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Outline

Study design for clinical research

Study design for genetic association studies.

Study design related to gene expression studies – RNA-Seq
I Technical variability in RNA-Seq
I Experimental Designs in RNA-Seq
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Study designs in clinical research
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Epidemiology and observational study

case-control study: Cases
and controls are identified first.

cohort study: Prospective
observational study – Identify
exposures (treatments) of
interest first. Then, follow up
subjects over time to assess
their effects.

cross-sectional study: Focus
on a single time point or time
interval. Exposures and
outcomes are determined at
the same time.

No randomization
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Clinical trial

The clinical trial design follows the EOD principles mostly
same as the classical experimental design, except

I It is harder to control various sources of variability comparing
to laboratory, agriculture, and industrial experiments.

I The variability of response variable may be larger than those
from genetically identical animal or plants.

I The enrollment of patients may be lengthy.
I Subjects may drop out during the study.

Need to satisfy ethical requirement

Common used strategies: randomization, blocking, and
blinding
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Examples of clinical trial design

Parallel design: Subjects are
randomized to one of two or
more arms. Each arm
receive a different
treatment.

Cross-over design: Each
patient gets both drugs and
serve as his own control.
Less sample size.

Factorial design: For two or
more intervention. Allow
study interactive effect.
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Genetics Association Studies
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Genetics association studies

Objective: Search genes/genetic variants that explain the
susceptibility or causality of a disease or outcome.

Bio-Specimen: DNA

Approaches:
I Candidate gene approach: Genotyping htSNPs in the genes or

sequencing the entire genes of interest
I Genome wide association studies: Genotyping high density

SNPs across the genome.
I Whole exome sequencing or whole genome sequencing: utilize

high throughput sequencing (HTS) technology.
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Biased and unbiased approaches

Biased approach: Candidate gene analysis
I Biologic or positional hypothesis:

Example: focus on functional candidate genes within a linkage
region

Unbiased approach:

I Genome wide association study (GWAS)
I Uses of htSNPs to exploit LD across the genome, and get

close to causal SNP
I Identifies potentially novel genes and pathways in disease

etiology

I Whole exome sequencing or whole genome sequencing
I Can be used for a full genome wide study (i.e. sequence all

samples). However, the cost is high.
I Can be used for variant or gene discovery for the phenotype of

interest by sequencing a subset of samples and then follow-up
the target variants by a large dataset.
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Background of disease genetics association

Concept of allelic association:
I Alleles A and B at two loci are associated if the event that a

gamete carries A is not independent of the event that the
gamete carries allele B.

AB ab AB ab ab AB AB ab ab ab

I Alleles A and B are not associated if they occur in the gametes
randomly.

AB Ab AB aB ab aB Ab ab AB aB

I Allelic association is population specific.

Linkage disequilibrium (LD): measure the degree of allelic
association between two markers.
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Background of disease genetic association

Disease/allele association
I Look for the association between markers and disease

phenotype.
I Allele A occurs more frequent in affected than unaffected

subjects.

I Assume the marker is in allelic association with the causal
allele.
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Background of disease genetics association

LD decays with time and distance:
Dt = (1 − r)tD0, where D0 is the LD at the starting point,
and r is the recombination rate.

LD makes markers tightly
linked, so we don’t need to
study every single SNP in the
same LD block -use
haplotype tagging SNP
(htSNP) instead.

Assume that ’significant’
htSNP identified is in strong
LD with the causal variant. http://snp.istech21.com/snpanalyzer/2.0/overview/
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Commonly used study designs

Family-based approach
I Recruit proband and his/her family members.
I The unaffected family members or parents can serve as

controls to evaluate variant association to the phenotype of
interest.

I Types of family structure: parents-offspring trio, discordant
sibpair with or without parents, extended family

I Apply to linkage studies: To identify chromosomal regions that
harbor genes linked to the phenotype of interest.

I Apply to association studies.
I Often limited by the number of families one can recruit.

case-control approach
I Use unrelated population samples, easier to recruit, but

selection of controls is important.
I prone to spurious results by population admixture
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Effect of Population admixture

Two (or more) mixing populations can lead to associations
created due to the differences in allele frequencies in the
mixing populations

I Population A: A allele is VERY common; Disease allele (D)
occurs randomly with A or a alleles.

I Population B: a allele is VERY common; Disease allele (D)
does not exist.

I Admixture population: Assume equal mixed of populations
A and B (allele A with frequency of 0.5), we will observed an
association between A and D.

Population structure will lead to false positive results for
genetic association studies.
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How to adjust population structure?

Family-based design

Genomic control: Estimate degree of population
stratification by typing 20-60 unlinked markers on same cases
and controls used for studying candidate gene association
(Devlin and Roeder 1999)

Structure: Alternative method based on explicit modeling of
population structure (Pritchard and Rosenberg (1999))

Eigenstrat: Use principal components (PCs) analysis to
explicitly model ancestry differences between cases and
controls. (Price et al. 2006)

The idea of using principal components to adjust for population
structure can also be applied to gene expression data.
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Visualization: Q-Q plots

Quantile-Quantile Plots compare observed distribution of test
statistics to that expected under the null hypothesis of no
association (McCarthy et al. 2008).

No association, observed = expected

Probably mostly population substructure, deviations across

distribution

Possible true associations, but also population substructure

True association, deviations at the highest end of the distribution

Useful R code: http://www.broadinstitute.org/diabetes/scandinavs/figures.html
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Gene expression studies
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Technology for measuring gene expression

Objective: Investigate differential expression of gene(s) due
to different conditions (e.g. disease status, treatment effect)

Bio-specimen: RNA

Methods for measuring expression levels:
I Reverse transcription polymerase chain reaction (RT-PCR):

the most sensitive technique to detect and quantifying mRNA
I Serial Analysis of Gene Expression (SAGE):
I gene expression microarray: Probe-based chip.
I RNA-Seq: sequencing of RNA molecules.

SAGE, expression microarray, and RNA-Seq are all high
throughput methods, which can detect genes across the
genome.
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RNA-Seq

Steps of a RNA-Seq experiment1

1. RNA is isolated from cells, fragmented at random positions,
and copied into complementary DNA (cDNA)

2. Fragments meeting a certain specified size (e.g. 200 − 300 bp)
are retained for PCR

3. Sequencing

4. Sequence alignment to generate sequence reads at each
position

5. Data: Counts of sequence reads or digital gene expression
(DGE)

6. Types of reads: junction reads, exonic reads, polyA reads

1Auer et al. Genetics 2010.
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Sources of variability

Types of variability applying to any experiments

Technical variability

Biological variability

I Variability between experimental units (samples)
I Variability between factors of interest (treatment groups)
I Biological variability is not affected by technical variability.

These sources of variability need to be considered in the
experimental design.
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Technical variability

Types of technical variability:

between sequencing
platforms

between library construction

between flow cells (different
runs)

between lanes

Flow cells: A glass slide with 1,
2, or 8 separate lanes (Illumina
RNA-Seq)
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Designs of evaluating technical variability

Example I2

2Marioni et al. Genome Research, 2008.
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Designs of evaluating technical variability

Example I: Marioni et al.

Objective: Assess the technical reproducibility of Illumina
RNA-Seq

I Comparison between platforms
I Evaluate technical variability of RNA-Seq

Outline of the experiment
I Two sequencing platforms: Illumina RNA-Seq (8 lanes) and

Affymetrix microarray
I Two samples: a liver and a kidney samples
I Two cDNA concentration (3pM and 1.5pM)
I One lane for a control sample.
I Each sample were sequenced 7 times total in two flow-cell runs.
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Design of evaluating technical variability

Example I: Marioni et al.:

Outline of the experiment
I Two sequencing platforms: Illumina RNA-Seq (8 lanes) and

Affymetrix microarray
I Two samples: a liver and a kidney samples
I Two cDNA concentration (3pM and 1.5pM)
I One lane for a control sample.
I Each sample were sequenced 7 times total in two flow-cell runs.

What can they compare with this design?

I Platform differences: Two methods for gene expression
I Technical variability: Same sample sequenced in different

lanes, two separate runs
I Effect of cDNA concentration: two concentrations (3 and

1.5pM)
I Differential expression between liver and kidney tissues:

Two tissue samples
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Design of evaluating technical variability

Example I: Marioni et al.:

Outline of the experiment
I Two sequencing platforms: Illumina RNA-Seq (8 lanes) and

Affymetrix microarray
I Two samples: a liver and a kidney samples
I Two cDNA concentration (3pM and 1.5pM)
I One lane for a control sample.
I Each sample were sequenced 7 times total in two flow-cell runs.

What can they compare with this design?
I Platform differences: Two methods for gene expression

I Technical variability: Same sample sequenced in different
lanes, two separate runs

I Effect of cDNA concentration: two concentrations (3 and
1.5pM)

I Differential expression between liver and kidney tissues:
Two tissue samples
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Design of evaluating technical variability

Example I: Marioni et al.:

Outline of the experiment
I Two sequencing platforms: Illumina RNA-Seq (8 lanes) and

Affymetrix microarray
I Two samples: a liver and a kidney samples
I Two cDNA concentration (3pM and 1.5pM)
I One lane for a control sample.
I Each sample were sequenced 7 times total in two flow-cell runs.

What can they compare with this design?
I Platform differences: Two methods for gene expression
I Technical variability: Same sample sequenced in different

lanes, two separate runs

I Effect of cDNA concentration: two concentrations (3 and
1.5pM)

I Differential expression between liver and kidney tissues:
Two tissue samples
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Design of evaluating technical variability

Example I: Marioni et al.:

Outline of the experiment
I Two sequencing platforms: Illumina RNA-Seq (8 lanes) and

Affymetrix microarray
I Two samples: a liver and a kidney samples
I Two cDNA concentration (3pM and 1.5pM)
I One lane for a control sample.
I Each sample were sequenced 7 times total in two flow-cell runs.

What can they compare with this design?
I Platform differences: Two methods for gene expression
I Technical variability: Same sample sequenced in different

lanes, two separate runs
I Effect of cDNA concentration: two concentrations (3 and

1.5pM)

I Differential expression between liver and kidney tissues:
Two tissue samples
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Design of evaluating technical variability

Example I: Marioni et al.:

Outline of the experiment
I Two sequencing platforms: Illumina RNA-Seq (8 lanes) and

Affymetrix microarray
I Two samples: a liver and a kidney samples
I Two cDNA concentration (3pM and 1.5pM)
I One lane for a control sample.
I Each sample were sequenced 7 times total in two flow-cell runs.

What can they compare with this design?
I Platform differences: Two methods for gene expression
I Technical variability: Same sample sequenced in different

lanes, two separate runs
I Effect of cDNA concentration: two concentrations (3 and

1.5pM)
I Differential expression between liver and kidney tissues:

Two tissue samples
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Plots for assessing lane effect

A: Same sample, same concentration; B Same sample, different concentration; C&D:Goodness-of-fit for Poisson
distribution – kidney samples
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Comparison between platforms Comparing counts from Illumina
sequencing with normalized intensities from the array, for kidney
(left) and liver (right).

Spearman correlation = 0.73 for liver, 0.75 for kidney
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Conclusion and issues in the design

Summary of Marioni et al. 2008
I Illumina RNA-Seq is replicable and has advantage over

microarray
I Lane effect is small. (??)
I Larger difference between runs (Batch effect)
I larger difference between cDNA concentration
I Suggested that it is OK to run one sample per lane

Issues in the Design: No replicates, one sample only
I Is it sufficient to use one sample per tissue type to conclude

low lane effect?
I Can we partition biological variation (e.g. liver vs. kidney)

from technical variation?
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Example II: McIntyre et al.3

3McIntyre et al. BMC Genomics 2011.
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Example II: McIntyre et al.
RNA-seq: technical variability and sampling

Objective:
I Does technical variability exist?
I Is the impact of technical variability the same for all levels of

coverage?

Experiments:
1. Three independent samples (D. melanogaster female), two

technical replicates per sample, run on two lanes of a
Solex/Illumina flow cell.

2. Three independent samples (D. simulans male), two technical
replicates per sample, run on two lanes of a flow cell.

3. One sample (D. melanogaster cell lines), 5 replicates, run on 5
lanes of a flow cell.

All are 36 base-paired end. The relationship of lanes for cell
lines (same or independent flow cells) is unknown.
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D. melanogaster and D. simulans are single library run on multiple
lanes. D. melanogaster c167 cell lines are not exactly the same
library run.
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Variation of sequence reads

Table 1 from McIntyre et al. 2011

Data variation seen between technical replicates and
between biological replicates.
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Visualization of the data

Coefficient of variation (CV) vs. average depth per
nucleotide (APN); APN: within each lane, average number of reads per exon

Lower coverage has higher variation
A: D. simulans BR2,TR2; B: D. melanogaster female heads BR2,,
TR1; C: TR1 for cell line c167.
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Visualization of the data

MA plot: Minus vs. average, Bland and Altman plot

Green line: One standard deviation region
Low expression level has higher disagreement
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Summary of McIntyre et al. 2011

Technical variation exits:
I Mappable reads per lane various among the technical replicates
I Inconsistent detection of exons between technical replicates:

The number of exons detected increases with the number of
mappable reads.

I Agreement between technical replicates varies: kappa ranges
from 0.63-0.81

I Higher variability for those with low coverage (< 5 reads per
nucleotide) or low expression level

I Random sampling of total RNA reads (e.g. 0.0013% of 30
millions reads) may contribute to the variability.

Biological variation is larger than technical variation.

Suggestion: Inclusion of technical replicates is as important
as biological replicates. Multiplexing design can eliminate the
lane effect for a small experiment.
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Designs for RNA-Seq
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Designs for RNA-Seq

Reference paper:4

4Auer and Doerge, Genetics, 2010.
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Unreplicated data

Three levels of sampling in RNA-Seq:
I Subject sampling
I RNA sampling
I Fragments sampling

Unreplicated data:
I Mostly from observational studies
I In the case of RNA-Seq

I No biological replicates
I One sample per treatment group

Problem: This design can investigate only the differences
derived from RNA and fragment-level sampling, but not
subject sampling.
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More on sampling in RNA-Seq

Subject sampling: Subjects (e.g. organisms or individuals)
are ideally drawn from a large population to which the results
can be generalized.

RNA sampling: occurs during the experimental procedure
when RNA is isolated from the cell(s).

Fragment sampling: Only certain fragmented RNAs are
retained for amplification. The sequencing reads do not
represent 100% of the fragements loaded into a flow cell
resulted in fragment sampling.
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More on RNA and fragment sampling

Library concentration 10nM=4pM→ 4
1012 × 6.02× 1023 = 2.408× 1012 total molecules in the library→

30,000,000

2.408×1012 = 0.0013% of molecules to be analyzed.
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Unreplicated data

Outline of experiment:

mRNA isolated from
subjects within different
treatment group
(T1, · · · ,T7).

a ΦX genomic sample is
loaded to lane 5 as a control

ΦX can be used to
recalibrate the quality score
of sequencing reads from
other lane.

Problems:

Lack of knowledge about
biological variation

Unable to estimate within
treatment variation leading
to no basis for inference of
between treatment effect.

Results are specific to the
subjects in the study and
can’t be generalized.
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Replicated data: Multiple flow-cell design

Exp Design: Seven treatment groups, three biological
replicates, and one sample per lane. Tij for i th treatment
group and j th replicate. i = 1, · · · , 7 and j = 1 − 3.

Factor of consideration: treatment effect (τik) for gene k .

(Dependent variable)ijk = αk + τik + εijk

Problem: Cannot separate treatment effect from technical
effect since biological replicates are run in different flow-cells.
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Balanced block design

Objective: To control two sources of technical variation:
batch effect and lane effect.

Multiplexing: All samples are pooled to be run within the
same lane.

I Take the advantage of bar coding of RNA fragments.
I To keep the same sequence depth, divide the amplification

product to run in multiple lanes
I If # of lanes= # of samples, it produces the same sequence

depth as running one sample per lane.
I Each lane has the same set of samples – eliminate the lane

effect
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Balanced Block Design - I

Three biological replicates per treatment (j = 1, · · · , 3)

treatment group (A and B) (i = 1, · · · , 2)

RNA are bar-coded and pooled

Divide the pool to six equal subset to run on 6 lanes (six
technical replicates, t = 1, · · · , 6)

Single flow cell run
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Balanced Block design - I
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Analysis model for BBD I

Dependent variable: DGE measures, defined by the
distribution you assumed for the sequence reads. For example,

I Auer et al. assumed yijk ∼ Possion(µijk ).
I DESeq2 uses Negative Binomial model.

In Auer et al, yijk =
∑

t yijkt , where i for treatment, j for
sample, k for gene, and t for the 6 technical replicates

Factors considered in the GLM: treatment effect (τik).

(Dependent variable)ijk = αk + τik + εijk

No lane effect was included in this model as they considered
lane effects were balanced across treatment groups.

No batch effect in this case since it is only one flow-cell run.
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Balanced block design II-without multiplexing

A design that can run one sample per lane but also has good
randomization of samples within each flow-cell.

Three biological replicates within seven treatment groups. Tij ,
where i = 1, · · · , 7 for treatment groups and j = 1, · · · , 3 for
samples.

Two block effects: flow cells and lanes.
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Analysis for design II

Dependent variable: Same as before, but it is coded to
indicate treatment (i), flow-cell (f ), lane (l), and gene (k).

Factors to consider: treatment effect (τik), flow-cell effect
(νfk ), and lane effect (ωlk).

(Dependent variable)ijflk = αk + τik + νfk + ωlk + εijflk

εijflk is the error term.
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Summary for Balanced block design

The feature of unique bar-code for RNA fragments in
RNA-Seq makes blocking design possible.

Can control batch and lane effects

Multiplex design illustrated here requires the number of unique
bar-codes equal or greater than the samples in each lane.
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Balanced incomplete block design (BIBD)

Assume:

number of treatment (I )

number of biological replicates per treatment (J)

number of unique barcodes (s) that can be included in one
lane

number of lanes available for sequencing (L)

If the number of unique bar codes (s) in one lane is less than the
number of treatments (s < I ), balanced block design is impossible.
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BIBD

For a given number of treatment groups (I ), sample per
treatment group (J), unique barcodes (s), and number of
available lanes (L), the total number of technical replicates
(T ) in BBID is T = sL

IJ .

Example of BIBD:
I Assume 3 treatment group (i = 3), one subject per treatment

group (j = 1), two unique barcodes (s = 2), and three
available lanes (L = 3).

I The total number of technical replicates is T = 2×3
3×1 = 2.

Tijk is for treatment i , subject j , and
technical replicates t.

For Illumina, a total of 12 unique
barcodes can be used in one lane.
Therefore, 96 samples can be multiplexed
in one flow-cell run.
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Performance comparison between designs by simulation
studies

Tijk : i for treatment, j for sample, k for technical replicates.
A: unreplicated data; B: no biological replicates, two technical
replicates (BBD without biological replicates); C: no technical
replicates (unblocked design); D:BBD with biological and technical
replicates.
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C&D always perform better than A&B. When simulation included
lane and/or batch effects, D (balanced block design) performed
better than C (unblocked design).
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Summary

The classical principals of experimental design still apply to
RNA-Seq

Technical variation exists and should be taken into account.
I Lane effect, batch effect

RNA-Seq data consist of variation from subject sampling,
RNA sampling, RNA fragment sampling

Multiplexing in NGS allow us to implement randomization and
blocking.

Take advantages of visualization tools (e.g. scatter plots, MA
plots, QQ plots) to learn your data.

When you deal with human data for genetic study, make sure
examining the effect of population structure.
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