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OUTLINE

» Review: Standard linear regression model (e.g., to model
gene expression as function of an experimental condition or
continuous covariate)

» Review: Logistic model: To model probability of abinary
event as a function of a covariate

» Parameter interpretation: Linear and logistic regression

» Introduction: Negative binomial regression model for
RNA-Seq

» Overview: Maximum likelihood estimation



LINEAR REGRESSION EXAMPLE: GENE EXPRESSION

v

Consider the simple linear regression model

Y:ﬂ0+ﬁ1$+€7

where

» 2 =0 (untreated)
» or x = 1 (treated)

v

Y is the observed ”expression” of the gene

€ is the measurement noise term

v

» We assume that it follows a normal distribution with mean
0 and variance o2



REMINDER: IMPORTANT FACT ABOUT NORMAL
DISTRIBUTION

» Consider a normal distribution with mean 0 and standard
deviation o
» If the data are shifted by a constant u, then
1. resulting distribution remains normal
2. The mean of the new distribution is 4+ 0 = p
3. Its standard deviation remains unchanged
» The last two (but not first) property are true for any
distribution
» Recall Y = 5y + f1x + €
» Y follows a normal distribution with mean p = 8y + fi1z
and variance o2

» IMPORTANT: p depends on z (unless of course 51 = 0)



LINEAR REGRESSION EXAMPLE: INTERPRETATION

v

Model
Y = Bo+ Bix + ¢,

The goal of (mean) regression is to estimate the expected
value of Y given treatment status

Conditional on z = 0 (i.e., not receiving treatment), the
expected value of Y is

Bo+ 51 x 0= B

Conditional on z =1 (i.e., receiving treatment), the
expected value of Y is

Bo+ 1 x1= P+ b1



GENERAL CONDITIONAL EXPECTATION

» Expectation is another word for average

» We can write the conditional expectation of Y given that
X =z as E]Y|X =z

» English: This is the average value of the outcome Y if the
value of X is equal to =

» The unconditional expectation of Y is denoted by E[Y]

» If Y does not depend on X, then E[Y|X = z] = E[Y] for
every

» The goal of linear regression is to model E[Y|X = z| as
”Linear” function

» Our Example: E[Y|X =z| = fy + fix



LINEAR REGRESSION EXAMPLE: INTERPRETATION

» Model
Y = By + iz + ¢,

» o (the intercept) is the expected value of Y if no
treatment is administered (average baseline value)

» [ is the treatment effect
» If treatment is administered, the expected value of
expression is
» increased by (1 units if 5; > 0
» decreased by (31 units if 5; < 0
» unchanged if 8, =0



LINEAR REGRESSION EXAMPLE: CONTINUOUS
COVARIATE

» Model
Y = By + iz + €,

where z is continuous (quantitative)

> » If 81 > 0, then increasing x by one unit, increases Y on
average by (1 units
» If 5; <0, then increasing x by one unit, decreases Y on
average by (1 units
» If 1 = 0, then changes in x do not affect the expected value
of Y



REGRESSION FOR BINARY OUTCOMES

v

Suppose that Y is a binary outcome

It assumes values 0 or 1

v

This is a count outcome

v

v

Consider the previous model

Y = 6o+ fix + e,

v

Is it appropriate? Why or why not?



LogisTiCc REGRESSION

» Relate the probability of the outcome of the event Y =1 to
treatment

» More specifically, relate the log-odds to the treatment

» The log-odds will be modeled as a linear function of x
Bo+ Piz+ €

» This is an example of a generalized linear model (GLM)

» Note: The model used by DESeq is a GLM on the basis of
the NB (instead of binomial distribution)

» The expected outcome of Y is not modeled directly as a
linear function

» A transformation of the expected outcome of Y is modeled
as a linear function



EXPECTED VALUE OF A BINARY EVENT

» Suppose that Y assumes 1 with probability 7 or 0 with
probability 1 — 7

» PY=1)=wmand P(Y =0)=1-7

» IMPORTANT: P(Y =1) = E(Y)

» The expected value of Y is the probability that it assumes
the value 1

> Why?
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ODDS VS PROBABILITY

» Suppose that 7 = P(Y = 1)
» The odds of the event Y =1 (to occur) is defined as

Probability that Y = 1 occurs s

- Probability that Y = 1 does not occur 1 —

Odds[Y = 1]



ODDS

v

v

v

v

RATIO VERSUS RELATIVE RISK

mo = P[Y = 1|X = 0]: Probability that the event occurs if
sample is not treated

m = P[Y = 1|X = 1]: Probability that the event occurs if
X = 1sample is treated

The odds-ratio is

1—m
OR = — L
1—mg
The relative risk is
RR =%



THE LoGisTic MODEL

» The log-odds of the event Y =1

PY =1|X = z)

1 =
TPy —iX =) 0T
» or equivalently
EY|X =)
1 =

> or equivalently

PY=1X=z)=EY|X=2)= 1 ixiggﬁj(:fl;fx)



PARAMETER INTERPRETATION

» If 51 > 0, a unit increase in x, results in an expected
increase of exp(f1) in the odds of the event

» If 51 < 0, a unit increase in x, results in an expected
decrease of exp(f1) in the odds of the event

» If 51 = 0, then changes in & do not affect the odds of
realization of the event



LINK FUNCTION

v

For a probability 7, define the ”logit” transformation as

1
Ogl—w

v

This is the log-odds of an event with probability 7

v

Note that in the logistic model, the probability of the event
is linear in the parameter through this logit transformation

E(Y|X = z)

Bl pY[X=a) 0t

v

In the GLM literature, this is called the link function



OVERDISPERSION

» Recall that if K follows a binomial distribution with
parameters n and 7, then

> mean g = nw
» variance 02 = n(1 — )
» Clustering in the data results in the actual variance to be
different than the nominal variance (nw(1 — m))
» Overdispersion: Actual variance is larger than nominal
variance
» Underdispersion: Actual variance is smaller than nominal
variance
» The choice of a GLM and evaluation of its performance
should start and end with considering/addressing the
overdispersion issue

» The use of Poisson (actually a variation thereof) and
Negative Binomial models are two common choices for
GLM for overdispersed data



GENERALIZED LINEAR MODELS (GLM)

Define p, = E(Y|X = x) as the expected value of the outcome
given treatment status (x =0 or x = 1)

Distribution Link Mean

Binomial 0,1,...,n  Bo+ iz :logl’jﬁ by = %
Poisson 0,1,2,... Bo+ iz =log(uz) 1z = exp(Bo + Pix)
Negative Binomial 0,1,2,... (o + f1z = log(uz) e = exp(Bo + 1)




GENERAL NOTE

>

vV vV v v

Recall the simple linear regression model for expression

Y = Bo+ fix + ¢,

where

» =0 (untreated)
» or x = 1 (treated)

Y is the observed ”expression” of the gene
€ is the measurement noise term
The parameter of interest is 41 (the treatment effect)

There are two other unknown parameters, 5y and o2 the
estimation procedure has to deal with in a principled
manner

» Bp and o? are nuisance parameters

They are not of primary (or any) interest. But you have to
deal with them!



GENERAL HYPOTHESIS

» Is the RNA abundance level for any of the m genes affected
by treatment

» Let H; denote the null hypothesis for gene j
» H;: The RNA abundance level for gene j is not affected by

treatment

» H ;¢ The RNA abundance level for gene j is affected by
treatment

» The global null hypothesis: H; and Hy and .... and H,, are
all true

» The global alternative: H, or Hy or .... or H,, is true

» In other words, under the alternative at least one of the
marginal null hypotheses is false



OBSERVED DATA

Some notation

» n denotes the number of samples

» m denotes the number of genes

» K;; denotes the observed number of reads mapped to gene %
for sample j

» z; = 0 or 1 denotes the treatment status for sample j

v

v

What is observed for sample j is the vector

Klja cee ,ij,{L‘j

v

In other words m counts (one per gene) and the
experimental factor

v

Note that the K;; form a table of counts of dimension
n x m (n samples and m genes)



DESEQ: NOTATION FOR NEGATIVE BINOMIAL
DISTRIBUTION

» The count K is assumed to follow a negative binomial
distribution with parameters p € (0,1) and r > 1

» The distribution is PMF is

P(K =k) = (k ti; 1)1)’"(1 -,

fork=rr+1,...

» Rather than considering the model as NB|p, ] we will
consider it as NB|[u, ], where

s () ()

where £k =0,1,...




DESEQ: NOTATION

» K;; denotes the observed number of reads mapped to gene :
for sample j
» K;; follows a negative binomial distribution with
» Mean p,; (indexed by gene ¢ and sample j)
» Dispersion parameter «; (indexed by the gene 7)
» The mean is assumed to be p;; = s;q;; where

» logqi; = Bio + Birx;
» s; is a gene j specific normalization constant



DESEQ: REFORMULATE HYPOTHESES

» Hypotheses of interest
» The global null hypothesis: H; and Hs and .... and H,, are
all true
» The global alternative: H, or Hs or .... or H,, is true
» Reformulation
» The global null hypothesis: £1;1 = 0 and 821 =0 and ....
and 8,1 =0
» In other words, all of the 3;; are equal to zero
» The global alternative: 511 # 0 or S21 =0 or .... or B =0
» In other words, at least one of the ;1 is not equal to zero



DESEQ: ASSUMPTION ON DISTRIBUTION

K;; follows a negative binomial distribution with mean p and
dispersion parameter o



DESEQ: ASSUMPTION ON MEAN OF DISTRIBUTION

» Conditional on the treatment status of sample j (z; =0 or
1), the expected value of Kj; is

Mij = S5 X Qij
where
log gij = Bio + Birz;
» Note that two regression parameters are indexed by ¢
» Why? Because these are gene i specific parameters
» Why is z; not indexed by 47
» Final Assumption: s;; = s;

» In other words: Within sample j, the normalization
parameter is constant across the genes

» How many assumptions so far?



DESEQ: MAIN PARAMETERS AND NUISANCE
PARAMETERS

» The m main parameters of interest

/Blla" ' 7/3m1

» The unknown nuisance parameters are
» The m gene specific intercepts

B10; - - -+ Bmo
» the n sample specific normalization constants
S1y.+.458n
» The m gene specific nuisance parameters

Alye..y Oy



DESEQ: MAIN PARAMETERS AND NUISANCE
PARAMETERS

» Assuming the model assumptions are correct, the
estimation of the regression parameters 3,9, 8;1 is fairly
straightforward

» The DESeq authors propose to estimate the normalization
constant for sample j as

ﬁ

KR’

7

s; = median

where .
ML pe=y
KPt= <H K]>
j=1

» Here KiR is the geometric mean of Kji, ..., K;, (the n
counts for gene 1)

» The median is taken over all m genes for which KiR is
positive



DESEQ: DISPERSION PARAMETER

v

A key issue in using the NB model is proper handling of
the gene specific dispersion parameters

Al,...,0p,

The estimation of the dispersion parameter is a challenging
task

DESeq2 assumes that «; is random following a normal
distribution

The results are sensitive to the estimates

One of the key differences between DESeq2 and DESeq is
the approach taken to estimate these nuisance parameters



DESEQ SOFTWARE OVERVIEW

» The analysis of RNA-Seq data using the DESeq2 package
will be reviewed in detail in the upcoming weeks

» The estimation and inference for the model is done through
the DESeq function

» [t performs the following steps in the order give

1. estimation of size factors sq,..., s,
2. estimation of dispersion parameters aq, ..., alpha.,
3. Fit NB GLM model



DESEQ: MODEL EXERCISE

v

K;;j denotes the observed number of reads mapped to gene 7
for sample j

v

x; = 0 or 1 denotes the treatment status for sample j

» Say we want to account for another covariate z; (e.g.,

temperature)
» What is observed for sample j is the vector
Klj, . ,ij, xj, Zj
» Questions

» State the hypotheses
» Propose a model (that incorporates the additional covariate)
» List any assumptions that you have made



DESEQ: MODEL EXERCISE

>

The null hypothesis
Hoiﬂll =0 and ﬂgl =0 and ﬁml =0
Conditional on z; and z;, the observed number of reads

mapped to gene i for sample j, Kj;;, follows a negative
binomial distribution with

» Mean p;;
» Dispersion parameter «; (gene specific)

Conditional on the treatment status of sample j (x; = 0 or
1) and the temperature z;, the expected value of Kj; is
Kij = S5 X @Qij
where
log gij = Bio + Binzj + Bizzj

The normalization parameters are assumed to be sample
(not gene) specific (s;; = s;)



DESEQ: MODEL NUISANCE PARAMETER

» The m main parameters of interest

B, - Bm1

» The unknown nuisance parameters are
» The m gene specific intercepts

B10s -+ Bmo
» The m gene specific coefficients for the new covariate
Bi2,- -5 Bm2

» the n sample specific normalization constants
S81y---,5n
» The m gene specific nuisance parameters

[0 2 I 6 7958



EDGER: ANOTHER NB MODEL FOR RNA-SEQ
COUNTS

>

Assume that the K;; follows a NB distribution with mean
pij and dispersion paramater «;

The mean (conditional on treatment status z) is

HiJ = Mjpmi

where

» M; is the library size (total number of reads for sample j
> p.; is the relative abudance of the gene i given treatment
status x

> po; is the relative abudance of the gene i given no treatment
> pi; is the relative abudance of the gene i given treatment

Treatment changes the abudance of RNA in gene i if
Poi # D1
This is same distributional assumption as in DESeq



MLE ILLUSTRATION

» In a GLM, the parameters §;0 and ;1 are estimated using
the method of Maximum likelihood (MLE)

» We illustrate the method using this coin tossing example:

» We toss a coin once and record the number of heads

» Suppose that you conduct two independent replicates of
this experiment

» K the number of events (among n = 1 trial) in experiment
1

» K5 the number of events (among n = 1 trial) in experiment
2

» The PMF of K is

» Here k=0or 1



JOINT DISTRIBUTION

» P(K; = k1) denotes the probability of the event that

Ki=Fk
» P(Kjy = k) denotes the probability of the event that
Ky = ko

» These are called marginal probabilties

» What is P(Kl =k, Ky = kg)

» This is probability of the event that K1 = k1 and Ko = ko

» If you assume that these are independent tosses then

» P(K1 =k, Ky = ko) = P(Ky =k1) x P(Ky = ko)

» In other words, the probability of the joint event is equal to
the probability of the marginal events.



LIKELIHOOD

v

Suppose that the realized value of K is ky

v

Unlike K7, k1 is a fixed non-random number
The likelihood of 7 given the observed data ki, ks is

v

L(m) = T (1— W)lfklﬂb(l — 71')17}62

v

Note that this is the joint probability of the events
evaluated at the realized values



JOINT DISTRIBUTION

» Repeat the experiment B times
» The joint PMF is

P(Ky=ki,...,Kp =kp) = a1 (1—n) " x. . xrke(1—n)l-ks

» Note that the implicit assumption is that the experiments
are mutually independent

» Under this assumption, the joint PMF is the product of the
marginal PMFs

» Plugging in the observed counts into the joint PMF yields
the likelihood function



BINOMIAL EXAMPLE: OBSERVED DATA

set.seed(2131)
x = rbinom(5, 1, 0.5)
x

## [11 1000 1

» Observed data 1 =1, 21 =0, 23=0, 24 =0 and 25 = 1

» What is the likelihood?



BiNOMIAL EXAMPLE: LIKELIHOOD

» Observed data 1 =1, 21 =0, 23 =0, 24 =0 and 25 = 1
» The likelihood

Lir] = 791 —-m)" x 721 —m)" x 7% (1 — m)* x
T4 (1 — )™ x (1 — m)™ x
= o1 - x 21 - )0 x 201 =)0 x
701 =)0 x 7l(1 — )it
= 7131 -7)?

» Given the observed data find the value of 7 that maximizes
this probability



BiNnOMIAL EXAMPLE: MAXIMUM LIKELIHOOD

The maximum value of the function L[r] = 72(1 — 7)3 occurs at
m = 0.4.

L(p)
0.000 0005 0010 0015 0020 0025 0030 0035

0.0 0.2 0.4 0.6 0.8 1.0

pi



MAXIMUM LIKELIHOOD CALCULATION FOR NB

» For gene 1, let ki1,..., k1, the n observed counts

» For patient j plug the observed count k;; into the PMF of
the NB distribution f[k;j; pij; o

» Write the likelihood function as a product of these n terms

n
L = [ flkijs pijs cal = Flkizs Bois B, 85, ]
j=1
» The function depends on fBy;, B1s, 55 and oy

» One approach: Come up with some estimates of s; and «;
and plug them into the likelihood

» Pretend that these are the true values

» Now the likelihood is only a function of 8y; and Bi;



