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Censoring

I In many experiments, the event of interest may not have
been realized at the time of the analysis

I Example: Time of death

I At the time of the analysis, the time of death for mice who
are still alive is unkown

I Death will occur in the future

I All we can say is that the time of death will be greater
than the current observed lifetime

I In Statistics, we use the term censoring to describe this
type of data

I There are multiple types of censoring mechanisms

I We will look at three standard mechanisms

Right Censoring

Large values are censored (e.g., time of death)

0

end follow up

death

0 death

end follow up



Interval Censoring

Disease progression occurs after the last visit (where patient
was assessed to be in remission) and before the current visit
(where patient was assessed to have relapsed)
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Left Censoring

Small values are censored (e.g., Below Quantifiable Limit; low
sequencing depth)
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Survival Distribution

I Let T denote time of death

I Then T > t denotes the event of surviving longer than time
t

I P (T > t) denote the probability of the event of surviving
longer than time t

I How does one estimate S(t) = P (T > t)

I Let’s consider this question assuming that there is no
censoring.

I In other words, at the time of the analysis the death time
for each mouse has been observed



Survival Distribution: Properties

I Let T denote the time of death measured in weeks

I P (T > 0) = 1

I Why?

I P (T > 1): Probability of surviving longer than one week

I P (T > 2): Probability of surviving longer than two weeks

I P (T > 1) ≥ P (T > 2)

I Why?

I More generally, if t1 < t2 then P (T > t1) ≥ P (T > t2)

I In other words, the survival function is a decreasing
(actually non-increasing) fuction of time

I It decreases from 1 to 0

Survival Distribution: Example
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Survival Distribution: Example

Simulate death times from an exponential distribution with
median 1

set.seed(12316)

deathtimes <- rexp(10, rate = log(2))

sort(deathtimes)

## [1] 0.1596587 0.5393022 0.6823364 0.7314445 0.7541258 1.6637266 1.8274204

## [8] 2.3545131 3.7831739 4.0069001

Note: If P (T > m) = 0.5, we say that m is the median tim of
death



Survival Distribution: Example

round(sort(deathtimes), 3)

## [1] 0.160 0.539 0.682 0.731 0.754 1.664 1.827 2.355 3.783 4.007

I How many death times are greater than 0.16?

I 10/10

I How many death times are greater than 0.539?

I 9/10

I ...

I How many death times are greater than 3.783?

I 1/10

I How many death times are greater than 4.007?

I 0

Empirical Survival Function
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Empirical Survival Function
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Survival Distribution

I We will focus on right censoring

I T= Time of Death

I C= Censoring Time

I Y = min{T,C}= observed time

I What we want to study is the survival distribution

I P (T > t) the proportion of mice in the population whose
lifetime exceeds t time units

I Note that we only observe T (the time of interest) if T ≤ C

I We define the event indicator as D = 1 (e.g. dead) if
T ≤ C or D = 0 (e.g. alive or censored) otherwise

I We observe the pair (Y,D) not T

Survival Distribution
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Survival Distribution: Censoring

I Note that we only observe T (the time of interest) if T < C

I So we have to estimate P (T > t) not on the basis of T , but
rather (Y,D)

I The Kaplan-Meier estimator is a standard method for
estimating P (T > t) on the basis of (Y,D)



Example: Treatments for Ovarian Cancer
(Edmunson et al, 1979)

head(ovarian)

## futime fustat age resid.ds rx ecog.ps

## 1 59 1 72.3315 2 1 1

## 2 115 1 74.4932 2 1 1

## 3 156 1 66.4658 2 1 2

## 4 421 0 53.3644 2 2 1

## 5 431 1 50.3397 2 1 1

## 6 448 0 56.4301 1 1 2

Kaplan-Meier

plot(survfit(Surv(futime, fustat) ~ 1, data = ovarian), lwd = 2, col = "red3",

xlab = "Time (Days)", ylab = "Probability", main = "Kaplan-Meier Estimate of Overall Survival Distribution")
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Two-sample hypothesis for Survival Data

I Let P (T > t|Z = 0) denote the survival probability, at time
t, if mouse is not treated

I Let P (T > t|Z = 1) denote the survival probability, at time
t, if mouse is treated

I Null: H0 : P (T > t|Z = 0) = P (T > t|Z = 1) for all t

I Alternative: H1 : P (T > t|Z = 0) 6= P (T > t|Z = 1) for
some t



Survival Distribution: Two sample
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Example: Treatments for Ovarian Cancer
(Edmunson et al, 1979)
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rx=2

Logrank Test: Example

The log-rank test can be used to test if the survival probability
depends on a factor

survdiff(Surv(futime, fustat) ~ rx, data = ovarian)

## Call:

## survdiff(formula = Surv(futime, fustat) ~ rx, data = ovarian)

##

## N Observed Expected (O-E)^2/E (O-E)^2/V

## rx=1 13 7 5.23 0.596 1.06

## rx=2 13 5 6.77 0.461 1.06

##

## Chisq= 1.1 on 1 degrees of freedom, p= 0.303



Cox Score Test

The log-rank statistic is also called the Cox score statistic

coxmod <- coxph(Surv(futime, fustat) ~ rx, data = ovarian)

summary(coxmod)

## Call:

## coxph(formula = Surv(futime, fustat) ~ rx, data = ovarian)

##

## n= 26, number of events= 12

##

## coef exp(coef) se(coef) z Pr(>|z|)

## rx -0.5964 0.5508 0.5870 -1.016 0.31

##

## exp(coef) exp(-coef) lower .95 upper .95

## rx 0.5508 1.816 0.1743 1.74

##

## Concordance= 0.608 (se = 0.078 )

## Rsquare= 0.04 (max possible= 0.932 )

## Likelihood ratio test= 1.05 on 1 df, p=0.3052

## Wald test = 1.03 on 1 df, p=0.3096

## Score (logrank) test = 1.06 on 1 df, p=0.3026

Cox Proportional Hazards Model
The Cox Proportional Hazards Model can be used to model the
hazard of the event as a function of baseline covariates
coxmod <- coxph(Surv(futime, fustat) ~ rx + log10(age) + resid.ds + ecog.ps,

data = ovarian)

summary(coxmod)

## Call:

## coxph(formula = Surv(futime, fustat) ~ rx + log10(age) + resid.ds +

## ecog.ps, data = ovarian)

##

## n= 26, number of events= 12

##

## coef exp(coef) se(coef) z Pr(>|z|)

## rx -1.028e+00 3.576e-01 6.476e-01 -1.588 0.1123

## log10(age) 1.545e+01 5.111e+06 6.114e+00 2.526 0.0115 *

## resid.ds 9.203e-01 2.510e+00 7.869e-01 1.170 0.2422

## ecog.ps 3.720e-01 1.451e+00 6.460e-01 0.576 0.5646

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

## exp(coef) exp(-coef) lower .95 upper .95

## rx 3.576e-01 2.796e+00 0.1005 1.273e+00

## log10(age) 5.111e+06 1.956e-07 31.9232 8.184e+11

## resid.ds 2.510e+00 3.984e-01 0.5368 1.174e+01

## ecog.ps 1.451e+00 6.893e-01 0.4090 5.145e+00

##

## Concordance= 0.803 (se = 0.091 )

## Rsquare= 0.472 (max possible= 0.932 )

## Likelihood ratio test= 16.61 on 4 df, p=0.002302

## Wald test = 13.7 on 4 df, p=0.008322

## Score (logrank) test = 19.27 on 4 df, p=0.0006955


