

CONFIDENCE INTERVALS

- ► Example: The sample mean (the average of the observations) is a point estimate of the population (true) mean
- ▶ It is either equal to the true value of the parameter or is not
- ► As it is a single number it does not provide any direct measure of accuracy
- ► An interval estimate incorporates some measure of accuracy
- ► Thus it is generally more appropriate to present an interval estimate
- ► A common example of an interval estimate is the confidence interval

ESTIMATION EXAMPLE (ONE-SAMPLE MODEL)

- ► Truth: The RNA abundance follows a normal distribution with mean $\mu = 0$ and standard deviation $\sigma = 1$
- ► Assumption: The RNA abundance follows a normal distribution with *unknown* mean μ and *unknown* standard deviation σ
- ► Goal: The population mean μ is to be estimated on the basis of sample of size n = 7
- ► Objectives:
 - Produce point estimate of μ
 - \blacktriangleright Produce a 95% confidence interval of μ

ESTIMATION EXAMPLE (SIMULATE DATA)

mu <- 0
sigma <- 1
n <- 7
set.seed(12131)
x <- rnorm(n, mu, sigma)
x</pre>

[1] 1.5227356 -2.7829224 0.3571897 0.5478351 1.2733071 0.5166791 ## [7] -1.3890287

POINT ESTIMATOR

- A point estimator of μ is the so called sample mean
- ► The sample mean \bar{x}_n is obtained by simply averaging all the observations
- ► Note that an alternative is to used the sample median (rather than sample mean)
- ► The sample median is obtained by first sorting the observations (in say ascending order)
- ► The median is the middle observation (among the sorted observation)
- ▶ The median is more robust against outliers

POINT ESTIMATES

▶ The data

x

[1] 1.5227356 -2.7829224 0.3571897 0.5478351 1.2733071 0.5166791 ## [7] -1.3890287

► The sample mean

mean(x)

- ## [1] 0.006542226
- The data sorted in ascending order
 sort(x)

[1] -2.7829224 -1.3890287 0.3571897 0.5166791 0.5478351 1.2733071 ## [7] 1.5227356

Sample median
 median(x)

[1] 0.5166791

CONFIDENCE INTERVAL ESTIMATORS

- ► To construct a confidence interval for μ we need to deal with the nuisance parameter σ
- We can estimate it using the sample standard deviation s_n (details omitted)
- ▶ A 95% confidence interval for μ is obtained as

$$[\bar{x}_n - \frac{s_n}{\sqrt{n}}t(0.975, n-1), \bar{x}_n + \frac{s_n}{\sqrt{n}}t(0.975, n-1)]$$

- ► t(0.975, n-1) is the 0.975 quantile of a t distribution with n-1=6 degrees of freedom
- $\frac{s_n}{\sqrt{n}}$ is called the standard error
- $\frac{s_n}{\sqrt{n}}t(0.975, n-1)$ is called the margin of error
- ► The confidence interval is obtained as the point estimate plus or minus the margin of error

SIMULATE EXPERIMENT 1

- Calculate the sample mean xbar <- mean(x) xbar
 - ## [1] 0.006542226
- Calculate standard deviation
 s <- sd(x)
 - ## [1] 1.544261
- Calculate standard error se <- s/sqrt(n) se
 - ## [1] 0.5836759
- Calculate margin of error me <- qt(0.975, df = n - 1) * se me
 - ## [1] 1.428204
- Calculate 95% CI c(xbar - me, xbar + me) ## [1] -1.421661 1.434746

COVERED OR NOT COVERED

- The goal is to estimate μ
- If μ (the true but unknown parameter) is contained in the confidence interval, we say that it is covered
- ▶ Otherwise, it is not covered
- ▶ Note that when doing a simulation study, we can ascertain if μ is covered or not.
- ► Why?
- \blacktriangleright In real data analysis, we cannot as certain if μ is covered by the confidence interval
- ► Why?
- ▶ We can only state that we are 95% confident that μ is covered by the interval estimate based on the data from our experiment
- ▶ More on "confidence" later

REPEAT THE EXPERIMENT

```
set.seed(12301)
makeest <- function(b, n, mu, sigma, alpha) {
    x <- rnorm(n, mu, sigma)
    xbar <- mean(x)
    s <- sd(x)
    me <- qt(1 - alpha/2, df = n - 1) * s/sqrt(n)
    lcl <- xbar + me
    ucl <- xbar + me
    ucl <- xbar + me
    cover <- ifelse(mu >= lcl && mu <= ucl, TRUE, FALSE)
    data.frame(exp = b, n, mu, sigma, xbar, s, lcl, ucl, cover, len = ucl -
        lcl)
}
res <- foreach(b = 1:10, .combine = rbind) %do% {
    makeest(b, n, mu, sigma, 0.05)
}</pre>
```

Repeat the Experiment 10 times

exp	n	mu	sigma	xbar	s	lcl	ucl	cover	len
1	7	0	1	0.48	0.42	0.09	0.87	FALSE	0.78
2	7	0	1	0.34	0.88	-0.47	1.15	TRUE	1.63
3	7	0	1	-0.51	1.18	-1.60	0.58	TRUE	2.18
4	7	0	1	-0.87	0.67	-1.49	-0.25	FALSE	1.24
5	7	0	1	-0.09	0.95	-0.97	0.78	TRUE	1.76
6	7	0	1	0.30	1.62	-1.20	1.80	TRUE	3.00
7	7	0	1	-0.68	0.52	-1.15	-0.20	FALSE	0.96
8	7	0	1	0.06	1.30	-1.15	1.26	TRUE	2.41
9	7	0	1	0.28	1.02	-0.66	1.23	TRUE	1.89
10	7	0	1	-0.31	0.48	-0.76	0.14	TRUE	0.89

Confidence Interval: Common Misunderstanding

- ► A (not the) 95% CI for the mean based on the first experiment was (0.09, 0.87)
- ► A (not the) 95% CI for the mean based on the second experiment was (-0.47, 1.15)
- ► It is wrong to say that the probability that the first CI does not contain the true value $\mu = 0$ is 95%
- ▶ It is also wrong to say that the probability that the second CI contains the true value $\mu = 0$ is 95%
- ▶ We conduct one and only one experiment
- ▶ Based on the first experiment, we can say that we are 95% confident that it contains the true value
- Note that μ is *not* covered by the first experiment
- ► If we repeated the experiment a large number of times, 95% of the CIs would cover the true value
- ► We are 95% confident that the first experiment is among these (which it is not)

Recap: Assumptions

- ▶ We do not need to make distributional assumptions (e.g., normality) on the sample mean for the purpose of point estimation
- ▶ The sample mean, however, is not robust against outliers
- ▶ Why did 1984 UNC geography graduates have high average salary?
- ► We made distributional assumptions for using the confidence interval
- The margin of error was based on a t distribution

A more complicated example: Outline

- ► Suppose that you are measuring
- How would you estimate θ ?
- ▶ Would you take the sample average?
- ▶ How about the sample mean?
- ▶ If the measurements are uniformly distributed, it turns out that the maximum observation is a

A MORE COMPLICATED EXAMPLE: SIMULATION

- ▶ Simulate data from a uniform distribution on [0, 1]
 - n <- 10
 theta <- 1
 set.seed(2313)
 x <- runif(n, 0, theta)</pre>
 - х
 - ## [1] 0.34807917 0.12084940 0.11035999 0.03917718 0.79590237 0.72536724 ## [7] 0.80347454 0.95498314 0.62601926 0.19549397
- ▶ Sample mean
 - mean(x)

[1] 0.4719706

► Sample mean

median(x)

[1] 0.4870492

► Maximum observation

[1] 0.9549831

A MORE COMPLICATED EXAMPLE: RECAP

- ► An estimator is "valid" if it depends only on the data and no unknown quantities (including the parameter to be estimated)
- ► Why?
- ▶ Both the sample mean and median are *valid* estimators of θ
- ▶ There are, however, not good estimators
- \blacktriangleright In fact, in this case, the sample mean and median should be close to 0.5
- ► Why?
- ▶ The maximum observation is not only a valid estimator but also intuitively reasonable estimator
- ▶ This example has a rich history

QUICK NOTE: ESTIMATE VERSUS ESTIMATOR

- ▶ We use the terms estimate and estimators interchangeably
- ▶ There is a subtle but important distinction
- ► Suppose that you decide to estimate the population mean using the sample mean (once you get the data)
- ▶ The sample mean is the estimator
- ▶ Its outcome is random before you collect the data
- ► Once you collect the data and plug them into the estimator you get an (not the) estimate