
Brian Rogers Duke ECE
Used with permission from Drew Hilton

Engineering Robust Server
Software

Containers

Isolation
• Isolation: keep different programs separate

• Good for security

• Might also consider performance isolation

• Also has security implications (side channel attacks)

• How would we get that?

2

Extreme Isolation

• Most secure:

• Run program on a computer

• Throw away computer

• Buy new computer

• Run next program on it

3

$$$$
Obviously we can't do this…

Virtual Machines?

• What if those computers are virtual instead of real?

4

Run a program that pretends to be a computer
 - Emulate ISA
 - Emulate hardware devices
 - "Disk" is a file on real computer
 ….

Run another program inside of the VM

Virtual Machines
• Gives us isolation for security

• Assuming no bugs in VM…

• What about performance?

5

Virtual Machines
• Gives us isolation for security

• Assuming no bugs in VM…

• What about performance?

• Emulating every instruction = slow

• Booting OS takes time

• Could we improve on this idea?

6

Hardware Virtualization

• Hypervisor manages multiple guest OSes

• Each OS runs its own processes

• Details later in 650

7

Hypervisor

OS OS OS

P1 P2 P3 P1 P2 P3 P1 P2P4

Hardware Virtualization
• Security Isolation

• Unless hardware or hypervisor bugs..

• Instructions run directly on hardware

• Much lower performance overheads

• Still takes time to boot guest OSes for a new one

• Can we improve that?

8

Containers: OS-Level Virtualization
• Want a lightweight solution

• Have OS give benefits of virtualization=> namespaces

• Starting up new container comparable to starting new process

• Run programs directly on hardware

9

Containers: OS-Level Virtualization
• Want a lightweight solution

• Have OS give benefits of virtualization=> namespaces

• Starting up new container comparable to starting new process

• Run programs directly on hardware

• What do we need to split between separate namespaces?

10

Process ID Namespacing

• Normal process tree: parent/child relationship

• myprog wants to start a new container

11

1: init

2: kthreadd

3: ksoftirqd
…….

1234: sshd

2345: sshd
3972: bash

4875: myprog

Process ID Namespacing

• Calls clone and passed in CLONE_NEWPID in the flags

• clone() is a lot like fork, but more options

12

1: init

2: kthreadd

3: ksoftirqd
…….

1234: sshd

2345: sshd
3972: bash

4875: myprog

clone(……,CLONE_NEWPID)

Process ID Namespacing

• New process has "normal" pid in original namespace

• And is pid 1 in its own, new namespace

13

1: init

2: kthreadd

3: ksoftirqd
…….

1234: sshd

2345: sshd
3972: bash

4875: myprog

clone(……,CLONE_NEWPID)

1: myprog9834

Process ID Namespacing

• If this program has children, they go into its namespace

14

2345: sshd
3972: bash

4875: myprog

1: myprog9834

2: something9914

4: otherthing9935

3: whatever9987

Process ID Namespacing

• Inside namespace, nothing outside exists

15

1: myprog

2: something

4: otherthing

3: whatever

Process ID Namespacing

• Process 1 in this namespace acts like init.

• Has no parent

16

1: myprog

2: something

4: otherthing

3: whatever

getppid(), returns 0

Process ID Namespacing

• What happens if process 2 exits?

• A: Process 4 leaves the namespaces to become a child of the system-
wide init

• B: Process 4 becomes the leader of the namespace

• C: "myprog" adopts process 4 as its child

• D: The namespace collapses

17

1: myprog

2: something

4: otherthing

3: whatever

Process ID Namespacing

• Process 1 in this namespace acts like init.

• Adopts orphan processes

18

1: myprog

4: otherthing

3: whatever

orphaned processes adopted
 by pid 1 in their namespace2: something

…But What Else Should We Namespace?

• Process ids are not enough….

19

1: myprog

4: otherthing

3: whatever

Mount Point Namespaces
• Want to give containers a different view of filesystem

• CLONE_NEWNS puts new process in new mount namespace

• Child can unmount/mount filesystems without affecting anything outside

• Can setup an entirely new filesystem for container

20

Mount Point Namespaces
• Our namespaces processes can have their own filesystem

• Maybe it is a disk image on the "regular" file system

• …but that filesystem can have mount points in the "regular" fs

• Allow files to be put into the outside world in controlled way

21

User ID Namespaces
• Try this out on Linux:

• unshare -r --user bash

• What happened?

22

User ID Namespaces
• Try this out:

• unshare -r --user bash

• echo "hello" > /tmp/hello

• ls -l /tmp/hello

• exit

• ls -l /tmp/hello

• What do you think the first ls -l will show?

• What do you think the second ls -l will show?

23

User ID Namespace

• User ID Namespaces: different notions of user id

• "Outside" looks like normal user id that setup namespace

24

user ID=1001

user ID=1001

user ID=1001

user ID=0
user ID=0

User ID Namespace

• User ID Namespaces: different notions of user id

• Inside the namespace processes have their own notion of uid

25

user ID=42

user ID=0

user ID=99

User ID Namespace

• But when operations leave that namespace, they use external UID

26

user ID=42

user ID=0

user ID=99

Create /tmp/hello

user ID=1001

User ID Namespace Is First
• If you request a new UID namespace, it happens first

• Allows privileged namespace creation

• e.g., making new mount namespace is privileged

• Can do at same time as new UID namespace

27

Other Namespaces: Net, UTS, IPC
• Linux supports other namespaces:

• Networking: devices, routing tables, firewall rules,…

• Can set up virtual network devices between namespaces

• UTS: hostname, domain name

• IPC: System V IPC

28

Other Namespace Related Operations
• unshare system call:

• Lets process create separate namespace without clone()ing child

• Some things work differently—especially PID namespaces

• unshare command: wrapper around system call

• see unshare(1), and unshare(2)

• setns system call:

• Allows a process to enter a child namespace

• nsenter command: execute command in child namespace

• See setns(2), nsenter(1)

29

Namespace Summary

• Namespaces: separate versions of system resources

• See namespaces(7), pid_namespaces(7), user_namespaces(7)

30

—From "man namespaces"

Back to Big Picture…

• Want to setup container to run process in isolation

31

Back to Big Picture…

• Want to setup container to run process in isolation

32

- clone with an NS types
- adjust our mount points

- maybe some CoW fs?
- setup some virtual networking
- …

Docker
• Docker: does containers for you

• Makes all these system calls

• Manages file system

• Supports virtual networking

• Try this out:

• sudo docker run -it --rm ubuntu bash

• Do whatever wild and crazy things you want INSIDE container

33

More Docker
• Make a directory ~/stuff

• Put some stuff in it

• sudo docker run -it --rm -v /home/netid/stuff:/stuff ubuntu bash

• cd /stuff

• ls, make some files, etc

• Think about what -v did

34

What did -v do?
• What did -v do?

• A: Caused docker to not pass CLONE_NEWNS to clone

• B: Caused docker to mount /home/netid/stuff as /stuff in the new mount
namespace

• C: Caused docker to mount /home/netid/stuff as /stuff in the original
mount namespace

• D: Caused docker to setup a virtual network to transmit changes back to
the original filesystem

35

Docker: Make Your Own Image
• Using ubuntu image gives us an Ubuntu system,

• …but probably want things installed

• Try gcc, make, python, valgrind—none of them are there!

• For most things want to make our own image

• Start from a base image (e.g., ubuntu:18.04)

• And run commands to build up a new image

36

Dockerfile
• Make a directory with a Dockerfile in it

• Dockerfile has commands for how to build image

• Start with FROM otherimage

• E.g., FROM ubuntu:16.04

• Place other commands: e.g., RUN, USER, ENV, ADD in the file

• Each command makes a new layer

• Docker saves/caches intermediate layers

• Later changes -> rebuild only later layers

• https://docs.docker.com/engine/reference/builder/

37

Example Dockerfile from hwk1

38

FROM python:3
ENV PYTHONUNBUFFERED 1
RUN mkdir /code
WORKDIR /code
ADD requirements.txt /code/
RUN pip install -r requirements.txt
ADD . /code/

Base image is python:3
set an environment variable
run the command mkdir /code
cd into /code for future commands
copy from context into image
run pip install inside virtual image
copy everything into /code

sudo docker build -t=testimg .
sudo docker run -it --rm testimg bash

Advantages
• Isolation: processes run in container

• Self-contained images:

• No need to worry about library version mismatches, things not installed,..

• Easy to use

• Can include what command to run in the Dockerfile

39

Multiple Services Together?

40

Postgres
Django

Nginx

Maybe Add More Stuff?

41

Postgres
Django

Nginx

Dist.
File Strg

Analytics

Backup

Docker-Compose
• Docker-compose (docker-compose.yml) puts together containers

• Sets up communication between them

• Lets you bring them all up together

• Etc

42

Scale Beyond One Computer?
• Docker also has "swarm"

• Run containers on different computers in a swarm

• We'll discuss in scalability section later

43

