
Brian Rogers Duke ECE
Used with permission from Drew Hilton

Engineering Robust Server
Software
Exceptions

Exceptions
• Handling problems: exceptions

• C++

• temp-and-swap

• RAII

• Smart Pointers

• Java

• finally

• specifications

• finalizers (and why they are not what you need for this)

2

C++

Java

Exceptions
• Review: exceptions = way to handle problems

• Thing goes wrong? throw exception

• Know how to deal with problem? try/catch exception

• In python, try/except

• Why exceptions?

• Return error code? Cluttery, easy to forget/ignore

• Do nothing? Automatically pass problem to caller

• Provide details about error

3

Exceptions: Downsides
• So exceptions: best idea ever?

• Downsides too

• Unexpected things happen in code

• Well, that is true anyways

• Used improperly: corrupted objects, resource leaks, …

• Bottom line:

• Good if you do all things right

4

Exception Safety
• Continued review: exception safety

• Remind us of the four levels of exceptions safety?

5

None

Basic

Strong

No Throw

St
ro

ng
er

 G
ua

ra
nt

ee
s

Does not provide even a basic exception guarantee.
Unacceptable in professional code.

Objects remain in valid states: no dangling pointers,
invariants remain intact. No memory is leaked

No side-effects if an exception is thrown: objects are
unmodified, and no memory is leaked

Will not throw any exception. Catches and handles
any exceptions throw by operations it uses

Exception Safety

6

template<typename T>
class LList {
 //other things omitted, but typical

 LList & operator=(const LList & rhs) {
 if (this != &rhs) {
 deleteAll();
 Node * curr = rhs.head;
 while (curr != null) {
 addToBack(curr->data);
 curr = curr->next;
 }
 }
 return *this;
 }
};

Which guarantee does this make?
A: Strong
B: Basic
C: No Guarantee
D: Need more info…

C++

Exception Safety

7

template<typename T>
class LList {
 //other things omitted, but typical

 LList & operator=(const LList & rhs) {
 if (this != &rhs) {
 deleteAll();
 Node * curr = rhs.head;
 while (curr != null) {
 addToBack(curr->data);
 curr = curr->next;
 }
 }
 return *this;
 }
};

Which guarantee does this make?
 - Need to know what guarantees
 these make!

C++

Exception Safety

8

template<typename T>
class LList {
 //other things omitted, but typical

 void deleteAll(){
 while(head != nullptr) {
 Node * temp = head->next;
 delete head;
 head = temp;
 }
 tail = nullptr;
 }
};

Which guarantee does deleteAll() make?
 A: No Throw
 B: Strong
 C: Basic
 D: No Guarantee

Are there any function calls here?
Are there any hidden calls? Yes, the destructor
Destructors should always be no-throw

C++

Exception Safety

9

template<typename T>
class LList {
 //other things omitted, but typical

 void addToBack(const T& d){
 Node * newNode = new Node(d, nullptr, tail);
 if (tail == nullptr) {
 head = tail = newNode;
 }
 else {
 tail->next = newNode;
 newNode->prev = tail;
 tail = newNode;
 }
 }
};

Which guarantee does addToBack() make?

Depends on copy constructor for T

T's Copy
Constructor

addToBack()

No Throw
Strong

Basic

No Guarantee

Strong

Strong

Basic

No Guarantee

Could throw memory allocation exception,
but does so before any changes

C++

Exception Safety

10

template<typename T>
class LList {
 //other things omitted, but typical

 LList & operator=(const LList & rhs) {
 if (this != &rhs) { //no throw
 deleteAll(); //no throw
 Node * curr = rhs.head; //no throw
 while (curr != null) { //no throw
 addToBack(curr->data); //strong [let us suppose]
 curr = curr->next; //no throw
 }
 }
 return *this; //no throw
 }
};

Which guarantee does this make?
Basic

Why?
The list is being modified
when addToBack might
throw an exception. So

we’d leave list in modified
state.

C++

11

 LList & operator=(const LList & rhs) {
 if (this != &rhs) {
 Node * temp = rhs.head;
 Node * n1 = nullptr;
 Node * n2 = nullptr;
 if (temp != nullptr){
 n1 = n2 = new Node(temp->data, nullptr, nullptr);
 temp = temp->next;
 while (temp != null) {
 n2->next = new Node(temp->data, n2, nullptr);
 n2 = n2->next;
 temp = temp->next;
 }
 }
 deleteAll();
 head = n1; tail = n2;
 }
 return *this;
 }
};

Which guarantee does this version make?

No guarantee! :(

C++

Why?
If we have exception while building the new list, then

that memory is lost and therefore leaked.

An attempt at improving safety:
making new temp list before

deleting the old one.

Exception Safety

12

template<typename T>
class LList {
 //other things omitted, but typical

 LList & operator=(const LList & rhs) {
 if (this != &rhs) {
 LList temp(rhs);
 std::swap(temp.head, head);
 std::swap(temp.tail, tail);
 }
 return *this;
 }
};

Which guarantee does this make?

Strong!

C++

A good strategy to improve
exception safety: temp-and-
swap (also called copy-and-

swap)

Stack allocated!

temp is auto-deleted here

Why?
Only place we can get an exception is when making

temp (no changes made yet); swap is no-throw.

Temp-and-swap
• Common idiom for strong guarantees: temp-and-swap

• Make temp object

• Modify temp object to be what you want this to be

• swap fields of temp and this

• temp destroyed when you return (destructor cleans up state)

• Exception? temp destroyed in stack unwinding

• Downside?

• Change only some state: may be expensive to copy entire object

13

C++

What About This Code…

14

template<typename T>
class LList {
 //other things omitted, but typical

 LList & operator=(const LList & rhs) {

 if (this != &rhs) {
 m.lock();
 rhs.m.lock();
 LList temp(rhs); //What if this throws?
 std::swap(temp.head, head);
 std::swap(temp.tail, tail);
 rhs.m.unlock();
 m.unlock();
 }
 return *this;
 }
};

C++

We’ve acquired locks and are not releasing them!

How About Now?

15

template<typename T>
class LList {
 //other things omitted, but typical

 LList & operator=(const LList & rhs) {

 if (this != &rhs) {
 std::lock_guard<std::mutex> lck1(m);
 std::lock_guard<std::mutex> lck2(rhs.m);
 LList temp(rhs);
 std::swap(temp.head, head);
 std::swap(temp.tail, tail);
 }
 return *this;
 }
};

//calls m.lock()
//calls rhs.m.lock()

C++

How About Now?

16

template<typename T>
class LList {
 //other things omitted, but typical

 LList & operator=(const LList & rhs) {

 if (this != &rhs) {
 std::lock_guard<std::mutex> lck1(m);
 std::lock_guard<std::mutex> lck2(rhs.m);
 LList temp(rhs);
 std::swap(temp.head, head);
 std::swap(temp.tail, tail);
 }
 return *this;
 }
};

Where are these locks unlocked?

A:

B:
C:

D: They are not unlocked anywhere

C++

How About Now?

17

template<typename T>
class LList {
 //other things omitted, but typical

 LList & operator=(const LList & rhs) {

 if (this != &rhs) {
 std::lock_guard<std::mutex> lck1(m);
 std::lock_guard<std::mutex> lck2(rhs.m);
 LList temp(rhs);
 std::swap(temp.head, head);
 std::swap(temp.tail, tail);
 }
 return *this;
 }
};

//calls m.lock()
//calls rhs.m.lock()

//destructor of lock_guard calls .unlock()

C++

How About Now?

18

template<typename T>
class LList {
 //other things omitted, but typical

 LList & operator=(const LList & rhs) {

 if (this != &rhs) {
 std::lock_guard<std::mutex> lck1(m);
 std::lock_guard<std::mutex> lck2(rhs.m);
 LList temp(rhs);
 std::swap(temp.head, head);
 std::swap(temp.tail, tail);
 }
 return *this;
 }
};

//what if exn?

C++

Locks are auto-released here (either naturally or on exception)

This is an example of RAII…

RAII
• Resource Acquisition Is Initialization

• Resource lifetime tied to object lifetime

• Allocation during initialization

• Released during destruction

• Example resources:

• Mutex: lock/unlock

• Heap Memory: new/delete

• File: open/close

• Exception safety benefits?

19

C++

Release-on-destruction means we release resources whether we go down
the normal execution path or exception path.

RAII with Heap Objects
• "Smart Pointers"

• Objects that wrap pointer and provide RAII

• C++03: std::auto_ptr (deprecated)

• C++11:

• std::unique_ptr

• std::shared_ptr

• std::weak_ptr

20

C++

std::unique_ptr

• Owns a pointer

• When destroyed, deletes owned pointer

21

 {
 std::unique_ptr<Thing> thing1 (new Thing);
 //other code here

 } //thing1 goes out of scope: delete its pointer

C++

std::unique_ptr

• Owns a pointer

• When destroyed, deletes owned pointer

• Can use .get() to get raw pointer

22

 {
 std::unique_ptr<Thing> thing1 (new Thing);
 //other code here
 Thing * tp = thing1.get();

 }

C++

std::unique_ptr

• Owns a pointer

• When destroyed, deletes owned pointer

• Can use .get() to get raw pointer

• Can also use * and -> operators

23

 {
 std::unique_ptr<Thing> thing1 (new Thing);
 //other code here
 Thing * tp = thing1.get();
 thing1->doSomething();

 }

C++

std::unique_ptr

• Assignment operator/copy constructor transfer ownership

24

 {
 std::unique_ptr<Thing> thing1 (new Thing);
 //… … …
 std::unique_ptr<Thing> thing2 (thing1);

 }
//thing2 owns pointer, thing1 is empty (holds nullptr)

C++

Exception Safety

25

Thing * foo(int x, char c) {
 Widget * w = new Widget(x);
 Gadget * g = new Gadget(c);
 Thing * t = new Thing(w,g);
 return t;
}

Which guarantee does this make?
 A: No Throw
 B: Strong
 C: Basic
 D: No guarantee

C++

Why?
If Thing throws exception, then

w and g are leaked!

Exception Safety

26

Thing * foo(int x, char c) {
 std::unique_ptr<Widget> w (new Widget(x));
 std::unique_ptr<Gadget> g (new Gadget(c));
 Thing * t = new Thing(w.get(),g.get());
 return t;
}

Is this code correct?
A: Yes
B: No
C: I'm lost on unique_ptr

C++

Why?
We pass in the underlying pointers to Thing,

but unique_ptr will delete those when this
function exits scope.

Thing ends up with two dangling pointers !

w and g go out of scope here, so… what happens to their pointers?

Exception Safety

27

Thing * foo(int x, char c) {
 std::unique_ptr<Widget> w (new Widget(x));
 std::unique_ptr<Gadget> g (new Gadget(c));
 Thing * t = new Thing(w.release(),g.release());
 return t;
} What about this code?

release returns the pointer (like get),
but also gives up ownership (sets the owned pointer to nullptr)

C++

Why?
What if Thing() constructor throws exception?

We still had to run release() first to call it (probably*).
Result: more leaked pointers !

* Actually unspecified in the C++ standard.

No

Exception Safety

28

Thing * foo(int x, char c) {
 std::unique_ptr<Widget> w (new Widget(x));
 std::unique_ptr<Gadget> g (new Gadget(c));
 Thing * t = new Thing(w.release(),g.release());
 return t;
}

What about this code?
What if new fails?

"Whether the allocation function is called before evaluating the
constructor arguments or after evaluating the constructor arguments but
before entering the constructor is unspecified. It is also unspecified
whether the arguments to a constructor are evaluated if the allocation
function returns the null pointer or exits using an exception. "

 — C++ standard, 5.3.4 (21)

C++

Exception Safety

29

Thing * foo(int x, char c) {
 std::unique_ptr<Widget> w (new Widget(x));
 std::unique_ptr<Gadget> g (new Gadget(c));
 Thing * t = new Thing(w, g);
 return t;
}

What am I assuming Thing's constructor takes now?
 A: Thing (std::unique_ptr<Widget> &, std::unique_ptr<Gadget> &)
 B: Thing(Widget * , Gadget *)
 C: Thing(Widget, Gadget)
 D: Thing (const Widget & , const Gadget &)

C++

Internally, Thing constructor will call release()
to get the raw pointers and store those.

Second: Is this code now
correct?
A: Yes
B: No

Shared Pointers + Weak Pointers
• Unique Pointers: exactly one owner

• Assignment transfers ownership

• Shared Pointers: many owners

• Copying increments count of owners

• Destruction decrements counts of owners

• Object freed when owner count reaches 0

• Weak Pointers: non-owners of shared pointer

• Can reference object, but does not figure into owner count

• Use .lock() to obtain shared_ptr: has object (if exists) or nullptr (if not)

30

C++

Real C++: Use RAII
• You learned C++ from C

• We did a lot of things to transition gently

• Looked somewhat C-like

• Less C-like and more C++-like as we progressed

• Real C++:

• Use RAII for everything

31

C++

Java Exceptions: Slightly Different
• RAII: C++, but not Java (why not?)

• No objects in stack in Java (all in heap…)

• Java's plan: finally

• ALWAYS executed, no matter whether exception or not

32

Java

Java Exceptions: Slightly Different

33

public void doAThing(String name) {
 SomeResource sr = null;
 try {
 sr = new SomeResource(name);
 doStuff(sr);
 }
 catch(WhateverException we) {
 dealWithProblem(we);
 }
 finally {
 if(sr != null) {
 sr.close();
 }
 }
}

Java

Java Exceptions: Slightly Different

34

public void doAThing(String name) throws WhateverException{
 SomeResource sr = null;
 try {
 sr = new SomeResource(name);
 doStuff(sr);
 }
 finally {
 if(sr != null) {
 sr.close();
 }
 }
}

Can have try-finally (no catch)
 - Allows exception to propagate out
 - Cleans up resources

Java

Java Exceptions: Slightly Different

35

public void doAThing(String name) throws WhateverException{
 try (SomeResource sr = new SomeResource(name)) {
 doStuff(sr);
 }
 }

Java also has try-with-resource
 * declare/initialize AutoCloseable object in () after try
 - can have multiple declarations, separate with ;
 * automatically makes a finally which closes it
 - closes in reverse order of creation
 * can have explicit catch or finally if you want

Java

Java Exceptions: Slightly Different

36

public void doAThing(String name) throws WhateverException{
 SomeResource sr = null;
 try {
 sr = new SomeResource(name);
 doStuff(sr);
 }
 finally {
 if(sr != null) {
 sr.close();
 }
 }
}

Java's exception specification rules
different from C++'s

Java

Exception Specifications
• C++ 03

• No declaration: can throw anything

• Declaration: restricted to those types throw(x, y, z) or throw()

• Checked at runtime: when exception is thrown

• If lied, std::unexpected()

37

C++

Exception Specifications

• C++ 11

• C++03 specifications valid but deprecated

• noexcept for "no throw"

• Can take a boolean expression to indicate behavior (true=noexcept)

• noexcept(expr) queries if expr is declared noexcept

• If noexcept actually throws, calls std::terminate()

38

template<typename T>
class Thing {
 T data;
 public:
 Thing() noexcept(noexcept(T())) {}
//…………
};

C++

A declaration: “This method throws no exception if the argument is true.”
Think of it as “no_throw_if”

A question: “Is this argument marked noexcept?”
Think of it as “no_throw?”

Exception Specifications

• Java

• Two types of exceptions: checked and unchecked

• Checked: exception specifications checked at compile time

• Compiler ensures you don't lie (aka miss one)

• Unchecked: no need to declare in spec

• Possible in too many places, would clutter code

39

Throwable

ExceptionError

IOException SQLException RuntimeException

Java

Exception Specifications

40

Throwable

ExceptionError

IOException SQLException RuntimeExceptionVirtualMachineErro

OutOfMemoryError StackOverflowError

…….

"Reasonable" applications do not
try/catch these

Java

Exception Specifications

41

Throwable

ExceptionError

IOException SQLException RuntimeException

ArrayIndexOutOfBoundsException NullPointerException ArithmeticException…….

RuntimeException:
too ubiquitous to clutter
code with specifications
(everything might throw them)

Java

Exception Specifications

42

Throwable

ExceptionError

IOException SQLException RuntimeException…….

Checked exceptions:
 - Rare enough to merit specification
 - Reasonable enough to try/catch

Java

Java: Finalizers
• Java objects have .finalize()

• "Called by the garbage collector on an object when garbage collection
determines that there are no more references to the object."

• Seems like maybe we could use this to help resource management?

43

Java

Lets Look at Stack Overflow

44

http://stackoverflow.com/questions/12958440/closing-class-io-resources-in-overridden-finalize-method
http://stackoverflow.com/questions/8051863/how-can-i-close-the-socket-in-a-proper-way

Java

http://stackoverflow.com/questions/12958440/closing-class-io-resources-in-overridden-finalize-method
http://stackoverflow.com/questions/8051863/how-can-i-close-the-socket-in-a-proper-way

Finalizer: NOT For Resource Management
• Do NOT try to use finalizers for resource management!

• No guarantee of when they will run (may never gc object!)

• Do NOT use finalizers in general

• May run on other threads (possibly multiple finalizers at once)

• Were you thinking about how to synchronize them?

• What about deadlock?

• Likely to run when memory is scarce (may cause problems if you allocate)

• Could accidentally make object re-referenceable?

45

Java

Exceptions
• Handling problems: exceptions

• C++

• temp-and-swap

• RAII

• Smart Pointers

• Java

• finally

• specifications

• finalizers (and why they are not what you need for this)

46

