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Isolation
• Isolation: keep different programs separate 

• Good for security 

• Might also consider performance isolation 

• Also has security implications (side channel attacks) 

• How would we get that?
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Extreme Isolation

• Most secure: 

• Run program on a computer 

• Throw away computer 

• Buy new computer 

• Run next program on it
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$$$$
Obviously we can't do this…



Virtual Machines?

• What if those computers are virtual instead of real?
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Run a program that pretends to be a computer 
   - Emulate ISA 
   - Emulate hardware devices 
         - "Disk" is a file on real computer 
   ….

Run another program inside of the VM 



Virtual Machines
• Gives us isolation for security 

• Assuming no bugs in VM… 

• What about performance?
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Virtual Machines
• Gives us isolation for security 

• Assuming no bugs in VM… 

• What about performance? 

• Emulating every instruction = slow 

• Booting OS takes time 

• Could we improve on this idea?
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Hardware Virtualization

• Hypervisor manages multiple guest OSes 

• Each OS runs its own processes 

• Details later in 650
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Hardware Virtualization
• Security Isolation 

• Unless hardware or hypervisor bugs.. 

• Instructions run directly on hardware 

• Much lower performance overheads 

• Still takes time to boot guest OSes for a new one 

• Can we improve that?
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Containers: OS-Level Virtualization
• Want a lightweight solution 

• Have OS give benefits of virtualization=> namespaces 

• Starting up new container comparable to starting new process 

• Run programs directly on hardware
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Containers: OS-Level Virtualization
• Want a lightweight solution 

• Have OS give benefits of virtualization=> namespaces 

• Starting up new container comparable to starting new process 

• Run programs directly on hardware 

• What do we need to split between separate namespaces?
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Process ID Namespacing

• Normal process tree: parent/child relationship 

• myprog wants to start a new container
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1: init

2: kthreadd

3: ksoftirqd
…….

1234: sshd

2345: sshd
3972: bash

4875: myprog



Process ID Namespacing

• Calls clone and passed in CLONE_NEWPID in the flags 

• clone() is a lot like fork, but more options
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1: init

2: kthreadd

3: ksoftirqd
…….

1234: sshd

2345: sshd
3972: bash

4875: myprog

clone(……,CLONE_NEWPID) 



Process ID Namespacing

• New process has "normal" pid in original namespace 

• And is pid 1 in its own, new namespace
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1: init

2: kthreadd

3: ksoftirqd
…….

1234: sshd

2345: sshd
3972: bash

4875: myprog

clone(……,CLONE_NEWPID) 

1: myprog9834



Process ID Namespacing

• If this program has children, they go into its namespace
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2345: sshd
3972: bash

4875: myprog

1: myprog9834

2: something9914

4: otherthing9935

3: whatever9987



Process ID Namespacing

• Inside namespace, nothing outside exists
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1: myprog

2: something

4: otherthing

3: whatever



Process ID Namespacing

• Process 1 in this namespace acts like init. 

• Has no parent
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1: myprog

2: something

4: otherthing

3: whatever

getppid(), returns 0



Process ID Namespacing

• What happens if process 2 exits? 

• A: Process 4 leaves the namespaces to become a child of the system-
wide init 

• B: Process 4 becomes the leader of the namespace 

• C: "myprog" adopts process 4 as its child 

• D: The namespace collapses
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1: myprog

2: something

4: otherthing

3: whatever



Process ID Namespacing

• Process 1 in this namespace acts like init. 

• Adopts orphan processes
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1: myprog

4: otherthing

3: whatever

orphaned processes adopted  
    by pid 1 in their namespace2: something



…But What Else Should We Namespace?

• Process ids are not enough….
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1: myprog

4: otherthing

3: whatever



Mount Point Namespaces
• Want to give containers a different view of filesystem 

• CLONE_NEWNS puts new process in new mount namespace 

• Child can unmount/mount filesystems without affecting anything outside 

• Can setup an entirely new filesystem for container
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Mount Point Namespaces
• Our namespaces processes can have their own filesystem 

• Maybe it is a disk image on the "regular" file system 

• …but that filesystem can have mount points in the "regular" fs 

• Allow files to be put into the outside world in controlled way
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User ID Namespaces
• Try this out on Linux: 

• unshare -r  --user bash 

• What happened?
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User ID Namespaces
• Try this out: 

• unshare -r  --user bash 

• echo "hello" > /tmp/hello 

• ls -l /tmp/hello 

• exit 

• ls -l /tmp/hello 

• What do you think the first ls -l will show? 

• What do you think the second ls -l will show?
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User ID Namespace

• User ID Namespaces: different notions of user id 

• "Outside" looks like normal user id that setup namespace
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user ID=1001

user ID=1001

user ID=1001

user ID=0
user ID=0



User ID Namespace

• User ID Namespaces: different notions of user id 

• Inside the namespace processes have their own notion of uid
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user ID=42

user ID=0

user ID=99



User ID Namespace

• But when operations leave that namespace, they use external UID
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user ID=42

user ID=0

user ID=99

Create /tmp/hello

user ID=1001



User ID Namespace Is First
• If you request a new UID namespace, it happens first 

• Allows privileged namespace creation 

• e.g., making new mount namespace is privileged 

• Can do at same time as new UID namespace
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Other Namespaces: Net, UTS, IPC
• Linux supports other namespaces: 

• Networking: devices, routing tables, firewall rules,… 

• Can set up virtual network devices between namespaces 

• UTS: hostname, domain name 

• IPC: System V IPC
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Other Namespace Related Operations
• unshare system call: 

• Lets process create separate namespace without clone()ing child 

• Some things work differently—especially PID namespaces 

• unshare command: wrapper around system call 

• see unshare(1), and unshare(2) 

• setns system call: 

• Allows a process to enter a child namespace 

• nsenter command: execute command in child namespace 

• See setns(2), nsenter(1)
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Namespace Summary

• Namespaces: separate versions of system resources 

• See namespaces(7), pid_namespaces(7), user_namespaces(7)
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—From "man namespaces"



Back to Big Picture…

• Want to setup container to run process in isolation
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Back to Big Picture…

• Want to setup container to run process in isolation
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- clone with an NS types 
- adjust our mount points 

- maybe some CoW fs? 
- setup some virtual networking 
- …



Docker
• Docker: does containers for you 

• Makes all these system calls 

• Manages file system 

• Supports virtual networking 

• Try this out: 

• sudo docker run -it --rm ubuntu bash 

• Do whatever wild and crazy things you want INSIDE container
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More Docker
• Make a directory ~/stuff 

• Put some stuff in it 

• sudo docker run -it --rm -v /home/netid/stuff:/stuff ubuntu bash 

• cd /stuff 

• ls, make some files, etc 

• Think about what -v did
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What did -v do?
• What did -v do? 

• A: Caused docker to not pass CLONE_NEWNS to clone 

• B: Caused docker to mount /home/netid/stuff as /stuff in the new mount 
namespace 

• C: Caused docker to mount /home/netid/stuff as /stuff in the original 
mount namespace 

• D: Caused docker to setup a virtual network to transmit changes back to 
the original filesystem

35



Docker: Make Your Own Image
• Using ubuntu image gives us an Ubuntu system, 

• …but probably want things installed 

• Try gcc, make, python, valgrind—none of them are there! 

• For most things want to make our own image 

• Start from a base image (e.g., ubuntu:18.04) 

• And run commands to build up a new image
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Dockerfile
• Make a directory with a Dockerfile in it 

• Dockerfile has commands for how to build image 

• Start with FROM otherimage 

• E.g., FROM ubuntu:16.04 

• Place other commands: e.g., RUN, USER, ENV, ADD in the file 

• Each command makes a new layer 

• Docker saves/caches intermediate layers 

• Later changes -> rebuild only later layers 

• https://docs.docker.com/engine/reference/builder/
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Example Dockerfile from hwk1
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FROM python:3 
ENV PYTHONUNBUFFERED 1 
RUN mkdir /code 
WORKDIR /code 
ADD requirements.txt /code/ 
RUN pip install -r requirements.txt 
ADD . /code/ 

Base image is python:3 
set an environment variable 
run the command mkdir /code 
cd into /code for future commands 
copy from context into image 
run pip install inside virtual image 
copy everything into /code

sudo docker build -t=testimg  . 
sudo docker run -it --rm testimg bash



Advantages
• Isolation: processes run in container 

• Self-contained images: 

• No need to worry about library version mismatches, things not installed,.. 

• Easy to use 

• Can include what command to run in the Dockerfile
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Multiple Services Together?
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Postgres
Django

Nginx



Maybe Add More Stuff?
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Postgres
Django

Nginx

Dist.  
File Strg

Analytics

Backup



Docker-Compose
• Docker-compose (docker-compose.yml) puts together containers 

• Sets up communication between them 

• Lets you bring them all up together 

• Etc
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Scale Beyond One Computer?
• Docker also has "swarm" 

• Run containers on different computers in a swarm 

• We'll discuss in scalability section later
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