>

CSS: Can Do Fancier Things

• Reformat button when hovered over

• With :hover

49

Fancier CSS

• Our button from this page

• Several properties to make

• Nice curved corners

• Large, centered text

• Centered in parent area

• .btn:hover

• Changes colors on hover

50

.btn {
 border-radius: 6px;
 background-color: #001A57;
 border: 1pt solid #666666;
 color: white;
 padding: 8px 20px;
 text-align: center;
 text-decoration: none;
 font-size: 16px;
 margin: 0 auto;
 display: block;
}
.btn:hover {
 background-color: #607AB7;;
 border: 1pt solid #001A57;
 color: #001A57;
}

More Fancy CSS?
• Much more you can do with CSS

• We aren't going to be too picky about fancy looking sites

• (not a UI/UX class)

• More interested in server side

• …but you should be able to make it look nicer than black + white

• https://developer.mozilla.org/en-US/docs/Web/CSS

51

https://developer.mozilla.org/en-US/docs/Web/CSS

Ok, but… It Still Doesn't Do Anything..
• HTML + CSS: can make a nice looking page

• Won't "do" anything.

• Could send data to server with forms, load a whole new page

• This is how everything worked in the mid 1990s…

• Modern webpages are interactive, do things with no reload

• Use JavaScript (actual programming language)

52

JavaScript Example: A Page With Some JS

• Here is the body of a page. Has:

• A table (with only a header row)

• A button (whose onClick is some JavaScript—-calls a function not shown here)

53

 <body>
 <table id="counters">
 <tr>
 <th>Count</th>
 <th>Time</th>
 </tr>
 </table>
 <button onClick="addCounter()">Add Counter</button>
 </body>

Document Object Model

• To understand what happened, you need to know about the DOM

• Document Object Model: API for HTML + XML documents

• Language agnostic (same API in JavaScript, C, Java, Python,…)

• Think of HTML as describing a tree of objects

54

<html>

<head>

<body>

<title>

<script>

<table id="counters">

<tr>

A Page of Counters

var counter = 0; …

Document Object Model

• DOM specifies ways to manipulate the tree

• Find elements meeting some criteria

• Get children of a particular element

• Modify an element

• Create an element

55

<html>

<head>

<body>

<title>

<script>

<table id="counters">

<tr>

A Page of Counters

var counter = 0; …

JavaScript Example Revisited

56

<head>
 <title>A Page of Counters</title>
 <script>
 var counter=0;
 function addCounter() {
 var elt = document.getElementById("counters");
 elt.innerHTML = elt.innerHTML + "<tr><td> " +
 counter + " </td> <td> " +
 new Date().toLocaleString() + "</td></tr>";
 counter++;
 }
 </script>
 </head>

JavaScript Example: Revisited

57

 <body>
 <table id="counters">
 <tr>
 <th>Count</th>
 <th>Time</th>
 </tr>
 </table>
 <button onClick="addCounter()">Add Counter</button>
 </body>

elt

elt.innerHTML

JavaScript Example Revisited

58

<head>
 <title>A Page of Counters</title>
 <script>
 var counter=0;
 function addCounter() {
 var elt = document.getElementById("counters");
 elt.innerHTML = elt.innerHTML + "<tr><td> " +
 counter + " </td> <td> " +
 new Date().toLocaleString() + "</td></tr>";
 counter++;
 }
 </script>
 </head>

Accomplish Same Task w/o Reparsing

59

 <script>
 var counter=0;
 function addCounter() {
 var elt = document.getElementById("counters");
 var tr = document.createElement("tr");
 var td1 = document.createElement("td");
 var td2 = document.createElement("td");
 td1.textContent = counter;
 td2.textContent = new Date().toLocaleString();
 tr.appendChild(td1);
 tr.appendChild(td2);
 elt.appendChild(tr);
 counter++;
 }
 </script>

More JavaScript
• As a programming language:

• First class functions (functions are treated like any other variable)

• Dynamically typed

• Has Objects

• C-/Java- like syntax (mostly)

• See:

• https://developer.mozilla.org/en-US/docs/Web/JavaScript/A_re-
introduction_to_JavaScript

• https://developer.mozilla.org/en-US/docs/Web/JavaScript

60

https://developer.mozilla.org/en-US/docs/Web/JavaScript/A_re-introduction_to_JavaScript
https://developer.mozilla.org/en-US/docs/Web/JavaScript/A_re-introduction_to_JavaScript
https://developer.mozilla.org/en-US/docs/Web/JavaScript

JSON: JavaScript Object Notation
• In JavaScript, you write down objects like this:

• var pt = { x : 3, y: 4, moveLeft: function() { this.x -- ; } };

• i.e., A comma separated sequence of field: value

• Note that methods are just fields whose values are functions!

• JavaScript Object Notation (JSON) is a common data format

• Can't put function values in

• Only string, number, true, false, arrays, objects, null

• Arrays are written with [], objects with {}

• Field names are quoted: { "x" : 3, "y" : 4 , "colors": ["orange", "pink"] }

61

XML

• Similar looking to HTML (tags, attributes, nesting)

• No predefined tags: make any tags with any meaning you want

• Stricter /more uniform rules (all tags must be closed)

62

<?xml version="1.0" encoding="UTF-8"?>
<transactions>
 <merchant id="1234" password="xyz"/>
 <create ref="t0">
 <name>Joe Smith</name>
 <num>123456789</num>
 <expires>2018-12-05</expires>
 <cvn>123</cvn>
 <amount>45.23</amount>
 </create>
 <commit ref="t1">
 <id>adsf234ASdr234Z</id>
 </commit>
</transactions>

XML
• Why XML?

• Extensible

• Human readable

• Ubiquitous: parsers for it in most languages

• DOM: similar to HTML (but different)

• C++: xerces

• You'll use later

• Other XML tools

• E.g., XSLT (not going to use/cover, but you might find useful sometime)

63

…but How to Interact With Server?
• JavaScript can also contact the server

• Get a response (later), and then do something with it

• Server can send responses that are not HTML

• Could send JSON, or XML -> easy to parse

• JS on client can take data, show in appropriate way

• AJAX: Asynchronous JavaScript And XML

64

AJAX Basics

65

function someJSFun() {
 //whatever code…

 var xhttp = new XMLHttpRequest();

This is the object to contact
the server and get a response…

AJAX Basics

66

function someJSFun() {
 //whatever code…

 var xhttp = new XMLHttpRequest();
 xhttp.onreadystatechange = function() {
 //some other code in here…
 };

Set its
 onreadystatechange
to be notified when stuff happens

AJAX Basics

67

function someJSFun() {
 //whatever code…

 var xhttp = new XMLHttpRequest();
 xhttp.onreadystatechange = function() {
 //some other code in here…
 };

Yes, you can write one function
inside another.
JavaScript has lexical scope.
This makes a closure.

AJAX Basics

68

function someJSFun() {
 //whatever code…
 var xyz = something;
 var xhttp = new XMLHttpRequest();
 xhttp.onreadystatechange = function() {
 …xyz…
 };

AJAX Basics

69

function someJSFun() {
 //whatever code…

 var xhttp = new XMLHttpRequest();
 xhttp.onreadystatechange = function() {
 //some other code in here…
 };
 xhttp.open("GET", "/api/foo/bar/42", true);

.open() specifies where to connect:
 HTTP Request Method
 URL to request
 Asynchronous (usually true)

AJAX Basics

70

function someJSFun() {
 //whatever code…

 var xhttp = new XMLHttpRequest();
 xhttp.onreadystatechange = function() {
 //some other code in here…
 };
 xhttp.open("GET", "/api/foo/bar/42", true);
 xhttp.send();
}

.send() makes the actual request.

Will make callback to our function
when state changes

AJAX Basics

71

xhttp.onreadystatechange = function() {

}; Now let us look inside our
ready state change callback

AJAX Basics

72

xhttp.onreadystatechange = function() {
 if (this.readyState == 4

}; Typically inspect this.readyState first

this is our XMLHttpRequest

readyState: 0—4. 4 is Done

AJAX Basics

73

xhttp.onreadystatechange = function() {
 if (this.readyState == 4 && this.status == 200) {

 }
}; May also want to inspect

this.status (HTML response status)

200 = OK

AJAX Basics

74

xhttp.onreadystatechange = function() {
 if (this.readyState == 4 && this.status == 200) {
 …this.responseText…

 }
}; Once we have our response,

generally want to use

this.responseText

which has the text we received

AJAX Basics

75

xhttp.onreadystatechange = function() {
 if (this.readyState == 4 && this.status == 200) {
 var resp = JSON.parse(this.responseText);

 }
}; If our response is JSON, can use

JSON.parse to turn into JavaScript object!

Wrap Up
• Today:

• REST: protocol principles

• Super quick intro to HTML/CSS/JavaScript/JSON/XML

• Not main focus of this class, but you will need

• AJAX: ties to previous ideas!

76

