Using pybind11
¶
The package pybind11
is provides an elegant way to wrap C++ code for
Python, including automatic conversions for numpy
arrays and the C++
Eigen
linear algebra library. Used with the cppimport
package,
this provides a very nice work flow for integrating C++ and Python:
- Edit C++ code
- Run Python code
pip install pybind11
pip install cppimport
Clone the Eigen library - no installation is required as Eigen is a header only library.
hg clone https://bitbucket.org/eigen/eigen/
Resources¶
`pybind11
<http://pybind11.readthedocs.io/en/latest/>`__`cppimport
<https://github.com/tbenthompson/cppimport>`__`Eigen
<http://eigen.tuxfamily.org>`__
A first example of using pybind11
¶
Create a new subdirectory - e.g. example1
and create the following 5
files in it:
funcs.hpp
funcs.cpp
wrap.cpp
setup.py
test_funcs.py
First write the C++ header and implementation files
In funcs.hpp
int add(int i, int j);
In funcs.cpp
int add(int i, int j) {
return i + j;
};
Next write the C++ wrapper code using pybind11
in wrap.cpp
. The
arguments "i"_a=1, "j"_a=2
in the exported function definition tells
pybind11
to generate variables named i
with default value 1 and
j
with default value 2 for the add
function.
#include <pybind11/pybind11.h>
#include "funcs.hpp"
namespace py = pybind11;
using namespace pybind11::literals;
PYBIND11_PLUGIN(wrap) {
py::module m("wrap", "pybind11 example plugin");
m.def("add", &add, "A function which adds two numbers",
"i"_a=1, "j"_a=2);
return m.ptr();
}
Finally, write the setup.py
file to compile the extension module.
This is mostly boilerplate.
import os, sys
from distutils.core import setup, Extension
from distutils import sysconfig
cpp_args = ['-std=c++11', '-stdlib=libc++', '-mmacosx-version-min=10.7']
ext_modules = [
Extension(
'wrap',
['funcs.cpp', 'wrap.cpp'],
include_dirs=['pybind11/include'],
language='c++',
extra_compile_args = cpp_args,
),
]
setup(
name='wrap',
version='0.0.1',
author='Cliburn Chan',
author_email='cliburn.chan@duke.edu',
description='Example',
ext_modules=ext_modules,
)
Now build the extension module in the subdirectory with these files
python setup.py build_ext -i
And if you are successful, you should now see a new funcs.so
extension module. We can write a test_funcs.py
file test the
extension module:
import wrap
def test_add():
assert(wrap.add(3, 4) == 7)
if __name__ == '__main__':
test_add()
And finally, running the test should not generate any error messages:
$ python test_funcs.py
Using cppimport
¶
In the development stage, it can be distracting to have to repeatedly rebuild the extension module by running
python setup.py clean
python setup.py build_ext -i
every single time you modify the C++ code. The cppimport
package
does this for you.
Create a new sub-directory exaample2
and copy the files
func.hpp
, funcs.cpp
and wrap.cpp
from example1
over. For
the previous example, we just need to add some annotation (between
<% and %>
delimiters) to the top of the wrap.cpp
file
<%
cfg['compiler_args'] = ['-std=c++11', '-stdlib=libc++', '-mmacosx-version-min=10.7']
cfg['sources'] = ['funcs.cpp']
setup_pybind11(cfg)
%>
#include "funcs.hpp"
#include <pybind11/pybind11.h>
namespace py = pybind11;
PYBIND11_PLUGIN(wrap) {
py::module m("wrap", "pybind11 example plugin");
m.def("add", &add, "A function which adds two numbers");
return m.ptr();
}
and use cpppimport
in the test_funcs.py
file.
import cppimport
funcs = cppimport.imp("wrap")
def test_add():
assert(funcs.add(3, 4) == 7)
if __name__ == '__main__':
test_add()
You can now run
$ python test_funcs.py
without any need to manually build the extension module. Any updates
will be detected by cppimport
and it will automatically trigger a
re-build.
Vectorizing functions for use with numpy
arrays¶
Example showing how to vectorize a square
function. Note that from
here on, we don’t bother to use separate header and implementation files
for these code snippets, and just write them together with the wrapping
code in a code.cpp
file. This means that with cppimport
, there
are only two files that we actually code for, a C++ code.cpp
file
and a python test file.
<%
cfg['compiler_args'] = ['-std=c++11', '-stdlib=libc++', '-mmacosx-version-min=10.7']
setup_pybind11(cfg)
%>
#include <pybind11/pybind11.h>
#include <pybind11/numpy.h>
namespace py = pybind11;
double square(double x) {
return x * x;
}
PYBIND11_PLUGIN(code) {
pybind11::module m("code", "auto-compiled c++ extension");
m.def("square", py::vectorize(square));
return m.ptr();
}
and the test file
import cppimport
import numpy as np
code = cppimport.imp("code")
if __name__ == '__main__':
xs = np.random.rand(10)
print(xs)
print(code.square(xs))
ys = range(10)
print(code.square(ys))
Using numpy
arrays as function arguments and return values¶
Example showing how to pass numpy
arrays in and out of functions.
These numpy
array arguments can either be generic py:array
or
typed py:array_t<double>
. The properties of the numpy
array can
be obtained by calling its request
method. This returns a struct
of the following form:
struct buffer_info {
void *ptr;
size_t itemsize;
std::string format;
int ndim;
std::vector<size_t> shape;
std::vector<size_t> strides;
};
Here is C++ code for two functions - the function twice
shows how to
change a passed in numpy
array in-place using pointers; the function
sum
shows how to sum the elements of a numpy
array. By taking
advantage of the information in buffer_info
, the code will work for
arbitrary n-d
arrays.
<%
cfg['compiler_args'] = ['-std=c++11', '-stdlib=libc++', '-mmacosx-version-min=10.7']
setup_pybind11(cfg)
%>
#include <pybind11/pybind11.h>
#include <pybind11/numpy.h>
namespace py = pybind11;
// Passing in an array of doubles
void twice(py::array_t<double> xs) {
py::buffer_info info = xs.request();
auto ptr = static_cast<double *>(info.ptr);
int n = 1;
for (auto r: info.shape) {
n *= r;
}
for (int i = 0; i <n; i++) {
*ptr++ *= 2;
}
}
// Passing in a generic array
double sum(py::array xs) {
py::buffer_info info = xs.request();
auto ptr = static_cast<double *>(info.ptr);
int n = 1;
for (auto r: info.shape) {
n *= r;
}
double s = 0.0;
for (int i = 0; i <n; i++) {
s += *ptr++;
}
return s;
}
PYBIND11_PLUGIN(code) {
pybind11::module m("code", "auto-compiled c++ extension");
m.def("sum", &sum);
m.def("twice", &twice);
return m.ptr();
}
and the test code
import cppimport
import numpy as np
code = cppimport.imp("code")
if __name__ == '__main__':
xs = np.arange(12).reshape(3,4).astype('float')
print(xs)
print("np :", xs.sum())
print("cpp:", code.sum(xs))
print()
code.twice(xs)
print(xs)
More on working with numpy
arrays¶
This example shows how to use array access for numpy
arrays within
the C++ function. It is taken from the pybind11
documentation, but
fixes a small bug in the official version. As noted in the
documentation, the function would be more easily coded using
py::vectorize
.
<%
cfg['compiler_args'] = ['-std=c++11', '-stdlib=libc++', '-mmacosx-version-min=10.7']
setup_pybind11(cfg)
%>
#include <pybind11/pybind11.h>
#include <pybind11/numpy.h>
namespace py = pybind11;
py::array_t<double> add_arrays(py::array_t<double> input1, py::array_t<double> input2) {
auto buf1 = input1.request(), buf2 = input2.request();
if (buf1.ndim != 1 || buf2.ndim != 1)
throw std::runtime_error("Number of dimensions must be one");
if (buf1.shape[0] != buf2.shape[0])
throw std::runtime_error("Input shapes must match");
auto result = py::array(py::buffer_info(
nullptr, /* Pointer to data (nullptr -> ask NumPy to allocate!) */
sizeof(double), /* Size of one item */
py::format_descriptor<double>::value, /* Buffer format */
buf1.ndim, /* How many dimensions? */
{ buf1.shape[0] }, /* Number of elements for each dimension */
{ sizeof(double) } /* Strides for each dimension */
));
auto buf3 = result.request();
double *ptr1 = (double *) buf1.ptr,
*ptr2 = (double *) buf2.ptr,
*ptr3 = (double *) buf3.ptr;
for (size_t idx = 0; idx < buf1.shape[0]; idx++)
ptr3[idx] = ptr1[idx] + ptr2[idx];
return result;
}
PYBIND11_PLUGIN(code) {
py::module m("code");
m.def("add_arrays", &add_arrays, "Add two NumPy arrays");
return m.ptr();
}
with test code
import cppimport
import numpy as np
code = cppimport.imp("code")
if __name__ == '__main__':
xs = np.arange(12)
print(xs)
print(code.add_arrays(xs, xs))
Using the C++ eigen
library to calculate matrix inverse and determinant¶
Example showing how Eigen
vectors and matrices can be passed in and
out of C++ functions. Note that Eigen
arrays are automatically
converted to/from numpy
arrays simply by including the
pybind/eigen.h
header. Because of this, it is probably simplest in
most cases to work with Eigen
vectors and matrices rather than
py::buffer
or py::array
where py::vectorize
is insufficient.
<%
cfg['compiler_args'] = ['-std=c++11', '-stdlib=libc++', '-mmacosx-version-min=10.7']
cfg['include_dirs'] = ['/Users/cliburn/hg/eigen']
setup_pybind11(cfg)
%>
#include <pybind11/pybind11.h>
#include <pybind11/eigen.h>
#include <Eigen/LU>
namespace py = pybind11;
// convenient matrix indexing comes for free
double get(Eigen::MatrixXd xs, int i, int j) {
return xs(i, j);
}
// takes numpy array as input and returns double
double det(Eigen::MatrixXd xs) {
return xs.determinant();
}
// takes numpy array as input and returns another numpy array
Eigen::MatrixXd inv(Eigen::MatrixXd xs) {
return xs.inverse();
}
PYBIND11_PLUGIN(code) {
pybind11::module m("code", "auto-compiled c++ extension");
m.def("inv", &inv);
m.def("det", &det);
return m.ptr();
}
and test code
import cppimport
import numpy as np
code = cppimport.imp("code")
if __name__ == '__main__':
A = np.array([[1,2,1],
[2,1,0],
[-1,1,2]])
print(A)
print(code.det(A))
print(code.inv(A))
Using pybind11
with openmp
¶
Here is a standard example of using OpenMP to integrate the value of
\(\pi\) written using pybind11
.
<%
cfg['compiler_args'] = ['-std=c++11', '-fopenmp']
cfg['linker_args'] = ['-fopenmp']
setup_pybind11(cfg)
%>
#include <omp.h>
#include <pybind11/pybind11.h>
#include <pybind11/numpy.h>
namespace py = pybind11;
double calc_pi(int n) {
/* Acquire GIL before calling Python code */
py::gil_scoped_acquire acquire;
int i;
double step = 1.0/n;
double s = 0;
#pragma omp parallel
{
double x;
#pragma omp for reduction(+:s)
for (i=0; i<n; i++) {
x = (i+0.5) * step;
s += 4.0/(1 + x*x);
}
}
return step * s;
};
PYBIND11_PLUGIN(code) {
pybind11::module m("code", "auto-compiled c++ extension");
m.def("calc_pi", [](int n) {
/* Release GIL before calling into C++ code */
py::gil_scoped_release release;
return calc_pi(n);
});
return m.ptr();
}
And here is the test code.
import cppimport
import numpy as np
code = cppimport.imp("code")
if __name__ == '__main__':
n = int(1e9)
print(code.calc_pi(n))
In [ ]: