{ "cells": [ { "cell_type": "code", "execution_count": 1, "metadata": { "collapsed": true }, "outputs": [], "source": [ "import seaborn as sns\n", "import numpy as np\n", "import matplotlib.pyplot as plt\n", "\n", "%matplotlib inline" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Choosing color palettes and color maps\n", "\n", "In the Jupyter notebook, `seaborn` provides useful interactive tools to choose and customize a color palette. Note that if your function requires a `colormap` instead, just give the argument `as_camp=True`." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Color Brewer palettes\n", "\n", "For description of these palettes, see [ColorBrewer](http://colorbrewer2.org/)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Sequential palettes are appropriate for data that goes from low to high." ] }, { "cell_type": "code", "execution_count": 2, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "[(0.95755478915046244, 0.95755478915046244, 0.95755478915046244),\n", " (0.90120723387774304, 0.90120723387774304, 0.90120723387774304),\n", " (0.83289505032932054, 0.83289505032932054, 0.83289505032932054),\n", " (0.75021916137022127, 0.75021916137022127, 0.75021916137022127),\n", " (0.64341409276513495, 0.64341409276513495, 0.64341409276513495),\n", " (0.53871589525073182, 0.53871589525073182, 0.53871589525073182),\n", " (0.44032295626752516, 0.44032295626752516, 0.44032295626752516),\n", " (0.34288351570858677, 0.34288351570858677, 0.34288351570858677),\n", " (0.22329873945198808, 0.22329873945198808, 0.22329873945198808),\n", " (0.1046981975144031, 0.1046981975144031, 0.1046981975144031)]" ] }, "execution_count": 2, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjwAAABGCAYAAADIKU4UAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAAelJREFUeJzt2bFtQjEYhVE7SscGvBGY4HWMgcQUNAxB86ZAYgw6JmAE\n2IDaWSCiiOQYXZ3Turnlp9+1tVYAAJJ9jR4AANCb4AEA4gkeACCe4AEA4gkeACCe4AEA4n2/e2yt\ntVrrf20BAPizaZrK4/H4NVzeBk+ttbxerz6rPsBqtSrP53P0jG7W63W53++jZ3Sz2WzK9XodPaOL\n7XZbzufz6Bnd7Pf7cjqdRs/o5ng8lsPhMHpGN8uylN1uN3pGN5fLpczzPHpGF7fbrUzTNHrGEL60\nAIB4ggcAiCd4AIB4ggcAiCd4AIB4ggcAiCd4AIB4ggcAiCd4AIB4ggcAiCd4AIB4ggcAiCd4AIB4\nggcAiCd4AIB4ggcAiCd4AIB4ggcAiCd4AIB4ggcAiCd4AIB4ggcAiCd4AIB4ggcAiCd4AIB4ggcA\niCd4AIB4ggcAiCd4AIB4ggcAiCd4AIB4ggcAiCd4AIB4ggcAiCd4AIB4ggcAiCd4AIB4ggcAiCd4\nAIB4ggcAiCd4AIB4ggcAiCd4AIB4ggcAiCd4AIB4ggcAiCd4AIB4ggcAiCd4AIB4ggcAiCd4AIB4\nggcAiCd4AIB4ggcAiFdba6M3AAB05cIDAMQTPABAPMEDAMQTPABAPMEDAMQTPABAvB8sqSjdFm05\nwgAAAABJRU5ErkJggg==\n", "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "sns.choose_colorbrewer_palette('sequential')" ] }, { "cell_type": "code", "execution_count": 3, "metadata": { "collapsed": true }, "outputs": [], "source": [ "exercise = sns.load_dataset(\"exercise\", index_col = 0)" ] }, { "cell_type": "code", "execution_count": 4, "metadata": { "collapsed": false }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZEAAAEdCAYAAADNU1r0AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XecVNX5x/HPsgsLS11gV5oUFR5FjAIGAoIKKpFYsUQj\nJqgxxMQoifnFGE0sGBWSGFssMdYo9h4VeyVC7NgfUKRIEWRXXZrA7vz+uHdxmK0zTN39vl+vfe3M\nue0Zjs6z5557zsmLRCKIiIgkokWmAxARkdylJCIiIglTEhERkYQpiYiISMKUREREJGFKIiIikrCC\nTAdgZtcBLdx9ci3bCoDXgLfc/aSo8hLgauAAYCNwM3C2u1elJ2oREYEMt0TMbCpQI3lEuRDYvZby\nB4BSYDQwCTgRuCDpAYqISL0y0hIxs37AjcCuwKI69tmLIDm8E1M+AhgJ9HP3xcB7ZvY74Eozm+ru\nm1IavIiIbJGplshIYDGwG7AwdqOZtQVuBX4FrIrZPApYFCaQai8AHYA9UhCriIjUISNJxN1nuPsJ\n7r6yjl2uAP7n7vfVsq0XsDSmbFn4e/tkxSgiIg3LuqezzOxQ4EDgl3XsUgRsiC5w981ABGid2uhE\nRCRaxp/OihY+dXU9cKK7f1XHbuuBwpjjCoA8YG1qIxQRkWhZlUSA8UAJcLeZ5YVlrYGImR3l7h2A\nJeF+0XqEv2Nvc21l8+bKSEFBfjLjFRFpDvLq2pBtSeR+YFZM2b+B5cCZ4ftZwDQz6+nu1UljLPA1\n8HZ9Jy8vX5fEUEVEmoeSkvZ1bsuqJOLua4EF0WVmth6ocPdPw31mm9kcgtbKaUA3YDpwadg3IiIi\naZINSSSRVbEmANcCLwEVwPXufmFSoxIRkQblNaeVDVetqmg+H1ZEJElKStrX2SeSdY/4iohI7lAS\nERGRhCmJiIhIwpREREQkYUoiIiKSMCURERFJmJKIiIgkTElEREQSpiQiIiIJUxIREZGEKYmIiEjC\nlERERCRhSiIiIpIwJREREUmYkoiIiCRMSURERBKmJCIiIglTEhERkYQpiYiISMKUREREJGEFmQ7A\nzK4DWrj75KiyXwGnAtsDC4HL3P3GqO0lwNXAAcBG4GbgbHevSmPoIiLNXkZbImY2FZgcU/YL4BJg\nKrAbcBlwjZlNjNrtAaAUGA1MAk4ELkhHzCIi8q2MtETMrB9wI7ArsChm88+Bq9z9zvD9jWY2giBR\nzAhfjwT6ufti4D0z+x1wpZlNdfdN6fkUIiKSqZbISGAxQUtjYcy204B/xpRVAcXh61HAojCBVHsB\n6ADskexARaRpuOmm6zn22MO56abrMx1Kk5KRJOLuM9z9BHdfWcu2l919S+vEzHoDPwJmhkW9gKUx\nhy0Lf2+finhFJLdt2LCep58OvkKefvoJNmxYn+GImo6sfjor7EB/jCBJTA+Li4AN0fu5+2YgArRO\na4AikhM2bdpEJBIBIBKpYtMm3fVOlow/nVUXM9uBoPVRCOzj7hXhpvVhWfS+BUAesLa+cxYXF1FQ\nkJ+CaEUkm7VqtfWDm126tKNjx/YZiqZpycokYmZDCBLIKmCMuy+L2rwEGB9zSI/wd+xtrq2Ul69L\nWowikjsqKtZs9X716jVs3JjVN2KySklJ3Qk36/4VzWxn4CngE2BUTAIBmAXsYGY9o8rGAl8Db6cn\nShERgexsifyb4JbVT4BCM9suLN/s7qvdfbaZzQHuNrPTgG4E/SWXhn0jIiKSJtmQRCLVL8ysPzA0\nfOsx+30CDAhfTwCuBV4CKoDr3f3CFMcpIiIxMp5E3H1s1Ov5QIM93+GjwUemMi4REWlY1vWJiIhI\n7lASERGRhCmJiIhIwpREREQkYUoiIiKSMCURERFJmJKISCNpKnGRmpRERBpBU4mL1E5JRKQRNJW4\nSO0yPmJdRCRaZWUlCxcuSOo5163bepWIhQsXUFTUNmnn79t3B/Lzm+cyE0oiIpJVFi5cwMzX51La\nM3kLlX6zfutlIN5eUU5hm2+Scu6VS5cwHthxx/5JOV+uURIRkaxT2nN7evbpl7TzrV+79Xoi3bfv\nQ5u27ZJ2/uZMfSIiIpIwJREREUmYkoiIiCRMSURERBKmJCIiIgnT01nS5OTiOANo3mMNJHcpiUiT\nk2vjDEBjDaR2N910PU899Tjjxv2Ak06anOlwaqUkIk2SxhkEcuFLSGoXO1/bccf9mNat22Q4qpoy\nnkTM7DqghbtPjiobB0wHDJgHnOXuT0RtLwGuBg4ANgI3A2e7e1U6YxfJZrnyJSS1q22+tmysv4x2\nrJvZVGByTNlA4GHgbmAP4BHgITPbJWq3B4BSYDQwCTgRuCAdMYvkCk0aKemQkZaImfUDbgR2BRbF\nbD4dmO3u08L355rZKGAKcIqZjQBGAv3cfTHwnpn9DrjSzKa6u/5PERFJk0y1REYCi4HdgIUx20YD\nL8SUvRCWA4wCFoUJJHp7B4KWi4iIpElGWiLuPgOYAWBmsZt7AUtjypYB2zewnXCf15IWqIiI1Csb\nBxsWARtiyr4BWte13d03A5GofUREJA0y/nRWLdYDhTFlhcDaurabWQGQF7VPrYqLiygo0GCupq68\nvB0sL8t0GHHr3LkdJSXtk3a+Vq22flixS5d2dOyYvPOnSi7WX7LrDnKn/rIxiSwBuseU9eDbW1hL\ngPG1bIeat7m2Ul6+rr7N0kSUla1peKcsVFa2hlWrKpJ2voqKrf8dVq9ew8aN2XjzYWupqL/8ggLI\ny4NIhLy8vOB9klRVVvL22+8nPe7YWRLeeOOdjK3GWF+CzMYkMgvYB7goqmwM8FLU9mlm1tPdq5PG\nWOBr4O20RZkgDf4SSb9Wha3ZbcQ+vPvKCwwasQ+tCpN353vV58vZ7uuPyFuX3Kl28r7ZuPX7+bPI\nK2yVlHMvWr4KxvwwKTMkZGMSuQp43czOB+4EJgLDgFMA3H22mc0B7jaz04BuBAMTLw37RrKWBn9J\nXaoqK1m8OPZp922jdcW3tu+E49h3wnEpOXef7iXs2Cv2Bsq2qVi3dddw3+7b0b4oeckvkqTzZEMS\n2eqzuPt7ZjYB+AtwJvARcLC7e9RuE4BrCVonFcD17n5hmuJNWK6MQJX0S8Vfs7nyl6zktownEXcf\nW0vZTGBmPcesBI5MZVwi0VJ5T71asv+azZW/ZCW3xf1/gpm1AXoCHYEvgOXuvrH+o0RyWyrvqYvk\nskYlETMrBE4CjiPon4g+brOZvQjcB9zq7smbHztDUrEeBegeda5L5T11kVzVYBIxsxOAaQRjM/4D\n3EswVclaoJhgBPlewMXAeWZ2nrvfkKJ40yIV61FAatek0HoUIpIJ9SYRM3sUKCF4Murxem5bXW5m\nrYCjgd+a2RHu/oPkhppeyV6PAnJ3TQoRkbo01BK5291va8yJwgQzw8zuAH6yzZFJVtC4FhGpT73D\nVxubQGKOibj7rYmHJNkidlzLhg3rMxyRSPPRsiCfvPB1Xl4eLbN0yqZEns4aQbCiYA+CfpBdgLfC\nx26lCdG4ltxW/SUUIbu/hKR2rVu1ZNyQXXjyzQ8ZN3hnWrdqmemQatXoJBL2ecwAjgA2AS2B64Hf\nAQPNbLS7f5KSKEUkbrnyJSR1O+n7Iznp+yMzHUa94mmJ/BkYBxwOPA1UP2p0MsHAwIuAY5MaXROT\n6kngcm3aDNBjyamWC19Cktvi+RabCPzB3f9jZlv+r3f3hWZ2AXB50qNrYnJtErhUTpsBmjpDpCmI\nJ4l0Bj6uY9sXBMvTSgNyaRK4VE+bAZo6QyTXxbO4wPvUfbtqPPDBtocjIiK5JJ6WyEXA/WbWmWDk\negTYy8yOB34FHJ+C+EREJIs1uiXi7g8SJIohwL8IlqO9gqCv5FR3vyclEUrG5Mpz6iKSOXGtlenu\nd7h7b4KxIaOA3YDu7v6vVAQnmVX9iCigR0RFpFaJDDZsW71AVLh41Fgze8zdkz/trWScHhEVkfo0\nuiVigfnAWeH7Cwmmf78CeNfM9E0jItLMxHM7axqwGXg4HL1+KnAP0Al4kqDjXUREmpF4ksg+wNnu\n/jqwL8HKhv9096+B64A9kx+eiIhks3iSSEugLHw9nmBRqlnh+3yCVoqIiDQj8XSsvwccYWZOsPjU\nU+6+2cxaEowTeTdZQZlZETCdYLLHImA28Ft3/zDcPi7cbsA84Cx3fyJZ1xcRkcaJpyVyLsFki0sJ\npkCZFpbPA8YA5ycxriuBscCRwPeADcBMM2tlZgOBh4G7gT2AR4CHzGyXJF5fREQaIZ7Bhk8TjAs5\nDtgl7BsBuBTY092fS2JchwHXuPuc8HHic4DtgYHA6cBsd5/m7vPc/VzgFWBKEq8vIiKNENc4kXAs\nyIKYsn8kNaLAKuAYM7sH+IqgBVQWXns0QSsk2gvAMSmIQ0RE6lFvEjGzp+I4V8Tdv7+N8VSbDNwO\nfA5UEnTij3P3r82sF8EttWjLCFoqIiKSRg3dzmpF8FRWY36St9AE9AeWEzwFNpJgHMp9ZtaToKN9\nQ8z+3wDJnaNcREQaVG9LxN33TVMcW5hZX4Jld0e6+2th2USCqeZ/Q7CiYmHMYYUErZV6FRcXUdCI\nSQTLy9vB8rIG95Nt17lzO0pK2if1nKq/9EhF3YHqL12SVX/xrLHeo6F93H3ZtoUDBIMWWwBvRJ13\ns5m9DewELAFiV17qQc1bXDWUl69raBcAysrWNDZW2UZlZWtYtaoi6eeU1EtF3VWfV1IvnvqrL9nE\n07H+GQ0vRJeMucI/C39/B3g7qnwg8DiwgmDEfPQ0K2OAl5JwbRERiUM8SeQkaiaRdgRPS40JtyfD\nq8D/gFvM7FSCpXd/Q9BxfhXBdCuvm9n5wJ0E65kMA05J0vVFRKSRGp1E3P2WOjZdbWZ/J/gyf2xb\nA3L3KjM7GLiEIEm0A14HRrn7EmBJOAX9X4AzgY+Ag6unpxcRkfSJez2ROjxCMIo8Kdy9DPh5Pdtn\nAjOTdT0REUlMXCsb1mM4sClJ5xIRkRwRz9NZ19dSnE/QVzEWuCFZQYmISG6I53bWOGp2rEeArwkm\nY7w4WUGJiEhuiKdjvW8K4xARkRwUd8d6OOX6aKCYYG6r5919UbIDExGR7BdPn0gb4DZgApAXtanK\nzG4AfuHuDQ1GFBGRJiSep7P+BhxIsJ5HD4JJF3sCZwA/Bv6U9OhERCSrxXM762jgD+5+dVTZcuBK\nMysgGFU+NZnBiYhIdounJVJIzIJUUd4nmI5ERESakXiSyO3A78O+kS3MrAXwC+COZAYmIiLZL57b\nWV8QrLG+0MweIVhNsAtBP0lfYEbUgMSIu9c5bYmIiDQN8SSRnwBfhq/3j9m2BNg76r2e0hIRaQbi\nGWzYL5WBiIhI7qm3T8TMdkjkpIkeJyIiuaWhjvVnzewSM+vcmJOZWXczuxR4bttDExGRbNfQ7ayh\nBKsJLjOzp4H7gNeAT919vZl1AHoBo4DxwA+AhwjWSRcRkSau3iQSLg410cwuB34PXF99jJlF77qB\nYJGoUe7+WmpCFRGRbNOojvUwMRxlZm0JnsLqRzC48AtgEfCyu69PWZQiIpKV4prF193XomVpRUQk\nFFcSMbP2wL5AW2rplHd3jVoXEWlG4pkKfhxBx3pbtp4KvlqEJE59YmYnA78jWH73A+B37v58VCzT\nAQPmAWe5+xPJuraIiDROPHNnTQecoCWyI0G/SPRP0saGmNkk4B8ES+4OAl4EHjGz3mY2EHgYuBvY\nA3gEeChcLEtERNIonttZuwCHufvLqQomyvnAJe5+K4CZ/R8wBhhJkMRmu/u0cN9zzWwUMAU4JQ2x\niYhIKJ4kshjokKpAqlnw7HAf4J7qsnDFxCHh9j8RtEKivQAck+rYRERka/HczpoGnGdmvVMVTGgA\nQf9KsZk9a2afm9mLZjYi3N4LWBpzzDKCvhMREUmjeFc27Al8ambLgXUx2yPubjUPi1sHgo77WwiW\n3HXgZwRTsAwBiggGN0b7BmidhGuLiEgc4kkiKwimNEm1TeHvP7t79W2rU8N+j18QJK/CmGMKgbUN\nnbi4uIiCgvwGAygvbwfLyxofsSSsc+d2lJS0T+o5VX/pkYq6A9VfuiSr/uKZCv7Ebb5a4ywluJ31\nXkz5RwRPgS0Busds60HNW1w1lJfHNp5qV1a2plH7ybYrK1vDqlUVST+npF4q6q76vJJ68dRffckm\nrsGGAGbWBWjFt2NFWhCMHRnt7jfEe75avEnQ2vhu+LraQOBpgv6PfYGLoraNAV5KwrVFRCQO8Qw2\n3A2YAexaxy4RYJuTSDg78GXARWa2EngXOJVgHMo1BH0fr5vZ+cCdwERgGHq8V0Qk7eJpifyVYE31\n/wMOJujM/g/B9O/jCVoHSeHu55rZWuAyoBR4GzjA3T8GMLMJwF+AMwlucx3s7p6s64uISOPEk0RG\nAL9x95vCL/iJ7n4tcK2Z3QecDsxKVmDuPp1glHxt22aiiSBFRDIunnEihcD88PU8YPeobTcTJBkR\nEWlG4kkiiwmejoIgiXQwsz7h+w1Ao5bQFRGRpiOeJPIgMM3MJrj7MoK+iAvDiQ9/A3ySigBFRCR7\nxdMncgHQn2D0+IMEieNBgqejKoFjkx6diIhktXgGG64DjjCzwvD9k2Y2CBgKvOnuaomIiDQzcQ82\ndPdvwkkYexCM4XgsTDAiItLMxLs87iEE40X6EwwuHAb8yczKgMnuXpn8EEVEJFs1umM9TCAPESxV\ne3LUsc8AxwN/SHp0IiKS1eJ5OusC4BZ3PwL4d3Whu18NTAV+kuTYREQky8WTRHah5oqC1WahRaFE\nRJqdeJLIFwSrDtZmQLhdRESakXiSyF0EgwsPJ5gKHiBiZt8hWIHw3mQHJyIi2S2ep7P+BAwCHgA2\nh2XPAp2A/4bbRUSkGYlnsOEGYLyZ7Q/sRzAt/FfAC+7+WIriExGRLBbPolStCBaHGkHQ+qi2u5lN\nASLu/v0kxyciIlksnttZVwM/JVj7fHVqwhERkVwSTxKZAJzr7n9OVTAiIpJb4nk6KwLMSVUgIiKS\ne+JJIrcAPzWzeI4REZEmLJ7bWecCbwLzzOwNYG3M9oi7/zRpkYmISNaLJ4lMB4zgsd4htWyPJCWi\nGGb2PeBlYD93fyksGxcVzzzgLHd/IhXXz1ZP3vNvFvoH7Ln3/jx5720cOPHkRh330Muvc/joPVMc\nnYg0F/EkkZ8QfHGf7e4pSRixzKwIuI2o225mNhB4mGBCyAcIZhB+yMwGu/uH6YgrW+QBu4/ch52H\nDMPfm9vg/m/PX8Tf7n6MQ/caSosWeakPUESavHiSSCXwVLoSSOgyYDGwQ1TZFGC2u08L359rZqPC\n8lPSGFtWKGjZkoKWLRu1b1UkQh55RIgQpCARkW0TTxKZQTBO5PkUxbIVM/sBMD78eTdq0yhqzib8\nAnBMOuLKlM+XLuaBf13F0oUf03fAQLps1wOAN158hifv+TcHHv8zABYsW8nl9z7Be58uobS4A4eP\n2pNj9xvBitVfcvqVtwKw7+l/5qopk9ijf5+MfR4RaRriSSKfA5PM7GPgNaAiZnvE3X+ejKDMrCtw\nAzAJ+DJmcy9gaUzZMprwVPSbN2/ilr+cT7+dB3HUz6fw8XtzeeTW6+hnuwY75AWtio2bN3PODXdx\n4PDd+f3EQ/hs5Wqm3/EoLQvyOWLv73LRyT/kjzfcy0MXnUHHdkUZ/EQi0lTEk0ROBsqAfOB7tWxP\n5m2u64CH3P1pM+sZc/4iYEPM/t8ArZN4/awy/523WFvxFRN+eiotWxVS0r0Xn7w/l3UVX2+13+z3\nP6ZD2yImHzIWgJ5di/nZIWO4+fEXOXKfYXRo2waA4vZt1SciIkkRzwSM/VIZSDUzmwTsAXwnLMqL\n+b0eKIw5rJCajxzXUFxcREFBfoMxlJe3g+VljYo3HVYuW0KX0u60bPXtx+61Q3/mzX1jq/2Wrf6S\nBctWsv8Zl2wpi0QibK6sZHNlVdrijUfnzu0oKWmf1HNmW/01VamoO1D9pUuy6i+elki6TCK4ZfW5\nmcG3yWOmmf2boKO9e8wxPah5i6uG8vJ1jQqgrGxNY2NNm9hmXov8msmwqqqKIQP6cuaPDq6xf0F+\ndo4RLStbw6pVsXdGt/2cknqpqLvq80rqxVN/9SWbbPxmmQgMBHYPf6pnBv4pwZol/wX2iTlmDPBS\nugJMt269+rB6xTLWr/u2sbVs4Sc19uveuRNLVq6mW+dO9OxaTM+uxcxbvJzbn5oFQJ6eyBKRJMu6\nJOLuy919QfUPsDDctMzdvwCuAvY2s/MtMBUYBlyRoZBTbqfdBtOpayn3/fMyPl+6mNeef4p3//ff\nGvuNHNSfTZsruWTGIyxa8QWvfvgJf7/ncTq2DTrR2xQGC1L6kmVs3LS5xvEiIvHKuiRShy13Z9z9\nPYIZhY8E3gIOBg52d89QbCmXn5/PSb+/gA3r1nHVOVN49fknGTHu4GBj3reti9atWnLpqRNZUfYl\nJ02/notvf5iDRgze0tG+Y89Shu2yI7+87BbmfPBxJj6KiDQx2dgnshV3X0rwRFh02UxgZmYiyozi\nku342TkX17pt6N778ebslwHo36sbV02ZVOt+Bfn5XHrqxJTFKCLNT660REREJAspiYiISMKURERE\nJGFKIiIikjAlERERSZiSiIiIJExJREREEqYkIiIiCcv6wYaZVllZyYrPFmfk2t169Sa/lokWRUSy\nhVoiDVjx2WJWLl2S9uuuXLokY8kr1sz/zeXQsy9lv99czMtzP2pw/6/Xreex2W+lITIRyTS1RBqh\ntOf29OyTluVUstLVDz7NXrsN4Kc/2LdRKyJe+9AzfLaqjINGDE5DdCKSSUoi0qCKdevZfcfelBZ3\naNT+kUgyF7kUkWymJNLEjPrVBfxh4qE8PmcuHyxaSnG7tpwwfjSH7jV0yz6PvvIWdz8/h6Wryijp\n1IEfjhnOkfsMq3GuFau/5KjzriCPPC6+/WFufvxF7p06hfmfreCfjzzHewuWsGHTJrp36cSk74/m\nwOG7c9NjL/BoeCtr9K+mcu/UKXTr3DFtn19E0ktJpAm69uFn+e0xP2Dn3j245/k5/O2uxxk+cCe2\nK+7IXc/O5l+PPs8ZPxzP7jv14c15n3L5vU+wqbKSY8eO2Oo823XuyH8u+T8OO/vvTDnyQA7YcxAb\nNm7ijH/czujvGDec+TOqIhHuevYVpt/5KMMH7sSP9h/JklVlrFj9JRdPPoZOjbj9JSK5Sx3rTdDB\nIwYzZvBAunfpxMkHjaEqUsUHC4PVg+945hWOGfs9DhoxmF4lnTl0r6Ecve9w7nj6lRrnycvLo7h9\nWwDatimkY7si1n+zkWP3G8GUo8fTq7QzvbfrwvHjRrFp82aWrFxNm8JWFLYsoKAgn+L2bcnL02qK\nIk2ZWiJN0Palnbe8btumEIDNlZWUV6ylrGINg/ptv9X+u+/UhzueeYXyirVbkkZditu35fDRezJz\nztvM+2wFn60sY/7SFeSRR1WV+kJEmhslkSaoZUHNao1EoLBly1r3r4pUAcGiVQ354qsKJv/1RrYr\n7sBeuw1g1G4D6NqxPSdNv37bghaRnKQk0owUtW5FaacOvLtgMSMH9d9SPvfjxXTu0I72Ra0bPMcz\nr7/Hho0bufa3J20p+98HH5NHHpFwFWPdwhJpPpREmplJB+7NVfc/SY+uxQzu35c3533K/S++umUd\n9oaUFndg7YZveO7N9xnYtxfzP1vBFfc9AcDGzZUAFBW2YtWXFSxf/SWlxR3Ib6GuN5GmSkmkETI1\nYr205/YN7xgjj5qtgOiyw0YNZeOmzdz+1H/5+z0z6dGlmClHHchho4bWOG7L8VGnHDtkVz5ctIzL\n732Cdd9spFdJZ04cvw+3PTWLjxYtZfguO3LQiMG89I4z8cKrueaME9m5d4+4P4eI5IasTCJmVgr8\nFTgAaAP8D/itu78fbh8HTAcMmAec5e5PpCKWbr16p+K0DSrtuX1C1375H+c2WHb0mOEcPWZ4o8/5\n4pV/2ur9qRMO4NQJB2xVdtCIPba83qFHKfdecHqjzy8iuSvrkoiZ5QEPARHgEGAtcAHwrJntAnQH\nHg7LHgCOBx4ys8Hu/mGy48nPz2/WU56IiNQn65IIsDswHNjF3ecBmNmPgTLgIGAUMNvdp4X7n2tm\no4ApwCkZiFdEpNnKxh7PxcDB1QkkVBX+LgZGAy/EHPNCWC4iImmUdS0Rdy8DZsYUTwFaA08BfwaW\nxmxfBsTfCy0iItskG1siWzGzQ4GLgUvd3YEiYEPMbt8QJBkREUmjrGuJRDOzE4DrgTvc/fdh8Xqg\nMGbXQoIO+HoVFxdRUNDwqOzy8nawvCy+YCUhnTu3o6SkfVLPqfpLj1TUHaj+0iVZ9Ze1ScTMzgEu\nBK50919HbVpC8IRWtB7UvMVVQ3n5ukZdu6xsTSOjlG1VVraGVasqkn5OSb1U1F31eSX14qm/+pJN\nVt7OMrMzganAH2MSCMAsYJ+YsjHAS+mITUREvpV1LREz+w5wEXATcKOZbRe1uQK4CnjdzM4H7gQm\nAsPQ470iImmXdUkEOIaghXRS+BPtT+5+sZlNAP4CnAl8RPBIsKcimMrKSlZ8tjgVp25Qt169yW/E\nzLoiIpmSdUnE3c8Bzmlgn5nUfAw4JVZ8tpiSj56hT/eSdFxui0XLV7GC/eMeLT/qVxdw7qQjGPfd\n3VIU2bduf2oWdzzzCpsqK/nHlBOw3rFdVVtbWf417yxYzP5DB6U8NhFJj6xLItmoT/cSduxV/xdk\nKqxK+xUbb/03G/nnI89xwvi9OWTkELp0bNfgMRff/jClnTooiYg0IUoikpA16zcQIcKQAX0pLe7Q\nqGO07qFI06Mk0sQ9+spb3P38HJauKqOkUwd+OGY4R+4zjE+Wfs6kS65jxh9PpU+3rgD88u83U1ax\nhrvOOw2A8oq1HPqHS7nprMn079Vtyznfmr+Q0664lTzyOO2KWxncvy9XTZnEm/MWctPjL/DR4uVU\nVlbSp1sJvzh8f4bvsiMX3fYwb/gCAGb+b26tsw2LSO5REmnC7np2Nv969HnO+OF4dt+pD2/O+5TL\n732CTZVduqlcAAALGklEQVSVHDt2BNsVd+S1jxbQp1tXNmzcxIeLlrK5soovvqqga8f2zPngY0qL\nO2yVQAB226E3N/3+55w0/Z9c8rNj2KN/X1aWf83/XTOD4/YfyR9/fDjrwttdf771QR686Ax+fdSB\nLPuinK4d2/Prow/M0L+IiCRbVo4TkeS445lXOGbs9zhoxGB6lXTm0L2GcvS+w7nj6VcAGDmoP699\nFLQO3p6/iF6lXehZUszb8xcBwbK3e+02oMZ5C/JbUNy+CID2RW1oX9SaTZWVTD5kLCcfPIZuXTqx\nQ49Sfjh2OF+uWUd5xRratimkoCCfwpYFFLdvm6Z/ARFJNbVEmqjyirWUVaxhUL+t56Xcfac+3PHM\nK5RXrGXkoAGcf/P9VFVFeN0XMHRAX9Zt2Mib8xcydsiuvPrhJ5x/4pGNul7PrsV8f9h3uPu5OSxY\n9jlLVpYx77MVAFRWqTdEpKlSS6SJKmzZstbyqkgwq35Bfj5DB/SjsirCe58u4Y15nzJ0QD+GDOjL\nW/MX8sHCz6isqmLIgMY9Yrxg2Up+NPUfvPbRAvp1L+WE8Xsz9aTGJSARyV1KIk1UUetWlHbqwLsL\nth4oOffjxXTu0I72Ra1p1bKAPa0fz77xPp8uX8XgAX0ZajuwZOVqHv7vmwzbZScK8hv3n8jDs96g\nW+dO/O2Xx3HsfiMYtsuOrCz/OtgYCVoiNVd/F5Fcp9tZjbBoefpHbCxavgo6bts5Jh24N1fd/yQ9\nuhYzuH9f3pz3Kfe/+CqTDxm7ZZ+Rg/pz2b1PsEOPUtq1aU27Nq3pXdqVJ199h3N+fFijr1Va3IEV\nq7/ktY8WsH1pF+Z+vIjr//McABs3VwJQ1LqQZau/ZEXZV3TrvI0fTkSygpJIA7r16s0K9k//wL+O\nwbXjlRf19/5ho4aycdNmbn/qv/z9npn06FLMlKMO5LBRQ7fsM2LXAfz1zsfY0769bTXU+rFsdTkj\nB9XsVK/rWkfvO5xFK77gvJvuo6oqQp9uXTnzuEO46LaH+HDRUnpv14Uj9/4uF9zyAMdfeDX3Tp0S\n92cTkeyTF4k0n07PVasqGvVhP/lkPm8sL4t7ypFMenP2yxzUdnVGRtYn6pPPlhPZeQw77tg/uedV\n/aVcquoOcq/+cq3uIP76KylpX+fdaPWJiIhIwpREREQkYUoiIiKSMCURERFJmJKIiIgkTElEREQS\npiQiIiIJUxIREZGE5eyIdTNrAVwETALaA08Ap7r7yowGJiLSjORyS+QC4MfA8cBooBdwX0YjEhFp\nZnIyiZhZS+B04A/u/py7vw0cC4wys+9lNjoRkeYjJ5MIsAfQDnixusDdFwELCVolIiKSBrmaRHqF\nv5fGlC8DtkdERNIiV5NIEVDl7pUx5d8ArTMQj4hIs5SrT2etB1qYWQt3r4oqLwTWJuMCK5cuScZp\n0qbs8+UsavNVpsOIy6Llq+i9c2rOrfpLrVTWHeRW/eVa3UFy6y8n1xMxs+8Cc4De7r40qnwBcI27\n/y1jwYmINCO5ejtrLrAG2Ke6wMz6An2BlzITkohI85OTLREAM7uEYKDhicAq4Gpgnbvvl9HARESa\nkVztEwH4I0H8twEtgZnArzIakYhIM5OzLREREcm8XO0TERGRLKAkIiIiCcvlPpEmy8yuA1q4++Qk\nn/dT4F/ufnEyz9uc1VVXZvYqsGdUUQS4MVl1ambnARPdfUAyztecmFlP4HJgLMEf0k8AZ7j78qh9\nxgHTAQPmAWe5+xNJjKHJ1J9aIlnGzKYCSU0eUfYELkvRuZudBupqIPAjoFv40x04I4mX/yugyUYT\n8xjQkWCIwN4EdfOf6o1mNhB4GLibYJ6+R4CHzGyXJMbQZOpPLZEsYWb9gBuBXYFFqbiGu69OxXmb\nm4bqysx2ANoAc1K1vo27rwPWpeLcTZmZbQd8QNCyWByW/R140Mw6uvtXBDOEz3b3aeFh55rZKGAK\ncEoy4mhK9ackkj1GAosJprS/u6Gdw+bwCIKR+78g+NK6DZgGXAfsC3wGnO7uT4bHbLmdFR7/PeC/\nwC+BTsBzwMnuviKpn6zpaaiuBgHrw5mlG2RmfYBPgWOAcwhuocwlWC9nIkH95AO3u/uU8JjzgOPd\nvX/U8UeFx+9KMKP179394QQ/Y5Pk7p8Dx1W/N7NewM+BV8MEAsFM4LH1+gJB/dTQ3OtPt7OyhLvP\ncPcT4vzLdQywA7AXcBpBMplDkEyGAA7c3MDx3yG4N7w/MBiYGn/0zUsj6moQ8JWZ3WFmS83sHTP7\njZnlNXDqPxOMdfou0JWgLvsQ1O/ZwGlm9v2o/WOfz/8LcBbBrbS3gVvMrE1cH64ZMbMHCf4YGM7W\ntyV7kdgM4c2y/pREclsEmOzuH7v7rcAXwJPufpe7O3ANsJ2Zdanj+DzgBHf/yN1fIfjra0RaIm/a\ndgXaEgyAHQf8g2AlznMbOG66u89y9/eABwhal5Pdfb67/xNYSZCg6vIXd3/a3RcAFwMdCL6QpHZ/\nBIYBs4BnzKx7WF4EbIjZtzEzhDfL+tPtrNy23N2j/2NfCyyIer8+/F1Yx/Erwnuz1b4CWiUxvubq\nx0A7d/86fP++mXUi+Gv0gnqO+yTq9VpgmbtviipbT911CTA/6vVXBH8kqD7r4O7vA5jZj4AlBNMo\nTaP2f+fGzBDeLOtPLZHctqmWsqpayuryTS1lDd1ykQa4e1VUAqn2LtDezDrUc2hsfcZTl6D6bJCZ\nlZrZVn0b7r6eIAH0DIuWEDyxFa0HNW9xxWqW9ackIpJkZjbbzC6PKf4uwV+msclF0qsPcKeZDaku\nMLOOBJ3h74dFs4iaITw0Bs0QXivdzmr6sv4vmSboAeACM3uD4Om3McDvCB4dlcx6nSAZ3GBmPwc2\nE9zC+hz4d7jPVcDrZnY+cCfBE1bDSNLjvU2NWiLZKdFZMWs7LhLzWjNuJleNf093/ytB/8c5wHsE\nCeTX7l7fk3KNqZf66q+huhfA3SPAEQRPP/0HeB4oB/at7h8MO8YnAEcCbwEHAweHD6vUpdnWn2bx\nFRGRhKklIiIiCVMSERGRhCmJiIhIwpREREQkYUoiIiKSMCURERFJmJKIiIgkTElEJInM7CAzuzV8\nvY+ZVZnZyEzHJZIqmvZEJLl+TbAAEcCbBAt/vV/37iK5TUlEJEXcvQJ4NdNxiKSSpj0RSRIze55v\nZ3+NEKwY+Twwyt1fCZdEPYpgTZELgb4EczOdAAwALiFYqfId4BR3nxt17gl8u3RqGTAD+KO7b0z5\nBxOph/pERJLnF8BrfHsbqwM1J9HrS7CM6jkEs8P2Bx4DLiVILMcQTFdePaMsZnYccD9BcjkMuIhg\nXfAZKfskIo2kJCKSJO7+EfA18LW7vxa+jlUE/MzdH3D3BwimGt+BYBnVe9z9UeBvwCAzKwqPmQY8\n4u4nuftT7n4NcDxwhJlpOWPJKPWJiKRfdD/J57WUrQ5/dzKz7YFeBOuT5Eft8zTBSnoHALNTFahI\nQ9QSEUmvSnevsQxquERrbbqEv68nSBrVP+uAlgTLtopkjFoiItntq/D3rwlWSYz1RRpjEalBSUQk\nuSr5dpxIMnwIrAL6uftV1YVm1he4AfgrsDiJ1xOJi5KISHJ9CYwyszFAR7ZxjXt3rzKzPwJXm1kE\nmAl0Bc4Lz//WNsYrsk3UJyKSXNcQ9Fk8TtBnEfuIb9xrabv7vwiextoHeAS4HJgLjHb3ldsasMi2\n0GBDERFJmFoiIiKSMCURERFJmJKIiIgkTElEREQSpiQiIiIJUxIREZGEKYmIiEjClERERCRhSiIi\nIpKw/wdSSu1f8r0v3gAAAABJRU5ErkJggg==\n", "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "sns.barplot(x = 'time', y = 'pulse', hue = 'diet', data = exercise,\n", " palette = 'RdBu_r')\n", "pass" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Saving the palette in a varibele for later use in a plotting fucntion. \n", "\n", "All the `choose` palette functions return palette information that cna be used in a seaborn plotting function. They can also return a colormap for functions that accept a `cmap` argument by giving the argument `as_camp=True`." ] }, { "cell_type": "code", "execution_count": 5, "metadata": { "collapsed": false }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjwAAABGCAYAAADIKU4UAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAAelJREFUeJzt2bFtQjEYhVE7SscGvBGY4HWMgcQUNAxB86ZAYgw6JmAE\n2IDaWSCiiOQYXZ3Turnlp9+1tVYAAJJ9jR4AANCb4AEA4gkeACCe4AEA4gkeACCe4AEA4n2/e2yt\ntVrrf20BAPizaZrK4/H4NVzeBk+ttbxerz6rPsBqtSrP53P0jG7W63W53++jZ3Sz2WzK9XodPaOL\n7XZbzufz6Bnd7Pf7cjqdRs/o5ng8lsPhMHpGN8uylN1uN3pGN5fLpczzPHpGF7fbrUzTNHrGEL60\nAIB4ggcAiCd4AIB4ggcAiCd4AIB4ggcAiCd4AIB4ggcAiCd4AIB4ggcAiCd4AIB4ggcAiCd4AIB4\nggcAiCd4AIB4ggcAiCd4AIB4ggcAiCd4AIB4ggcAiCd4AIB4ggcAiCd4AIB4ggcAiCd4AIB4ggcA\niCd4AIB4ggcAiCd4AIB4ggcAiCd4AIB4ggcAiCd4AIB4ggcAiCd4AIB4ggcAiCd4AIB4ggcAiCd4\nAIB4ggcAiCd4AIB4ggcAiCd4AIB4ggcAiCd4AIB4ggcAiCd4AIB4ggcAiCd4AIB4ggcAiCd4AIB4\nggcAiCd4AIB4ggcAiFdba6M3AAB05cIDAMQTPABAPMEDAMQTPABAPMEDAMQTPABAvB8sqSjdFm05\nwgAAAABJRU5ErkJggg==\n", "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "p = sns.choose_colorbrewer_palette('sequential')" ] }, { "cell_type": "code", "execution_count": 6, "metadata": { "collapsed": false }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZEAAAEdCAYAAADNU1r0AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xl4ldW59/FvIEAYBWxAAhSM1ftFrQK1FihUQxXEYo9i\n1Sogoh6kVqVabWltUXEoYq2K1SK1qO0Rpx7AoaDiVI+nDqCCxQM3IqOAgBIUDAghef94dnBnZ9yb\nZ0/J73NdXMlez7DvsCD3Xms9a62c8vJyREREEtEk3QGIiEj2UhIREZGEKYmIiEjClERERCRhSiIi\nIpIwJREREUlYbroDMLPpQBN3H1fNsVxgIfCuu18YVZ4P3AOcDOwBHgB+7e5lqYlaREQgzS0RM5sM\nVEkeUW4Ejq2mfDbQCRgEjAHGAjeEHqCIiNQqLS0RMzsU+AtwFLC2hnO+S5Ac3osp7w8MAA5193XA\nUjO7BphmZpPdfW9SgxcRkf3S1RIZAKwDvgmsiT1oZq2Bh4DLgK0xhwcCayMJpMIrQDugdxJiFRGR\nGqQlibj7w+5+gbtvqeGUu4A33f3v1RzrBmyIKdsY+do9rBhFRKRuGfd0lpn9EDgFuLSGU1oBu6ML\n3L0UKAfykhudiIhES/vTWdEiT13NAMa6+2c1nLYLaBFzXS6QA3yR3AhFRCRaRiURYBiQDzxmZjmR\nsjyg3Mx+5O7tgPWR86IVRL7GdnNVUlq6rzw3t2mY8YqINAY5NR3ItCTy38BrMWV/BTYBv4i8fg2Y\nYmZd3b0iaQwGPgcW13bz4uKSEEMVEWkc8vPb1ngso5KIu38BrIouM7NdwA53Xx0553Uze4OgtXI5\ncAhwK3B7ZGxERERSJBOSSCK7Yp0B/Al4FdgBzHD3G0ONSkRE6pTTmHY23Lp1R+P5YUVEQpKf37bG\nMZGMe8RXRESyh5KIiIgkTElEREQSpiQiIiIJUxIREZGEKYmIiEjClERERCRhSiIiIpIwJREREUmY\nkoiIiCRMSURERBKmJCIiIglTEhERkYQpiYiISMKUREREJGFKIiIikjAlERERSZiSiIiIJExJRERE\nEqYkIiIiCctNdwBmNh1o4u7josouA34KdAfWAHe4+1+ijucD9wAnA3uAB4Bfu3tZCkMXEWn00toS\nMbPJwLiYsp8AvwMmA98E7gDuNbORUafNBjoBg4AxwFjghlTELCIiX0lLEjGzQ83sJeASYG3M4UuA\nu939EXdfHWmB/I0gUWBm/YEBwPnuvtTdnwWuAS43s2ap+ylEJJvMnDmDH//4dGbOnJHuUBqUdLVE\nBgDrCFoaa2KOXQ7cF1NWBnSIfD8QWOvu66KOvwK0A3qHHaiIZL/du3exYMF8ABYseJbdu3elOaKG\nIy1jIu7+MPAwgJnFHvuf6Ndm9nXgXOCuSFE3YEPMLTdGvnYHFoYcrohkub1791JeXg5AeXkZe/fu\nJS+vZZqjahgy+umsyAD6PwiSxK2R4lbA7ujz3L0UKAfyUhqgiEgjl/ans2piZoXAfKAFcIK774gc\n2hUpiz43F8gBvqjtnh06tCI3t2kSohWRTNa8eeUHNw8+uA0HHdQ2TdE0LBmZRMysL0EC2QoUufvG\nqMPrgWExlxREvsZ2c1VSXFwSWowikj127NhZ6fWnn+5kz56M7ojJKPn5NSfcjPtbNLP/BzwPfAgM\njEkgAK8BhWbWNapsMPA5sDg1UYqICGRmS+SvBF1W5wMtzKxzpLzU3T9199fN7A3gMTO7HDiEYLzk\n9sjYiIiIpEgmJJHyim/M7HDgW5GXHnPeh8ARke/PAP4EvArsAGa4+41JjlNERGKkPYm4++Co7z8A\n6hz5dvctwJnJjEtEROqWcWMiIiKSPZREREQkYUoiIiKSMCURERFJmJKISD1pFViRqpREROpBq8CK\nVE9JRKQeqlsFVkSURERE5AAoiYiISMLSPmNdRCTavn37WLNmVaj3LCmpvEvEmjWraNWqdWj379mz\nkKZNG+c2E0oiIpJR1qxZxebN6+nRo0do99y3r3KnS4sWTcjLC6cjZu3atQAcdtjhodwv2yiJiEjG\n6dGjB4cfHt4v5c8//7zS68LCQtq1axfa/XfvLqv7pAZKYyIiIpIwJREREUmYkoiIiCRMSURERBKm\nJCIiIgnT01nS4GTjPANo3HMNJHspiUiDk23zDCB5cw1mzpzB88/PY8iQU7nwwnGh3luSLxvqT0lE\nGqRsm2cA4c81iF15+LzzRpOX1zLU95DkyZb6S3sSMbPpQBN3HxdVNgS4FTBgBTDR3Z+NOp4P3AOc\nDOwBHgB+7e6Nd8aPSIzqVh7OxF9CUr1sqb+0Dqyb2WRgXEzZkcCTwGNAb+ApYK6Z9Yo6bTbQCRgE\njAHGAjekImYREflKWloiZnYo8BfgKGBtzOErgNfdfUrk9SQzGwhMAMabWX9gAHCou68DlprZNcA0\nM5vs7troQUQkRdLVEhkArAO+CayJOTYIeCWm7JVIOcBAYG0kgUQfb0fQchERkRRJS0vE3R8GHgYw\ns9jD3YANMWUbge51HCdyzsLQAhURkVpl4mTDVsDumLIvgbyajrt7KVAedY6IiKRA2p/OqsYuoEVM\nWQvgi5qOm1kukBN1TrU6dGhFbq4mczV0xcVtKCkpSXcYcevYsQ35+W1Du1/z5pUfVjz44DYcdFB4\n90+WbKy/sOsOsqf+MjGJrAe6xJQV8FUX1npgWDXHoWo3VyXFxdn1D1MSs23bzlAnAqbKtm072bp1\nR2j327FjZ6XXn366kz17Mv/vJdvqb9++fSxe/D7btu2s++Q4xK6S8Pbb76VtN8baEmQmJpHXgBOA\nm6PKioBXo45PMbOu7l6RNAYDnwOLUxZlgrJhBqpIQ9OsWTNycnIoLy+nSZMmNGvWLLR7f/TRR+zb\nt5vS0nA/pJaW7qryurQ0J5R7r1+/HghnhYRMTCJ3A4vM7HrgEWAkcDwwHsDdXzezN4DHzOxy4BCC\niYm3R8ZGMla2zECV1Nu3bx/r1q2r+8Q4aF/xr7Rs2ZJhw4Yxb948TjnlFFq2DPf/Xffu3TnssMNC\nveeOHZVbpT179qRtW3VnVac8+oW7LzWzM4CpwC+A5cBwd/eo084A/kTQOtkBzHD3G1MUb8KyZQaq\npF4yPs1myyfZVBk/fjzjx49PdxgNTtqTiLsPrqZsPjC/lmu2AGcmMy6RaMnsDqkQ9qfZbPkkK9kt\n7iRiZi2BrsBBwCfAJnffE3ZgIpkk2d0hItmqXknEzFoAFwLnEYxPRF9Xamb/BP4OPOTuX4YeZYol\nYz8KUB91tlN3iEhVdSYRM7sAmEIwN+Np4AmCpUq+ADoQzCD/LnALcJ2ZXefu9ycp3pRIxn4UkNw9\nKZK1H4WISG1qTSJm9gyQT/Bk1Lxauq3uNLPmwFnAz81shLufGm6oqRX2fhSQ/D0pwt6PQkSkLnW1\nRB5z97/V50aRBPOwmc0Czj/gyCQjaF6LiNSm1r6U+iaQmGvK3f2hxEOSTBE7r2X37l11XCEiYal4\nIhAgJycnKU8EhiGRp7P6E+woWEAwDtILeDfy2K00IJrXkt2iH0vO5F9CUr28vDxOOukkFixYwEkn\nnUReXmauL1vvJBIZ83gYGAHsBZoBM4BrgCPNbJC7f5iUKBuIVMw1EKmQLb+EpGZjxoxhzJgx6Q6j\nVvG0RG4ChgCnAwuAiqm1FxNMDLwZ+HGo0TUwyZxrkI3LZoAeS062bPglJNktniQyEviVuz9tZvv/\n17v7GjO7Abgz9OgaoGTNNci2ZTMgO5fOEJHK4kkiHYGVNRz7hGB7WkkjLZshIqkWz0y396m5u2oY\n8H8HHo6IiGSTeFoiNwP/bWYdCWaulwPfNbNRwGXAqCTEJyIiGazeLRF3n0OQKPoCfybYjvYugrGS\nn7r740mJUNImW55TF5H0iWvhJnef5e5fJ5gbMhD4JtDF3f+cjOAkvSoeEQX0iKiIVCuRyYatKzaI\nimweNdjM/uHu4S97K2mnR0RFpDb1bolY4ANgYuT1jQTLv98F/NvMBiQnRBERyVTxdGdNAUqBJyOz\n138KPA60B54jGHgXEZFGJJ4kcgLwa3dfBJxIsLPhfe7+OTAdOC788EREJJPFk0SaAdsi3w8j2JTq\ntcjrpgStFBERaUTiGVhfCowwMyfYfOp5dy81s2YE80T+HVZQZtYKuJVgscdWwOvAz919WeT4kMhx\nA1YAE9392bDeX0RE6ieelsgkgsUWNxAsgTIlUr4CKAKuDzGuacBg4EygH7AbmG9mzc3sSOBJ4DGg\nN/AUMNfMeoX4/iIiUg/xTDZcQDAv5DygV2RsBOB24Dh3fynEuP4DuNfd34g8Tnwt0B04ErgCeN3d\np7j7CnefBPwLmBDi+4uISD3ENU8kMhdkVUzZH0ONKLAVOMfMHgc+I2gBbYu89yCCVki0V4BzkhCH\niIjUotYkYmbPx3GvcncfeoDxVBgH/BewGdhHMIg/xN0/N7NuBF1q0TYStFRERCSF6urOak7wVFZ9\n/jQPMa7DgU0ET4ENIJiH8ncz60ow0L475vwvAa3JISKSYrW2RNz9xBTFsZ+Z9STYdneAuy+MlI0k\nWGr+SoIdFVvEXNaCoLVSqw4dWpGbW/cuesXFbSgpCW9zJ6lZx45tyM8Pd48S1V9qJKPuQPWXKmHV\nXzx7rBfUdY67bzywcIBg0mIT4O2o+5aa2WLgG8B6oEvMNQVU7eKqori4fv8wt23bSV5eXGtTSoK2\nbdvJ1q076j4xznuq/pIvGXVXcV/VX/LFU3+1JZt4BtY/IthDpDZhbJb9UeTrMcDiqPIjgXnAxwQz\n5qOXWSkCXg3hvUVEJA7xJJELqZpE2hA8LVUUOR6Gt4A3gQfN7KcEW+9eSTBwfjfBciuLzOx64BGC\n/UyOB8LfuFxERGpV7yTi7g/WcOgeM/sDwS/zfxxoQO5eZmbDgd8RJIk2wCJgoLuvB9ZHlqCfCvwC\nWA4Mr1ieXkREUifu/URq8BTBLPJQuPs24JJajs8H5of1fiIikpiwRq++A+wN6V4iIpIl4nk6a0Y1\nxU0JxioGA/eHFZSIiGSHeLqzhlB1YL0c+JxgMcZbwgpKRESyQzwD6z2TGIeIiGShuAfWI0uuDwI6\nEKxt9bK7rw07MBERyXzxjIm0BP4GnAHkRB0qM7P7gZ+4e12TEUVEpAGJ5+ms3wOnEOznUUCw6GJX\n4CpgNPDb0KMTEZGMFk931lnAr9z9nqiyTcA0M8slmFU+OczgREQks8XTEmlBzIZUUd4nWI5EREQa\nkXiSyH8Bv4yMjexnZk2AnwCzwgxMREQyXzzdWZ8Q7LG+xsyeIthN8GCCcZKewMNRExLL3b3GZUtE\nRKRhiCeJnA9sj3x/Usyx9cD3ol7rKS0RkUYgnsmGhyYzEBERyT61jomYWWEiN030OhERyS51Day/\naGa/M7OO9bmZmXUxs9uBlw48NBERyXR1dWd9i2A3wY1mtgD4O7AQWO3uu8ysHdANGAgMA04F5hLs\nky4iIg1crUkksjnUSDO7E/glMKPiGjOLPnU3wSZRA919YXJCFRGRTFOvgfVIYviRmbUmeArrUILJ\nhZ8Aa4H/cfddSYtSREQyUlyr+Lr7F2hbWhERiYgriZhZW+BEoDXVDMq7u2ati4g0IvEsBT+EYGC9\nNZWXgq9QTohLn5jZxcA1BNvv/h9wjbu/HBXLrYABK4CJ7v5sWO8tIiL1E8/aWbcCTtASOYxgXCT6\nT2hzQ8xsDPBHgi13jwb+CTxlZl83syOBJ4HHgN7AU8DcyGZZIiKSQvF0Z/UC/sPd/ydZwUS5Hvid\nuz8EYGZXA0XAAIIk9rq7T4mcO8nMBgITgPEpiE1ERCLiSSLrgHbJCqSCBc8O9wAeryiL7JjYN3L8\ntwStkGivAOckOzYREaksnu6sKcB1Zvb1ZAUTcQTB+EoHM3vRzDab2T/NrH/keDdgQ8w1GwnGTkRE\nJIXi3dmwK7DazDYBJTHHy93dql4Wt3YEA/cPEmy568B/EizB0hdoRTC5MdqXQF4I7y0iInGIJ4l8\nTLCkSbLtjXy9yd0ruq1+Ghn3+AlB8moRc00L4Iu6btyhQytyc5vWGUBxcRtKSmJzpCRDx45tyM9v\nG+o9VX+pkYy6A9VfqoRVf/EsBT/2gN+tfjYQdGctjSlfTvAU2HqgS8yxAqp2cVVRXFy/f5jbtu0k\nLy+enj5J1LZtO9m6dUfo91T9JV8y6q7ivqq/5Iun/mpLNnFNNgQws4OB5nw1V6QJwdyRQe5+f7z3\nq8Y7BK2Nb0e+r3AksIBg/ONE4OaoY0XAqyG8t4iIxCGeyYbfBB4GjqrhlHLggJNIZHXgO4CbzWwL\n8G/gpwTzUO4lGPtYZGbXA48AI4Hj0eO9IiIpF09L5DaCPdWvBoYTDGY/TbD8+zCC1kEo3H2SmX0B\n3AF0AhYDJ7v7SgAzOwOYCvyCoJtruLt7WO8vIiL1E08S6Q9c6e4zI7/gR7r7n4A/mdnfgSuA18IK\nzN1vJZglX92x+WghSBGRtItn9KoF8EHk+xXAsVHHHiBIMiIi0ojEk0TWETwdBUESaWdmPSKvdwP1\n2kJXREQajniSyBxgipmd4e4bCcYibowsfHgl8GEyAhQRkcwVz5jIDcDhBLPH5xAkjjkET0ftA34c\nenQiIpLR4plsWAKMMLMWkdfPmdnRwLeAd9xdLRERkUYm7smG7v5lZBHGAoI5HP+IJBgREWlk4t0e\n9zSC+SKHE0wuPB74rZltA8a5+77wQxQRkUxV74H1SAKZS7BV7cVR174AjAJ+FXp0IiKS0eJ5OusG\n4EF3HwH8taLQ3e8BJgPnhxybiIhkuHiSSC+q7ihY4TW0KZSISKMTTxL5hGDXweocETkuIiKNSDxJ\n5FGCyYWnEywFD1BuZscQ7ED4RNjBiYhIZovn6azfAkcDs4HSSNmLQHvgfyPHRUSkEYlnsuFuYJiZ\nnQR8n2BZ+M+AV9z9H0mKT0REMlg8m1I1J9gcqj9B66PCsWY2ASh396EhxyciIhksnu6se4CLCPY+\n/zQ54YiISDaJJ4mcAUxy95uSFYyIiGSXeJ7OKgfeSFYgIiKSfeJJIg8CF5lZPNeIiEgDFk931iTg\nHWCFmb0NfBFzvNzdLwotMhERyXjxtCpuBYzg0d6+wKBq/oTOzPqZ2V4z+15U2RAze9fMSsxssZmd\nkoz3zmT33nsv48aN4+mnn+bUU0+t93VPPfVUEqMSkcYmnpbI+QSJ5NfuXp6keCoxs1bA34hKdmZ2\nJPAkwYKQswlWEJ5rZn3cfVkq4sokQ4cOZdCgQSxatKjOc5csWcIdd9zB8OHDadJEvZIicuDiSSL7\ngOdTlUAi7gDWAYVRZROA1919SuT1JDMbGCkfn8LYMkLz5s1p3rx53ScCZWVl5OTkUF6eyioUkYYs\nno+jDxPME0kJMzsVGAZcAeREHRoIvBJz+iskqTstU6xatYoLL7yQAQMGcOmll/LZZ58B8PTTTzNs\n2LD9561evZqrrrqKoUOHMmrUKB5//HEAPv74Y6666irKy8s5+eSTWbJkSVp+DhFpWOJpiWwGxpjZ\nSmAhsCPmeLm7XxJGUGb2NeB+YAywPeZwN2BDTNlGGvBS9Hv37mXChAn07duX6667jrfeeovbbruN\n3r17A5CTk7P/vEmTJjF06FCuvvpqPvroI26//XaaNWvG6aefzuTJk7nuuut44oknOOigg9L5I4lI\nAxFPErkY2AY0BfpVczzMPpLpwFx3X2BmXWPu3wrYHXP+l0BeiO+fUd544w22b9/Or371K/Ly8ujR\nowcLFy5k+/btVc5r164dF10UNBgLCgq48MILeeihhzjjjDNo27YtAB06dNCYiIiEIp4FGA9NZiAV\nzGwM0Bs4JlKUE/N1F9Ai5rIWVH3kuIoOHVqRm9u0zhiKi9tQUlJSr3hTYfXq1XTr1o28vK/y5JFH\nHsm//vWvSudt2rSJ1atXV+reKi8vp7S0lNLSUjJRx45tyM9vG+o9M63+Gqpk1B2o/lIlrPqLpyWS\nKmMIuqw2mxl8lTzmm9lfCQbau8RcU0DVLq4qiovr9w9z27ad5OVl1if12MHw3NyqVVdWVkafPn34\n+c9/Xq/zM8G2bTvZujW2Z/TA75lp9dcQJaPuKu6r+ku+eOqvtmSTiTU1EjgSODbyp2Jl4IsI9iz5\nX+CEmGuKgFdTFWCqHXbYYaxfv54dO76q8OXLl1c575BDDmH9+vV07tyZgoICCgoKWLFiBbNmzQK+\nGjsREQlLxiURd9/k7qsq/gBrIoc2uvsnwN3A98zsegtMBo4H7kpTyEn3ne98hy5dunDDDTewatUq\n5s6dy4svvljlvH79+rF3716mTp3K2rVrWbRoEXfdddf+QfSWLVsCsGLFCvbs2ZPSn0FEGqaMSyI1\n2N834+5LCVYUPhN4FxgODHd3T1NsSZebm8u0adPYuXMno0aNYu7cuZx99tlA5dZFXl4eU6dOZfPm\nzVxyySVMmTKFU089df9Ae2FhIccddxxXXHEFb775Zlp+FhFpWDKzozyKu28geCIsumw+MD89EaVH\nQUEB06dPr/bY8OHDeeGFFwD4xje+wR133FHtebm5uUydOjVpMYpI45MtLREREclASiIiIpIwJRER\nEUmYkoiIiCRMSURERBKmJCIiIglTEhERkYQpiYiISMIyfrJhuu3bt49Vq1al5b0LCwtp2rTuVYdF\nRNJFLZE6rFq1irVr16b8fdeuXZu25BXrueee48wzz+SUU07htddeq/P8HTt2MH9+o1pQQKTRUkuk\nHnr06MHhhx+e7jDSZvr06fTv358LLrigXjsi3nfffWzYsKHSviYi0jApiUidduzYwTHHHEOnTp3q\ndX7sXiYi0nCpO6uBKSoqYv78+UyYMIEhQ4Zwzjnn8Mwzz1Q6Z968eYwdO5ahQ4cycuRI5syZU+29\nPv74Y4qKiigrK+PWW2/l3HPPBWDlypVMnDiR4cOHc/LJJzN69Gief/55AB588EHmzZvH4sWLGTx4\nMJs3b07uDywiaaUk0gDNmDGDESNG8NBDDzFo0CDuuOMOtmzZAsDjjz/OtGnTOPvss5k5cybnnnsu\n06dP54knnqhyn86dOzN79mxycnK4/PLLmT59Ort37+aaa64hPz+f6dOnM3PmTHr37s3vf/97tm/f\nzjnnnMP3v/99jjrqKGbPnl3v1ouIZCclkQbo1FNP5YQTTqBLly6MHTuWsrIyli1bBsCjjz7KWWed\nxbBhw+jatSvDhw9nxIgRPPLII1Xuk5OTQ4cOHQBo3bo1Bx10ELt37+acc87hsssuo1u3bnTv3p3z\nzjuPvXv3sn79elq2bEmLFi1o1qwZ7du3126KIg2cxkQaoG7duu3/vnXr1gCUlpayfft2iouLOeqo\noyqdf+yxx/LYY4+xfft22rdvX+u927dvzw9/+EOee+45PvjgAzZs2MDKlSvJycmhrKws/B9GRDKa\nkkgD1KxZsypl5eXlNG/evNrzK37512dOyqeffsqll15Kfn4+AwYMYMCAAXzta19j3LhxBxa0iGQl\nJZFGpFWrVuTn57N06VL69eu3v/y9996jY8eOtG3bts57vPjii+zatYs//vGP+8veeustcnJy9j+V\npS4skcZDSaSRGT16NPfccw9dunShd+/evPvuu8yZM2f/Pux16dSpEyUlJbzyyiv06tWLlStXcvfd\ndwOwd+9eIEhWn3zyCZs2baJTp06adS/SgCmJ1EO6Zqz36NEj7uuqawVEl5122mns2bOHWbNmcddd\nd1FQUMBll13GaaedVq97nnjiiSxfvpxp06axa9cuunbtypgxY5g1axbLly/n29/+9v6Z7RdccAHT\npk3DzOL+OUQkO2RkEjGzTsBtwMlAS+BN4Ofu/n7k+BDgVsCAFcBEd382GbEUFhYm47Z16tGjR0Lv\n/dJLL9VZduaZZ3LmmWfW+54vvPBCpdfjx49n/PjxlcqiZ6cXFhYya9aset9fRLJXxiURM8sB5gLl\nwGnAF8ANwItm1gvoAjwZKZsNjALmmlkfd18WdjxNmzZt1EueiIjUJuOSCHAs8B2gl7uvADCz0cA2\n4AfAQOB1d58SOX+SmQ0EJgDjq7mfiIgkSSZONlwHDK9IIBEVExA6AIOAV2KueSVSLiIiKZRxLRF3\n3wbEriM+AcgDngduAjbEHN8IdE9+dCIiEi0TWyKVmNkPgVuA293dgVbA7pjTviRIMiIikkIZ1xKJ\nZmYXADOAWe7+y0jxLqBFzKktCAbga9WhQytyc+ues1Bc3IaSkpL4gpWEdOzYhvz8uic5xkP1lxrJ\nqDtQ/aVKWPWXsUnEzK4FbgSmufvPog6tJ3hCK1oBVbu4qigurt8/zG3bdpKXl/GNtAZh27adbN26\nI/R7qv6SLxl1V3Ff1V/yxVN/tSWbjKwpM/sFMBn4TUwCAXgNOCGmrAh4NRWxiYjIVzKuJWJmxwA3\nAzOBv5hZ56jDO4C7gUVmdj3wCDASOB493isiknIZl0SAcwhaSBdG/kT7rbvfYmZnAFOBXwDLCR4J\n9mQEs2/fPlatWpWMW9epsLBQ606JSEbLuCTi7tcC19ZxznyqPgacFKtWrWLZsmV0757aJ4jXr18P\nEPds+aKiIq699lpOOumkZIRVyaxZs3j00UcpLS3lzjvv5Igjjqj1/C1btrB06VIGDx6c9NhEJDUy\nLolkou7du3PYYYelO4yMsmvXLu6//35Gjx7ND37wAw4++OA6r5k6dSr5+flKIiINiJKIJGTnzp2U\nl5fTp0+feu+jXrHfiIg0HBn5dJaEZ968eYwdO5ahQ4cycuRI5syZAwTddEVFRZWWub/iiisYNWrU\n/tfbt29n8ODBrFy5stI9Fy9ezNlnn01OTg5XXnklV155JQDvvvsuEyZMYNiwYZx88slcfPHFLFy4\nEIApU6bwzjvv8Oyzz6olItKAKIk0YI8//jjTpk3j7LPPZubMmZx77rlMnz6dJ554gsLCQjp16sTb\nb78NwO7du1m2bBkbN27k008/BeDNN98kPz+fb3zjG5Xue/TRRzNjxgzKy8u58cYbmTx5Mlu2bGHi\nxIn07t0Opdf+AAAKtklEQVSbBx54gPvuu4/OnTtzyy23UFpayuWXX84xxxxDUVERs2fPTvnfhYgk\nh5JIA/boo49y1llnMWzYMLp27crw4cMZMWIEjzzyCAD9+/ffn0SWLFlCt27dKCgoYPHixUCw7e2A\nAQOq3Dc3N5f27dsD0LZtW9q2bUtpaSkXXXQRY8eO5ZBDDqGwsJAf/ehHfPbZZxQXF9O6dWtyc3Np\n0aLF/mtFJPtpTKSB2r59O8XFxRx11FGVyo899lgee+wxtm/fTv/+/Zk8eTJlZWW888479O3bl5KS\nEhYvXkxRURELFy5k0qRJ9Xq/goIChgwZwhNPPMHq1av56KOP+OCDDwAoKyur42oRyVZqiTRQzZs3\nr7a84hd606ZN6dOnD2VlZbz//vu888479OnThz59+rB48WKWLVvGvn376N27d73eb9WqVYwePZq3\n336bnj17cv7559c7AYlI9lISaaBatWpFfn4+S5curVT+3nvv0bFjR9q2bUvz5s3p27cvL7/8MmvW\nrKF379707duXjz76iKeffprjjz+e3Nz6NVafeeYZOnfuzJQpUzj77LM57rjj2Lp1K/DVU1nV7f8u\nItlN3Vn1UDHxL9Xv2atXrwO6x+jRo7nnnnvo0qULvXv35t1332XOnDlcdNFF+8/p378/06ZN49BD\nD6VNmza0adOG7t27s2DBAiZOnFjv9+rUqRMff/wxixYtonv37ixZsoT7778fgL179wJBYtu0aROb\nN2+mc+fOtd1ORLKEkkgdCgsL0/K+vXr1Sui9oz/tn3baaezZs4dZs2Zx1113UVBQwGWXXcZpp522\n/5x+/frxhz/8gW9961v7y/r27cumTZvo169fvd9rxIgRrF27dv8YS48ePbj66quZMmUKy5cvp3v3\n7px++uncdNNNjBkzZv/gvohkt5zGNAFs69Yd9fphP/zwA/LymsS95Eg6vfDCCxx88MFZNbP+ww8/\nJDe3FYcdFu7fs+ov+ZJVd8G9s6v+sq3uIP76y89vW2NftMZEREQkYUoiIiKSMCURERFJmJKIiIgk\nTElEREQSpiQiIiIJUxIREZGEKYmIiEjCsnbGupk1AW4GxgBtgWeBn7r7lrQGJiLSiGRzS+QGYDQw\nChgEdAP+ntaIREQamaxMImbWDLgC+JW7v+Tui4EfAwPNrPYFn0REJDRZmUSA3kAb4J8VBe6+FlhD\n0CoREZEUyNYk0i3ydUNM+Uage4pjERFptLI1ibQCytx9X0z5l0BeGuIREWmUsvXprF1AEzNr4u7R\nG3i3AL4I4w3Wrl0bxm1SZsOGDZSUlKQ7jLisX7+eQw+1pNxb9Zdcyaw7yK76y7a6g3DrLyv3EzGz\nbwNvAF939w1R5auAe93992kLTkSkEcnW7qwlwE7ghIoCM+sJ9AReTU9IIiKNT1a2RADM7HcEEw3H\nAluBe4ASd/9+WgMTEWlEsnVMBOA3BPH/DWgGzAcuS2tEIiKNTNa2REREJP2ydUxEREQygJKIiIgk\nLJvHRBosM5sONHH3cSHfdzXwZ3e/Jcz7NmY11ZWZvQUcF1VUDvwlrDo1s+uAke5+RBj3a0zMrCtw\nJzCY4IP0s8BV7r4p6pwhwK2AASuAie7+bIgxNJj6U0skw5jZZCDU5BHlOOCOJN270amjro4EzgUO\nifzpAlwV4tvfBmix0cT8AziIYIrA9wjq5umKg2Z2JPAk8BjBOn1PAXPNrFeIMTSY+lNLJEOY2aHA\nX4CjgKRM13X3T5Nx38amrroys0KgJfBGsva3cfcSILumSWcAM+sM/B9By2JdpOwPwBwzO8jdPyNY\nIfx1d58SuWySmQ0EJgDjw4ijIdWfkkjmGACsI1jS/rG6To40h/sTzNz/CcEvrb8BU4DpwInAR8AV\n7v5c5Jr93VmR6/sB/wtcCrQHXgIudvePQ/3JGp666upoYFdkZek6mVkPYDVwDnAtQRfKEoL9ckYS\n1E9T4L/cfULkmuuAUe5+eNT1P4pcfxTBita/dPcnE/wZGyR33wycV/HazLoBlwBvRRIIBCuBx9br\nKwT1U0Vjrz91Z2UId3/Y3S+I85NrEVAIfBe4nCCZvEGQTPoCDjxQx/XHEPQNnwT0ASbHH33jUo+6\nOhr4zMxmmdkGM3vPzK40s5w6bn0TwVynbwNfI6jLHgT1+2vgcjMbGnV+7PP5U4GJBF1pi4EHzaxl\nXD9cI2Jmcwg+DHyHyt2S3UhshfBGWX9KItmtHBjn7ivd/SHgE+A5d3/U3R24F+hsZgfXcH0OcIG7\nL3f3fxF8+uqfksgbtqOA1gQTYIcAfyTYiXNSHdfd6u6vuftSYDZB63Kcu3/g7vcBWwgSVE2muvsC\nd18F3AK0I/iFJNX7DXA88Brwgpl1iZS3AnbHnFufFcIbZf2pOyu7bXL36H/sXwCrol7vinxtUcP1\nH0f6Zit8BjQPMb7GajTQxt0/j7x+38zaE3wavaGW6z6M+v4LYKO7740q20XNdQnwQdT3nxF8SFB9\n1sDd3wcws3OB9QTLKE2h+r/n+qwQ3ijrTy2R7La3mrKyaspq8mU1ZXV1uUgd3L0sKoFU+DfQ1sza\n1XJpbH3GU5eg+qyTmXUys0pjG+6+iyABdI0UrSd4YitaAVW7uGI1yvpTEhEJmZm9bmZ3xhR/m+CT\naWxykdTqATxiZn0rCszsIILB8PcjRa8RtUJ4RBFaIbxa6s5q+DL+k0wDNBu4wczeJnj6rQi4huDR\nUUmvRQTJ4H4zuwQoJejC2gz8NXLO3cAiM7seeITgCavjCenx3oZGLZHMlOiqmNVdVx7zvVbcDFeV\nv093v41g/ONaYClBAvmZu9f2pFx96qW2+qur7gVw93JgBMHTT08DLwPFwIkV44ORgfEzgDOBd4Hh\nwPDIwyo1abT1p1V8RUQkYWqJiIhIwpREREQkYUoiIiKSMCURERFJmJKIiIgkTElEREQSpiQiIiIJ\nUxIRCZGZ/cDMHop8f4KZlZnZgHTHJZIsWvZEJFw/I9iACOAdgo2/3q/5dJHspiQikiTuvgN4K91x\niCSTlj0RCYmZvcxXq7+WE+wY+TIw0N3/FdkS9UcEe4rcCPQkWJvpAuAI4HcEO1W+B4x39yVR9z6D\nr7ZO3QY8DPzG3fck/QcTqYXGRETC8xNgIV91Y7Wj6iJ6PQm2Ub2WYHXYw4F/ALcTJJZzCJYrr1hR\nFjM7D/hvguTyH8DNBPuCP5y0n0SknpRERELi7suBz4HP3X1h5PtYrYD/dPfZ7j6bYKnxQoJtVB93\n92eA3wNHm1mryDVTgKfc/UJ3f97d7wVGASPMTNsZS1ppTEQk9aLHSTZXU/Zp5Gt7M+sOdCPYn6Rp\n1DkLCHbSOxl4PVmBitRFLRGR1Nrn7lW2QY1s0VqdgyNfZxAkjYo/JUAzgm1bRdJGLRGRzPZZ5OvP\nCHZJjPVJCmMRqUJJRCRc+/hqnkgYlgFbgUPd/e6KQjPrCdwP3AasC/H9ROKiJCISru3AQDMrAg7i\nAPe4d/cyM/sNcI+ZlQPzga8B10Xu/+4BxityQDQmIhKuewnGLOYRjFnEPuIb917a7v5ngqexTgCe\nAu4ElgCD3H3LgQYsciA02VBERBKmloiIiCRMSURERBKmJCIiIglTEhERkYQpiYiISMKUREREJGFK\nIiIikjAlERERSZiSiIiIJOz/A5VR8G0FEYM3AAAAAElFTkSuQmCC\n", "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "sns.barplot(x = 'time', y = 'pulse', hue = 'diet', data = exercise,\n", " palette = p)\n", "pass" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Divergent palettes are appropriate when there is a \"center\" and both extremes are interesting and should be differentiated." ] }, { "cell_type": "code", "execution_count": 7, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "[(0.69227222075649331, 0.092272204803485525, 0.16770473370949396),\n", " (0.83921569585800171, 0.37647059559822083, 0.30196079611778259),\n", " (0.95455594273174504, 0.64175319262579378, 0.5057285948126925),\n", " (0.99215686321258534, 0.85882353782653809, 0.78039216995239269),\n", " (0.96570549992954036, 0.96724336988785686, 0.96808919836493101),\n", " (0.81960785388946544, 0.89803922176361084, 0.94117647409439076),\n", " (0.56647445816619735, 0.76870435826918648, 0.8685121185639324),\n", " (0.26274511218070995, 0.57647061347961415, 0.76470589637756337),\n", " (0.12725875369620088, 0.3958477567808299, 0.66874281039424976)]" ] }, "execution_count": 7, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAgQAAABGCAYAAACzDYzYAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAAcRJREFUeJzt2SFr1VEcx+HP3YTLBcEqtolFhGXBRbMmm8WwJvgSxJcw\nWDOs2JY0GyeYBbGINrEKwmVB/74BWTs7gs9Tf+UbP5yzWpYlAOD/tjN7AAAwnyAAAAQBACAIAIAE\nAQCQIAAAqisXHX+dny+76/VlbQEABto7PO3ry0erv90uDILd9brX1++MWfUPePj9Y5+ePJg9Y5jb\nJ2/6+erF7BnDXH38vN+f38+eMcTOrbttt9vZM4bZbDZ9+PZj9oxh9m9c6+jdl9kzhnl272b3j89m\nzxjm7dOD9g5PZ8+4dL4MAABBAAAIAgAgQQAAJAgAgAQBAJAgAAASBABAggAASBAAAAkCACBBAAAk\nCACABAEAkCAAABIEAECCAABIEAAACQIAIEEAACQIAIAEAQCQIAAAEgQAQIIAAEgQAAAJAgAgQQAA\nJAgAgAQBAJAgAAASBABAggAASBAAAAkCACBBAAAkCACABAEAkCAAABIEAECCAABIEAAACQIAIEEA\nACQIAIAEAQCQIAAAEgQAQIIAAEgQAAAJAgAgQQAAJAgAgAQBAFCtlmWZvQEAmMwLAQAgCAAAQQAA\nJAgAgAQBAJAgAACqP8gjJstH/18LAAAAAElFTkSuQmCC\n", "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "sns.choose_colorbrewer_palette('divergent')" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Qualitative palettes are custom configurations useful for unordered categorical data." ] }, { "cell_type": "code", "execution_count": 8, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "[(0.89411765336990356, 0.10196078568696976, 0.1098039224743836),\n", " (0.21602460800432688, 0.49487120380588578, 0.71987698697576341),\n", " (0.30426760128900115, 0.68329106055054012, 0.29293349969620797),\n", " (0.60083047361934894, 0.30814303335021531, 0.63169552298153153),\n", " (1.0, 0.50591311045721454, 0.0031372549487094226),\n", " (0.99315647868549106, 0.98700499826786559, 0.19915417450315831),\n", " (0.65845446095747096, 0.34122261685483596, 0.17079585352364723),\n", " (0.95850826852461857, 0.50846600392285535, 0.7449288887136124),\n", " (0.60000002384185791, 0.60000002384185791, 0.60000002384185791)]" ] }, "execution_count": 8, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAgQAAABGCAYAAACzDYzYAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAAbpJREFUeJzt2TFqVUEAhtHvhsArsoTgDuxsrK0CAcUuleVbRsQs45ZW\n6UIEwcraxs4dSJZgEQgZNxDS3UzQc9pp/mbgY2YZYwQA/N8OZg8AAOYTBACAIAAABAEAkCAAABIE\nAEB1+NjhuL0dy273VFsAgA2t69p+v18eOns0CJbdrpvjF9usegaOb373+uO32TM28+PTSW+vTmfP\n2MyX919b332ePWMT++sPdfHgnf03nI/u717NXrGZg8OfXZ69nD1jM2eXv/pz8X32jM0cnb9pXdfZ\nM56cLwMAQBAAAIIAAEgQAAAJAgAgQQAAJAgAgAQBAJAgAAASBABAggAASBAAAAkCACBBAAAkCACA\nBAEAkCAAABIEAECCAABIEAAACQIAIEEAACQIAIAEAQCQIAAAEgQAQIIAAEgQAAAJAgAgQQAAJAgA\ngAQBAJAgAAASBABAggAASBAAAAkCACBBAAAkCACABAEAkCAAABIEAECCAABIEAAACQIAIEEAACQI\nAIAEAQCQIAAAEgQAQIIAAEgQAAAJAgAgQQAAVMsYY/YGAGAyLwQAgCAAAAQBAJAgAAASBABAggAA\nqP4CJagmZmvtVu4AAAAASUVORK5CYII=\n", "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "sns.choose_colorbrewer_palette('qualitative')" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Other palettes" ] }, { "cell_type": "code", "execution_count": 9, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "[[0.9312692223325372, 0.8201921796082118, 0.7971480974663592],\n", " [0.8888663743660877, 0.7106793139856472, 0.7158661451411206],\n", " [0.8314793143949643, 0.5987041921652179, 0.6530062709235388],\n", " [0.7588951019517731, 0.49817117746394224, 0.6058723814510268],\n", " [0.6672565752652589, 0.40671838146419587, 0.5620016466433286],\n", " [0.5529215689527474, 0.3217924564263954, 0.5093718054521851],\n", " [0.43082755198027817, 0.24984535814964698, 0.44393960899639856],\n", " [0.29794615023641036, 0.18145907625614888, 0.3531778140503475],\n", " [0.1750865648952205, 0.11840023306916837, 0.24215989137836502]]" ] }, "execution_count": 9, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAgQAAABGCAYAAACzDYzYAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAAcBJREFUeJzt2KFqlmEch+H7/fAI7GMHIHPF/GFVbGIQ85hJxPUx7BMx\nKWYxyNrY6li2qHgAYvcQ9noCsvbuGe666r/84v080zzPAQA322r0AABgPEEAAAgCAEAQAAAJAgAg\nQQAAVLcuO84XF/O00gwA8D/Y2lz349f59K/bpUEwrVb9+f51mVXXwO279/p9cjp6xmI2Hj7o54fP\no2cs5s7u084PPo6esYj1wU5fnr8dPWMxT96/7PDx69EzFrN3tN+L+69Gz1jMu7M3Pdp+NnrGYo6/\nfWprcz16xpXz/AcABAEAIAgAgAQBAJAgAAASBABAggAASBAAAAkCACBBAAAkCACABAEAkCAAABIE\nAECCAABIEAAACQIAIEEAACQIAIAEAQCQIAAAEgQAQIIAAEgQAAAJAgAgQQAAJAgAgAQBAJAgAAAS\nBABAggAASBAAAAkCACBBAAAkCACABAEAkCAAABIEAECCAABIEAAACQIAIEEAACQIAIAEAQCQIAAA\nEgQAQIIAAEgQAAAJAgAgQQAAJAgAgAQBAJAgAAASBABANc3zPHoDADCYHwIAQBAAAIIAAEgQAAAJ\nAgAgQQAAVH8BRFomGHHFB10AAAAASUVORK5CYII=\n", "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "sns.choose_cubehelix_palette()" ] }, { "cell_type": "code", "execution_count": 10, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "[array([ 0.25199714, 0.49873371, 0.57516028, 1. ]),\n", " array([ 0.43026136, 0.62000665, 0.67878019, 1. ]),\n", " array([ 0.60852558, 0.74127959, 0.7824001 , 1. ]),\n", " array([ 0.7867898 , 0.86255253, 0.88602001, 1. ]),\n", " array([ 0.95, 0.95, 0.95, 1. ]),\n", " array([ 0.95457726, 0.76653099, 0.78032569, 1. ]),\n", " array([ 0.91971827, 0.58735877, 0.61174 , 1. ]),\n", " array([ 0.88485928, 0.40818655, 0.44315432, 1. ]),\n", " array([ 0.85104086, 0.23436275, 0.27960104, 1. ])]" ] }, "execution_count": 10, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAgQAAABGCAYAAACzDYzYAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAAcNJREFUeJzt2TFqVFEAhtFvZEjllLapQrYQhWm0Su0OhDQJaOEKsgIL\nBW0C2UFqK20C6hZCqrQpx0oCLxuQ6Z43wXPae4u/ex/3LaZpCgD4vz0ZPQAAGE8QAACCAAAQBABA\nggAASBAAANVy2+Gfu7tpZ7n1CgDwSFytD9u//Lr429nWr/3OctnL00/zrHoAvp++7d35xegZs/n4\n5nVn336OnjGbo1fP+3V9M3rGLA72dttsNqNnzGa1WvX78sfoGbN5un7R7eez0TNm8+zkqJvj96Nn\nzGb3y4eu1oejZ/xzfhkAAIIAABAEAECCAABIEAAACQIAIEEAACQIAIAEAQCQIAAAEgQAQIIAAEgQ\nAAAJAgAgQQAAJAgAgAQBAJAgAAASBABAggAASBAAAAkCACBBAAAkCACABAEAkCAAABIEAECCAABI\nEAAACQIAIEEAACQIAIAEAQCQIAAAEgQAQIIAAEgQAAAJAgAgQQAAJAgAgAQBAJAgAAASBABAggAA\nSBAAAAkCACBBAAAkCACABAEAkCAAABIEAECCAABIEAAACQIAoFpM0zR6AwAwmBcCAEAQAACCAABI\nEAAACQIAIEEAAFT35vQm9XNsU6UAAAAASUVORK5CYII=\n", "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "sns.choose_diverging_palette()" ] }, { "cell_type": "code", "execution_count": 11, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "[array([ 0.13333333, 0.13333333, 0.13333333, 1. ]),\n", " array([ 0.15505626, 0.17201694, 0.16963164, 1. ]),\n", " array([ 0.17677918, 0.21070054, 0.20592994, 1. ]),\n", " array([ 0.19927793, 0.2507657 , 0.24352462, 1. ]),\n", " array([ 0.22100085, 0.2894493 , 0.27982292, 1. ]),\n", " array([ 0.2434996 , 0.32951446, 0.31741759, 1. ]),\n", " array([ 0.26522252, 0.36819806, 0.3537159 , 1. ]),\n", " array([ 0.28772127, 0.40826322, 0.39131057, 1. ]),\n", " array([ 0.30944419, 0.44694683, 0.42760888, 1. ]),\n", " array([ 0.33116712, 0.48563043, 0.46390718, 1. ])]" ] }, "execution_count": 11, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjwAAABGCAYAAADIKU4UAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAAgRJREFUeJzt2SEvxVEcxvFzzfZ/IbcId4qxSQTBFBNuskmKIiiKqCiC\nokg2STDFBIFkY4oJyn0hN/29ARNsx7Fnn0/9lSd+d86g7/sCAJBspvUAAIDaBA8AEE/wAADxBA8A\nEE/wAADxBA8AEG/2p+N0Ou27rvurLQAAvzY+OizXxyeD724/Bk/XdWU4HNZZ9Q9MJpMyNxq1nlHN\n58dHmV9abD2jmveX17KwutJ6RhVvj09leWO99Yxqnu/uy8p4q/WMap6ub8raznbrGdU8XF6Vjb3d\n1jOquTu/KJsH+61nVHF7elbGR4etZzThSwsAiCd4AIB4ggcAiCd4AIB4ggcAiCd4AIB4ggcAiCd4\nAIB4ggcAiCd4AIB4ggcAiCd4AIB4ggcAiCd4AIB4ggcAiCd4AIB4ggcAiCd4AIB4ggcAiCd4AIB4\nggcAiCd4AIB4ggcAiCd4AIB4ggcAiCd4AIB4ggcAiCd4AIB4ggcAiCd4AIB4ggcAiCd4AIB4ggcA\niCd4AIB4ggcAiCd4AIB4ggcAiCd4AIB4ggcAiCd4AIB4ggcAiCd4AIB4ggcAiCd4AIB4ggcAiCd4\nAIB4ggcAiCd4AIB4ggcAiCd4AIB4ggcAiCd4AIB4ggcAiCd4AIB4g77vW28AAKjKCw8AEE/wAADx\nBA8AEE/wAADxBA8AEE/wAADxvgAeYSnmLFDTJQAAAABJRU5ErkJggg==\n", "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "sns.choose_dark_palette()" ] }, { "cell_type": "code", "execution_count": 12, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "[array([ 0.94054458, 0.95945542, 0.95679586, 1. ]),\n", " array([ 0.87363254, 0.90742758, 0.90267475, 1. ]),\n", " array([ 0.80672051, 0.85539974, 0.84855364, 1. ]),\n", " array([ 0.73741876, 0.80151376, 0.79249963, 1. ]),\n", " array([ 0.67050672, 0.74948591, 0.73837852, 1. ]),\n", " array([ 0.60120497, 0.69559993, 0.68232452, 1. ]),\n", " array([ 0.53429294, 0.64357209, 0.62820341, 1. ]),\n", " array([ 0.46499119, 0.58968611, 0.5721494 , 1. ]),\n", " array([ 0.39807915, 0.53765827, 0.51802829, 1. ]),\n", " array([ 0.33116712, 0.48563043, 0.46390718, 1. ])]" ] }, "execution_count": 12, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjwAAABGCAYAAADIKU4UAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAAgBJREFUeJzt2aFL5EEcxuH5iU2DUaNB7B72A7tB2GSwCRajG26jhr1o\nEWwGk2CwC3bRLgajRoPm8R+QDQdzIy/PU6e88cN3hlprAQBINtd7AABAa4IHAIgneACAeIIHAIgn\neACAeIIHAIg3P+ux1lqHYfhfWwAA/tloMi5Xx9Nvw2Vm8AzDUN4/P9qs+gGWFhbLy9tr7xnNrC6v\nlMfnp94zmtlYWy+3D/e9ZzSx9WuzXN3d9p7RzOj3Vjm/ue49o5n97Z0yvbzoPaOZ8e5eGZ+d9p7R\nzPTgsOz/Pek9o4nzoz9lNBn3ntGFLy0AIJ7gAQDiCR4AIJ7gAQDiCR4AIJ7gAQDiCR4AIJ7gAQDi\nCR4AIJ7gAQDiCR4AIJ7gAQDiCR4AIJ7gAQDiCR4AIJ7gAQDiCR4AIJ7gAQDiCR4AIJ7gAQDiCR4A\nIJ7gAQDiCR4AIJ7gAQDiCR4AIJ7gAQDiCR4AIJ7gAQDiCR4AIJ7gAQDiCR4AIJ7gAQDiCR4AIJ7g\nAQDiCR4AIJ7gAQDiCR4AIJ7gAQDiCR4AIJ7gAQDiCR4AIJ7gAQDiCR4AIJ7gAQDiCR4AIJ7gAQDi\nCR4AIJ7gAQDiCR4AIJ7gAQDiCR4AIJ7gAQDiCR4AIJ7gAQDiDbXW3hsAAJpy4QEA4gkeACCe4AEA\n4gkeACCe4AEA4gkeACDeF6E+KdTtjNNXAAAAAElFTkSuQmCC\n", "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "sns.choose_light_palette()" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.5.2" }, "latex_envs": { "bibliofile": "biblio.bib", "cite_by": "apalike", "current_citInitial": 1, "eqLabelWithNumbers": true, "eqNumInitial": 0 } }, "nbformat": 4, "nbformat_minor": 0 }