
Andrew Hilton / Duke ECE

Engineering Robust Server
Software

Security

Significant portions based on slides from

Micah Sherr @ Georgetown

Andrew Hilton / Duke ECE

Security
• First major topic: security

• What do we mean by security?

2

Andrew Hilton / Duke ECE

Security
• First major topic: security

• What do we mean by security?

• Confidentiality: things are kept secret

• Integrity: things cannot be tampered with

• Availability: things are useable (for users who are supposed to be able to)

• A key topic that helps all of the above:

• Authentication: things can figure out that you are who you claim to be

3

The	CIA	Triad	

Andrew Hilton / Duke ECE

Confidentiality: Example 1

4

Alice Bob

Eve

Leftover Food in HH 218

Andrew Hilton / Duke ECE

Confidentiality: Example 1

5

Alice Bob

Eve

f(Leftover Food in HH 218)

Al481manj417a@#1naL

f-1(Al481manj417a@#1naL)

??

= Al481manj417a@#1naL =Leftover Food in HH 218

Andrew Hilton / Duke ECE

Confidentiality: Example 2

6

[eve@linux] $ cat ~alice/secret.txt

ls: /home/alice/secret.txt : Permission denied

[eve@linux] $

Andrew Hilton / Duke ECE

Integrity: Example 1

7

Alice Bob

Eve

Please send $1000

to account 123456

Thanks, Alice

Please send $1000

to account 467129

Thanks, Alice

Andrew Hilton / Duke ECE

Integrity: Example 2

8

Alice

Eve

Eve's awesome software services! 20% off. This week only!

Andrew Hilton / Duke ECE

Security Difficulty: Hard To Detect Compromises

9

Alice

Is my browser hacked??

Andrew Hilton / Duke ECE

Confidentiality + Integrity

10

Physical attacks:

 - Hardware support for defense: e.g, SGX

Andrew Hilton / Duke ECE

Availability: Example 1
• Distributed Denial of Service (DDoS)

• Attacker gets a bunch of compromised machines

• Tells all of them to visit victim site

• Victim has more traffic than it can handle

• Legitimate users can’t access the site

– too slow/crashed

11

A	distributed	denial	of	service	(DDoS)	attack		

Andrew Hilton / Duke ECE

Availability: Example 2

• Attacker finds flaw in your website – now they can run any database
commands they want (SQL injection attack)

• One cheap and destructive thing they can do: 
	 DROP DATABASE site_database;

• Site loses all database data (unless it was backed up – covered later)

12

Andrew Hilton / Duke ECE

Authentication

13

Hi I'm Alice

Please buy 1000 shares

of foobar corp with the

money in my account

Wait… Are you really Alice?

…Prove it!

Andrew Hilton / Duke ECE

Authentication
• Kinds of authentication:

• Something you know (e.g., password)

• Something you have (e.g., your phone)

• Something you are (biometrics)

• Multi-factor:

• When you use two or more of the above categories

14

Andrew Hilton / Duke ECE

Authentication
• Two common and relevant modes of authentication for servers:

• Password (still most common, sadly)

• How good are your passwords?

• Cryptographic keys

• ssh keys

15

Andrew Hilton / Duke ECE

Speaking of Authentication…

• What would happen if Alice sent her password cleartext?

16

Alice

username: alice

password: m$1iKa^PQ1t#aRn7

Andrew Hilton / Duke ECE

Speaking of Authentication…

17

Alice

username: alice

password: m$1iKa^PQ1t#aRn7

Eve

Now I know Alice's password!

Andrew Hilton / Duke ECE

Speaking of Authentication…

18

Alice

(encrypted username/password)

• Ok, so Alice encrypts username/password…

Andrew Hilton / Duke ECE

Speaking of Authentication…

19

Alice

(encrypted username/password)

• VERY BAD: DO NOT DO

• Server stores password in plaintext

Username Password
alice m$1iKa^PQ1t#aRn7

bob lWi8@P(~qtY3oR

eve ,$ql)Pq>4iQldV7

Andrew Hilton / Duke ECE

Speaking of Authentication…

20

Alice

(encrypted username/password)

• VERY BAD: DO NOT DO

• Server stores password in plaintext

Username Password
alice m$1iKa^PQ1t#aRn7

bob lWi8@P(~qtY3oR

eve ,$ql)Pq>4iQldV7

Sweet! Now I have

everyone's password…

Maybe they use them on

other sites too!….

Andrew Hilton / Duke ECE

Speaking of Authentication…

21

Alice

(encrypted username/password)

• Better, but still wrong

• Server stores hashes: computes hash(password) + compares to table

Username PasswdHash
alice A1C399F501AB5432

bob F09485ACB154A

eve 154FABC9F523C
0

Andrew Hilton / Duke ECE

Speaking of Authentication…

22

Alice

(encrypted username/password)

• Better, but still wrong

• Server stores hashes: computes hash(password) + compares to table

Username PasswdHash
alice A1C399F501AB5432

bob F09485ACB154A

eve 154FABC9F523C
0

Now I have hashes… What can I do with them?

Andrew Hilton / Duke ECE

Eve: Breaks Hashes (All at Once)

23

Len = 1

while (1) {

 for each string s of length Len{

 int h = hash(s)

 users = mapOfStolenData.lookup(h);

 if (users is not empty) {

 print users + "password =" + s

 }

 }

 Len ++;

}

Andrew Hilton / Duke ECE

Difficulty to Crack?
• Generally 95 possible characters

• Number of possible strings for a given length:

24

Length Num Strings

(95^L)

Time if

500K hash/sec

4 81 M 2 minutes

6 735 B 17 days

8 6E+15 400 years

10 6E+19 3M years

Is 8 characters safe?

Andrew Hilton / Duke ECE

Eve: Breaks Hashes (All at Once)

25

Len = 1

while (1) {

 for each string s of length Len{

 int h = hash(s)

 users = mapOfStolenData.lookup(h);

 if (users is not empty) {

 print users + "password =" + s

 }

 }

 Len ++;

}

Eve can speed up her attack by exploiting the fact that..

 …this code is embarrassingly parallel

Andrew Hilton / Duke ECE

Difficulty to Crack?
• Generally 95 possible characters

• Number of possible strings for a given length:

26

Length Num Strings

(95^L)

Time if

500K hash/sec

Time if

1.5T hash/sec

4 81 M 2 minutes < 1 sec

6 735 B 17 days < 1 sec

8 6E+15 400 years ~1 hour

10 6E+19 3M years ~1 year

I just bought

100 GPUs..

Andrew Hilton / Duke ECE

Password Cracking
• That analysis is for

• Every possible password (every combination)

• Gets ALL stolen hashes at once

• 10,000 users

• 1 hour: every password of length 8 (thousands of passwords)

• Can probably speed up by using common passwords

• password

• 1234

• …

27

Andrew Hilton / Duke ECE

Pre-Computation

28

I'm going to try to hack your server
soon. But once you discover it, you
might warn your users, and they
might change their passwords…
How can I prepare?

Andrew Hilton / Duke ECE

Password Cracking (cont'd)
• Can also trade time for space

• Execution time/memory (or disk) requirement tradeoff

• Option 1 build map hash -> password (e.g., before stealing hashes)

• 95^6 * 16 bytes/entry ~= 10 TB [HDD: costs about $300—$400]

• 95^8 * 16 bytes/entry ~= 96,540 TB [seems expensive]

• Option in the middle?

• Pre-compute some things

• Make attack faster

• Do not require so much storage?

29

Andrew Hilton / Duke ECE

Rainbow Tables

30

Hash Reducecat42 1BFC190C2 fgr31
Hash Reduce Hash FC45019AB……

The	reduce:	Convert	a	hash	to	a	possible	password.		

Note:	no	chance	that	the	password	hashes	to	the	given	value!	This	isn’t	a	“reverse	
the	hash”	function,	since	that’s	our	overall	goal!	

Just	an	arbitrary	mapping	so	that	the	set	of	all	strings	in	all	the	chains	(the	first	one	
plus	all	the	reduces,	for	all	the	chains)	represent	most/all	of	the	password	space.		

Andrew Hilton / Duke ECE

Rainbow Tables

31

H R
cat42

H R H R H R H R

H R H R H R H R H R

H R H R H R H R H R

H R H R H R H R H R

H R H R H R H R H R

H R H R H R H R H R

H R H R H R H R H FC45019AB

Andrew Hilton / Duke ECE

Rainbow Tables

32

Hash Reducecat42 1BFC190C2 fgr31
Hash Reduce Hash FC45019AB

Hash Reducefrog1 92A3051B3 lo984
Hash Reduce Hash 001324AC3

Hash Reducexyzzy 09B8501C2 pq!<4
Hash Reduce Hash 985AB3021

……

……

……

Andrew Hilton / Duke ECE

Rainbow Tables

33

cat42 FC45019AB

frog1 001324AC3

xyzzy 985AB3021

Andrew Hilton / Duke ECE

Rainbow Tables

34

R H R H R

HH R H R H R H R R

H R H R H R H R H R

FC45019ABH R H R H R H R H

9A07135CB R H

157645A39

cat42 FC45019AB
frog1 001324AC3
xyzzy 985AB3021

Hashed Password:

in table?

No: keep going

Rainbow Table

Andrew Hilton / Duke ECE

Rainbow Tables

35

R H R H R

HH R H R H R H R R

H R H R H R H R H R

FC45019ABH R H R H R H R H

9A07135CB R H

cat42 FC45019AB
frog1 001324AC3
xyzzy 985AB3021

Hashed Password:

Rainbow Table
cat42

H

Andrew Hilton / Duke ECE

Rainbow Tables

36

H
cat42

R H R H R H R H R

H R H R H R H R H R

H R H R H R H R H R

H R H 9A07135CB = hashed password

This is password

Andrew Hilton / Duke ECE

Rainbow Tables
• If we have C chains of length L, and the password is in one of our

chains, then a rainbow table lets us break the password in

• A: O(lg (C) * L2) time

• B: O(C2 * lg(L)) time

• C: O(L) time

• D: O(C*L) time

37

Andrew Hilton / Duke ECE

Space vs Time
• Full map

• 95^6 * 16 bytes/entry ~= 10 TB [HDD: costs about $500]

• 95^8 * 16 bytes/entry ~= 96,540 TB [seems expensive]

• Rainbow table (w/ 1B hashes/chain):

• 95^6 * 16 bytes/entry ~= 10 KB [fits in L1 cache]

• 95^8 * 16 bytes/entry ~= 96MB [fits in RAM]

• 95^10 * 16 bytes/entry ~= 830 GB [cheap hard disk]

38

Important Lesson: HASHING IS NOT ENOUGH

Andrew Hilton / Duke ECE

Speaking of Authentication…

39

Alice

(encrypted username/password)

• Correct (assuming we get everything else right)

• Server stores hashes + salt: computes hash(password, salt)

Username PasswdHash Salt
alice A1C399F501AB5432 1A45FB9C072BC90A

bob F09485ACB154A 9841ABCD416790
8Ceve 154FABC9F523C0 FAB981230CDBEA

Andrew Hilton / Duke ECE

Speaking of Authentication…

40

Username PasswdHash Salt
alice A1C399F501AB5432 1A45FB9C072BC9

bob F09485ACB154A 9841ABCD416790

eve 154FABC9F523C0 FAB981230CDBEA

To crack Alice's password: try various combinations of strings (s)

 hash (s, 0x1A45FB9C072BC9)

To crack Bob's password: try various combinations of strings (s)

 hash (s, 0x9841ABCD416790)

Andrew Hilton / Duke ECE

What Does Salt Get Us?
• Pre-computation is ineffective

• Build a map for each possible salt?

• 64 bit salt-> will take forever + be huge

• Rainbow tables?

• Still need rainbow table for each salt

• Expensive to build/store

• Crack each user's password separately

• Rather than in parallel

• Slowdown factor of number of users

41

Andrew Hilton / Duke ECE

What Does Salt Get Us?

42

Length Num Strings

(95^L)

Time if

500K hash/sec

Time if

1.5T hash/sec

4 81 M 2 minutes < 1 sec

6 735 B 17 days <1 sec

8 6E+15 400 years ~1 hour

10 6E+19 3M years ~ 1 year

Now this analysis is for ONE user's password (not all at once)

Multiply by number of user's to do them all…

Andrew Hilton / Duke ECE

Speaking of Authentication…

43

• Correct (assuming we get everything else right)

• Server stores hashes + salt: computes hash(password, salt)

Andrew Hilton / Duke ECE

Speaking of Authentication…

44

• What else do we need to get right?

• Sufficiently long (>=64 bits), random salt

• Secure hash: SHA-2 or SHA-3

• NOT MD5, SHA-0, or SHA-1

• Use key stretching algorithm

• E.g., PBKDF2 (also popular: bcrypt)

Andrew Hilton / Duke ECE

Key Stretching

45

• Do we want hashing algorithm to be slow or fast?

• A: slow

• B: fast

Andrew Hilton / Duke ECE

Key Stretching

46

• Do we want hashing algorithm to be slow or fast?

Length Num Strings

(95^L)

Time if

500K hash/sec

Time if

1.5T hash/sec

4 81 M 2 minutes < 1 sec
6 735 B 17 days < 1 sec

8 6E+15 400 years ~1 hour

10 6E+19 3M years ~ 1 year

Slow :) Fast :(

Andrew Hilton / Duke ECE

Key Stretching

47

• Do we want hashing algorithm to be slow or fast?

• Want attackers to have to spend more work to break hashes

• If we just hash…

SHA-2password = m$1iKa^PQ1t#aRn7

salt = 1A45FB9C072BC90A

hash = …}
Total computation

Andrew Hilton / Duke ECE

Key Stretching

48

• PKBDF2

SHA-2password = m$1iKa^PQ1t#aRn7

salt = 1A45FB9C072BC90A50C30000

SHA-2password = m$1iKa^PQ1t#aRn7

SHA-2password = m$1iKa^PQ1t#aRn7

XOR

XOR

XORSHA-2password = m$1iKa^PQ1t#aRn7

Total com
putation

Andrew Hilton / Duke ECE

Speaking of Authentication…

49

• What else do we need to get right?

• Sufficiently long (>=64 bits), random salt

• Secure hash: SHA-2 or SHA-3

• NOT MD5, SHA-0, or SHA-1

• Use key stretching algorithm

• E.g., PBKDF2 (also popular: bcrypt)

• Do NOT screw up and weaken things:

• https://arstechnica.com/security/2015/09/once-seen-as-
bulletproof-11-million-ashley-madison-passwords-already-cracked/

• Do NOT try to invent things yourself!

https://arstechnica.com/security/2015/09/once-seen-as-bulletproof-11-million-ashley-madison-passwords-already-cracked/
https://arstechnica.com/security/2015/09/once-seen-as-bulletproof-11-million-ashley-madison-passwords-already-cracked/

Andrew Hilton / Duke ECE

Use Libraries That Do It Right
• Hashing in C/C++?

• Use libssl

• Hashing in python?

• Use hashlib: hashlib.pbkdf2_hmac('sha512', pwd, salt, itrs)

• Authentication in Django?

• https://docs.djangoproject.com/en/2.0/topics/auth/passwords/

50

Andrew Hilton / Duke ECE

Wrap Up
• Intro to security:

• Confidentiality

• Integrity

• Authentication

• Much discuss of password safety

• Availability

• Next time:

• Cryptography

51

