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OUTLINE

» Review: Standard linear regression model (e.g., to model
gene expression as function of an experimental condition or
continuous covariate)

» Review: Logistic model: To model probability of abinary
event as a function of a covariate

» Parameter interpretation: Linear and logistic regression

» Introduction: Negative binomial regression model for
RNA-Seq

» Overview: Maximum likelihood estimation

LINEAR REGRESSION EXAMPLE: GENE EXPRESSION

v

Consider the simple linear regression model

Y = B+ Bz + ¢,

where

» z =0 (untreated)
» or z = 1 (treated)

v

Y is the observed ”expression” of the gene

€ is the measurement noise term

v

» We assume that it follows a normal distribution with mean
0 and variance o2




REMINDER: IMPORTANT FACT ABOUT NORMAL
DISTRIBUTION

Consider a normal distribution with mean 0 and standard
deviation o
If the data are shifted by a constant u, then

1. resulting distribution remains normal

2. The mean of the new distribution is p+ 0= p

3. Its standard deviation remains unchanged
The last two (but not first) property are true for any
distribution
Recall Y = By + i1z + €

Y follows a normal distribution with mean u = 8y + 1z
and variance o2

IMPORTANT: p depends on z (unless of course 8; = 0)

LINEAR REGRESSION EXAMPLE: INTERPRETATION

v

Model
Y = ﬁO + ﬁlx + €,

The goal of (mean) regression is to estimate the expected
value of Y given treatment status

Conditional on = = 0 (i.e., not receiving treatment), the
expected value of YV is

Bo+ 51 x0=pfo

Conditional on z =1 (i.e., receiving treatment), the
expected value of Y is

Bo+ B x1=P0+ b

GENERAL CONDITIONAL EXPECTATION

Expectation is another word for average

We can write the conditional expectation of Y given that
X =z as E[Y|X = 2]

English: This is the average value of the outcome Y if the
value of X is equal to x

The unconditional expectation of Y is denoted by E[Y]

If Y does not depend on X, then E[Y|X = z] = E[Y] for
every

The goal of linear regression is to model F[Y|X = x] as
”Linear” function

Our Example: E[Y|X = z] = By + 1z




LINEAR REGRESSION EXAMPLE: INTERPRETATION

» Model
Y = ﬂO + ﬂlx + €,

» o (the intercept) is the expected value of Y if no
treatment is administered (average baseline value)

» [ is the treatment effect
» If treatment is administered, the expected value of
expression is
» increased by (; units if 51 > 0
» decreased by (1 units if 51 <0
» unchanged if 8; =0

LINEAR REGRESSION EXAMPLE: CONTINUOUS
COVARIATE

» Model
Y = G+ Bz + ¢,

where z is continuous (quantitative)

» » If §1 > 0, then increasing x by one unit, increases Y on
average by 1 units
» If 81 < 0, then increasing x by one unit, decreases Y on
average by 1 units
» If 81 = 0, then changes in = do not affect the expected value
of Y

REGRESSION FOR BINARY OUTCOMES

v

Suppose that Y is a binary outcome
» It assumes values 0 or 1

This is a count outcome

v

\4

Consider the previous model

Y:ﬁ0+ﬁ1$+€7

\4

Is it appropriate? Why or why not?




LoGisTic REGRESSION

» Relate the probability of the outcome of the event Y =1 to
treatment

» More specifically, relate the log-odds to the treatment

» The log-odds will be modeled as a linear function of x

Bo + Prx + €

» This is an example of a generalized linear model (GLM)

» Note: The model used by DESeq is a GLM on the basis of
the NB (instead of binomial distribution)

» The expected outcome of Y is not modeled directly as a
linear function

» A transformation of the expected outcome of Y is modeled
as a linear function

EXPECTED VALUE OF A BINARY EVENT

» Suppose that Y assumes 1 with probability 7 or 0 with
probability 1 —

» PY=1)=rand P(Y =0)=1—7

» IMPORTANT: P(Y =1) = E(Y)

» The expected value of Y is the probability that it assumes
the value 1

» Why?
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ODDS VS PROBABILITY

» Suppose that 7 = P(Y = 1)
» The odds of the event Y =1 (to occur) is defined as

Odds[Y = 1] = Probability that Y = 1 occurs _

™

Probability that Y = 1 does not occur

1—m

ODDS RATIO VERSUS RELATIVE RISK

» mo = P[Y = 1|X = 0]: Probability that the event occurs if

sample is not treated

» 1 = P[Y = 1|X = 1]: Probability that the event occurs if

X = Isample is treated

» The odds-ratio is

OR = 1M
1—mo

» The relative risk is -
RR = —

o

THE LoGIsSTIC MODEL

» The log-odds of the event Y =1

PY =1|X =2)
1 =
BT py oix =g 0the
» or equivalently
EY|X =2
log ] ) = fBo + P

1-E(Y[X =2)

» or equivalently

PY=1X=2)=EY|X=2)= 1 ixé))fs?ﬁjfl;fx)




PARAMETER INTERPRETATION

» If 51 > 0, a unit increase in x, results in an expected
increase of exp(f1) in the odds of the event

» If B1 < 0, a unit increase in x, results in an expected
decrease of exp(f1) in the odds of the event

» If 1 =0, then changes in x do not affect the odds of
realization of the event

LINK FUNCTION

v

For a probability 7, define the ”logit” transformation as

™
1
08 1

v

This is the log-odds of an event with probability =

\4

Note that in the logistic model, the probability of the event
is linear in the parameter through this logit transformation

EY|X =x)

1 R S B A,
I EY[X =2

= Bo + fiz

v

In the GLM literature, this is called the link function

OVERDISPERSION

» Recall that if K follows a binomial distribution with
parameters n and m, then
» mean p = nm
» variance 02 = nx(1 — 7)
» Clustering in the data results in the actual variance to be
different than the nominal variance (nw(1 — 7))
» Overdispersion: Actual variance is larger than nominal
variance
» Underdispersion: Actual variance is smaller than nominal
variance
» The choice of a GLM and evaluation of its performance
should start and end with considering/addressing the
overdispersion issue
» The use of Poisson (actually a variation thereof) and

Negative Binomial models are two common choices for
GLM for overdispersed data




GENERALIZED LINEAR MODELS (GLM)

Define p, = E(Y|X = z) as the expected value of the outcome
given treatment status (z =0 or z = 1)

Distribution Link Mean

Binomial 0,1,...,n  Po+ Pz =log 2 s = %
Poisson 0,1,2,... Bo+ prz =log(puz) 1z = exp(Bo + B1z)
Negative Binomial 0,1,2,... B0 + fiz = log(ua) 1z = exp(Bo + Biz)

GENERAL NOTE

» Recall the simple linear regression model for expression

Y:ﬂ0+ﬂ1$+67

where

» = =0 (untreated)
» or z =1 (treated)

» Y is the observed ”expression” of the gene

» ¢ is the measurement noise term

» The parameter of interest is 81 (the treatment effect)

» There are two other unknown parameters, 8y and o2 the
estimation procedure has to deal with in a principled
manner

» By and o2 are nuisance parameters

» They are not of primary (or any) interest. But you have to
deal with them!

GENERAL HYPOTHESIS

» Is the RNA abundance level for any of the m genes affected
by treatment

» Let H; denote the null hypothesis for gene j
» H;: The RNA abundance level for gene j is not affected by

treatment

» H;: The RNA abundance level for gene j is affected by
treatment

» The global null hypothesis: H; and Hy and .... and H,, are
all true

» The global alternative: H, or Hyor .... or H,, is true

» In other words, under the alternative at least one of the
marginal null hypotheses is false




OBSERVED DATA

Some notation

v

» n denotes the number of samples

» m denotes the number of genes

» K;; denotes the observed number of reads mapped to gene i
for sample j

» z; =0 or 1 denotes the treatment status for sample j

v

What is observed for sample j is the vector

Klj» cen ,Km]‘,{L‘j

v

In other words m counts (one per gene) and the
experimental factor

v

Note that the K;; form a table of counts of dimension
n X m (n samples and m genes)

DESEQ: NOTATION FOR NEGATIVE BINOMIAL
DISTRIBUTION

» The count K is assumed to follow a negative binomial
distribution with parameters p € (0,1) and r > 1

» The distribution is PMF is

E+r—1
r—1

P(K =Fk) = < )pr(l -,

fork=rr+1,...

» Rather than considering the model as NB[p, r] we will
consider it as NB[u, ], where

== st () ()

where £ =0,1,...

DESEQ: NOTATION

» K;; denotes the observed number of reads mapped to gene i
for sample j
» K;; follows a negative binomial distribution with
» Mean p;; (indexed by gene i and sample j)
» Dispersion parameter «; (indexed by the gene )
» The mean is assumed to be p;; = s;¢;; where

> log qi; = Bio + Binz;
» s, is a gene j specific normalization constant




DESEQ: REFORMULATE HYPOTHESES

» Hypotheses of interest
» The global null hypothesis: H; and Hs and .... and H,, are
all true
» The global alternative: Hy or Hy or .... or H,, is true
» Reformulation
» The global null hypothesis: 817 =0 and 821 =0 and ....
and /Bml =0
» In other words, all of the ;; are equal to zero
» The global alternative: 11 # 0 or 823 =0 or .... or B,1 =0
» In other words, at least one of the 3;; is not equal to zero

DESEQ: ASSUMPTION ON DISTRIBUTION

K;; follows a negative binomial distribution with mean p and
dispersion parameter «

DESEQ: ASSUMPTION ON MEAN OF DISTRIBUTION

» Conditional on the treatment status of sample j (x; =0 or
1), the expected value of Kj; is

Mij = S5 X Qij
where
log qi; = Bio + Birw;
» Note that two regression parameters are indexed by
» Why? Because these are gene ¢ specific parameters
» Why is z; not indexed by 7
» Final Assumption: s;; = s;
» In other words: Within sample j, the normalization

parameter is constant across the genes

» How many assumptions so far?




DESEQ: MAIN PARAMETERS AND NUISANCE
PARAMETERS

>

>

The m main parameters of interest

Blla"'mel

The unknown nuisance parameters are
» The m gene specific intercepts

B105 + - - s Bmo
» the n sample specific normalization constants
S1y.-.455n
» The m gene specific nuisance parameters

Apy.eny, Oy

DESEQ: MAIN PARAMETERS AND NUISANCE
PARAMETERS

>

Assuming the model assumptions are correct, the
estimation of the regression parameters (3,9, 5;1 is fairly
straightforward

The DESeq authors propose to estimate the normalization
constant, for sample j as

—
i

m 1
KE = <H Kij> "
j=1

Here KiR is the geometric mean of Kj1,..., K, (the n
counts for gene 1)

The median is taken over all m genes for which K7 is
positive

s; = median

where

DESEQ: DISPERSION PARAMETER

\4

A key issue in using the NB model is proper handling of
the gene specific dispersion parameters

A1y ...y, Oy

The estimation of the dispersion parameter is a challenging
task

DESeq2 assumes that «; is random following a normal
distribution

The results are sensitive to the estimates

One of the key differences between DESeq2 and DESeq is
the approach taken to estimate these nuisance parameters




DESEQ SOFTWARE OVERVIEW

» The analysis of RNA-Seq data using the DESeq2 package
will be reviewed in detail in the upcoming weeks
» The estimation and inference for the model is done through
the DESeq function
» It performs the following steps in the order give
1. estimation of size factors si,..., s,

2. estimation of dispersion parameters aq, ..., alpha,,
3. Fit NB GLM model

DESEQ: MODEL EXERCISE

v

K;; denotes the observed number of reads mapped to gene ¢
for sample j

v

2; = 0 or 1 denotes the treatment status for sample j

» Say we want to account for another covariate z; (e.g.,

temperature)
» What is observed for sample j is the vector
Klj, ey ij,.%'j, Zj
» Questions

» State the hypotheses
» Propose a model (that incorporates the additional covariate)
» List any assumptions that you have made

DESEQ: MODEL EXERCISE

» The null hypothesis
Hy:p11=0and 821 =0and ...Bp1 =0

» Conditional on z; and z;, the observed number of reads
mapped to gene 4 for sample j, K;;, follows a negative
binomial distribution with

» Mean ;5
» Dispersion parameter «; (gene specific)

» Conditional on the treatment status of sample j (z; =0 or
1) and the temperature z;, the expected value of Kj; is

Hij = S5 X Qij

where
log gij = Bio + Binx; + Bioz;

» The normalization parameters are assumed to be sample
(not gene) specific (s;; = s;)




DESEQ: MODEL NUISANCE PARAMETER
» The m main parameters of interest

Blla"'mel

» The unknown nuisance parameters are
» The m gene specific intercepts

Bios - Bmo
» The m gene specific coefficients for the new covariate
/8127 e /6m2

» the n sample specific normalization constants
S1y.--,8n
» The m gene specific nuisance parameters

Ay.eey Oy

EDGER: ANOTHER NB MODEL FOR RNA-SEQ
COUNTS

» Assume that the Kj;; follows a NB distribution with mean

1i; and dispersion paramater «;

» The mean (conditional on treatment status z) is
pij = Mjpzi

where

» M; is the library size (total number of reads for sample j
> pg; is the relative abudance of the gene i given treatment

status x

> po; is the relative abudance of the gene i given no treatment
> pi1; is the relative abudance of the gene i given treatment

» Treatment changes the abudance of RNA in gene 14 if
Poi # Pui
» This is same distributional assumption as in DESeq

MLE ILLUSTRATION

» In a GLM, the parameters §;p and ;1 are estimated using

the method of Maximum likelihood (MLE)

» We illustrate the method using this coin tossing example:

» We toss a coin once and record the number of heads
» Suppose that you conduct two independent replicates of
this experiment

» K the number of events (among n = 1 trial) in experiment

1

» K, the number of events (among n = 1 trial) in experiment

2
» The PMF of K; is

P(Ky=k)=na"1—-m)l7*
» The PMF of K; is

P(Ky=k)=n*1—-n)t"*
» Here k=0or 1




JOINT DISTRIBUTION

» P(K; = k1) denotes the probability of the event that
» P(Kj3 = ko) denotes the probability of the event that
Ko =k
» These are called marginal probabilties
» What is P(K; = k1, Ko = k2)
» This is probability of the event that K1 = k1 and Ko = ks
» If you assume that these are independent tosses then
> P(K1 = kl,KQ :I{Jg) :P(Kl = ]{31) X P(KQ :k/‘z)
» In other words, the probability of the joint event is equal to
the probability of the marginal events.
LIKELIHOOD
» Suppose that the realized value of K; is ky
» Unlike K1, kp is a fixed non-random number
» The likelihood of 7 given the observed data ki, ko is
L(m) = af1 (1 — o)t Rk (1 — o)l=ke
» Note that this is the joint probability of the events

evaluated at the realized values

JOINT DISTRIBUTION

Repeat the experiment B times
The joint PMF is

P(K1 =k,...,Kp= k’B) = ﬂkl(lfﬂ')liklx...XTl’kB(lfﬂ')likB

Note that the implicit assumption is that the experiments
are mutually independent

Under this assumption, the joint PMF is the product of the
marginal PMFs

Plugging in the observed counts into the joint PMF' yields
the likelihood function




BiINOMIAL EXAMPLE: OBSERVED DATA

set.seed(2131)
x = rbinom(5, 1, 0.5)
x

## [11 10001

» Observed data 1 =1, 21 =0, 23 =0, 24 =0 and z5 = 1
» What is the likelihood?

BiNOMIAL EXAMPLE: LIKELIHOOD

» Observed data 1 =1, 21 =0,23 =0, 24 =0 and z5 = 1
» The likelihood

Lir] = 71 —-m)" x 7721 —7m)" x 7% (1 —7)" x
71— )™ x 75 (1 — 7)™ x
= 71-m) 1t x2%Q -m) 0 x 21 — 7)1 x
(1 =)0 x a1 — )it
= n?(1—-n)3

» Given the observed data find the value of 7 that maximizes
this probability

BINOMIAL EXAMPLE: MAXIMUM LIKELIHOOD

3

The maximum value of the function L[r] = 72(1 — )3 occurs at

T =0.4.

L(pi)
0.000 0005 0010 0015 0020 0025 0030 0035




MAXIMUM LIKELIHOOD CALCULATION FOR NB

» For gene i, let ki1, ..., k1, the n observed counts
» For patient j plug the observed count k;; into the PMF of
the NB distribution f[k;j; pij; vl

» Write the likelihood function as a product of these n terms
n
L =TT flkijs pigs s = flkigs Boiy Buiy 5, i
j=1

» The function depends on fy;, f15, 55 and «;

» One approach: Come up with some estimates of s; and o
and plug them into the likelihood

» Pretend that these are the true values

» Now the likelihood is only a function of Sy; and 51;




