
Brian Rogers Duke ECE
Used with permission from Drew Hilton

Engineering Robust Server
Software

UNIX Daemons

Daemons
• Daemons: system services

• Generally run from startup -> shutdown

• In the "background" no controlling tty

• No stdin/stderr/stdout!

• Convention: names end in d

• sshd, httpd, crond, ntpd, ….

2

Life Cycle

• General "life cycle" of a UNIX Daemon

Start Up Initial Setup

Become A
Daemon

while (1) {
 //do whatever
} Reread

Config File/
Reconfigure

Shutdown

3

Life Cycle

• Often: started at system startup

• Could also be started manually

Start Up Initial Setup

Become A
Daemon

while (1) {
 //do whatever
} Reread

Config File/
Reconfigure

Shutdown

4

System Startup
• Review:

• Kernel spawns init (pid 1)

• Init (on Linux, now "systemd") spawns other processes

• Init itself is a daemon

• Reads config, runs forever,…

• Init's config files specify how to start/restart/stop system daemons

• Details depend on specific version

• E.g., systemd is different from original init

5

Init/Systemd Config
• Old way:

• Numbered shell scripts, done in order

• Systemd (newer) way:

• Units with dependencies

• https://access.redhat.com/documentation/en-US/
Red_Hat_Enterprise_Linux/7/html/System_Administrators_Guide/sect-
Managing_Services_with_systemd-Unit_Files.html

• Can manually start/restart/status etc with systemctl
• Can also control whether started automatically at boot

6

https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/System_Administrators_Guide/sect-Managing_Services_with_systemd-Unit_Files.html
https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/System_Administrators_Guide/sect-Managing_Services_with_systemd-Unit_Files.html
https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/System_Administrators_Guide/sect-Managing_Services_with_systemd-Unit_Files.html

Life Cycle

• Daemon may wish to do some setup while "normal" (*) process

• Read config files, open log files, bind/listen server socket, etc.

• (*)Some aspects of "normal" may be overridden by system

Start Up Initial Setup

Become A
Daemon

while (1) {
 //do whatever
} Reread

Config File/
Reconfigure

Shutdown

7

Life Cycle

• A bunch of stuff has to happen to correctly run as a daemon

• Requires introducing some new concepts

Start Up Initial Setup

Become A
Daemon

while (1) {
 //do whatever
} Reread

Config File/
Reconfigure

Shutdown

8

Becoming a Daemon
• Typically Required:

• fork(), parent exits

• Dissociate from controlling tty

• Close stdin/stderr/stdout, open them to /dev/null

• chdir to "/"

• Good Ideas:

• Clear umask

• fork again -> not be session leader

} daemon library call

9

Becoming a Daemon

• fork(), parent exits

• Why?

Whatever ran
the daemon

fork()

execve()

fork()
exit() //daemon

//continues
//here

10

Becoming a Daemon

• fork(), parent exits

• Why?

Whatever ran
the daemon

fork()

execve()

fork()
exit() //daemon

//continues
//here

What happens here?

11

Becoming a Daemon

• Our daemon is now a child of init

• Some shells kill their children when they exit

• Daemon is guaranteed to not be a process group leader

Whatever ran
the daemon

fork()

execve()

fork()
exit() //daemon

//continues
//here

What happens here?

This process is an orphan,
adopted by init.

12

Process Groups

• To understand process groups, let us think about some commands…

$ shell

13

Process Groups

• To understand process groups, let us think about some commands…

$ find / -name xyz > tmp shell

find

14

Process Groups

• To understand process groups, let us think about some commands…

$ find / -name xyz > tmp
^Z
$ bg

shell

find

15

Process Groups

• To understand process groups, let us think about some commands…

$ find / -name xyz > tmp
^Z
$ bg
$ ls *x* | grep y

shell

find ls grep

16

Process Groups

• To understand process groups, let us think about some commands…

• Which process(es) to kill when I type ^C?

$ find / -name xyz > tmp
^Z
$ bg
$ ls *x* | grep y
^C

shell

find ls grep

17

Process Groups

• Which processes should be killed here with ^C?

• A: find, ls, and grep C: find

• B: ls, and grep D: all four

$ find / -name xyz > tmp
^Z
$ bg
$ ls *x* | grep y
^C

shell

find ls grep

18

Process Groups

• To understand process groups, let us think about some commands..

• Which process(es) to kill when I type ^C? ls + grep

$ find / -name xyz > tmp
^Z
$ bg
$ ls *x* | grep y
^C

shell

find ls grep

19

Process Groups

• Related processes organized into "process groups"

• E.g., one command pipeline = one process group

$ find / -name xyz > tmp
^Z
$ bg
$ ls *x* | grep y
^C

shell

find ls grep

20

Process Groups
• Process groups recognized by kernel

• Various operations are applied to process groups

• What receive signals from ^C, ^Z, ^\

• Foreground/background of processes

• Background process groups stop if attempt to read/write terminal

• Resumed when brought to foreground

• Ok, that's the basics of process groups…

• …but what do they have to do with becoming a daemon?

21

Process Groups, Sessions, Controlling TTY
• Process groups relate to sessions

• Sessions relate to controlling ttys

• Daemons cannot have a controlling tty

shell

find ls grep

22

Process Groups, Sessions, Controlling TTY
• The processes are all in one session

• Session leader is the shell shell

find ls grep

23

Process Groups, Sessions, Controlling TTY

• Session has a controlling tty

• The terminal that "owns" the processes

shell

find ls grep

$ find / -name xyz > tmp
^Z
$ bg
$ ls *x* | grep y
^C

24

New Sessions
• A process can start a new session by calling setsid()

• Process must NOT be a process group leader

• If caller is pg leader, fails.

• On success:

• Calling process is process group leader (of a new group)

• Group ID == calling process ID

• Calling process is session leader (of a new session)

• Session ID == calling process ID

• Newly created session has no controlling tty

25

Becoming a Daemon

• Daemon not pg leader before call to setsid

Whatever ran
the daemon

fork()

execve()

fork()
exit()

setsid()

Guaranteed not to be
pg leader at call to setsid()
[make sure it will succeed]

26

Quick check up
• Which of the following is NOT true of a process that just successfully

called setsid()

• A: It is a process group leader

• B: It is a session leader

• C: It has a controlling TTY

• D: None of the above is false (all are true)

27

Becoming a Daemon
• Typically Required:

• fork(), parent exits

• Dissociate from controlling tty

• Close stdin/stderr/stdout, open them to /dev/null

• chdir to "/"

• Good Ideas:

• Clear umask

• fork again -> not be session leader

} daemon library call

28

Point stdin/err/out at /dev/null
• Do not want stdin/err/out associated with old terminal

• Generally do not want associated with a normal file either

• open /dev/null

• Use dup2 to close stdin/err/out, and duplicate to fd of /dev/null

29

Chdir to "/"
• Do not want to keep other directory "busy"

• If cwd of a process is a directory, it is "in use”

• Can have impacts (e.g. file system containing this dir can’t be unmounted)

• Change working directory to "/"

• Will always be in use anyways

30

Becoming a Daemon
• Typically Required:

• fork(), parent exits

• Dissociate from controlling tty

• Close stdin/stderr/stdout, open them to /dev/null

• chdir to "/"

• Good Ideas:

• Clear umask

• fork again -> not be session leader

} daemon library call

31

Umask
• Processes have a "umask"—-file creation mask

• Affects the permissions of files that are created

• Try to create with mode?

• Actually get mode & ~umask

• Any bits set within the umask are automatically cleared within the file mode

• Why?

• Security: set default permissions to limit access rights

• Alter umask with umask system call (see man umask(2)).

• Specify new mask.

• umask (0) => clear umask (get exactly mode you request)

32

fork() Again, Do Not Be a Session Leader
• May be a good idea to fork one more time

• (How many forks do we need?!?!)

• Another fork() => new process is not session leader

• Made it session leader to not have controlling tty

• Now does not have…

• Why?

• If a session leader without a controlling tty opens a tty…

• That tty will become the session's controlling tty :(

• Non-session leaders cannot gain a controlling tty

33

Life Cycle

• Ok, now we are a daemon!

• Time to do useful stuff… forever…?

• Delve into this "stuff" shortly

Start Up Initial Setup

Become A
Daemon

while (1) {
 //do whatever
} Reread

Config File/
Reconfigure

Shutdown

34

Life Cycle

• Reading: easy

• Re-configure: maybe tricky (depends on what to do…)

• How do we know when to reconfigure?

Start Up Initial Setup

Become A
Daemon

while (1) {
 //do whatever
} Reread

Config File/
Reconfigure

Shutdown

35

Common Approach: SIGHUP
• Many daemons interpret the signal SIGHUP to mean "reconfigure"

• What are signals?

• When OS wants to send asynchronous notification to process, send signal.

• Many different signals (each numbered): SIGSEGV, SIGABRT, SIGHUP,…

• Default actions: terminate (possibly w/ core dump), ignore, stop, continue

• See “man -S7 signal” for specifics

• Signals can also be blocked

• Programs can change behavior with sigaction

• Default, ignore, or programmer-defined function

36

Using sigaction

• Basic structure of using sigaction to setup a signal handler

 struct sigaction sigterm_action;
 sigterm_action.sa_handler = my_function;
 sigterm_action.sa_flags = some_flags; //e.g. SA_RESTART
 if(sigemptyset(&sigterm_action.sa_mask)!= 0) {
 //handle error
 }
 //use sigaddset to add other signals to sa_mask
 if(sigaction(SIGHUP,&sigterm_action, NULL) != 0) {
 //handle error
 }

37

Using sigaction

• What is the type of sa_handler in sigaction?

• A: int sa_handler C: void * sa_handler

• B: int * sa_handler D: void (* sa_handler) int

 struct sigaction sigterm_action;
 sigterm_action.sa_handler = my_function;
 sigterm_action.sa_flags = some_flags; //e.g. SA_RESTART
 if(sigemptyset(&sigterm_action.sa_mask)!= 0) {
 //handle error
 }
 //use sigaddset to add other signals to sa_mask
 if(sigaction(SIGHUP,&sigterm_action, NULL) != 0) {
 //handle error
 }

38

Signal Handler
• Signal handler ("my_function") looks like

• void my_function (int signal_number) { … }

• You have to be careful what you call/do in it

• Program may be interrupted in the middle of something

• Similar problems/ideas to data races with multiple threads

• Some functions are defined as safe to call in signal handler

39

Life Cycle

• Shut down daemon by sending signal

• kill system call sends signal to a process

Start Up Initial Setup

Become A
Daemon

while (1) {
 //do whatever
} Reread

Config File/
Reconfigure

Shutdown

40

Life Cycle

• Now let us go back and revisit the "stuff" that the daemon does

Start Up Initial Setup

Become A
Daemon

while (1) {
 //do whatever
} Reread

Config File/
Reconfigure

Shutdown

41

Accept, Process, Respond [mostly]

• Not strictly a rule (may communicate both ways, etc)

• But a good "general formula" to start from

while (true) {
 req = accept_incoming_request();
 resp = process_request(req);
 send_response(req,resp);
}

This might take many forms:
 - accept() network socket
 - read from FIFO/pipe
 - read from DB table
 …

42

650 Review: Sockets

• Speaking of accept()
• Who can remind us about sockets from 650?

while (true) {
 req = accept_incoming_request();
 resp = process_request(req);
 send_response(req,resp);
}

This might take many forms:
 - accept() network socket
 - read from FIFO/pipe
 - read from DB table
 …

43

Accept, Process, Respond [mostly]

• As noted last time: probably want some parallelism…

• What would this parallelism look like?

while (true) {
 req = accept_incoming_request();
 resp = process_request(req);
 send_response(req,resp);
}

This might take many forms:
 - accept() network socket
 - read from FIFO/pipe
 - read from DB table
 …

44

Parallelism Strategies?
• What ways might we structure this parallelism?

• How do we run code in parallel (hint: 2 ways)?

• How could we put these to use?

45

Parallelism

• What does this parallelism look like?

• 4 main options

processes threads

create per request

pre-create

46

fork per-request

• Pros and cons?

while (true) {
 req = accept_incoming_request();
 pid_t p = fork();
 if (p < 0) {/*handle error */}
 else if (p == 0) {
 resp = process_request(req);
 send_response(req,resp);
 exit(EXIT_SUCCESS);
 }
 //cleanup: close/free req
 //need to wait for p w/o blocking
}

47

Advantages of Fork-per-request
• Which would be an advantage of fork-per-request?

• A: Low overhead

• B: Easy to share state between requests

• C: Isolation between requests

• D: None of the above

48

Fork-per-request Pros/Cons
• Pros:

• Simplicity: avoid difficulties of multi-threaded programming

• Isolation between requests : separate processes

• Cons:

• No ability to share state between/across requests

• fork() latency on critical path

• Creates arbitrary number of processes

49

Pre-fork
for (int i = 0; i < n_procs; i++) {
 pid_t p = fork();
 if (p < 0) { /* handle error */}
 else if (p == 0) {
 request_loop(); //never returns
 abort(); //unreachable
 }
 else {
 children.push_back(p);
 }
}
//What happens here depends…

50

pre-fork request loop

• How does this work across multiple processes?

• …it depends…

void request_loop(void) {
 while (true) {
 req = accept_incoming_request();
 resp = process_request(req);
 send_response(req,resp);
 }
}

51

Remind Us About… IPC
• Who can remind us about interprocess communication?

• What approaches do you know?

• How do they work?

52

Parent Dispatches Requests

• One approach: parent dispatches requests:

• Requests come into parent

• Parent chooses a child and sends it via IPC (pipe, shared memory,..)

Parent

Child 1

Child 2

Child 3

Child 4
IPC
(pipe,shm)

53

Pre-fork
for (int i = 0; i < n_procs; i++) {
 pid_t p = fork();
 if (p < 0) { /* handle error */}
 else if (p == 0) {
 request_loop(); //never returns
 abort(); //unreachable
 }
 else {
 children.push_back(p);
 }
}
request_dispatch_loop(); //accept, send to child

Need to add code
to setup
IPC here
(before fork())

Need to record
IPC info in
data structure

54

Load Balancing

• System has poor load balance

• Child 1 is overloaded, Child 3 is underloaded

• What if we dispatch round-robin (1, 2, 3, 4, 1, 2, 3, 4),…

• Requests have different latency -> may still have poor balance

Parent

Child 1

Child 2

Child 3

Child 4

55

Networking (or other fd-based reqs)
• Previous approach not great for network sockets

• Can't easily send a socket over a pipe (fd is just a number)

• Common approach: each process calls accept() on same server socket

• Create socket, bind, listen before fork()

• Have each process call accept()

• Safe under Linux, cannot find POSIX guarantees

• Not best for performance

• Preferable [on Linux]: have each process make own socket

• Use SO_REUSEPORT socket option: all can bind to same port

• If interested: https://lwn.net/Articles/542629/

56

https://lwn.net/Articles/542629/

Advantage of Pre-Forking
• Which would be an advantage of pre-forking relative to fork-per-

request?

• A: Lower overhead

• B: Easier to share state between requests

• C: Stronger isolation between requests

• D: None of the above

57

pre-fork
• Pros:

• Simplicity: avoid difficulties of multi-threaded programming

• Some isolation between requests

• Choose number of processes (can even adjust dynamically…)

• fork() overhead only once at startup=> lower overhead

• Cons:

• No ability to share state between/across requests

• Not as much isolation as per-request forking

• [Some forms] More likely to need explicit load balancing

58

Parallelism

• Talked about process-based approaches (forking)

• Now let's talk about the thread-based ones.

processes threads

create per request

pre-create

59

Threads
• Similar code to forking:

• Replace fork with pthread_create

• Communication? Simpler: naturally share memory

• Easier to have shared queue of requests for pre-created threads

• Have to deal with multi-threaded programming

• Harder parts come exactly when we get benefits from MT over MP

• Shared state

60

Thread Per Request
• Pros:

• Shared State

• Cons:

• Complexities of multi-threaded programming

• No isolation

• No limit on number of threads created (may be highly inefficient)

• Overhead of pthread_create() is on critical path

61

Pre-Create Threads
• Pros:

• Shared State

• Probably easier load balancing

• Overhead for pthread_create up front

• Shared State

• Easy to control (and adjust) number of threads

• Cons:

• No isolation

• Complexities of multi-threaded programming

62

Which To Pick?
• Which one to pick?

• Depends on what you need to do

• You should understand the tradeoffs of each option

• Think carefully/critically as you design your server

63

UNIX: Users, Permissions, Capabilities
• Important considerations for UNIX Daemons

• What user does it run as?

• What if it needs *some* privileged operations?

• Relatedly: file permissions/ownership

• Now:

• Users: uid manipulation, setuid programs

• File permissions

• Capabilities

64

UNIX Users
• You are used to running as a "normal" user

• But now you have "root" on a machine..

• root is the privileged user: uid 0

• Aka "super user"

• Can perform operations that normal users cannot

• Load kernel modules

• Adjust system settings

• Listen on privileged ports (< 1024)

• Change to other users…

• …

65

ROOT IS DANGEROUS
• Anything running as root is DANGEROUS

• Can do anything to the system

• Add accounts, change password

• Setup key loggers

• Hide its own existence

• Want to minimize what happens as root

• When possible, run as "nobody"

66

setuid(): switch users
• Do privileged operations, then switch users

• setuid(…);

• Example:

• Start as root

• bind to/listen on privileged port

• setuid(…)

• Useful if all privileged operations are needed at start

67

Real, Effective, Saved UID
• There are three UIDs for each process:

• Real user id: the user id of the user who ran it

• Effective user id: the user id currently used for permission checking

• Saved set-user-id: remembers "set-user-id" on suid binaries

• Set-user-id binaries:

• File permissions that specify to switch euid at the start of execution

• This is what lets programs like sudo, su, etc work

68

UID Example

• Compile, run as user 1001

int main(void) {
 uid_t temp = getuid();
 printf("uid: %d\n", getuid());
 printf("euid: %d\n", geteuid());
 seteuid(temp);
 printf("uid: %d\n", getuid());
 printf("euid: %d\n", geteuid());
 seteuid(0);
 printf("uid: %d\n", getuid());
 printf("euid: %d\n", geteuid());
 return EXIT_SUCCESS;
}

uid: 1001
euid: 1001
uid: 1001
euid: 1001
uid: 1001
euid: 1001fails (EPERM)

69

UID Example

• sudo chown root.root a.out

• sudo chmod u+s a.out //make program suid: USE WITH CAUTION!

int main(void) {
 uid_t temp = getuid();
 printf("uid: %d\n", getuid());
 printf("euid: %d\n", geteuid());
 seteuid(temp);
 printf("uid: %d\n", getuid());
 printf("euid: %d\n", geteuid());
 seteuid(0);
 printf("uid: %d\n", getuid());
 printf("euid: %d\n", geteuid());
 return EXIT_SUCCESS;
}

uid: 1001
euid: 0
uid: 1001
euid: 1001
uid: 1001
euid: 0Succeeds: Saved-set-user-id is 0

70

UID Example

• This program is safer when euid is not 0

• Not completely safe: arbitrary code exploit can seteuid(0)

int main(void) {
 uid_t temp = getuid();
 //Dangerous: root permissions
 seteuid(temp);
 //Safer: user 1001 permissions
 seteuid(0);
 //Dangerous again
 return EXIT_SUCCESS;
}

71

Pause To Think
• How could we make things safer?

72

Separate Processes

• Privileged process can fork

• New process can completely drop privileges (call setuid() to change all uids)

• Communication can be done with your favorite IPC

fork()
pipe()

setuid(1001)

pipe()

Communication
via pipes

read() write()

73

uid=0

Separate Processes

• Unprivileged Process: Interacts with outside world

• Sends request to privileged process as needed

• What does this sound like? (a couple familiar ideas…)

fork()
pipe()

setuid(1001)

pipe()

Communication
via pipes

read() write()

74

uid=0

Linux Capabilities
• Linux (since 2.2) has the concept of capabilities

• Divides root's super-user powers into sub-abilities (~40)

• Example: CAP_NET_BIND_SERVICE — bind to port < 1024

• Why useful?

• If all you need is to bind a privilege port, can have

• Without ability to do other things (load modules, change permissions,…)

• Executables can be granted individual capabilities

• Rather than full set-uid status

75

Other User/Permissions Things
• Similar concepts/system calls apply/exist for group ids

• Programs can be "set group id"

• There is also a "file system user id"—not so common to use

76

Case Study: ECE 551 Grader System
• Everyone's favorite piece of server software!

• Very interesting from a system design perspective

• Requirements:

• Run arbitrary (student) code w/o security risk

• Not concerned about things you could do at shell

• Concerned about access to grades/grader

• Simple/low overhead commands [do not require password each time]

• Interface with git

77

Grading

• Student runs grade command

• Grader daemon responsible for grading

• Database holds state

Database

Grader Daemon

Grade
Command

78

Think, Pair, Share

• What could possibly go wrong here?

• What security issues was (Drew) worried about when designing this?

Database

Grader Daemon

Grade
Command

79

Grading

• Grade command: runs as student

• But accesses database

• How do we prevent student from accessing db directly?

Database

Grader Daemon

Grade
Command

80

Grading: Grade Command Side

• grade is setuid ece551

• Sets up pair of pipes, then fork()s

• One process becomes "student side", other "ece551 side"

• Communication over pipes with Google Protocol Buffers

Database

Grade
Command

uid: student
euid: ece551

pipe(); pipe(); fork()

setuid(student) setuid(ece551)

81

git status
……….

Grading: Daemon Side

• Same structure we've seen before

• Accept request: from database

• Process: grade it

• Send request: update DB

Database

Grader Daemon

while (true) {
 req = accept_incoming_request();
 resp = process_request(req);
 send_response(req,resp);
}

Run as ece551

Run as ece551

Run as…?

82

Doing Actual Grading
• Need to access student repository: push + pull

• Want student repo permissions restricted to only student

• …so run as student?

• Want actual student code to be run as nobody (a pseudo user account)

• Minimal permissions

• …but also need code to not be able to read grader files [answers,etc]

• So to process a request:

• git pull [as student]

• run code/grader [as nobody]

• git push [as student]

83

Graderd

• graderd runs as root!
• How does the grading get done as nobody? Another program

Database

pipe(); pipe(); fork()

setuid(ece551)

fork()
setuid(student)

exit

git + grading

student/assn

grade=A

84

Question

• Why does this process need to run as root?

• A: So it can write /var/log/grader.log C: So it can call daemon()

• B: So its children can setuid to any student D: So it can access the database

Database

pipe(); pipe(); fork()

setuid(ece551)

fork()
setuid(student)

exit

git + grading

student/assn

grade=A

85

Minimal Privileges
• Run with the lowest privilege as possible

• The lower the privilege, the less damage you can do

• Separate code that needs different privileges

• Communicate over well defined API

• Restrict requests that can be sent to privileged code

• Privileged code must distrust less privileged code

• Could go even further:

• Separate across machines…

• We'll discuss this idea later!

86

