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Outline

I Review: Standard linear regression model (e.g., to model
gene expression as function of an experimental condition or
continuous covariate)

I Review: Logistic model: To model probability of abinary
event as a function of a covariate

I Parameter interpretation: Linear and logistic regression

I Introduction: Negative binomial regression model for
RNA-Seq

I Overview: Maximum likelihood estimation



Linear Regression Example: Gene Expression

I Consider the simple linear regression model

Y = β0 + β1x+ ε,

where
I x = 0 (untreated)
I or x = 1 (treated)

I Y is the observed ”expression” of the gene

I ε is the measurement noise term

I We assume that it follows a normal distribution with mean
0 and variance σ2



Reminder: Important Fact about Normal
Distribution

I Consider a normal distribution with mean 0 and standard
deviation σ

I If the data are shifted by a constant µ, then

1. resulting distribution remains normal
2. The mean of the new distribution is µ+ 0 = µ
3. Its standard deviation remains unchanged

I The last two (but not first) property are true for any
distribution

I Recall Y = β0 + β1x+ ε

I Y follows a normal distribution with mean µ = β0 + β1x
and variance σ2

I IMPORTANT: µ depends on x (unless of course β1 = 0)



Linear Regression Example: Interpretation

I Model
Y = β0 + β1x+ ε,

I The goal of (mean) regression is to estimate the expected
value of Y given treatment status

I Conditional on x = 0 (i.e., not receiving treatment), the
expected value of Y is

β0 + β1 × 0 = β0

I Conditional on z = 1 (i.e., receiving treatment), the
expected value of Y is

β0 + β1 × 1 = β0 + β1



General Conditional Expectation

I Expectation is another word for average

I We can write the conditional expectation of Y given that
X = x as E[Y |X = x]

I English: This is the average value of the outcome Y if the
value of X is equal to x

I The unconditional expectation of Y is denoted by E[Y ]

I If Y does not depend on X, then E[Y |X = x] = E[Y ] for
every x

I The goal of linear regression is to model E[Y |X = x] as
”Linear” function

I Our Example: E[Y |X = x] = β0 + β1x



Linear Regression Example: Interpretation

I Model
Y = β0 + β1x+ ε,

I β0 (the intercept) is the expected value of Y if no
treatment is administered (average baseline value)

I β1 is the treatment effect

I If treatment is administered, the expected value of
expression is

I increased by β1 units if β1 > 0
I decreased by β1 units if β1 < 0
I unchanged if β1 = 0



Linear Regression Example: Continuous
covariate

I Model
Y = β0 + β1x+ ε,

where x is continuous (quantitative)

I I If β1 > 0, then increasing x by one unit, increases Y on
average by β1 units

I If β1 < 0, then increasing x by one unit, decreases Y on
average by β1 units

I If β1 = 0, then changes in x do not affect the expected value
of Y



Regression for Binary Outcomes

I Suppose that Y is a binary outcome

I It assumes values 0 or 1

I This is a count outcome

I Consider the previous model

Y = β0 + β1x+ ε,

I Is it appropriate? Why or why not?



Logistic Regression

I Relate the probability of the outcome of the event Y = 1 to
treatment

I More specifically, relate the log-odds to the treatment

I The log-odds will be modeled as a linear function of x

β0 + β1x+ ε

I This is an example of a generalized linear model (GLM)

I Note: The model used by DESeq is a GLM on the basis of
the NB (instead of binomial distribution)

I The expected outcome of Y is not modeled directly as a
linear function

I A transformation of the expected outcome of Y is modeled
as a linear function



Expected value of a binary event

I Suppose that Y assumes 1 with probability π or 0 with
probability 1− π

I P (Y = 1) = π and P (Y = 0) = 1− π
I IMPORTANT: P (Y = 1) = E(Y )

I The expected value of Y is the probability that it assumes
the value 1

I Why?



Relationship between x and exp(x)
1+exp(x)
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Odds vs Probability

I Suppose that π = P (Y = 1)

I The odds of the event Y = 1 (to occur) is defined as

Odds[Y = 1] =
Probability that Y = 1 occurs

Probability that Y = 1 does not occur
=

π

1− π



Odds Ratio Versus Relative Risk

I π0 = P [Y = 1|X = 0]: Probability that the event occurs if
sample is not treated

I π1 = P [Y = 1|X = 1]: Probability that the event occurs if
X = 1sample is treated

I The odds-ratio is

OR =
π1

1−π1
π0

1−π0

I The relative risk is
RR =

π1
π0



The Logistic Model

I The log-odds of the event Y = 1

log
P (Y = 1|X = x)

1− P (Y = 1|X = x)
= β0 + β1x

I or equivalently

log
E(Y |X = x)

1− E(Y |X = x)
= β0 + β1x

I or equivalently

P (Y = 1|X = x) = E(Y |X = x) =
exp(β0 + β1x)

1 + exp(β0 + β1x)



Parameter Interpretation

I If β1 > 0, a unit increase in x, results in an expected
increase of exp(β1) in the odds of the event

I If β1 < 0, a unit increase in x, results in an expected
decrease of exp(β1) in the odds of the event

I If β1 = 0, then changes in x do not affect the odds of
realization of the event



Link Function

I For a probability π, define the ”logit” transformation as

log
π

1− π

I This is the log-odds of an event with probability π

I Note that in the logistic model, the probability of the event
is linear in the parameter through this logit transformation

log
E(Y |X = x)

1− E(Y |X = x)
= β0 + β1x

I In the GLM literature, this is called the link function



Overdispersion

I Recall that if K follows a binomial distribution with
parameters n and π, then

I mean µ = nπ
I variance σ2 = nπ(1− π)

I Clustering in the data results in the actual variance to be
different than the nominal variance (nπ(1− π))

I Overdispersion: Actual variance is larger than nominal
variance

I Underdispersion: Actual variance is smaller than nominal
variance

I The choice of a GLM and evaluation of its performance
should start and end with considering/addressing the
overdispersion issue

I The use of Poisson (actually a variation thereof) and
Negative Binomial models are two common choices for
GLM for overdispersed data



Generalized Linear Models (GLM)

Define µx = E(Y |X = x) as the expected value of the outcome
given treatment status (x = 0 or x = 1)

Distribution Link Mean

Binomial 0, 1, . . . , n β0 + β1x = log µx
1−µx

µx = exp(β0+β1x)
1+exp(β0+β1x)

Poisson 0, 1, 2, . . . β0 + β1x = log(µx) µx = exp(β0 + β1x)

Negative Binomial 0, 1, 2, . . . β0 + β1x = log(µx) µx = exp(β0 + β1x)



General Note

I Recall the simple linear regression model for expression

Y = β0 + β1x+ ε,

where
I x = 0 (untreated)
I or x = 1 (treated)

I Y is the observed ”expression” of the gene

I ε is the measurement noise term

I The parameter of interest is β1 (the treatment effect)

I There are two other unknown parameters, β0 and σ2 the
estimation procedure has to deal with in a principled
manner

I β0 and σ2 are nuisance parameters

I They are not of primary (or any) interest. But you have to
deal with them!



General Hypothesis

I Is the RNA abundance level for any of the m genes affected
by treatment

I Let Hj denote the null hypothesis for gene j

I Hj : The RNA abundance level for gene j is not affected by
treatment

I H̄j : The RNA abundance level for gene j is affected by
treatment

I The global null hypothesis: H1 and H2 and .... and Hm are
all true

I The global alternative: H̄1 or H̄2 or .... or H̄m is true

I In other words, under the alternative at least one of the
marginal null hypotheses is false



Observed Data

I Some notation
I n denotes the number of samples
I m denotes the number of genes
I Kij denotes the observed number of reads mapped to gene i

for sample j
I xj = 0 or 1 denotes the treatment status for sample j

I What is observed for sample j is the vector

K1j , . . . ,Kmj , xj

I In other words m counts (one per gene) and the
experimental factor

I Note that the Kij form a table of counts of dimension
n×m (n samples and m genes)



DESeq: Notation for Negative Binomial
Distribution

I The count K is assumed to follow a negative binomial
distribution with parameters p ∈ (0, 1) and r > 1

I The distribution is PMF is

P (K = k) =

(
k + r − 1

r − 1

)
pr(1− p)k,

for k = r, r + 1, . . .

I Rather than considering the model as NB[p, r] we will
consider it as NB[µ, α], where

P [K = k] =
Γ[k + α−1]

Γ[α−1]Γ[k + 1]

(
1

1 + µα

)α−1(
µ

α−1 + µ

)k
,

where k = 0, 1, . . .



DESeq: Notation

I Kij denotes the observed number of reads mapped to gene i
for sample j

I Kij follows a negative binomial distribution with
I Mean µij (indexed by gene i and sample j)
I Dispersion parameter αi (indexed by the gene i)

I The mean is assumed to be µij = sjqij where
I log qij = βi0 + βi1xj
I sj is a gene j specific normalization constant



DESeq: Reformulate Hypotheses

I Hypotheses of interest
I The global null hypothesis: H1 and H2 and .... and Hm are

all true
I The global alternative: H̄1 or H̄2 or .... or H̄m is true

I Reformulation
I The global null hypothesis: β11 = 0 and β21 = 0 and ....

and βm1 = 0
I In other words, all of the βj1 are equal to zero
I The global alternative: β11 6= 0 or β21 = 0 or .... or βm1 = 0
I In other words, at least one of the βj1 is not equal to zero



DESeq: Assumption on Distribution

Kij follows a negative binomial distribution with mean µ and
dispersion parameter α



DESeq: Assumption on Mean of Distribution

I Conditional on the treatment status of sample j (xj = 0 or
1), the expected value of Kij is

µij = sj × qij

where
log qij = βi0 + βi1xj

I Note that two regression parameters are indexed by i

I Why? Because these are gene i specific parameters

I Why is xj not indexed by i?

I Final Assumption: sij = sj

I In other words: Within sample j, the normalization
parameter is constant across the genes

I How many assumptions so far?



DESeq: Main parameters and Nuisance
Parameters

I The m main parameters of interest

β11, . . . , βm1

I The unknown nuisance parameters are
I The m gene specific intercepts

β10, . . . , βm0

I the n sample specific normalization constants

s1, . . . , sn

I The m gene specific nuisance parameters

α1, . . . , αm



DESeq: Main parameters and Nuisance
Parameters

I Assuming the model assumptions are correct, the
estimation of the regression parameters βi0, βi1 is fairly
straightforward

I The DESeq authors propose to estimate the normalization
constant for sample j as

sj = median
Kij

KR
i

,

where

KR
i =

( m∏
j=1

Kij

) 1
m

I Here KR
i is the geometric mean of Ki1, . . . ,Kin (the n

counts for gene i)
I The median is taken over all m genes for which KR

i is
positive



DESeq: Dispersion parameter

I A key issue in using the NB model is proper handling of
the gene specific dispersion parameters

α1, . . . , αm

I The estimation of the dispersion parameter is a challenging
task

I DESeq2 assumes that αi is random following a normal
distribution

I The results are sensitive to the estimates

I One of the key differences between DESeq2 and DESeq is
the approach taken to estimate these nuisance parameters



DESeq Software Overview

I The analysis of RNA-Seq data using the DESeq2 package
will be reviewed in detail in the upcoming weeks

I The estimation and inference for the model is done through
the DESeq function

I It performs the following steps in the order give

1. estimation of size factors s1, . . . , sn
2. estimation of dispersion parameters α1, . . . , alpham
3. Fit NB GLM model



DESeq: Model Exercise

I Kij denotes the observed number of reads mapped to gene i
for sample j

I xj = 0 or 1 denotes the treatment status for sample j

I Say we want to account for another covariate zj (e.g.,
temperature)

I What is observed for sample j is the vector

K1j , . . . ,Kmj , xj , zj

I Questions
I State the hypotheses
I Propose a model (that incorporates the additional covariate)
I List any assumptions that you have made



DESeq: Model Exercise

I The null hypothesis
H0 : β11 = 0 and β21 = 0 and . . . βm1 = 0

I Conditional on xj and zj , the observed number of reads
mapped to gene i for sample j, Kij , follows a negative
binomial distribution with

I Mean µij

I Dispersion parameter αi (gene specific)

I Conditional on the treatment status of sample j (xj = 0 or
1) and the temperature zj , the expected value of Kij is

µij = sj × qij

where
log qij = βi0 + βi1xj + βi2zj

I The normalization parameters are assumed to be sample
(not gene) specific (sij = sj)



DESeq: Model Nuisance Parameter

I The m main parameters of interest

β11, . . . , βm1

I The unknown nuisance parameters are
I The m gene specific intercepts

β10, . . . , βm0

I The m gene specific coefficients for the new covariate

β12, . . . , βm2

I the n sample specific normalization constants

s1, . . . , sn

I The m gene specific nuisance parameters

α1, . . . , αm



edgeR: Another NB Model for RNA-Seq
Counts

I Assume that the Kij follows a NB distribution with mean
µij and dispersion paramater αi

I The mean (conditional on treatment status x) is

µij = Mjpxi

where
I Mj is the library size (total number of reads for sample j
I pxi is the relative abudance of the gene i given treatment

status x
I p0i is the relative abudance of the gene i given no treatment
I p1i is the relative abudance of the gene i given treatment

I Treatment changes the abudance of RNA in gene i if
p0i 6= p1i

I This is same distributional assumption as in DESeq



MLE Illustration
I In a GLM, the parameters βi0 and βi1 are estimated using

the method of Maximum likelihood (MLE)
I We illustrate the method using this coin tossing example:
I We toss a coin once and record the number of heads
I Suppose that you conduct two independent replicates of

this experiment
I K1 the number of events (among n = 1 trial) in experiment

1
I K2 the number of events (among n = 1 trial) in experiment

2
I The PMF of K1 is

P (K1 = k) = πk(1− π)1−k

I The PMF of K1 is

P (K2 = k) = πk(1− π)1−k

I Here k = 0 or 1



Joint Distribution

I P (K1 = k1) denotes the probability of the event that
K1 = k1

I P (K2 = k2) denotes the probability of the event that
K2 = k2

I These are called marginal probabilties

I What is P (K1 = k1,K2 = k2)

I This is probability of the event that K1 = k1 and K2 = k2

I If you assume that these are independent tosses then

I P (K1 = k1,K2 = k2) = P (K1 = k1)× P (K2 = k2)

I In other words, the probability of the joint event is equal to
the probability of the marginal events.



Likelihood

I Suppose that the realized value of K1 is k1

I Unlike K1, k1 is a fixed non-random number

I The likelihood of π given the observed data k1, k2 is

L(π) = πk1(1− π)1−k1πk2(1− π)1−k2

I Note that this is the joint probability of the events
evaluated at the realized values



Joint Distribution

I Repeat the experiment B times

I The joint PMF is

P (K1 = k1, . . . ,KB = kB) = πk1(1−π)1−k1×. . .×πkB (1−π)1−kB

I Note that the implicit assumption is that the experiments
are mutually independent

I Under this assumption, the joint PMF is the product of the
marginal PMFs

I Plugging in the observed counts into the joint PMF yields
the likelihood function



Binomial Example: Observed data

set.seed(2131)

x = rbinom(5, 1, 0.5)

x

## [1] 1 0 0 0 1

I Observed data x1 = 1, x1 = 0, x3 = 0, x4 = 0 and x5 = 1

I What is the likelihood?



Binomial Example: Likelihood

I Observed data x1 = 1, x1 = 0, x3 = 0, x4 = 0 and x5 = 1

I The likelihood

L[π] = πx1(1− π)x1 × πx2(1− π)x2 × πx3(1− π)x3 ×
πx4(1− π)x4 × πx5(1− π)x5 ×

= π1(1− π)1−1 × π0(1− π)1−0 × π0(1− π)1−0 ×
π0(1− π)1−0 × π1(1− π)1−1

= π2(1− π)3

I Given the observed data find the value of π that maximizes
this probability



Binomial Example: Maximum Likelihood

The maximum value of the function L[π] = π2(1− π)3 occurs at
π = 0.4.
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Maximum Likelihood Calculation for NB

I For gene i, let k11, . . . , k1n the n observed counts

I For patient j plug the observed count kij into the PMF of
the NB distribution f [kij ;µij ;αi]

I Write the likelihood function as a product of these n terms

L =

n∏
j=1

f [kij ;µij ;αi] = f [kij ;β0i, β1i, sj , αi]

I The function depends on β0i, β1i, sj and αi

I One approach: Come up with some estimates of sj and αi
and plug them into the likelihood

I Pretend that these are the true values

I Now the likelihood is only a function of β0i and β1i


