Engineering Robust Server Software Defense In Depth

Brian Rogers & Tyler Bletsch / Duke ECE Used with permission from Drew Hilton

You Are Building <u>YourAwesomeSite.com</u>

Built In Authen

Sanitization

Distrust clients

• Use all the best practices you know

- ...But also lots of things you didn't write
 - Adds a lot of complexity...

You Are Building <u>YourAwesomeSite.com</u>

You Are Building <u>YourAwesomeSite.com</u>

Hey Beavis, I found this code on StackOverflow

I dont know but they said its really awesome.

Heheh Whats it do Butthead? Heheh

What Happens If Something Goes Wrong?

• Suppose a vulnerability exists: what is the damage?

Defense In Depth

- Idea: Assume one layer of security might fail
 - Multiple layers of security
 - Minimize damage if one layer is compromised

Example of This That We Have Seen?

- compromised?
 - A: nop slide
 - **B**: CSRF token
 - C: Diffie-Hellman Key Exchange
 - D: Salt and hash passwords

What have we already seen that is an example of mitigating damage if

Famous Example of NOT Defense In Depth

- Equifax got hacked
 - Bug in web library they were using
 - Many users' personal data (SSNs, etc) stolen
- Why/how?
- What should they have done?

Equifax Identifies Additional 2.4 Million Customers Hit By Data Breach

Posted by msmash on Thursday March 01, 2018 @12:45PM from the gift-that-keeps-giving dept.

Credit score giant Equifax said on Thursday it had identified another 2.4 million U.S. consumers whose na a data breach last year that affected half the U.S. population. From a report:

The company said it was able confirm the identities of U.S. consumers whose driver's license information of the second se proprietary company records that the attackers did not steal. "Equifax will notify these newly identified protection and credit file monitoring services at no cost to them," the company said.

Vulnerability -> Access To All Things

Vulnerability -> Access To All Things

SELECT * from userssns;

Auth Info CC Info

GET / selectPayment

(Payment page)

Authen info

Payment Info

To CC Processor

GET / selectPayment

(Payment page) POST / makePayment

Authen info

Payment Info

Authen info

GET / selectPayment

(everyone's credit card #s hashed pwds SSNs...)

Authen info Get all user's info (all the info)

GET / selectPayment

Get Cards for user=brian sid=123456789

GET / selectPayment

sid=123456789

sid=123456789

No need to ever report full credit card numbers back to web code

based on well-defined APIs

attacker can't hit this bug directly, probably can't hit it indirectly

Attacker probably needs TWO bugs!

Web Code

Let Us Revisit This

Web Code

CC Server

I'm going to play a longer game...

Auth Server

SSN Server

Let Us Revisit This

Less bad, but still bad... (why?)

Every time someone logs in - Get their auth info

Send request to CC server
Purchase something
with their card

Let Us Revisit This

How to defend against this?

Every time someone logs in - Get their auth info

Send request to CC server
Purchase something
with their card

Remember this "plan"?

Most secure:

- Run program Handle web request on a computer
- Throw away computer
- Buy new computer
- Run next program Handle next web request on it

Ok that plan was bad... but

Containers

• That plan was bad, but what did we decide we could do instead?

Prevention + Detection + Response

- So far have talked about **prevention**
 - Keep bad things from happening
 - Reduce badness if they do happen
- Also want detection
 - Know when a bad thing has happened / is happening
- ...and to be able to **respond** to the attack
 - Nice if we can do something about it...

• Monitor system for suspicious activity

SYN, port 22 (encrypted traffic) FIN

Monitor system for suspicious activity

?????

SYN, port 22 (encrypted traffic) FIN

Monitor system for suspicious activity

?????

Again... Odd, thats two in quick succession...

SYN, port 22 (encrypted traffic) FIN

Monitor system for suspicious activity

?????

SYN, port 22 (encrypted traffic) FIN

Monitor system for suspicious activity

?????

Was this response good?

- Detected something suspicious
- Responded strongly:
 - Blocked traffic from originating site
- Good or bad?

41

Was this response good?

- Detected something suspicious
- Responded strongly:
 - Blocked traffic from originating site
- Good or bad?
 - It depends!

• If true positive, outcome was good

Intrusion Detection

crypted traffic)

I was just trying to scp several small files one at a time...

• If **false** positive, then it was bad

• Abnormal is not always bad

Detection

- Automated: Algorithmic analysis + detection
 - Signature based: look for patterns
 - This seems to be trying many passwords
 - This seems to be port scanning
 - Anomaly detection:
 - Develop ML model of normal behavior
 - Find things that deviate
- Human:
 - Look at logs, system behavior etc

- Not limited to network activity
 - These aren't queries that we ever run...
 - This return address has been overwritten
 - This pattern of system calls is unusual
 - There have been 4 failed login attempts for user "brian"
 - . . .

• • •

- Similar ideas in non-computer security
 - Bank watches credit card purchases for suspicious activity
 - Unattended bags at airport

Detection

• Notify administrators

- Send email: Hey something is strange... Here is what is up!
- Pros and cons?

Responses

- Notify administrators

 - Pros and cons?
- Block suspicious behavior
 - Lock account, firewall traffic,
 - Pros and cons?

Responses

• Send email, text, etc: Hey something is strange... Here is what is up!

- Notify administrators

 - Pros and cons?
- Block suspicious behavior
 - Lock account, firewall traffic,
 - Pros and cons?
- Shutdown affected system
 - Power that machine off
 - Pros and cons?

Responses

• Send email, text, etc: Hey something is strange... Here is what is up!

- Notify administrators

 - Pros and cons?
- Block suspicious behavior
 - Lock account, firewall traffic,
 - Pros and cons?
- Shutdown affected system
 - Power that machine off
 - Pros and cons?
- Nuke and restore from backup? (or even throw away hw?)

Responses

• Send email, text, etc: Hey something is strange... Here is what is up!

Factors in Choosing Response

- False positive rate
 - How certain are we that suspicious = bad?
- Severity of suspected attack
 - How bad is it?
 - Someone trying to find a vulnerability vs
 - Server was rooted
- Impacts of response on "good" users/ how many affected • Bad impacts: services temporarily unavailable, ...

 - Good impacts: prevent leakage of sensitive info,...

51

- Assume security measures will fail!
 - Multiple levels: mitigate damage if one fails
- Detect suspicious activity
 - Don't just assume everything is good, look for bad stuff
- Respond to threats
 - What to do: it depends...

Wrap Up

