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TWwWO-SAMPLE MODEL: INFERENCE

v

The mRNA abundance level in the untreated population is
Ho
The mRNA abundance level in the untreated population is

K1
Assumed model:

v

v

» Untreated Population: Y = g+ ¢
» Treated Population: X = p; + €

v

Statistical Hypotheses

» Hy: o = 1 (no treatment effect)
» Hy: pio # p1 (treatment effect)



TWO-SAMPLE MODEL: ESTIMATION

» What is often of interested is estimate the unknown
parameters or quantities
» Examples
» Mean level for the untreated group pg
» Mean level for the treated group
» Fold-change p = %
» Standardized difference A = |pu; — pol/o
» Two types of estimates
» Point estimate
» Interval estimate



CONFIDENCE INTERVALS

» Example: The sample mean (the average of the
observations) is a point estimate of the population (true)
mean

» It is either equal to the true value of the parameter or is not

» As it is a single number it does not provide any direct
measure of accuracy

» An interval estimate incorporates some measure of accuracy

» Thus it is generally more appropriate to present an interval
estimate

» A common example of an interval estimate is the
confidence interval



ESTIMATION EXAMPLE (ONE-SAMPLE MODEL)

» Truth: The RNA abundance follows a normal distribution
with mean p = 0 and standard deviation o =1

» Assumption: The RNA abundance follows a normal
distribution with unknown mean p and unknown standard
deviation o

» Goal: The population mean y is to be estimated on the
basis of sample of size n =7
» Objectives:

» Produce point estimate of u
» Produce a 95% confidence interval of y



ESTIMATION EXAMPLE (SIMULATE DATA)

mu <- 0

sigma <- 1

n<-7

set.seed(12131)

x <- rnorm(n, mu, sigma)
x

## [1]1 1.5227356 -2.7829224 0.3571897 0.5478351 1.2733071 0.5166791
## [7] -1.3890287



PoIiINT ESTIMATOR

v

A point estimator of u is the so called sample mean

The sample mean Z,, is obtained by simply averaging all
the observations

Note that an alternative is to used the sample median
(rather than sample mean)

The sample median is obtained by first sorting the
observations (in say ascending order)

The median is the middle observation (among the sorted
observation)

The median is more robust against outliers



PoiINT ESTIMATES

» The data

X

## [1]1 1.5227356 -2.7829224 0.3571897 0.5478351 1.2733071 0.5166791
## [7] -1.3890287

» The sample mean
mean (x)
## [1] 0.006542226
» The data sorted in ascending order

sort (x)

## [1] -2.7829224 -1.3890287 0.3571897 0.5166791 0.5478351 1.2733071
## [7] 1.5227356

» Sample median
median (x)

## [1] 0.5166791



CONFIDENCE INTERVAL ESTIMATORS

>

To construct a confidence interval for 1 we need to deal
with the nuisance parameter o

We can estimate it using the sample standard deviation s,
(details omitted)

A 95% confidence interval for u is obtained as

[T — %t(O.Q?S,n — 1), %0 + %t(0.975,n —1)]

t(0.975,n — 1) is the 0.975 quantile of a ¢ distribution with
n — 1 =6 degrees of freedom

% is called the standard error

57% (0.975,n — 1) is called the margin of error

The confidence interval is obtained as the point estimate
plus or minus the margin of error



SIMULATE EXPERIMENT 1

>

Calculate the sample mean

xbar <- mean(x)
xbar

## [1] 0.006542226

Calculate standard deviation

s <- sd(x)
s

## [1] 1.544261

Calculate standard error

se <- s/sqrt(n)
se

## [1] 0.5836759

Calculate margin of error

me <- qt(0.975, df = n - 1) * se
me

## [1] 1.428204
Calculate 95% CI
c(xbar - me, xbar + me)

## [1] -1.421661 1.434746



COVERED OR NOT COVERED

» The goal is to estimate u

» If ;1 (the true but unknown parameter) is contained in the
confidence interval, we say that it is covered

» Otherwise, it is not covered

» Note that when doing a simulation study, we can ascertain
if p is covered or not.

» Why?

» In real data analysis, we cannot ascertain if y is covered by
the confidence interval

» Why?

» We can only state that we are 95% confident that p is

covered by the interval estimate based on the data from
our experiment

» More on ”confidence” later



REPEAT THE EXPERIMENT

set.seed(12301)
makeest <- function(b, n, mu, sigma, alpha) {
x <- rnorm(n, mu, sigma)
xbar <- mean(x)
s <- sd(x)
me <- qt(1 - alpha/2, df = n - 1) * s/sqrt(n)
1lcl <- xbar - me
ucl <- xbar + me
cover <- ifelse(mu >= 1lcl && mu <= ucl, TRUE, FALSE)
data.frame(exp = b, n, mu, sigma, xbar, s, lcl, ucl, cover, len = ucl -
lcl)

res <- foreach(b = 1:10, .combine = rbind) %do% {
makeest(b, n, mu, sigma, 0.05)



REPEAT THE EXPERIMENT 10 TIMES

exp n mu sigma xbar s Icl ucl cover len
1 7 0 1 0.48 0.42 0.09 0.87 FALSE 0.78
2 7 0 1 0.34 0.88 -0.47 1.15 TRUE 1.63
3 7 0 1 -0.51 1.18 -1.60 0.58 TRUE 2.18
4 7 0 1 -0.87 0.67 -1.49 -0.25 FALSE 1.24
5 7 0 1 -0.09 0.95 -0.97 0.78 TRUE 1.76
6 7 0 1 0.30 1.62 -1.20 1.80 TRUE 3.00
7 7 0 1 -0.68 0.52 -1.15 -0.20 FALSE 0.96
8 7 0 1 0.06 1.30 -1.15 1.26 TRUE 2.41
9 7 0 1 0.28 1.02 -0.66 1.23 TRUE 1.89
10 7 0 1 -0.31 0.48 -0.76 0.14 TRUE 0.89




CONFIDENCE INTERVAL: COMMON
MISUNDERSTANDING

>

>

A (not the) 95% CI for the mean based on the first
experiment was (0.09,0.87)

A (not the) 95% CI for the mean based on the second
experiment was (—0.47,1.15)

It is wrong to say that the probability that the first CI
does not contain the true value p = 0 is 95%

It is also wrong to say that the probability that the second
CI contains the true value p = 0 is 95%

» We conduct one and only one experiment

Based on the first experiment, we can say that we are 95%
confident that it contains the true value

Note that p is not covered by the first experiment

If we repeated the experiment a large number of times,
95% of the CIs would cover the true value

We are 95% confident that the first experiment is among
+Thaca (vrhich 34 5o et )



RECAP: ASSUMPTIONS

» We do not need to make distributional assumptions (e.g.,
normality) on the sample mean for the purpose of point
estimation

» The sample mean, however, is not robust against outliers

» Why did 1984 UNC geography graduates have high average
salary?

» We made distributional assumptions for using the
confidence interval

» The margin of error was based on a t distribution



A MORE COMPLICATED EXAMPLE: OUTLINE

v

Suppose that you are measuring

v

How would you estimate 67

v

Would you take the sample average?

v

How about the sample mean?

v

If the measurements are uniformly distributed, it turns out
that the maximum observation is a



A MORE COMPLICATED EXAMPLE: SIMULATION

» Simulate data from a uniform distribution on [0, 1]
n <- 10
theta <- 1
set.seed(2313)
X <- runif(n, 0, theta)

X

## [1] 0.34807917 0.12084940 0.11035999 0.03917718 0.79590237 0.72536724
## [7] 0.80347454 0.95498314 0.62601926 0.19549397

» Sample mean
mean (x)
## [1] 0.4719706
» Sample mean
median(x)
## [1] 0.4870492
» Maximum observation
max (x)

## [1] 0.9549831



A MORE COMPLICATED EXAMPLE: RECAP

» An estimator is "valid” if it depends only on the data and
no unknown quantities (including the parameter to be
estimated)

» Why?
» Both the sample mean and median are wvalid estimators of 6
» There are, however, not good estimators

» In fact, in this case, the sample mean and median should
be close to 0.5

» Why?
» The maximum observation is not only a valid estimator but
also intuitively reasonable estimator

» This example has a rich history



QUICK NOTE: ESTIMATE VERSUS HESTIMATOR

» We use the terms estimate and estimators interchangeably
» There is a subtle but important distinction

» Suppose that you decide to estimate the population mean
using the sample mean (once you get the data)

» The sample mean is the estimator
» Its outcome is random before you collect the data

» Once you collect the data and plug them into the estimator
you get an (not the) estimate



