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CENSORING

» In many experiments, the event of interest may not have
been realized at the time of the analysis

» Example: Time of death

» At the time of the analysis, the time of death for mice who
are still alive is unkown

» Death will occur in the future

» All we can say is that the time of death will be greater
than the current observed lifetime

» In Statistics, we use the term censoring to describe this
type of data

» There are multiple types of censoring mechanisms

» We will look at three standard mechanisms
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Large values are censored (e.g., time of death)
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INTERVAL CENSORING

Disease progression occurs after the last visit (where patient
was assessed to be in remission) and before the current visit
(where patient was assessed to have relapsed)
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LEFT CENSORING

Small values are censored (e.g., Below Quantifiable Limit; low
sequencing depth)
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SURVIVAL DISTRIBUTION

» Let T denote time of death

» Then T > t denotes the event of surviving longer than time
t

» P(T >t) denote the probability of the event of surviving
longer than time ¢
» How does one estimate S(t) = P(T > t)

» Let’s consider this question assuming that there is no
censoring.

» In other words, at the time of the analysis the death time
for each mouse has been observed




SURVIVAL DISTRIBUTION: PROPERTIES

» Let T denote the time of death measured in weeks

» P(T>0)=1

» Why?

» P(T > 1): Probability of surviving longer than one week
» P(T > 2): Probability of surviving longer than two weeks
» P(T>1)>P(T>2)

» Why?

» More generally, if ¢; < tg then P(T > t1) > P(T > t2)

» In other words, the survival function is a decreasing
(actually non-increasing) fuction of time

» It decreases from 1 to 0

SURVIVAL DISTRIBUTION: EXAMPLE
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SURVIVAL DISTRIBUTION: EXAMPLE

Simulate death times from an exponential distribution with
median 1
set.seed(12316)

deathtimes <- rexp(10, rate = log(2))
sort(deathtimes)

## [1] 0.1596587 0.5393022 0.6823364 0.7314445 0.7541258 1.6637266 1.8274204
## [8] 2.3545131 3.7831739 4.0069001

Note: If P(T > m) = 0.5, we say that m is the median tim of
death




SURVIVAL DISTRIBUTION: EXAMPLE

round(sort(deathtimes), 3)

## [1] 0.160 0.539 0.682 0.731 0.754 1.664 1.827 2.355 3.783 4.007

» How many death times are greater than 0.167

» 10/10

» How many death times are greater than 0.5397

» 9/10

» How many death times are greater than 3.7837

» 1/10

» How many death times are greater than 4.007?

» 0

EMPIRICAL SURVIVAL FUNCTION
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SURVIVAL DISTRIBUTION

» We will focus on right censoring

» T= Time of Death

» C'= Censoring Time

» Y = min{T, C'}= observed time

» What we want to study is the survival distribution

» P(T >t) the proportion of mice in the population whose
lifetime exceeds t time units

» Note that we only observe T (the time of interest) if T < C'

» We define the event indicator as D =1 (e.g. dead) if
T <Cor D=0 (e.g. alive or censored) otherwise

» We observe the pair (Y, D) not T

SURVIVAL DISTRIBUTION
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SURVIVAL DISTRIBUTION: CENSORING

» Note that we only observe T (the time of interest) if T' < C'

» So we have to estimate P(T > t) not on the basis of T, but
rather (Y, D)

» The Kaplan-Meier estimator is a standard method for
estimating P(T" > t) on the basis of (Y, D)




EXAMPLE: TREATMENTS FOR OVARIAN CANCER
(EDMUNSON et al, 1979)

head (ovarian)

##  futime fustat age resid.ds rx ecog.ps

## 1 59 1 72.3315 2 1

## 2 115 1 74.4932 2 1 1

## 3 156 1 66.4658 2 1 2

## 4 421 0 53.3644 2 2 1

## 5 431 1 50.3397 2 1 1

## 6 448 0 56.4301 11 2
KAPLAN-MEIER

plot(survfit(Surv(futime, fustat) ~ 1, data = ovarian), lwd = 2, col = "red3",

xlab = "Time (Days)", ylab = "Probability", main = "Kaplan-Meier Estimate of Overall Survival Distriby

Kaplan-Meier Estimate of Overall Survival Distribution
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TWO-SAMPLE HYPOTHESIS FOR SURVIVAL DATA

» Let P(T > t|Z = 0) denote the survival probability, at time
t, if mouse is not treated

» Let P(T > t|Z = 1) denote the survival probability, at time
t, if mouse is treated

> Null: Hy: P(T > t|Z =0) = P(T > t|Z =1) for all t
» Alternative: Hy : P(T > t|Z =0) # P(T > t|Z = 1) for
some t




SURVIVAL DISTRIBUTION: TWO SAMPLE
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EXAMPLE: TREATMENTS FOR OVARIAN CANCER
(EDMUNSON et al, 1979)

Kaplan-Meier Estimate of Overall Survival Distribution
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LOGRANK TEST: EXAMPLE

The log-rank test can be used to test if the survival probability
depends on a factor

survdiff (Surv(futime, fustat) ~ rx, data = ovarian)

## Call:

## survdiff (formula = Surv(futime, fustat) ~ rx, data = ovarian)
##

## N Observed Expected (0-E)"2/E (0-E)~2/V

## rx=1 13 7 5.23 0.596 1.06

## rx=2 13 5 6.77 0.461 1.06

##

#% Chisq= 1.1 on 1 degrees of freedom, p= 0.303




CoX SCORE TEST

The log-rank statistic is also called the Cox score statistic

coxmod <- coxph(Surv(futime, fustat) ~ rx, data = ovarian)
summary (coxmod)

## Call:

## coxph(formula = Surv(futime, fustat) ~ rx, data = ovarian)
##

## n= 26, number of events= 12

##

## coef exp(coef) se(coef) z Pr(>|zl)
## rx -0.5964 0.5508 0.5870 -1.016 0.31

##

## exp(coef) exp(-coef) lower .95 upper .95

## rx 0.5508 1.816 0.1743 1.74

##

## Concordance= 0.608 (se = 0.078 )

## Rsquare= 0.04 (max possible= 0.932 )

## Likelihood ratio test= 1.05 on 1 df, p=0.3052
## Wald test 1.03 on 1 d4f,

## Score (logrank) test = 1.06 on 1 df,

Cox PROPORTIONAL HAZARDS MODEL
The Cox Proportional Hazards Model can be used to model the
hazard of the event as a function of baseline covariates
coxmod <- coxph(Surv(futime, fustat) ~ rx + loglO(age) + resid.ds + ecog.ps,

data = ovarian)
summary (coxmod)

## Call:

## coxph(formula = Surv(futime, fustat) ~ rx + loglO(age) + resid.ds +
## ecog.ps, data = ovarian)

##

## n= 26, number of events= 12

##

## coef exp(coef)  se(coef) z Pr(>lzl)

## rx -1.028e+00 3.576e-01 6.476e-01 -1.588 0.1123
## loglO(age) 1.545e+01 5.111e+06 6.114e+00 2.526 0.0115 *
## resid.ds 9.203e-01 2.510e+00 7.869e-01 1.170 0.2422

## ecog.ps 3.720e-01 1.451e+00 6.460e-01 0.576 0.5646

##H -

## Signif. codes: 0 's*x' 0.001 'xx' 0.01 'x' 0.05 '.' 0.1 ' ' 1
##

## exp(coef) exp(-coef) lower .95 upper .95

## rx 3.576e-01 2.796e+00 0.1005 1.273e+00

## loglO(age) 5.111e+06 1.956e-07 31.9232 8.184e+11

## resid.ds 2.510e+00 3.984e-01 0.5368 1.174e+01
## ecog.ps 1.451e+00 6.893e-01 0.4090 5.145e+00
##

## Concordance= 0.803 (se = 0.091 )

## Rsquare= 0.472  (max possible= 0.932 )

## Likelihood ratio test= 16.61 on 4 df, p=0.002302
## Wald test = 13.7 on 4 df, p=0.008322
## Score (logrank) test = 19.27 on 4 df, p=0.0006955
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