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Sequencing applications

RNA-seq —

this course

ChlIP-seq: identify and measure significant peaks

..CC

GAAATTTGC
GGAAATTTG
CGGAAATTT
CGGAAATTT
TCGGAAATT
CTATCGGAAA
CCTATCGGA TTTGCGGT
GCCCTATCG AAATTTGC
GCCCTATCG AAATTTGC

ATAC...

..CCATAGGCTATATGC

GCCCTATCGGAAATTTGCGGT,

ATAC...

Genotyping:

..CCATAG
..CCAT
..CCAT GGCTATATG
..CCA AGGCTATAT
..CCA AGGCTATAT GCCCTATCG
..CC AGGCTATAT GCCCTATCG
..CC TAGGCTATA GCGCCCTA

identify variations

TATGCGCCC
CTATATGCG TCGCG
CTATCGG

CCTATCGG

CGGA.

sA.
sA.
A

Al

GGTATAC...
AATTT CGGTATAC
AATT CGGTATAC
AA GCGGTATA
TTGCGGTA C..
TTTGCGGT C..
AATTTGC ATAC..
AATTTGC GTATAC..

..CCATAGGCTATATGCGCCCTATCGCG

sCAATTTGCGGTATAC...




Sequencing technologies

Accuracy Cost per 1
Method Read length . Reads per run Time per run — Advantages Disadvantages
read not bases (in
uss)
e 10,000 bp to 15,000 bp a
real-time (1; 000 :p NSO)I' max:nuvr: 87% single- 50,000 per SMRT cell, or 500~ 30 minutes to 4 Longest read length. Moderate throughput. Equipment
sequencing rea;i length =40 ;)00 e 1060 megabases[r’elle;] hours(&8] B e can be very expensive
(Pacific ' accuracy(5°! 5mC, 6mA.[E9] :
bases(62I(63](64]
Biosciences)
lon
semiconductor . Less expensive
e up to 400 bp 98% up to 80 million 2 hours 81 AT Homopolymer errors.
sequencing)
Pyrosequencing . Runs are expensive. Homopolymer
(454) sl b T E C H N I CA L B I AS E S ! Ll errors.
MiniSeqg, NextSeq: 75-300 MiniSea/MiSeq: 1-25 Million; 1to 11 days, Potential for high
Sequencing by Jbp; MiSeq: 50-600 bp; HiSeq 99.9% NextSeq: 130-00 Million, HiSeq § depending upon $0.05 o seguence yield, Eguipment can be very expensive.
synthesis 2500: 50-500 bp; HiSeq (Phred3o) 2500: 300 million - 2 billion, sequencer and $0.15 depending upon Requires high concentrations of
(lllumina) 3/4000: 50-300 bp; HiSeq X: HiSeq 3/4000 2.5 billion, HiSeq | specified read sequencer model and | DNA.
300 bp X: 3 billion length!70) desired application.
Sequencing by Slower than other methods. Has
ligation (SOLID J50+35 or 50450 bp 99.9% 1.2 to 1.4 billion 1to 2 weeks $0.13 Low cost per base. issues sequencing palindromic
sequencing) I sequences.’ )
$500-999
) ~82-97% )
Dependent on library prep, ) data streamed in | per Flow
Nanopore not the device, so user e dependent on read length real time. Cell, base Very long reads, Lower throughput il .
SQquoncIngml) chooses read length. (up to (gt;pgt:% selected by user. Choose 1 minto | cost Portable (Palm sized) ::schmes, ol L
500 kb reported) ) 48 hrs dependent ’
consensus)
on expt
Chain More expensive and impractical for
termination 20 minutes io 8 Long individual reads. | larger sequencing projects. This
400 to 800 bp 99.9% N/A $2400 Useful for many method also requires the time
(Sanger hours N . . .
applications. consuming step of plasmid cloning
sequencing) or PCR.




-I Sequence alignment

Heuristic local alignment

(BLAST)
e |INPUT:
— Database
AIKWQPRSTW....
. IKMORHIKW....
HDLFWHLWH....

— Query: PSKMQRGIKWLLP
* OUTPUT:

— sequences similar to query

Global/local alighment
(Needleman-Wunsch,
Smith-Waterman)

* |INPUT:
— Two sequences
X =XX,... Xy,
Y =Y1¥2---Yn
* OUTPUT:

— Optimal alignment
between X and Y (or
substrings of X and Y)



-I Short read alignment

INPUT:

— A few million short reads, with certain error characteristics
(specific to the sequencing platform)

— lllumina: few errors, mostly substitutions
— A reference genome
OUTPUT:
— Alignments of the reads to the reference genome

Can we use BLAST?

e Assuming BLAST returns the result for a read in 1 sec
* For 10 million reads: 10 million seconds = 116 days

Algorithms for exact string matching are more appropriate



-I Algorithms for exact string matching

e Search for the substring ANA in the string BANANA

Brute Force

BANANA
BAN
ANA
NAN
ANA

Naive

Slow & Easy

Suffix Array

$

AS$

ANAS
ANANAS
BANANAS
NAS
NANAS$

NS~ O]=]JTO]JO O

Binary Search

PacBio Aligner
(BLASR); Bowtie

Hash (Index) Table

O->8aN = 0 O NULL

Ot+»|ma=101>

MA=3 O

O NaN = 20> NULL

NULL

Seed-and-extend
BLAST, BLAT

Time complexity versus space complexity



‘ Brute force search for GATTACA

* Where is GATTACA in the human genome?

T G AT T ACAGATTAC C ..
G A T T A C A

No match at offset 1

T G A T TACAGATTATC C ..
G A T T A C A

Match at offset 2

T G AT T ACAGATTAC C ..
G A T T A C A ..

No match at offset 3...



_I_Brute force search for GATTACA

Simple, easy to understand

Analysis
— Genome length = n = 3,000,000,000

— Query length=m=7

— Comparisons: (n-m+1) * m = 21,000,000,000
Assuming each comparison takes 1/1,000,000 of a second...
... the total running time is 21,000 seconds = 0.24 days
... for one 7-bp read



‘ Suffix arrays

Preprocess the genome
— Sort all the suffixes of the genome

T G AT T ACAGAT T A CC
G A T T A C A

Split into suffixes Sort suffixes alphabetically

Use binary search

Suffix array

NI~ ]JOl=]WOW]JO O

$

A$

ANA$
ANANAS
BANANAS$
NAS
NANAS$



Suffixarrays + ¢ a 1t t A c A G AT T aAcCeC

Lo=1; Hi=15 o

—> | | | ACAGATTACC... 6
Mid = (1+15)/2=8 2 | ACC... 13
3 | AGATTACC... 8
Middle = Suffix[8] = CC 4 | ATTACAGATTACC... 3
5 | ATTACC... 10
Compare GATTACA to CC => Higher 6|C... 15
7 | CAGATTACC... 7

Lo = Mid + 1 || 8fcc.. 14 ||
9 | GATTACAGATTACC... |2
10 | GATTACC... 9
Il | TACAGATTACC... 5
12 | TACC... 12
I3 | TGATTACAGATTACC... | |
i 14 | TTACAGATTACC... 4
—|> I5 | TTACC... I




Suffix arrays - search for GATTACA

Lo=9; Hi=15

| | ACAGATTACC... 6

Mid = (9+15)/2 = 12 2 | ACC... 3

3 | AGATTACC... 8

Middle = Suffix[12] = TACC 4 | ATTACAGATTACC... 3

5 | ATTACC... 10

Compare GATTACA to TACC => Lower 6|cC... 15

7 | CAGATTACC... 7

Hi = Mid - 1 8| cc... 14
Lo

—> | 9 | GATTACAGATTACC... |2

10 | GATTACC... 9

Il | TACAGATTACC... 5

12 | TACC... 12

I3 | TGATTACAGATTACC... | |

i 14 | TTACAGATTACC... 4

—|> I5 | TTACC... I




Suffix arrays - search for GATTACA

Lo=9; Hi=11

| | ACAGATTACC... 6
Mid = (9+11)/2 =10 2 | ACC... 13
3 | AGATTACC... 8

Middle = Suffix[10] = GATTACC 4 | ATTACAGATTACC... 3
5 | ATTACC... 10
Compare GATTACA to GATTACC => Lower 6|C... I5
7 | CAGATTACC... 7
Hi = Mid - 1 8| cc.. 14
E) 9 | GATTACAGATTACC... |2

H'I 10 | GATTACC... 9

—|> Il | TACAGATTACC... 5
12 | TACC... 12

I3 | TGATTACAGATTACC... | |

14 | TTACAGATTACC... 4

I5 | TTACC... I




Suffix arrays - search for GATTACA

0= 9; Hi=9

| | ACAGATTACC... 6
Mid = (9+9)/12 =9 2 | ACC... 13
3 | AGATTACC... 8

Middle = Suffix[9] = GATTACAG... 4 | ATTACAGATTACC... 3
5 | ATTACC... 10
Compare GATTACA to GATTACAG... => Match 6|cC... 15
7 | CAGATTACC... 7
Return: match at position 2 L 8| cc... 14
|-|Q';| 9 | GATTACAGATTACC... |2

10 | GATTACC... 9

Il | TACAGATTACC... 5
12 | TACC... 12

I3 | TGATTACAGATTACC... | |

14 | TTACAGATTACC... 4

I5 | TTACC... I




-I Suffix arrays - analysis

Sequence  Pos_

ACAGATTACC...

6

ACC...

13

AGATTACC...

8

ATTACAGATTACC...

3

ATTACC...

10

C...

15

CAGATTACC...

CC...

Slo|o|[~w|o|n|a|w|n|=[F]

GATTACAGATTACC...

GATTACC...

TACAGATTACC...

12

TACC...

TGATTACAGATTACC...

14

TTACAGATTACC...

15

TTACC...

Word (query) of sizem=7
Genome of size n = 3,000,000,000
Bruce force:
— approx. mx n =21,000,000,000 comparisons
Suffix arrays:
— approx. m x log,(n) =7 x 32 = 224 comparisons

Assuming each comparison takes 1/1,000,000 of a second...
... the total running time is 0.000224 seconds for one 7-bp read
Compared to 0.24 days for one 7-bp read in the case of brute force search

For 10 million reads, the suffix array search would take
2240 seconds = 37 minutes



-I Suffix arrays - analysis

i

ACAGATTACC...

o

ACC...

w

AGATTACC...

(-

ATTACAGATTACC...

w

ATTACC...

C...

CAGATTACC...

(N[ [ |dDjw N |—

CC...

0

GATTACAGATTACC...

)

GATTACC...

TACAGATTACC...

o

TACC...

w

TGATTACAGATTACC...

X

TTACAGATTACC...

wn

TTACC...

Word (query) of sizem=7
Genome of size n = 3,000,000,000

For 10 million reads, the suffix array search would take
2240 seconds = 37 minutes

Problem? Time complexity versus space complexity

Total characters in all suffixes combined:
142+3+...+4n = n(n+1)/2

For the human genome:

4.5 billion billion characters!!!



-I Algorithms for exact string matching

e Search for the substring ANA in the string BANANA

Brute Force

BANANA
BAN
ANA
NAN
ANA

Naive

Slow & Easy

Suffix Array

$

AS$

ANAS
ANANAS
BANANAS
NAS
NANAS$

NS~ O]=]JTO]JO O

Binary Search

PacBio Aligner
(BLASR); Bowtie

Hash (Index) Table

O->8aN = 0 O NULL

Ot+»|ma=101>

MA=3 O

O NaN = 20> NULL

NULL

Seed-and-extend
BLAST, BLAT

Time complexity versus space complexity



-I Hashing

Where is GATTACA in the human genome?
- Build an inverted index of every k-mer in the genome

* How do we access the table? | [ Lo
, AAAAAAC >
- We can only use numbers to index | | =
AAAAAAG —» |
- Encode sequences as numbers |
Simple: A=0,C=1,G=2,T=3 => GATTACA=2,033,010 ' . -
Smart: A= 002, C= 012, G = 102, T= 112 | GATTACA .. ”
=> GATTACA=10001111000100,=915615 | carracc | so00
* Lookup: very fast ... 32000000
e But constructing an optimal hash is tricky | TTTTTTG



-I Hashing

Number of possible sequences of length k is 4k
K=7 =>4’ = 16,384 (easy to store)

K=20 =>420=1,099,511,627,776 (impossible to store
directly in RAM)

- There are only 3B 20-mers in the genome
- Even if we could build this table, 99.7% will be empty
- But we don't know which cells are empty until we try

GATTAAT
| GATTACA _»

GATTACC

TTTTTTG

| AAAAAAA > |
AAAAAAC > |

AAAAAAG —» |

2
5000
32000000



-I Hashing

Number of possible sequences of length k is 4k
K=7 =>4’ = 16,384 (easy to store)

K=20 =>420=1,099,511,627,776 (impossible to store
directly in RAM)

- There are only 3B 20-mers in the genome
- Even if we could build this table, 99.7% will be empty
- But we don't know which cells are empty until we try
Use a hash function to shrink the possible range
- Maps a number nin [0,R] to h in [0,H]
e Use 128 buckets instead of 16,384
- Division: hash(n) = H*n/R;
* hash(GATTACA)= 128 * 9156/16384 =71
- Modulo: hash(n)=n%H
* hash(GATTACA)=9156 % 128 = 68

| AAAAAAA L

GATTAAT
| GATTACA

GATTACC

TTTTTTG

AAAAAAC —» |

AAAAAAG >

2
5000
32000000



-I Hashing

* By construction, multiple keys have the same hash value
— Store elements with the same key in a bucket chained together

* A good hash evenly distributes the values: R/H have the same
hash value

— Looking up a value scans the entire bucket

h(ATTACAG) 3 00 ~» | ATTACAG: 3
ol GGCATCA:928
h(CGGACAT)
» 68 |~ GATTACA:2
h(GATTACA) |— CGGACAT:349
126 GATTACA:5000
h(GGCATCA) | 127




‘ Algorithms for exact string matching

e Search for the substring GATTACA in the genome

Brute Force

Suffix Array

Hash (Index) Table

NDENDOEONDNERDGE = : AAAAAAA [ [
TG AT TACAIGATITACIC . {
GATTATCA 2 | ACC... 13 AAAAAAC
Nomatchat ofset 1 T arcacmrmce s AMMAAAG [» [ ..
(1313 [ L5 619 Lol a1 s [ armce... o
T GATTACAGATTATCC.. 6| C... 15 GATTAAT
ERERERER 7 | cAGATTACC... 7
8| cc... 14 GATTACA
Maich at offset 2 9 | GATTACAGATTACC... 2 [ |2
12 3[40 67 e s Lol i ]| 0 [ GaTTace... 2 | CATTEE | (500
T GATTACAGATTACC . 11 | TACAGATTACC... 5 32000000
GREN A A I A 12 | TACC... 12 TTT7 717G
No match at offset 3 13 | TGATTACAGATTACC... | 1
14 | TTACAGATTACC... 4 TTTTTTT
15 | TTACC... 1 '

Easy Fast (binary search) Fast

Tricky to develop
hash function

Slow High space complexity



Software

Ultrafast and memory-efficient alignment of short DNA sequences

to the human genome
Ben Langmead, Cole Trapnell, Mihai Pop and Steven L Salzberg

Address: Center for Bioinformatics and Computational Biology, Institute for Advanced Computer Studies, University of Maryland, College
Park, MD 20742, USA.

Correspondence: Ben Langmead. Email: langmead@cs.umd.edu

Published: 4 March 2009 | Fast gapp ed-read
Genome Biology 2009, 10:R25 (doi: 10.1 186/gb-2009-10-3-r25) a lign ment With Bowtie 2

Bowtie is an ultrafast, memory-efficient alignment

program for aligning short DNA sequence reads to Ben Langmead"? & Steven L Salzberg' >

large gen.omes.. For the humar_] genor_ne’ Burrows- As the rate of sequencing increases, greater throughput is

Wheeler indexing allows Bowtie to align more than demanded from read aligners. The full-text minute index is

25 million reads per CPU hour with a memory often used to make alignment very fast and memory-efficient,

footprint of approximately 1.3 gigabytes. Bowtie but the approach is ill-suited to finding longer, gapped

extends previous Burrows-Wheeler techniques with a alignments. Bowtie 2 combines the strengths of the full-text
) ) i minute index with the flexibility and speed of hardware-

novel guality-aware bathraCkmg algonthm that accelerated dynamic programming algorithms to achieve

permits mismatches. Multiple processor cores can a combination of high speed, sensitivity and accuracy.

be used simultaneously to achieve even greater NATURE METHODS | VOL.9 NO.4 | APRIL 2012 | 357

alignment speeds. Bowtie is open source http://
bowtie.cbcb.umd.edu.

* Bowtie indexes the genome using a scheme based on the Burrows-
Wheeler transform (BWT) and the Ferragina-Manzini (FM) index



-I Burrows-Wheeler transform

« The BWT is a reversible permutation of the characters in a text

« BWT-based indexing allows large texts to be searched efficiently in
a small memory footprint

All cyclic rotations of T9,
sorted lexicographically

$acaacg

aacg$ac

acaacg$
acaacg$—+>acg$aca—>gc%aaac

caacg$a

cg$acaa Same size as T

g$acaac //

Burrows-Wheeler
transform of T:
BWT(T)

T Burrows-Wheeler
matrix of T



-I Last first (LF) mapping

 The BW matrix has a property called last first (LF) mapping:

The ith occurrence of character X in the last column corresponds to
the same text character as the i occurrence of X in the first column

* This property is at the core of algorithms that use the BWT index to
search the text

Rank:2 $§acaacg
aacg$ac

alcaacg$
alcaacg$—>acg$aca—>gc$aalac

caacg$§a
cg$acaa \_

g$acaac  Rank:2

LF property implicitly encodes the Suffix Array



-I Last first (LF) mapping

g
We can repeatedly ¢ g
apply LF mapping 1 a c
to reconstruct T g a $
a d

f BWT(T
rom (M) 4 C a
5 C a
UNPERMUTE 6 O c

algorithm

aacgd

(Burrows and
Wheeler, 1994)

Q 0099 9 A
/v

O

0O 00 2 A
O 9D OY®YAOWQ W

v

caacg

» C

Q OO0V A
Q

0O

Q 009 9 V&R




-I LF mapping and exact matching

EXACTMATCH algorithm (Ferragina and Manzini, 2000) - calculates the range of
matrix rows beginning with successively longer suffixes of the query

Reference: acaacg. Query: aac

aac aac aac
$ g $ g $ g
1 a c a c_L aac c
2 a $ ac $ a $
3 a a ac a a a
—»
7 c a C a C a
5 C a a c a
69 c g C g c

T

the matrix is sorted lexicographically ,
At each step, the size of the range

rows beginning with a given sequence either shrinks or remains the same
appear consecutively



-I LF mapping and exact matching

EXACTMATCH algorithm (Ferragina and Manzini, 2000) - calculates the range of
matrix rows beginning with successively longer suffixes of the query

Reference: acaacg. Query: aac

aac aac aac

$ g $ 9 $ g

a c__a c __ aac c

a $ ac $ a $
2 - = 'ﬂ a a
C What about'mlsmatches“. c a

3. C a a C a
g c g C g c

the matrix is sorted lexicographically ,
At each step, the size of the range

rows beginning with a given sequence either shrinks or remains the same
appear consecutively



-| Mismatches?

« EXACTMATCH is insufficient for short read alignment because
alignments may contain mismatches

 What are the main causes for mismatches?
- sequencing errors
- differences between reference and query organisms



-| Bowtie — mismatches and backtracking search

« EXACTMATCH is insufficient for short read alignment because
alignments may contain mismatches

 Bowtie conducts a backtracking search to quickly find alignments
that satisfy a specified alignment policy

 Each character in a read has a numeric quality value, with lower
values indicating a higher likelihood of a sequencing error

 Example: lllumina uses Phred quality scoring

Phred score of a base is: Qg = -10*log,4(e) where e is the
estimated probability of a base being wrong

* Bowtie alignment policy allows a limited number of mismatches
and prefers alignments where the sum of the quality values at all
mismatched positions is low




-I Bowtie - backtracking search

* The search is similar to EXACTMATCH
* |t calculates matrix ranges for successively longer query suffixes



-I LF mapping and exact matching

EXACTMATCH algorithm (Ferragina and Manzini, 2000) - calculates the range of
matrix rows beginning with successively longer suffixes of the query

Reference: acaacg. Query: aac

aac aac daadcC
$ g $ g $ g
a C a c T aac C
a $ ac $ > a $
a a ac a a a

—p — =

C a C a C a
C a a C a
g C g C g C

T

the matrix is sorted lexicographically ,
At each step, the size of the range

rows beginning with a given sequence either shrinks or remains the same
appear consecutively



-| Bowtie - backtracking search

* The search is similar to EXACTMATCH
* |t calculates matrix ranges for successively longer query suffixes

* If the range becomes empty (a suffix does not occur in the text),
then the algorithm may select an already-matched query position
and substitute a different base there, introducing a mismatch into
the alignment

* The EXACTMATCH search resumes from just after the substituted
position
* The algorithm selects only those substitutions that are consistent

with the alignment policy and which yield a modified suffix that
occurs at least once in the text

* |If there are multiple candidate substitution positions, then the
algorithm greedily selects a position with a minimal quality value



‘ Exact search for ggta

ggta ggta ggta

S I S RS ey "\

X 266, 266 |<g—"1 : : ‘
: : k— 278, 290 <-/

aacC aac aac

a c__a c ~ aac c

a $ acC $ —> a $

a a ac a a a

— c a — c g o -

— a ¢ a ¢ a



1,30

1,104

104,124

104, 184

184, 184

184, 278

278, 290

278, 401

1,30

104, 124

184, 184

278, 290

1,30

104, 124

184, 184

278, 290

80, 88

167,174

1,104

Inexact o, &9
177,177
search
X 266, 266
for ggta 206, 306
60, 60
Search is greedy: the 145, 145
first valid alignment 203 50
encountered by Bowtie
. . 390, 390
will not necessarily be
the 'best' in terms of
number of mismatches 51, 51
or in terms of quality 140. 140
X 184, 184
278, 278
75,75 102, 103
160, 160 349, 349
\/ 261,262 |q_ 9 -] 270,273
396, 396 396, 399

240, 266

104, 184

390, 396

184, 278

278, 401




-I Bowtie - backtracking search

This standard aligner can, in some cases, encounter sequences that cause excessive
backtracking

Bowtie mitigates excessive backtracking with the novel technique of double indexing

— Idea: create 2 indices of the genome: one containing the BWT of the genome, called the forward index,
and a second containing the BWT of the genome with its sequence reversed (not reverse complemented)
called the mirror index.

Let’s consider a matching policy that allows one mismatch in the alignment (either in
the first half or in the second half)

Bowtie proceeds in two phases:

1. load the forward index into memory and invoke the aligner with the constraint that
it may not substitute at positions in the query's right half

2. load the mirror index into memory and invoke the aligner on the reversed query,
with the constraint that the aligner may not substitute at positions in the reversed
query's right half (the original query's left half).

The constraints on backtracking into the right half prevent excessive backtracking,
whereas the use of two phases and two indices maintains full sensitivity



-I Bowtie - backtracking search

Base quality varies across the read
Bowtie allows the user to select

- the number of mismatches permitted in the high-quality end of a read
(default: 2 mismatches in the first 28 bases)

- maximum acceptable quality of mismatched positions over the
alignment (default: 70 PHRED score)

The first 28 bases on the high-quality end of the read are termed the seed
The seed consists of two halves:

- the 14 bp on the high-quality end (usually the 5' end) = the hi-half
- the 14 bp on the low-quality end = lo-half

Assuming 2 mismatches permitted in the seed, a reportable alignment will
fall into one of four cases:

1. no mismatches in seed;
2. no mismatches in hi-half, one or two mismatches in lo-half
3. no mismatches in lo-half, one or two mismatches in hi-half

4. one mismatch in hi-half, one mismatch in lo- half



. lo-halt  hi-half
BOWtIe gccg.. ..agca
Phase 1 5 | Seled —
=0 0-2 0
* The Bowtie
algorithm consists Mirror index

of three phases
that alternate
between using the
forward and
mirror indices

1. no mismatches in seed
2. no mismatches in hi-half,
one or two mismatches in
lo-half

3. no mismatches in lo-half,
one or two mismatches in
hi-half

4. one mismatch in hi-half,
one mismatch in lo-half

.............................................................

Forward index

Phase 2 acga.. ..gccg
partial alignments |_ 1.2 A 0 |

with mismatches

only in the hi-half
Forward index

--------------------------------------------------------------

Mirror index

extend the partial

alignments into gcceg.. ..agca

full alignments. | 50 | From Phase 2

Phase 3 5
gceg... ..agca

L o— L 1 ]




Aligning 2 million reads to the human genome

Length Program CPU time Wall clock time  Peak virtual memory footprint (megabytes) Bowtie speed-up  Reads aligned (%)
36bp Bowtie 6mli5s 6m2ls 1,305 . 62.2
Maq 3h52m26s 3h52mb54s 804 36.7x 65.0
Bowtie-v2 4m55s 5m00s 1,138 . 55.0
SOAP I6h44m3s IBhIm38s 13,619 216x 55.1
50bp Bowtie 7mills 7m20s 1,310 . 67.5
Maq 2h39m5s 2h40m9s 804 21.8x 67.9
Bowtie-v2 5m32s S5m46s 1,138 . 56.2
SOAP 48h42m4s 66h26m53s 13,619 691x 56.2
76bp  Bowtie I8m58s I9més 1,323 . 445
Maq 0.7.1 4h45m7s 4h45mi7s 1,155 14.9x 449
Bowtie-v2 7m35s 7m40s 1,138 . 31.7

Maq: Mapping and Assembly with Qualities

SOAP = Short Oligonucleotide Analysis Package

Mapping short DNA sequencing reads and calling variants using

mapping quality scores
Heng Li, Jue Ruan and Richard Durbin

Genome Res. 2008 18: 1851-1858 originally published online August 19, 2008

Vol. 24 no. 5 2008, 713-714
AP P L’ CA T’ ON s N o TE goi: 10ngalbioinfopnigfiscs/thOZS

Sequence analysis

SOAP: short oligonucleotide alignment program

Ruigiang Li"*?, Yingrui Li', Karsten Kristiansen® and Jun Wang

1.2,%

"Beiing Genomics Institute at Shenzhen, Shenzhen 518083, China and “Department of Biochemistry and
Molecular Biology, University of Southern Denmark, Odense M, DK-5230, Denmark



-I Last first (LF) mapping

 The BW matrix has a property called last first (LF) mapping:

The ith occurrence of character X in the last column corresponds to
the same text character as the i occurrence of X in the first column

* This property is at the core of algorithms that use the BWT index to
search the text

Rank:2 $§acaacg
aacg$ac
alcaacg$
ajcaacg$—>acg$aca—+>gc$aaac

caacg$§a

cg$acaa \_

g$acaac  Rank:2

~

BWTIi| = { ?‘SA['] — 1 ZjH i 8 LF property implicitly encodes the Suffix Array



-I Constructing the index

How do we construct a BWT index?
Calculating the BWT is closely related to building a suffix array

Each element of the BWT can be derived from the corresponding element
of the suffix array:

T[SA[]] — 1] SA[i] # 0
$ SAli] =0

One could generate all suffixes, sort then to obtain the SA, then calculate
the BWT in a single pass over the suffix array

BWTIi] = {

However, constructing the entire suffix array in memory requires at least
~12 gigabytes for the human genome

Instead, Bowtie uses a block-wise strategy: builds the suffix array and the
BWT block-by-block, discarding suffix array blocks once the corresponding
BWT block has been built

Bowtie can build the full index for the human genome in about 24 hours in
less than 1.5 gigabytes of RAM

If 16 gigabytes of RAM or more is available, Bowtie can exploit the
additional RAM to produce the same index in about 4.5 hours
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Bowtie index building performance

Physical memory target (GB) Actual peak memory footprint (GB) Wall clock time
16 14.4 4h36m

8 5.84 5h5m

4 3.39 7h40m

2 1.39 2l h30m
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-I Storing the index

The largest single component of the Bowtie index is the BWT
sequence. Bowtie stores the BWT in a 2-bit-per-base format

A Bowtie index for the assembled human genome sequence is
about 1.3 gigabytes

A full Bowtie index actually consists of pair of equal-size indexes,
the forward and mirror indexes, for any given genome, but it can
be run such that only one of the two indexes is ever resident in
memory at once (using the —z option)

What about gaps?



_I Bowtie 2

Bowtie: very efficient ungapped alignment of short reads based on BWT
index

Index-based alignment algorithms can be quite inefficient when gaps are
allowed

Gaps can results from
— sequencing errors
— true insertions and deletions

Bowtie 2 extends the index-based approach of Bowtie to permit gapped
alignment

It divides the algorithm into two stages

1. an initial, ungapped seed-finding stage that benefits from the speed
and memory efficiency of the full-text index

2. a gapped extension stage that uses dynamic programming and benefits
from the efficiency of single-instruction multiple-data (SIMD) parallel
processing available on modern processors
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Fast gapped-read
alignment with Bowtie 2

Ben Langmead'? & Steven L Salzberg! -3

As the rate of sequencing increases, greater throughput is
demanded from read aligners. The full-text minute index is
often used to make alignment very fast and memory-efficient,
but the approach is ill-suited to finding longer, gapped
alignments. Bowtie 2 combines the strengths of the full-text
minute index with the flexibility and speed of hardware-
accelerated dynamic programming algorithms to achieve

a combination of high speed, sensitivity and accuracy.
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Exercises:

(a) Perform, by hand, the Burrows-Wheeler Transform on the sequence
GCACGCTGCS.

(b) Suppose you are given a sequence TGTTGCCC$A, which has been
permuted by way of the Burrows-Wheeler Transform. Perform, by hand, the
reverse of the BWT in order to obtain the original sequence from which it was
generated. Hint: If you wish to check your result, you may employ the BWT in
the forward direction (i.e., the algorithm you employed in part (a)) on the
answer you obtained here. Assuming you have performed the reversal
correctly, you should find that your "original sequence” generates the permuted
sequence given in this problem: TGTTGCCCSA.

(c) Consider the sequence you had to transform in part (a): GCACGCTGCS$.
Using this exact matching protocol, determine whether the following
subsequences are contained within the sequence from part (a): CACG, AATG.

CTGC.



