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Study designs in clinical research

Epidemiology and observational study

Case-control study

Assess the
effect of past g

Determine case
—control status

exposures
I Cohort study
Determine Assess case-
—
exposures control status

No randomization

@ case-control study: Cases
and controls are identified first.

@ cohort study: Prospective
observational study — Identify
exposures (treatments) of
interest first. Then, follow up
subjects over time to assess
their effects.

@ cross-sectional study: Focus
on a single time point or time
interval. Exposures and
outcomes are determined at
the same time.



Study designs in clinical research

Clinical trial

@ The clinical trial design follows the EOD principles mostly
same as the classical experimental design, except

» It is harder to control various sources of variability comparing
to laboratory, agriculture, and industrial experiments.

» The variability of response variable may be larger than those
from genetically identical animal or plants.

» The enrollment of patients may be lengthy.

» Subjects may drop out during the study.

@ Need to satisfy ethical requirement

@ Common used strategies: randomization, blocking, and
blinding
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Examples of clinical trial design

Parallel design: o Parallel design: Subjects are
patient — randomized to one of two or
randomization more arms. Each arm

™~ receive a different

Cross-over design treatment.
randomization |~ —— o Cross-over design: Each

[1me ] [1rea] patient gets both drugs and
Wesh out period serve as his own control.
Factorial Design Less sample size.
TrtAandB Trt A only
Trt B only Control o Factorial design: For two or

more intervention. Allow
study interactive effect.

e.g. investigating two drugs, A and B.
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Genetics Association Studies

Genetics association studies

e Objective: Search genes/genetic variants that explain the
susceptibility or causality of a disease or outcome.
@ Bio-Specimen: DNA
e Approaches:
» Candidate gene approach: Genotyping htSNPs in the genes or
sequencing the entire genes of interest
» Genome wide association studies: Genotyping high density
SNPs across the genome.

» Whole exome sequencing or whole genome sequencing: utilize
high throughput sequencing (HTS) technology.



Genetics Association Studies

Biased and unbiased approaches

@ Biased approach: Candidate gene analysis

» Biologic or positional hypothesis:
Example: focus on functional candidate genes within a linkage
region

@ Unbiased approach:

» Genome wide association study (GWAS)
> Uses of htSNPs to exploit LD across the genome, and get
close to causal SNP
> Identifies potentially novel genes and pathways in disease
etiology
» Whole exome sequencing or whole genome sequencing
> Can be used for a full genome wide study (i.e. sequence all
samples). However, the cost is high.
> Can be used for variant or gene discovery for the phenotype of
interest by sequencing a subset of samples and then follow-up
the target variants by a large dataset.



Genetics Association Studies

Background of disease genetics association

@ Concept of allelic association:

> Alleles A and B at two loci are associated if the event that a
gamete carries A is not independent of the event that the
gamete carries allele B.

(k) a0) (a8) () () (1) (8) (a) () ()

» Alleles A and B are not associated if they occur in the gametes
randomly.

(k) (o) (2) (a8) (o) (a8) () (o) () ae)

» Allelic association is population specific.

e Linkage disequilibrium (LD): measure the degree of allelic
association between two markers.



Genetics Association Studies

Background of disease genetic association

o Disease/allele association
» Look for the association between markers and disease

phenotype.
» Allele A occurs more frequent in affected than unaffected
subjects.
Affected Unaffected
a Aa a
A a — &
a a

» Assume the marker is in allelic association with the causal

allele.
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Background of disease genetics association

@ LD decays with time and distance:
D; = (1 — r)tDg, where Dy is the LD at the starting point,
and r is the recombination rate.

@ LD makes markers tightly cenomernide Taaging SIP

« Using 12 between pairwise SNPs : tagShP

||nked, so we don’t need to « Reference : Carlson et &l., Am.J.Hum.Genet., 2004
study every single SNP in the LSS S
same LD block -use e
; A (cl[e)T)(c Al
haplotype tagging SNP g CJ & imi b
(htSNP) instead. AlG) c Cl g
T A clc Cl sw2

@ Assume that 'significant’ NN e
. i .. hgt? Figh? high 7
htSNP identified is in strong
LD Wlth the Causal Variant_ http://snp.istech21.com/snpanalyzer/2.0/overview/
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Commonly used study designs

@ Family-based approach

» Recruit proband and his/her family members.

» The unaffected family members or parents can serve as
controls to evaluate variant association to the phenotype of
interest.

Types of family structure: parents-offspring trio, discordant
sibpair with or without parents, extended family

Apply to linkage studies: To identify chromosomal regions that
harbor genes linked to the phenotype of interest.

» Apply to association studies.

» Often limited by the number of families one can recruit.

v

v

@ case-control approach
» Use unrelated population samples, easier to recruit, but
selection of controls is important.
> prone to spurious results by population admixture
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Effect of Population admixture

@ Two (or more) mixing populations can lead to associations
created due to the differences in allele frequencies in the
mixing populations

» Population A: A allele is VERY common; Disease allele (D)
occurs randomly with A or a alleles.

» Population B: a allele is VERY common; Disease allele (D)
does not exist.

» Admixture population: Assume equal mixed of populations
A and B (allele A with frequency of 0.5), we will observed an
association between A and D.

@ Population structure will lead to false positive results for
genetic association studies.
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How to adjust population structure?

o Family-based design

@ Genomic control: Estimate degree of population
stratification by typing 20-60 unlinked markers on same cases
and controls used for studying candidate gene association
(Devlin and Roeder 1999)

@ Structure: Alternative method based on explicit modeling of
population structure (Pritchard and Rosenberg (1999))

e Eigenstrat: Use principal components (PCs) analysis to
explicitly model ancestry differences between cases and
controls. (Price et al. 2006)

The idea of using principal components to adjust for population
structure can also be applied to gene expression data.
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Visualization: Q-Q plots

R E EE R E R 0 f Bk D B o® 0 L bk oA s B
# expected 1 expected ¥ expected ¥ expacted

Quantile-Quantile Plots compare observed distribution of test
statistics to that expected under the null hypothesis of no
association (McCarthy et al. 2008).

@ No association, observed = expected

@ Probably mostly population substructure, deviations across
distribution

@ Possible true associations, but also population substructure
@ True association, deviations at the highest end of the distribution

Useful R code: http://www.broadinstitute.org/diabetes/scandinavs/figures.html
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Gene expression studies

Technology for measuring gene expression

e Objective: Investigate differential expression of gene(s) due
to different conditions (e.g. disease status, treatment effect)

o Bio-specimen: RNA
@ Methods for measuring expression levels:

» Reverse transcription polymerase chain reaction (RT-PCR):
the most sensitive technique to detect and quantifying mRNA

» Serial Analysis of Gene Expression (SAGE):

> gene expression microarray: Probe-based chip.

» RNA-Seq: sequencing of RNA molecules.

@ SAGE, expression microarray, and RNA-Seq are all high
throughput methods, which can detect genes across the
genome.
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Steps of a RNA-Seq experiment!
1. RNA is isolated from cells, fragmented at random positions,
and copied into complementary DNA (cDNA)

2. Fragments meeting a certain specified size (e.g. 200 — 300 bp)
are retained for PCR

3. Sequencing

4. Sequence alignment to generate sequence reads at each
position

5. Data: Counts of sequence reads or digital gene expression
(DGE)

6. Types of reads: junction reads, exonic reads, polyA reads

!Auer et al. Genetics 2010.



Gene expression studies

Sources of variability

Types of variability applying to any experiments
@ Technical variability
@ Biological variability
» Variability between experimental units (samples)

» Variability between factors of interest (treatment groups)
» Biological variability is not affected by technical variability.

These sources of variability need to be considered in the
experimental design.
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Technical variability

Flow cells: A glass slide with 1,
2, or 8 separate lanes (lllumina

Types of technical variability: RNA-Seq)

@ between sequencing
platforms

@ between library construction

@ between flow cells (different
runs)

@ between lanes
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Designs of evaluating technical variability

Example 12

Methods

RNA-seq: An assessment of technical reproducibility
and comparison with gene expression arrays

John C. Marioni,"® Christopher E. Mason,*¢ Shrikant M. Mane,*
Matthew Stephens,'>” and Yoav Gilad"’

' Department of Human Genetics, University of Chicago, Chicago, lllinois 60637, USA; “Program on Neurogenetics,

Yale University School of Medicine, New Haven, Connecticut 06520, USA; *Department of Genetics, Yale University

School of Medicine, New Haven, Connecticut 06520, USA; *Keck Biotechnology Laboratory, New Haven, Connecticut 06511,
USA; *Department of Statistics, University of Chicago, Chicago, fllinois 60637, USA

2Marioni et al. Genome Research, 2008.
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Designs of evaluating technical variability

Example I: Marioni et al.

@ Objective: Assess the technical reproducibility of Illumina
RNA-Seq
» Comparison between platforms
» Evaluate technical variability of RNA-Seq

@ Outline of the experiment

» Two sequencing platforms: lllumina RNA-Seq (8 lanes) and
Affymetrix microarray

Two samples: a liver and a kidney samples

Two cDNA concentration (3pM and 1.5pM)

One lane for a control sample.

Each sample were sequenced 7 times total in two flow-cell runs.

vV vy VvVvyy



Gene expression studies

A B
Liver sample  Kidney sample Illumina study design
Total RNA Total RNA
/

#
A

mRNA purification mRNA purification

v Wi

Hybridization of each sample to Sequencing each sample
Affymetrix microarrays in 3 using lllumina on 7 lanes
technical replicates across two plates

\\ N

Analysis to find differentially expressed genes
and comparison between technologies

Kidney
Liver
* Sequenced at a concentration of 1.5 pM
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Design of evaluating technical variability

Example I: Marioni et al.:

@ QOutline of the experiment

>

v VvYyy

>

Two sequencing platforms: Illumina RNA-Seq (8 lanes) and
Affymetrix microarray

Two samples: a liver and a kidney samples

Two cDNA concentration (3pM and 1.5pM)

One lane for a control sample.

Each sample were sequenced 7 times total in two flow-cell runs.

@ What can they compare with this design?
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Design of evaluating technical variability

Example I: Marioni et al.:

@ QOutline of the experiment

>

v VvYyy

>

Two sequencing platforms: Illumina RNA-Seq (8 lanes) and
Affymetrix microarray

Two samples: a liver and a kidney samples

Two cDNA concentration (3pM and 1.5pM)

One lane for a control sample.

Each sample were sequenced 7 times total in two flow-cell runs.

@ What can they compare with this design?

>

Platform differences: Two methods for gene expression
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Design of evaluating technical variability

Example I: Marioni et al.:

@ QOutline of the experiment

>

v VvYyy

>

Two sequencing platforms: Illumina RNA-Seq (8 lanes) and
Affymetrix microarray

Two samples: a liver and a kidney samples

Two cDNA concentration (3pM and 1.5pM)

One lane for a control sample.

Each sample were sequenced 7 times total in two flow-cell runs.

@ What can they compare with this design?

>

>

Platform differences: Two methods for gene expression
Technical variability: Same sample sequenced in different
lanes, two separate runs
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Design of evaluating technical variability

Example I: Marioni et al.:

@ QOutline of the experiment

>

v VvYyy

>

Two sequencing platforms: Illumina RNA-Seq (8 lanes) and
Affymetrix microarray

Two samples: a liver and a kidney samples

Two cDNA concentration (3pM and 1.5pM)

One lane for a control sample.

Each sample were sequenced 7 times total in two flow-cell runs.

@ What can they compare with this design?

>

>

>

Platform differences: Two methods for gene expression
Technical variability: Same sample sequenced in different
lanes, two separate runs

Effect of cDNA concentration: two concentrations (3 and
1.5pM)



Gene expression studies

Design of evaluating technical variability

Example I: Marioni et al.:

@ QOutline of the experiment

» Two sequencing platforms: lllumina RNA-Seq (8 lanes) and
Affymetrix microarray
Two samples: a liver and a kidney samples
Two cDNA concentration (3pM and 1.5pM)
One lane for a control sample.
» Each sample were sequenced 7 times total in two flow-cell runs.
o What can they compare with this design?
» Platform differences: Two methods for gene expression
» Technical variability: Same sample sequenced in different
lanes, two separate runs
» Effect of cDNA concentration: two concentrations (3 and
1.5pM)
» Differential expression between liver and kidney tissues:
Two tissue samples

v VvYyy



Plots for assessing lane effect

A pair of lanes, same concentration

Gene expression studies

B pair of lanes, different concentrations
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Comparison between platforms Comparing counts from lllumina
sequencing with normalized intensities from the array, for kidney
(left) and liver (right).

Kidney: Array intensities vs sequencing counts Liver: Array intensities vs sequencing counts
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Spearman correlation = 0.73 for liver, 0.75 for kidney
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Conclusion and issues in the design

@ Summary of Marioni et al. 2008

>

vV vy vy

[llumina RNA-Seq is replicable and has advantage over
microarray

Lane effect is small. (?7)

Larger difference between runs (Batch effect)

larger difference between cDNA concentration
Suggested that it is OK to run one sample per lane

o Issues in the Design: No replicates, one sample only

>

>

Is it sufficient to use one sample per tissue type to conclude
low lane effect?

Can we partition biological variation (e.g. liver vs. kidney)
from technical variation?
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Example 1I: Mclntyre et al.3

Mclntyre et al. BMC Genomics 2011, 12293

htp://www.biomedcentral.com/1471-2164/12/293 BMC
Genomics
RESEARCH ARTICLE Open Access

RNA-seq: technical variability and sampling

Lauren M Mclmyrew, Kenneth K Lopianoz“ Alison M Morse', Victor Amin , Ann L Cber(f, Linda J Young2 and
Sergey V Nuzhdin®

3Mclntyre et al. BMC Genomics 2011.



Gene expression studies

Example 11: Mclntyre et al.
RNA-seq: technical variability and sampling

@ Objective:
» Does technical variability exist?

» Is the impact of technical variability the same for all levels of
coverage?

o Experiments:

1. Three independent samples (D. melanogaster female), two
technical replicates per sample, run on two lanes of a
Solex/Illumina flow cell.

2. Three independent samples (D. simulans male), two technical
replicates per sample, run on two lanes of a flow cell.

3. One sample (D. melanogaster cell lines), 5 replicates, run on 5
lanes of a flow cell.

All are 36 base-paired end. The relationship of lanes for cell
lines (same or independent flow cells) is unknown.
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D. melanogaser D. simulans Cell line “c167”

Biorepl Biorep2 Biorep3 Biorepl Biorep2 Biorep3 Biorep3
T1 T2 T1 T2 T1 T2 T1 T2 T1 T2 T1 T2 T1 T2 T3 T4 5

D. melanogaster and D. simulans are single library run on multiple
lanes. D. melanogaster c167 cell lines are not exactly the same
library run.
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Variation of sequence reads

Table 1 from Mclntyre et al. 2011

Table 1 reads per lane in each of the three experiments
Experiment BR TR Mappable Exons Exons with an average coverage of morethan5  Contigs present in all samples of
Reads detected reads per nucleotide each experiment
€167 11 588868¢ 39156 13432 19243
167 12 5951765 39202 13517 19243
167 13 7146461 39954 15684 19243
c167 1 4 7544117 40201 16355 19243
167 15 7377032 40120 16089 19248
D. sim. 11 5174398 43878 14517 20339
D. sim. 12 4979485 45808 13912 20333
D. sim. 21 27595266 51701 35303 20339
D. sim. 2 2 28691914 51857 35942 20333
D. sim. L 27601233 51834 34968 20339
D. sim. 3 2 27748704 51822 35008 20339
D. mel. 21 10584341 48114 133% 17864
D. mel 2 2 13399722 49073 19916 17864
D. mel. 301 12065885 48281 14794 17864
D. mel. 32 11794255 48319 17961 17864
D. mel 4 1 10375138 47812 15718 17864
D. mel. 4 2 9283976 47460 14324 17864

Data variation seen between technical replicates and
between biological replicates.
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Visualization of the data

Coefficient of variation (CV) vs. average depth per
nucleotide (APN), APN: within each lane, average number of reads per exon

Lower coverage has higher variation
A: D. simulans BR2,TR2; B: D. melanogaster female heads BR2,,
TR1; C: TR1 for cell line c167.
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Visualization of the data

MA plot: Minus vs. average, Bland and Altman plot

Difference in log(RPKM)

Average log(RPKM)

Green line: One standard deviation region
Low expression level has higher disagreement
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Summary of Mclntyre et al. 2011

o Technical variation exits:

» Mappable reads per lane various among the technical replicates

» Inconsistent detection of exons between technical replicates:
The number of exons detected increases with the number of
mappable reads.

» Agreement between technical replicates varies: kappa ranges
from 0.63-0.81

» Higher variability for those with low coverage (< 5 reads per
nucleotide) or low expression level

» Random sampling of total RNA reads (e.g. 0.0013% of 30
millions reads) may contribute to the variability.

o Biological variation is larger than technical variation.

@ Suggestion: Inclusion of technical replicates is as important
as biological replicates. Multiplexing design can eliminate the
lane effect for a small experiment.
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Designs for RNA-Seq

Reference paper:*

Statistical Design and Analysis of RNA Sequencing Data

Paul L. Auer and R, W. Doerge'

Department of Statistics, Purdue Universty, West Lafayete, Indiana 47907

Manuscript received January 31, 2010
Accepted for publication March 15, 2010

*Auer and Doerge, Genetics, 2010.



Designs for RNA-Seq

Unreplicated data

@ Three levels of sampling in RNA-Seq:
» Subject sampling
» RNA sampling
» Fragments sampling

@ Unreplicated data:

» Mostly from observational studies
> In the case of RNA-Seq

> No biological replicates
» One sample per treatment group
@ Problem: This design can investigate only the differences
derived from RNA and fragment-level sampling, but not
subject sampling.
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More on sampling in RNA-Seq

@ Subject sampling: Subjects (e.g. organisms or individuals)
are ideally drawn from a large population to which the results
can be generalized.

@ RNA sampling: occurs during the experimental procedure
when RNA is isolated from the cell(s).

e Fragment sampling: Only certain fragmented RNAs are
retained for amplification. The sequencing reads do not
represent 100% of the fragements loaded into a flow cell
resulted in fragment sampling.
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More on RNA and fragment sampling

Start with 100 ng of mRNA
B A ‘good’ lane has ~30 miilion
AL [ LIMTR Mt clusters- this represents
0.0013 % of starting library...
Library Assume 500ng with )
mean of 250 bp in 400ut Filter clusters | ~75% pass QC

synthesis
Start with f r
f
library diluted | | 100% of library
to 10nM A )
Sequencing by |
synthesis

A

Denature 2ul 0.50 % of library
in 20ul total
Y Cluster generation
R VRN v
L S
7 ~
LLF> Dilute 8ul to 1mL
A U U __Load 100uL per FClane
T 020%of lbrory 0.02 % loaded onto lane
= not all will bind..

Library concentration 10nM=4pM — > X 6.02 x 10% = 2.408 x 10'? total molecules in the library —

30,000,000 _ .0013% of molecules to be analyzed.

2.408 x 1012
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Unreplicated data

T[2[3[4[5]6]7[8
Flow-cell 1
Outline of experiment: S o R o o R S
@ mRNA isolated from
subjects within different
Problems:

treatment group
(Ty,---, T7). @ Lack of knowledge about

o a X genomic sample is biological variation

loaded to lane 5 as a control @ Unable to estimate within
treatment variation leading
to no basis for inference of
between treatment effect.

@ ®X can be used to
recalibrate the quality score

of sequencing reads from
other lane. @ Results are specific to the

subjects in the study and
can’'t be generalized.
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Replicated data: Multiple flow-cell design

T[Z[3[4[5[6[718] ["[2[3[2[5[6[7[5] [M[2[3[4[5[6]7[®

Flow-cell 1 Flow-cell 2 Flow-cell 3

Ti | Tot | Tt | Tan (BX| Tst | Tot | Ton | | Taz | To2| Toz | Taz [BX | oz | Toz | Trz| | Ta| Tos | Tas | Taa || Tss | Tea | Trs

o Exp Design: Seven treatment groups, three biological
replicates, and one sample per lane. Tj; for it treatment
group and j" replicate. i=1,---,7 and j =1 —3.

e Factor of consideration: treatment effect (i) for gene k.
(Dependent variable),-jk = ak + Tik + €jjk

@ Problem: Cannot separate treatment effect from technical
effect since biological replicates are run in different flow-cells.
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Balanced block design

@ Objective: To control two sources of technical variation:
batch effect and lane effect.

o Multiplexing: All samples are pooled to be run within the
same lane.

» Take the advantage of bar coding of RNA fragments.

» To keep the same sequence depth, divide the amplification
product to run in multiple lanes

> If # of lanes= # of samples, it produces the same sequence
depth as running one sample per lane.

» Each lane has the same set of samples — eliminate the lane
effect



Designs for RNA-Seq

Balanced Block Design - |

Three biological replicates per treatment (j =1,--- ,3)
treatment group (A and B) (i=1,---,2)
RNA are bar-coded and pooled

Divide the pool to six equal subset to run on 6 lanes (six
technical replicates, t =1,--- ,6)

Single flow cell run
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Balanced Block design

Balanced Blocked Design Confounded Design

+ Treatment A A A B B B « Treatment A A A B B B

« Biological replicate « Biological replicate

*RNA extraction * RNA extraction and
preparation for
sequencing

+ Bar-code and pool

+ Preparation for sequencing

+ Sequence technical replicates *+ Sequence each
sample in alane

Lane 1 LaneZ Lane 3 Lanea Lane 5 Lane6 Lane1 Lane2 Lane3 Lane4 Lane5 Lane6




Designs for RNA-Seq

Analysis model for BBD |

e Dependent variable: DGE measures, defined by the
distribution you assumed for the sequence reads. For example,

> Auer et al. assumed yjy ~ Possion( ).
» DESeq?2 uses Negative Binomial model.

In Auer et al, yjx = Y, Vijke, where i for treatment, j for
sample, k for gene, and t for the 6 technical replicates

e Factors considered in the GLM: treatment effect (7).
(Dependent variable)jx = ok + Tik + €jjk

@ No lane effect was included in this model as they considered
lane effects were balanced across treatment groups.

@ No batch effect in this case since it is only one flow-cell run.
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Balanced block design Il-without multiplexing

T[2[3[A[5[6[7]8] [T[2[3[A[5[6[7[¢8] [T[2[3[A]5]6]7]®

Flow-cell 1 Flow-cell 2 Flow-cell 3

Tir | Tog | Tao | Tar [0 | Tea | Toa | Ton | | Tra| Tha | Ton | Tam || Ta | Tat | Toa| | Vo | Ton | Tra | T || To | Tap | g

@ A design that can run one sample per lane but also has good
randomization of samples within each flow-cell.

@ Three biological replicates within seven treatment groups. Tj;,
where i = 1,--- ,7 for treatment groups and j =1,---,3 for
samples.

@ Two block effects: flow cells and lanes.



Designs for RNA-Seq

Analysis for design |l

o Dependent variable: Same as before, but it is coded to
indicate treatment (/), flow-cell (f), lane (/), and gene (k).

e Factors to consider: treatment effect (i), flow-cell effect
(vs), and lane effect (wpk).

(Dependent variable),-jf/k = Qi + Tik + Ve + Wik + €ijfik

€jjfik is the error term.
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Summary for Balanced block design

@ The feature of unique bar-code for RNA fragments in
RNA-Seq makes blocking design possible.

@ Can control batch and lane effects

@ Multiplex design illustrated here requires the number of unique
bar-codes equal or greater than the samples in each lane.
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Balanced incomplete block design (BIBD)

Assume:

@ number of treatment (/)
@ number of biological replicates per treatment (J)

@ number of unique barcodes (s) that can be included in one
lane

@ number of lanes available for sequencing (L)

If the number of unique bar codes (s) in one lane is less than the
number of treatments (s < /), balanced block design is impossible.
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e For a given number of treatment groups (/), sample per
treatment group (J), unique barcodes (s), and number of
available lanes (L), the total number of technical replicates
(T)inBBIDis T = .

e Example of BIBD:

» Assume 3 treatment group (i = 3), one subject per treatment
group (j = 1), two unique barcodes (s = 2), and three
available lanes (L = 3). oy

> The total number of technical replicates is T = £X3 = 2.

TT2[3 @ Tjjy is for treatment /, subject j, and
technical replicates t.

@ For lllumina, a total of 12 unique

Ta11{Ta11| a1 barcodes can be used in one lane.
T212|Tara|T112 Therefore, 96 samples can be multiplexed
in one flow-cell run,
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Performance comparison between designs by simulation

studies

A B c D
T[T 2 [P a]5]0| [

T11 T21 T111 T112 T11 T12 T13 T21 T22 T23 T111 T112 T113T114 T115T11E

T211 T212 T1 2 T1 2 T1 23 T1 24 T1 25 T1 2%

T131 T132 T133 T134 T135 T136

T211 T212 T213 T214 T215 T21E
T221 T222 T223 T224 T225 T22S

TZﬂ Tm TZ&i T234 T235 T236

Tijk: i for treatment, j for sample, k for technical replicates.

A: unreplicated data; B: no biological replicates, two technical
replicates (BBD without biological replicates); C: no technical
replicates (unblocked design); D:BBD with biological and technical
replicates.
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Lane & Batch Effect No Lane & Batch Effect
o g o
g 0 | L= g o |
T o ! T o
x [ 4
e © Jd 4 ¢ @
z o y z o
g g
S = 3
i c 7 —_ A [N
e P @
2 o ] == Bl 3 o |
F o —c| F o
o | =+ D o |
° 9 T T T T T °©
.0 02 04 06 08 10 0.0 02 04 06 08 1.0
Flse Positive Rate False Positve Rate
Lane & No Batch Effect No Lane & No Batch Effect
o g o
o o | ~ > o @ |
T O . T o
[4 D 14
¢ 9o | 4 2 o
z o . z o
G [ K
$ < S =
i s — Al L o7
Z o s Bl 3 o
g 3 - —_c| F o
o | =D o |
° A T T T T T °
a.o 02 04 06 08 1.0 0.0 02 04 06 08 1.0
False Positive Rate False Positive Rate

C&D always perform better than A&B. When simulation included
lane and/or batch effects, D (balanced block design) performed
better than C (unblocked design).
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Summary

@ The classical principals of experimental design still apply to
RNA-Seq

@ Technical variation exists and should be taken into account.

» Lane effect, batch effect

@ RNA-Seq data consist of variation from subject sampling,
RNA sampling, RNA fragment sampling

e Multiplexing in NGS allow us to implement randomization and
blocking.

o Take advantages of visualization tools (e.g. scatter plots, MA
plots, QQ plots) to learn your data.

@ When you deal with human data for genetic study, make sure
examining the effect of population structure.
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