
Brian Rogers Duke ECE
Used with permission from Drew Hilton

Engineering Robust Server
Software
Vulnerabilities

Common/Famous Vulnerabilities: Do Not Do!
• Common vulnerabilities

• Buffer overflow

• Failure to sanitize

• SQL

• Command injection

• Cross-site Scripting (XSS)

• Cross Site Request Forgery

• Privilege Escalation

• Time of check to time of use (TOCTTOU)

• Famous vulnerabilities: Dirty COW, Heartbleed, Apple goto

2

Buffer Overflow
• Common security vulnerability: buffer overflow

• Allow more data to be read into an array than space in that array

• Why is this so bad problem?

3

Buffer Overflow

• Common security vulnerability: buffer overflow

• Allow more data to be read into an array than space in that array

• Why is this so bad problem?

4

sp->

fp->

myArray->

(Return Addr)(Return Addr)

0
1
2
3

(Evil Code)
(Evil Code)

Buffer Overflow

• What happens when the function returns?

5

sp->

fp->

myArray->

(Return Addr)(Return Addr)

0
1
2
3

(Evil Code)
(Evil Code)

Buffer Overflow

• What happens when the function returns?

• Begins executing instructions that were delivered by attacker!

• Runs with same permission as whatever program

• Running as root? Completed compromised.

6

sp->

fp->

myArray->

(Return Addr)(Return Addr)

0
1
2
3

(Evil Code)
(Evil Code)

Buffer Overflows
• Buffer Overflows result from programmer carelessness

• Use of terrible functions (e.g., gets())

• Assuming the user will not input more than a certain size

• Not ensuring that space allocated matches size limit read

• Memory safe languages (Java, python, sml,…)

• Not an issue: receive array index out of bounds exception (or similar)

7

No Execute Protection
• Hardware defense: No Execute Protection (NX bit)

• Mark stack pages as Read/Write/Non-executable

• Available in Intel/AMD processors since early 2000s

• How does this help?

8

Buffer Overflow

• If stack is not executable, returning to it -> segfault

9

sp->

fp->

myArray->

(Return Addr)(Return Addr)

0
1
2
3

(Evil Code)
(Evil Code)

Buffer Overflow

• If stack is not executable, returning to it -> segfault

• Is this a perfect defense?

10

sp->

fp->

myArray->

(Return Addr)(Return Addr)

0
1
2
3

(Evil Code)
(Evil Code)

Return To libc Attacks

• Instead of returning to custom crafted code on stack

• Return to existing code (often found in libc)

• E.g., make the return address the system() library call…

• Need to arrange for useful arguments

11

sp->

fp->

myArray->

(Return Addr)system

0
1
2
3

Operating System Defense: ASLR

• Address Space Randomization

• Loader randomly adjusts address layout

12

#include <stdio.h>
#include <stdlib.h>

int main(void) {
 int x = 3;
 printf("%p\n", &x);
 return EXIT_SUCCESS;
}

brian@erss:~$./a.out
0x7fff67605974
brian@erss:~$./a.out
0x7fffa5689c44
brian@erss:~$./a.out
0x7ffc0adf03b4
brian@erss:~$./a.out
0x7ffdce2d1904

ASLR: Weaknesses
• ASLR is not perfect either

• NOP slide: attack code starts with many NOPs

• Attacker can succeed by guessing any location in NOP slide

• Similar ideas can be applied to other data

• //bin/bash

• Attacker may be able to learn information about layout

• Format string injection

• Timing attacks against branch predictor:

• http://www.cs.ucr.edu/~nael/pubs/micro16.pdf

13

http://www.cs.ucr.edu/~nael/pubs/micro16.pdf

Format String Injection

• How dangerous is this code

• VERY

14

char * str = NULL;
size_t sz = 0;
if(getline(&str,&sz, stdin) > 0) {
 printf(str);
}

%p %p

0x6020d2
0x7ffff7dd3790
0xa70
0x2070252070252070
0x7025207025207025
0xff00000000
0x602010
0x78
0xac2dc1a8e1744800
0x7fffffffe470
0x400692
0x4006a0
0x7ffff7a2e830
(nil)

str
sz

Saved FP
Saved RA

%n conversions: most dangerous

• Even more potential danger: %n conversions!

• From the man page for printf:

15

 n The number of characters written so far is stored into the integer
 pointed to by the corresponding argument. That argument shall be an
 int *, or variant whose size matches the (optionally) supplied integer
 length modifier. No argument is converted. The behavior is undefined if
 the conversion specification includes any flags, a field width, or a pre-
 cision.

Failure To Sanitize Inputs
• Format strings:

• Example of data with special meaning (%)

• We don't want the special meaning, but end up with it anyways :(

• For printf format strings best choice is to just

• printf("%s", theString);

• or use puts which does not format output

• Other situations: sanitize input

• Remove, or escape special characters

16

SQL Injection

17

SELECT * FROM students WHERE name = 'student';

SELECT * FROM students WHERE name = 'Robert'); DROP TABLE Students;—';

Guarding Against SQL Injection
• Django:

• Using built in model operations will sanitize vs SQL Injection

• If you write RAW query strings, use an appropriate library

• Java:

• Use PreparedStatements

• C++:

• Use quote function in pqxx::work to embed string value in SQL safely

• Or use prepared statements

18

void prepare_find(pqxx::connection_base &c)
{
 // Prepare a statement called "find" that looks for employees with a given
 // name (parameter 1) whose salary exceeds a given number (parameter 2).
 const std::string sql =
 "SELECT * FROM Employee WHERE name = $1 AND salary > $2";

 c.prepare("find", sql)()();
}

http://charette.no-ip.com:81/programming/doxygen/libpqxx/classpqxx_1_1connection__base.html
http://charette.no-ip.com:81/programming/doxygen/libpqxx/classpqxx_1_1connection__base.html#afc5a0159f4a2a0446c5c6512acf0e87d

Command Injection
• Danger: using shell to execute command with user-input argument

• some-command blah blah userinput

• What is the danger here?

19

Command Injection
• Danger: using shell to execute command with user-input argument

• some-command blah blah userinput

• What is the danger here?

• `some command`

• xyz && another command

• xyz || another command

• | some command

• ; another command

20

Cross Site Scripting

21

https://bobsrecipes.com/contest/enter

Welcome to Bob's recipe website!
We are hosting a contest for the best
recipes. Enter yours below to win!

Submit

I'll host a contest and
let users type in their
favorite recipes!

https://www.google.com

Cross Site Scripting

22

https://bobsrecipes.com/contest/viewAndVote

Recent entries in the recipe contest. Vote
below
Halloumi with Date/Walnut Paste
Put 1 cup dates, 1/2 cup walnuts
1 tsp balsamic vinegar and 1 tbsp
warm water in the food processor.
Blend until it forms a thick paste.

I'll host a contest and
let users type in their
favorite recipes!

Chocolate Chip Cookies
Cream together 1/2 cup butter
3/4 cup brown sugar, and 3/4
cup sugar.

https://www.google.com

Cross Site Scripting

23

https://bobsrecipes.com/contest/enter

Welcome to Bob's recipe website!
We are hosting a contest for the best
recipes. Enter yours below to win!

Submit

I'd love to participate
in this "contest"

https://www.google.com

Cross Site Scripting

24

https://bobsrecipes.com/contest/enter

Welcome to Bob's recipe website!
We are hosting a contest for the best
recipes. Enter yours below to win!

Homemade Pitas
<script type="text/javascript">(evil code)
</script>
Dissolve 1 tbsp yeast in 1 cup warm water
Let sit for 5 minutes, until foamy

Submit

I'd love to participate
in this "contest"

https://www.google.com

Recent entries in the recipe contest. Vote
below

Halloumi with Date/Walnut Paste
Put 1 cup dates, 1/2 cup walnuts
1 tsp balsamic vinegar and 1 tbsp
warm water in the food processor.

Cross Site Scripting

25

https://bobsrecipes.com/contest/viewAndVote

Homemade Pitas
Dissolve 1 tbsp yeast in 1
cup warm water
Let sit for 5 minutes, until foamy
Mix in 1 tbsp sugar and 1/3 cup olive oil

Let's see how my
recipe is doing..

Ohh pitas!

https://www.google.com

Cross Site Scripting

26

https://bobsrecipes.com/contest/viewAndVote

Recent entries in the recipe contest. Vote
below

Halloumi with Date/Walnut Paste
Put 1 cup dates, 1/2 cup walnuts
1 tsp balsamic vinegar and 1 tbsp
warm water in the food processor.

Homemade Pitas
Dissolve 1 tbsp yeast in 1
cup warm water
Let sit for 5 minutes, until foamy
Mix in 1 tbsp sugar and 1/3 cup olive oil

More like

Ohh pwn3d!

<script type="text/javascript">(evil code) </script>

https://www.google.com

Cross-Site Scripting
• Eve injects a <script> into HTML that will be viewed by other users

• Alice's browser will run Eve's code

• Two main types

• Persistent (what we saw): injected code stored on server

• Reflected: injected code stored in URL that user will click

• Vulnerable anytime you take un-sanitized data and display back to user

• Not to be confused with Cross Site Request Forgery (CSRF)

27

CSRF
• Cross Site Request Forgery:

• Eve crafts a requests to change something

• Gets Alice's browser to send that request while Alice is logged in

• Alice's browser sends her authentication cookie

• Site believes Eve's request

28

CSRF GETs (which shouldn't be a thing..)
• If site allows modification with GET requests

• Bad! GET should be for reads only. Use POST!

• Eve injects something like

• When Alice's browser loads this, it will try to GET that image..

• If Bob's site allows this modification with GET, it will perform the action

• Note that Eve does not get to (nor need to) see the response

29

http://www.google.com

CSRF POST
• Ok, so Bob's site doesn't allow modifications with GET. Safe?

• No: Eve can still craft malicious POST requests

• E.g., she can make a <form> and have a <script> submit it

• How to defend?

• Generate random token which must be in POST data

• Eve has a hard time guessing

• Django requires this by default for POSTs:

• Put {% csrf_token %} inside <form> that will be sent back to YOUR site

• Do not leak token to other sites!

• Django handles the rest

30

Consider The Following Psuedo-Code

31

File f = openFile(inputCommands);

for each line in f
 if(!checkUserCanExecute(line, currentUser))
 return false;

rewind(f);

for each line in f
 execute(line);

close(f);
return true;

Consider The Following Psuedo-Code

32

File f = openFile(inputCommands);

for each line in f
 if(!checkUserCanExecute(line, currentUser))
 return false;

rewind(f);

for each line in f
 execute(line);

close(f);
return true;

I have a plan… Anyone see it?

Consider The Following Psuedo-Code

33

File f = openFile(inputCommands);

for each line in f
 if(!checkUserCanExecute(line, currentUser))
 return false;

rewind(f);

for each line in f
 execute(line);

close(f);
return true;

commands.txt:
 change Eve's password to xyzzy42
 print Eve's Account Balance
 print Eve's Last Action

I have permission to execute all
these commands….

Consider The Following Psuedo-Code

34

File f = openFile(inputCommands);

for each line in f
 if(!checkUserCanExecute(line, currentUser))
 return false;

rewind(f);

for each line in f
 execute(line);

close(f);
return true;

commands.txt:
 change Eve's password to xyzzy42
 print Eve's Account Balance
 print Eve's Last Action

Let's run this program..

Consider The Following Psuedo-Code

35

File f = openFile(inputCommands);

for each line in f
 if(!checkUserCanExecute(line, currentUser))
 return false;

rewind(f);

for each line in f
 execute(line);

close(f);
return true;

commands.txt:
 change Eve's password to xyzzy42
 print Eve's Account Balance
 print Eve's Last Action

While this runs…
One quick change to input file…

Consider The Following Psuedo-Code

36

File f = openFile(inputCommands);

for each line in f
 if(!checkUserCanExecute(line, currentUser))
 return false;

rewind(f);

for each line in f
 execute(line);

close(f);
return true;

commands.txt:
 change Alice's password to xyzzy42
 print Eve's Account Balance
 print Eve's Last Action

While this runs…
One quick change to input file…

Bwahahaha!

Example of TOCTTOU Attack
• Time of Check To Time Of Use

• Race condition between validation and use of data

• Attacker can present valid data

• Then change the data before it is used

• Defense:

• Ensure that data cannot be changed between validation and used

• Previous example, either:

• Execute each command as read

• Read file into memory, then validate/execute from memory

37

Privilege Escalation

38

[eve@linux] $ cat ~alice/secret.txt
ls: /home/alice/secret.txt : Permission denied
[eve@linux] $

I wish I
were root..

What Might Eve Do?

39

• Find bug in setuid binary (or service running as root)?

• "trick" it into doing privileged actions for her

• Find files with wrong permissions

• Shouldn't be suid but is?

• Is writeable but shouldn't be?

• Exploit kernel bug?

• Dirty COW: up next

Privilege Escalation: Not Just Shell

40

• Can have privilege escalation bugs in other settings

• Webapp:

• Can Eve alter her permissions?

• E.g, Admin functionality w/o proper checks?

Dirty COW
• Serious Linux kernel vulnerability (fixed 2016)

• Race condition in COW handling

• Could allow writing read-only data

• mmap file read only

• End up writing to file!

• Allowed privilege escalation:

• User could become root

• https://www.theregister.co.uk/2016/10/21/linux_privilege_escalation_hole/

• Linux includes Android

• Could be used to "root" Android devices

• https://raw.githubusercontent.com/dirtycow/dirtycow.github.io/master/dirtyc0w.c

41

https://www.theregister.co.uk/2016/10/21/linux_privilege_escalation_hole/
https://raw.githubusercontent.com/dirtycow/dirtycow.github.io/master/dirtyc0w.c

Heartbleed (Explained by xkcd)

42

TLS Heartbeat

43

TLS Heartbeat

44

45

Apple Goto

46

…
if ((err = SSLHashSHA1.update(&hashCtx, &clientRandom)) != 0)
 goto fail;
if ((err = SSLHashSHA1.update(&hashCtx, &serverRandom)) != 0)
 goto fail;
if ((err = SSLHashSHA1.update(&hashCtx, &signedParams)) != 0)
 goto fail;
 goto fail;
if ((err = SSLHashSHA1.final(&hashCtx, &hashOut)) != 0)
 goto fail;

err = sslRawVerify(…);

…
fail:
 //free memory, etc
 return err;

 TLS Verification code in iOS/OSX, 2014

Apple Goto

47

…
if ((err = SSLHashSHA1.update(&hashCtx, &clientRandom)) != 0)
 goto fail;
if ((err = SSLHashSHA1.update(&hashCtx, &serverRandom)) != 0)
 goto fail;
if ((err = SSLHashSHA1.update(&hashCtx, &signedParams)) != 0)
 goto fail;
 goto fail;
if ((err = SSLHashSHA1.final(&hashCtx, &hashOut)) != 0)
 goto fail;

err = sslRawVerify(…);

…
fail:
 //free memory, etc
 return err;

{

}

Apple Goto
• Always use { } for bodies of anything (if, while, for, do)

• Test test test test!

• There should have been a test case for this…

• There should have been a test case for every one of those failing!

48

Barely Scratched The Surface..
• Cyber security experts?

• We've barely scratched the surface!

• Covered the basics (most important/common things)

• Use encryption (AES + RSA)

• Hashes? Use SHA-256 or SHA-512 [and PBKDF2]

• Variety of exploits:

• Code carefully!

• Think like a hacker

49

