Engineering Robust Server

Software
UNIX Daemons

IIIIIIIIII

IIIIIIIIII

Daemons

Daemons: system services

» Generally run from startup -> shutdown
- In the "background" no controlling tty

« No stdin/stderr/stdout!

Convention: names end in d

» sshd, httpd, crond, ntpq,

Start Up

——

Shutdown

Life Cycle

‘\

while (1) {

3

/ /do whatever

/
¥~ N\

Initial Setup \
Become A

Daemon

N—r

Reread
Config File/
Reconfigure

- General "lite cycle" of a UNIX Daemon

IIIIIIIIII

Start Up

Shutdown

u

Life Cycle

while (1) {

3

/ /do whatever

/
¥~ N\

Initial Setup \
Become A

Daemon

» Often: started at system startup

+ Could also be started manually

IIIIIIIIII

N—r

Reread
Config File/
Reconfigure

System Startup

¢« Review:

Kernel spawns init (pid 1)

Init (on Linux, now "systemd") spawns other processes

e |nititself is a daemon

Reads config, runs forever,...

» Init's contig files specify how to start/restart/stop system daemons

» Details depend on specific version

E.qg., systemd is different from original init

IIIIIIIIII

IIIIIIIIII

Init/Systemd Config

Old way:

Numbered shell scripts, done in order
Systemd (newer) way:
Units with dependencies

https://access.redhat.com/documentation/en-US/
Red_Hat Enterprise_Linux/7/html/System_Administrators_Guide/sect-
Managing_Services with_systemd-Unit_Files.html

Can manually start/restart/status etc with systemctl

Can also control whether started automatically at boot

https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/System_Administrators_Guide/sect-Managing_Services_with_systemd-Unit_Files.html
https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/System_Administrators_Guide/sect-Managing_Services_with_systemd-Unit_Files.html
https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/System_Administrators_Guide/sect-Managing_Services_with_systemd-Unit_Files.html

Start Up

——

Shutdown

Life Cycle

‘\

while (1) {

3

/ /do whatever

/
¥~ N\

Initial Setup \
Become A

Daemon

Reread
Config File/

N—r

Reconfigure

Daemon may wish to do some setup while "normal”

(*) process

Read contig files, open log ftiles, bind/listen server socket, etc.

Duke °© (f)Some aspects of "normal” may be overridden by system

IIIIIIIIII

Start Up

——

Shutdown

Life Cycle

‘\

while (1) {

3

/ /do whatever

/
¥~ N\

Initial Setup \
Become A

Daemon

N—r

Reread
Config File/
Reconfigure

» A bunch of stuff has to happen to correctly run as a daemon

» Requires introducing some new concepts

IIIIIIIIII

IIIIIIIIII

Becoming a Daemon

Typically Requirea:
fork(), parent exits
Dissociate from controlling tty

Close stdin/stderr/stdout, open them to /dev/null
chdir to "/"

Good ldeas:

Clear umask

fork again -> not be session leader

daemon library call

Whatever ran
the daemon

fork()

- fork(), parent exits
Why?

IIIIIIIIII

Becoming a Daemon

execve()

fork
exit()

/ /daemon

/ /continues
/ /here

10

Becoming a Daemon

Whatever ran

the daemon
fork()
execve()
fork
, / /daemon
?
What happens here? |exit() / continues
/ /here

Why?

IIIIIIIIII

Becoming a Daemon

Whatever ran . .
This process is an orphan,

the daemon adopted by init.
fork()
execve()
fork
What happens here? |exit) .
/ /here

Our daemon is now a child of init

Some shells kill their children when they exit

Dulke Daemon is guaranteed to not be a process group leader

IIIIIIIIII

12

Process Groups

shell

To understand process groups, let us think about some commands...

IIIIIIIIII

Process Groups

S find / -name xyz > tmp shell

find

» To understand process groups, let us think about some commands...

IIIIIIIIII

14

Process Groups

S find / -name xyz > tmp shell

find

» To understand process groups, let us think about some commands...

IIIIIIIIII

15

Process Groups

S find / -name xyz > tmp shell

find s grep

» To understand process groups, let us think about some commands...

IIIIIIIIII

16

Process Groups

shell

S find / —-name xyz > tmp

find s grep

» To understand process groups, let us think about some commands...

» Which process(es) to kill when | type NC?

IIIIIIIIII

17

Process Groups

shell

S find / -name xXyz > tmp

find s

Which processes should be killed here with AC?
A: find, Is, and grep C: find
B: Is, and grep D: all four

IIIIIIIIII

grep

18

Process Groups

shell

S find / —-name xyz > tmp

find s grep

» To understand process groups, let us think about some commands..

» Which process(es) to kill when | type "C? Is + grep

IIIIIIIIII

19

Process Groups

» Related processes organized into "process groups’

»+ E.g., one command pipeline = one process group

IIIIIIIIII

IIIIIIIIII

Process Groups

Process groups recognized by kernel
Various operations are applied to process groups
What receive signals from ~AC, AZ, AN
Foreground/background of processes
Background process groups stop it attempt to read/write terminal
Resumed when brought to foregrounad
Ok, that's the basics of process groups...

...but what do they have to do with becoming a daemon?

21

Process Groups, Sessions, Controlling TTY

Process groups relate to sessions
Sessions relate to controlling ttys @

Daemons cannot have a controlling tty

IIIIIIIIII

Process Groups, Sessions, Controlling TTY

The processes are all in one session

Session leader is the shell @

IIIIIIIIII

Process Groups, Sessions, Controlling TTY

S find / —-name xyz > tmp

S 1s *xX* | grep vy

Session has a controlling tty

The terminal that "owns" the processes

IIIIIIIIII

IIIIIIIIII

New Sessions

A process can start a new session by calling setsid()
Process must NOT be a process group leader
It caller is pg leader, fails.
On success:
Calling process is process group leader (of a new group)
Group ID == calling process ID
Calling process is session leader (of a new session)
Session |ID == calling process ID

Newly created session has no controlling tty

25

Becoming a Daemon

Whatever ran

the daemon
Guaranteed not to be

fork() pg leader at call to setsid()

[make sure it will succeed]
execve()

fork
exit()

setsid()

» Daemon not pg leader before call to setsid

IIIIIIIIII

Quick check up

» Which of the following is NOT true of a process that just successtully
called setsid()

A: It is a process group leader
B: It is a session leader
C: It has a controlling TTY

D: None of the above is false (all are true)

IIIIIIIIII

IIIIIIIIII

Becoming a Daemon

Typically Requirea:
fork(), parent exits
Dissociate from controlling tty

Close stdin/stderr/stdout, open them to /dev/null
chdir to "/"

Good |ldeas:

Clear umask

fork again -> not be session leader

daemon library call

IIIIIIIIII

Point stdin/err/out at /dev/null

Do not want stdin/err/out associated with old terminal

Generally do not want associated with a normal file either

open /dev/null

Use dup?2 to close stdin/err/out, and duplicate to td of /dev/null

29

IIIIIIIIII

Chdir to "/"

Do not want to keep other directory "busy”

f cwd of a process is a directory, it is "in use”

Can have impacts (e.g. file system containing this dir can’t be unmounted)

Change working directory to "/"

Will always be in use anyways

30

IIIIIIIIII

Becoming a Daemon

Typically Requirea:
fork(), parent exits
Dissociate from controlling tty

Close stdin/stderr/stdout, open them to /dev/null
chdir to "/"

Good |ldeas:

Clear umask

fork again -> not be session leader

daemon library call

IIIIIIIIII

Umask

Processes have a "umask"—-file creation mask

» Affects the permissions of tiles that are created
» Try to create with mode?
 Actually get mode & ~umask

 Any bits set within the umask are automatically cleared within the tfile mode
Why?
» Security: set default permissions to limit access rights

Alter umask with umask system call (see man umask(2)).

» Specity new mask.

umask (0) => clear umask (get exactly mode you request)

32

fork() Again, Do Not Be a Session Leader

- May be a good idea to fork one more time

(How many forks do we need?!?!)

» Another fork() => new process is not session leader

Made it session leader to not have controlling tty

Now does not have...
« Why?
It a session leader without a controlling tty opens a tty...

That tty will become the session's controlling tty :(

Non-session leaders cannot gain a controlling tty

IIIIIIIIII

33

Start Up

——

Shutdown

Life Cycle

‘\

« Ok, now we are a daemon!

« Time to do useful stuft... forever..."

while (1) {
//do whatever

/
¥~ N\

Initial Setup \
Become A

Daemon

Reread
Config File/
Reconfigure

} \J

- Delve into this "stuff" shortly

IIIIIIIIII

34

Start Up

——

Shutdown

Life Cycle

‘\

while (1) {

3

/ /do whatever

/
K~ N\

Initial Setup \
Become A

Daemon

Reading: easy

N—r

Reread
Config File/
Reconfigure

» Re-configure: maybe tricky (depends on what to do...)

- How do we know when to reconfigure?

IIIIIIIIII

35

IIIIIIIIII

Common Approach: SIGHUP

Many daemons interpret the signal SIGHUP to mean "reconfigure”

What are signals?

When OS wants to send asynchronous notitication to process, send signal.

Many different signals (each numbered): SIGSEGV, SIGABRT, SIGHUP....

Detault actions: terminate (possibly w/ core dump), ignore, stop, continue
See “man -S7 signal” for specifics

Signals can also be blockeo

Programs can change behavior with sigaction

Detault, ignore, or programmer-defined tfunction

36

IIIIIIIIII

Using sigaction

struct sigaction sigterm action;

sigterm action.sa handler = my function;
sigterm action.sa flags = some flags; //e.g. SA
1:(Slgemptyset(&31gterm action.sa mask) != 0) {

//handle error
}
//use sigaddset to add other signals to sa mask
1f (sigaction (SIGHUP, &sigterm action, NULL) != 0)
//handle error

Basic structure of using sigaction to setup a signal handler

R

{

Lo TART

37

S1g
S1Qg
1f

}

Using sigaction

struct sigaction sigterm action;

cerm action.sa handle

cerm action.sa flags

//use sigaddset to add o
(si1gaction (SIGHUP, &s19g

1f

//handle error

r = my function;

= some flags; //e.g. SA
(Slgemptyset(&51gterm action.sa mask) != 0) {
//handle error

ther signals to sa mask

term action, NULL)

» What is the type of sa_handler in sigaction?

IIIIIIIIII

A: int sa handler

B:

int * sa handler

C: void * sa handler

D: void (* sa_handler) int

= 0)

R

{

Lo TART

38

IIIIIIIIII

Signal Handler

Signal handler ("my_function") looks like

void my_function (int signal_number) { ...}

You have to be careful what you call/do in it
Program may be interrupted in the middle of something
Similar problems/ideas to data races with multiple threaads

Some functions are defined as safe to call in signal handler

39

Start Up

——

Shutdown

Life Cycle

u

- Shut down daemon by sending signal

while (1) {

3

/ /do whatever

/
¥~ N\

Initial Setup \
Become A

Daemon

N—r

Reread
Config File/
Reconfigure

» kill system call sends signal to a process

IIIIIIIIII

40

Start Up

——

Shutdown

Life Cycle

‘\

- Now let us go back and revisit the "stuff" that the daemon does

IIIIIIIIII

while (1) {

//do whatever

}

/
¥~ N\

Initial Setup \
Become A

Daemon

N—r

Reread
Config File/
Reconfigure

Accept, Process, Respond [mostly]

while (true) {
req = accept i1ncoming request();
resp process_reques:(req);‘\\\.

send_response (redq, resp); This might take many forms:

} - accept() network socket
- read from FIFO/pipe
- read from DB table

 Not strictly a rule (may communicate both ways, etc)

- But a good "general formula” to start from

|||||||||| 42

650 Review: Sockets

while (true) {
req = accept i1ncoming request();
resp process_reques:(req);‘\\\.

send_response (redq, resp); This might take many forms:

} - accept() network socket
- read from FIFO/pipe
- read from DB table

» Speaking of accept()

Who can remind us about sockets from 6507

|||||||||| 43

Accept, Process, Respond [mostly]

while (true) {
req = accept i1ncoming request();
resp process_reques:(req);‘\\\.

send_response (redq, resp); This might take many forms:

} - accept() network socket
- read from FIFO/pipe
- read from DB table

» As noted last time: probably want some parallelism...

What would this parallelism look like?

|||||||||| 44

Parallelism Strategies?

+ What ways might we structure this parallelism?

How do we run code in parallel (hint: 2 ways)?

How could we put these to use?

IIIIIIIIII

45

Parallelism

processes threads

create per request

» What does this parallelism look like?

4 main options

IIIIIIIIII

46

fork per-request
while (true) {

req = accept 1ncoming request();
pid t p = fork();
if (p < 0) {/*handle error */}
else 1f (p == 0) {
resp process request (req);
send response (req,resp);
ex1t (EXIT SUCCESS) ;
}
//cleanup: close/free req
//need to wait for p w/o blocking

Duke » Pros and cons?

IIIIIIIIII

Advantages of Fork-per-request

» Which would be an advantage of fork-per-request?
A: Low overheaa
B: Easy to share state between requests
C: Isolation between requests

D: None of the above

IIIIIIIIII

IIIIIIIIII

Fork-per-request Pros/Cons

Pros:
Simplicity: avoid difficulties of multi-threaded programming
Isolation between requests : separate processes

Cons:

No apility to share state between/across requests
fork() latency on critical path

Creates arbitrary number of processes

Pre-fork
0; i < n procs; i++) f{
= fork () ;
if (p 0) { /* handle error */}
else 1f (p == 0) {
request loop(); //never returns
abort (); //unreachable

for (i1in
pid_

(

(

1
IS
<

F

}

else {
children.push back (p);

}

}
//What happens here depends..

IIIIIIIIII

pre-fork request loop

volid request loop (void) {
while (true)
req = accept incoming request();
resp process request (req):;
send response (redq, resp);

How does this work across multiple processes?

...It depenas...

IIIIIIIIII

Remind Us About... IPC

» Who can remind us about interprocess communication?

What approaches do you know?

How do they work?

IIIIIIIIII

52

Parent Dispatches Requests

Child 1
Child 2
Parent
Child 3
IPC ,
(pipe,shm) Child 4

+ One approach: parent dispatches requests:
Requests come into parent

Parent chooses a child and sends it via IPC (pipe, shared memory,..)

IIIIIIIIII

Pre-fork

COr I(in': 1 = (3; 1 < n procs; 1++) { Need to add code

pid t p = fork(); to setup

if (p < 0) { /* handle error */} [IPChere

else if (p == 0) { (before fork())
request loop(); //never returns
abort (); //unreachable

}

else { Need to record

children.push back(p);«——"’—_———Wg%m””
} . data structure

}
request dispatch loop(); //accept, send to child

IIIIIIIIII

Load Balancing

hild 1

Child 2
Parent

Child 3

Child 4

» System has poor load balance
Child 1 is overloaded, Child 3 is underloaded

» What if we dispatch round-robin (1, 2, 3, 4, 1, 2, 3, 4),...

Requests have different latency -> may still have poor balance

IIIIIIIIII

IIIIIIIIII

Networking (or other fd-based reqs)

Previous approach not great for network sockets

Can't easily send a socket over a pipe (fd is just a number)

Common approach: each process calls accept() on same server socket
Create socket, bind, listen betore tork()
Have each process call accepty)

Safe under Linux, cannot find POSIX guarantees

Not best for performance

Preferable [on Linux]: have each process make own socket
Use SO_REUSEPORT socket option: all can bind to same port
It interested: https://lwn.net/Articles/542629/

56

https://lwn.net/Articles/542629/

Advantage of Pre-Forking

» Which would be an advantage ot pre-forking relative to tork-per-
request?

A: Lower overheaa
B: Easier to share state between requests
C: Stronger isolation between requests

D: None of the above

IIIIIIIIII

IIIIIIIIII

pre-fork

Pros:
Simplicity: avoid difficulties of multi-threaded programming
Some isolation between requests
Choose number of processes (can even adjust dynamically...)

fork() overhead only once at startup=> lower overheaa
Cons:
No ability to share state between/across requests

Not as much isolation as per-request forking

[Some torms] More likely to need explicit load balancing

Parallelism

processes threads

create per request

Talked about process-based approaches (torking)

Now let's talk about the thread-based ones.

IIIIIIIIII

IIIIIIIIII

Threads

Similar code to torking:

Replace fork with pthread_create
Communication? Simpler: naturally share memory

Easier to have shared queue of requests for pre-created threads

Have to deal with multi-threaded programming

Harder parts come exactly when we get benetits from MT over MP

Shared state

60

IIIIIIIIII

Thread Per Request

Pros:
Shared State

Cons:

Complexities of multi-threaded programming

No isolation

No limit on number of threads created (may be highly inefficient)

Overhead of pthread_create() is on critical path

61

IIIIIIIIII

Pre-Create Threads

Pros:
Shared State
Probably easier load balancing

Overhead for pthread_create up front
Shared State

Easy to control (and adjust) number of threads
Cons:
No isolation

Complexities of multi-threaded programming

Which To Pick?
Which one to pick?

Depends on what you need to do

You should understand the tradeoffs ot each option

Think carefully/critically as you design your server

IIIIIIIIII

IIIIIIIIII

UNIX: Users, Permissions, Capabilities

Important considerations for UNIX Daemons
What user does it run as?
What if it needs *some™* privileged operations?

Relatedly: tile permissions/ownership

Now:

Users: uid manipulation, setuid programs
File permissions

Capabilities

64

IIIIIIIIII

UNIX Users

You are used to running as a "normal" user

But now you have "root" on a machine..

root is the privileged user: uid O

Can perform operations that normal users cannot

Aka "super user"

Load kernel modules
Adjust system settings
Listen on privileged ports (< 1024)

Change to other users...

65

IIIIIIIIII

ROOT IS DANGEROUS

Anything running as root is DANGEROUS
Can do anything to the system

Add accounts, change password
Setup key loggers

Hide its own existence

Want to minimize what happens as root

When possible, run as "nobody"

66

setuid(): switch users

Do privileged operations, then switch users

setuid(...):

Example:

Start as root
bind to/listen on privileged port
setuid(...)

Usetul it all privileged operations are needed at start

IIIIIIIIII

IIIIIIIIII

Real, Effective, Saved UID

There are three UIDs for each process:

Real user id: the user id of the user who ran it
Effective user id: the user id currently used for permission checking

Saved set-user-id: remembers "set-user-id" on suid binaries

Set-user-id binaries:

File permissions that specity to switch euid at the start of execution

This is what lets programs like sudo, su, etc work

68

UID Example

1nt main (void) {
uid t temp = getuid();

printf ("uid: %d\n", getuid()):; lﬂq:1001
printf ("euid: %d\n", geteuid()):; egmk1001
seteuid (temp) ; lﬂq:1001
printf ("uid: %d\n", getuid()); euid: 1001

uid: 1001

printf ("euid: %d\n", geteuid()); .
seteuid (0) ; fails (EPERM) euid: 1001
printf ("uid: %d\n", getuid());

printf ("euid: %d\n", geteuid());

return EXIT SUCCESS;

+ Compile, run as user 1001

IIIIIIIIII

UID Example

1nt main (void) {
uid - getuid() ;

1
—+
(D
=

O

|

printf ("uid: %d\n", getuid()); lﬂq:1001
printf ("euid: %d\n", geteuid()):; fﬂﬂd:O
seteuid (temp) ; u1c!: 1001
printf ("uid: %d\n", getuid()); euid: 1001
printf ("euid: %d\n", geteuid()):; ‘ﬂq:1001
seteuid (0); Succeeds: Saved-set-user-id is 0 euid: 0

printf ("uid: %d\n", getuid());
printf ("euid: %d\n", geteuid());
return EXIT SUCCESS;

- sudo chown root.root a.out
+ sudo chmod u+s a.out //make program suid: USE WITH CAUTION!

IIIIIIIIII

UID Example

int main (void) {

uid t temp = getuid();
//Dangerous: root permissions
seteuld (temp) ;

//Safer: user 1001 permissions
seteu1d (0) ;

//Dangerous again

return EXIT SUCCESS;

» This program is safer when euid is not O

IIIIIIIIII

Not completely satfe: arbitrary code exploit can seteuid(0)

Pause To Think

How could we make things safer?

IIIIIIIIII

a0 pipe() Separate Processes

Communication |
via pipes setuid(1001)
read() SRR T ERELCLLCCLEEEEELELLEL Wr]te()
PR PR T LT L Ll
errreearaerna s RS

» Privileged process can fork

New process can completely drop privileges (call setuid() to change all uids)

- Communication can be done with your favorite IPC

|||||||||| /3

Communication
via pipes

» Unprivileged Process: Interacts with outside world

Sends request to privileged process as needed

What does this sound like? (a couple familiar ideas...)

IIIIIIIIII

IIIIIIIIII

Linux Capabilities

Linux (since 2.2) has the concept of capabilities

Divides root's super-user powers into sub-abilities (~40)

Example: CAP_NET_BIND_SERVICE — bind to port < 1024
Why useful?

It all you need is to bind a privilege port, can have
Without ability to do other things (load modules, change permissions,...)
Executables can be granted individual capabilities

Rather than full set-uid status

75

Other User/Permissions Things

Similar concepts/system calls apply/exist for group ids

Programs can be "set group id"

There is also a "file system user id"—not so common to use

IIIIIIIIII

IIIIIIIIII

Case Study: ECE 551 Grader System

Everyone's favorite piece of server software!

Very interesting from a system design perspective

Requirements:
Run arbitrary (student) code w/o security risk
Not concerned about things you could do at shell
Concerned about access to grades/grader
Simple/low overhead commands [do not require password each time]

Interface with git

77

Grading

Grader Daemon

Grade _ , / %

Command Database

- Student runs grade command
»+ Qrader daemon responsible for grading

« Database holds state

IIIIIIIIII

Think, Pair, Share

Grader Daemon

R

Grade
Command Database

What could possibly go wrong here?

What security issues was (Drew) worried about when designing this?

IIIIIIIIII

Grading

Grader Daemon

R

Grade ’)
Command Database

« Qrade command: runs as student

« But accesses database

+ How do we prevent student from accessing db directly?

IIIIIIIIII

Grading: Grade Command Side

Grade

Lo rLﬂié\ir?%tudent

euid: ecebb5h1

pipe(); pipe(); fork()

Database
setuid(student) setuid(ece551)

.. /’

git status

Sets up pair of pipes, then fork()s
One process becomes "student side", other "ece3551 side”

Duke °© Communication over pipes with Google Protocol Bufters

IIIIIIIIII

Grading: Daemon Side

Grader Daemon

%

while (true) {
Database req = accept incoming request () ;
resp = process request (req);

send response (req, resp);

}
« Same structure we've seen before

» Accept request: from database Run as ece551

e Process: grade it
J Run as...?

« Send t: update DB
IS PUAts Run as eceb51

IIIIIIIIII

IIIIIIIIII

Doing Actual Grading

Need to access student repository: push + pull
» Want student repo permissions restricted to only student
e ...SO run as student?
Want actual student code to be run as nobody (a pseudo user account)
* Minimal permissions
+ ...but also need code to not be able to read grader ftiles [answers,etc]
So to process a request:

» git pull [as student]
* run code/grader [as nobody]

» git push [as student]

83

Graderd

pipe(); pipe(); fork()

setuid(ece551)
student/ass....
PRIt
fork() \ o
setuid(student)
git + grading
.. Srade=

exit

- graderd runs as root!

How does the grading get done as nobody? Another program

IIIIIIIIII

Question

pipe(); pipe(); fork()

setuid(ece551)
student/as3hl ..
fork() \ Database
setuid(student)
git + grading
AT R — grade=
+ Why does this process need to run as root?
A: So it can write /var/log/grader.log C: So it can call daemon()

Duke+ B: So its children can setuid to any student D: So it can access the database.

IIIIIIIIII

IIIIIIIIII

Minimal Privileges

Run with the lowest privilege as possible

The lower the privilege, the less damage you can do

Separate code that needs different privileges

Communicate over well defined AP
Restrict requests that can be sent to privileged code

Privileged code must distrust less privileged code

Could go even further:

Separate across machines...

We'll discuss this idea later!

86

