
High-Throughput Sequencing Course
Statistical Inference: Part I

Biostatistics and Bioinformatics

Summer 2017

Anatomy of a Simple Model: Population

I We are interested in the expression level of a gene in a
population

I Denote that level by µ
I Some questions

I Is µ > 0 (over expressed)
I What is the value of µ

I Model the observed gene expression Y as

Y = µ+ ε

I ε is a random error term
I In English:

I In absence of random noise (ε = 0), we observe the true
value µ

I In practice: We observe a perturbed value of µ (the truth
plus random error)

I What are the assumptions thus far?

Anatomy of a Simple Model: Sampling from
Population

I Our design: Sample n experimental units from this
population

I What are observed are Y1, . . . , Yn

I Model the observed gene expression for the i-th
experimental units as

Yi = µ+ εi

I Note that we are not interested in any of n experimental
units

I We are interested in the population

I Note that Yi and εi are indexed by i

I µ (population parameter) is not indexed by i.



Illustration of Model

Y = µ
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Anatomy of a Simple Model: Assumptions

I The observed expression (Yi) is signal (µ) plus noise (εi)

I Additional assumptions:
I The error terms for the experimental units ε1, . . . , εn are

mutually independent
I The error terms ε1, . . . , εn are identically distributed
I More specifically: The error terms follow a normal

distribution with mean 0 and variance σ2.

I Preview: Models for analysis of RNA-Seq data will also
involve nuisance parameters

I While there are of no direct interest, they have to be dealt
with appropriately in any rigorous and principled analysis

Anatomy of a Simple Model: A Summary

I Yi is random but observable outcome

I εi is a random but unobservable outcome

I µ is the unknown population parameter of interest

I ε1, . . . , εn are mutually independent

I ε1, . . . , εn are normally distributed with mean 0 and
common variance σ2

I σ2 is an unknown population nusiance parameter of interest



Anatomy of a Simple Model: Final Notes

I In statistics, we base the inference on the observations Yi

I εi is called a latent variable

I The estimation of σ2 is a nuisance that has to be dealt with

I It is not realistic to assume that we know what σ2 is.

I The variability of estimating σ2 has to be accounted for in
the inference

I There is no point to statistics if we assume we know µ.
Why?

Statistical Hypothesis Testing: A Generic
Overview

I Formulate a scientific hypothesis
I Formulate the corresponding statistical hypothesis
I This will consist of a null hypothesis (H0) and an

alternative hypothesis (H1)
I Specify an experimental design
I Specify the testing procedure to be used:

I an appropriate test statistic
I decision rule based on the test statistic (typically under a

set of assumptions)

I Execute Experiment (collect data)
I Based on the amount of evidence using the decision rule

I either conclude there is evidence to reject the null
hypothesis H0 in favor of H1

I or fail to reject H0 (inconclusive)

IMPORTANT: Failing to reject H0 does not afford us to
conclude that H0 is true

Experimental Design

I Two examples
I Decide upfront to evaluate n = 10 experimental units
I Decide to initially evaluate n1 = 5 experimental units

(Stage 1). Depending on the results evaluate an additional
n2 = 5 experimental units

I These are different experimental strategies

I Design 1: The final sample size is n = 10

I Design 2: The final sample size is n = n1 = 5 or
n = n1 + n2 = 10

I The statistical properties of your decision rule depends on
the strategy used.

I More on design of experiments (DOE) in Week 3



Null versus Alternative

I The null hypothesis posits the status quo

I It is the conservative hypothesis

I In the US legal system, the defendant is assumed to be
innocent

I The null hypothesis: Defendant is innocent

I Study: Investigate if gene XYZ is differentially expressed
with respect to treatment

I In other words, does the distributions of the feature of the
gene you are interested in change when the experimental
unit is exposed to treatment?

I H0 gene XYZ is not differentially expressed with respect to
treatment

I H1 gene XYZ is differentially expressed with respect to
treatment

More on Null versus Alternative

I Suppose that your are studying the effect of a drug in a
clinical study

I Safety Study:
I H0: Drug is toxic
I H1: Drug is safe

I Efficacy study:
I H0: Drug is not efficacious
I H1: Drug is efficacious

Notation: True versus False Null Hypothesis

I The truth may be stated either by the null or alternative
hypothesis

I If the truth is stated by the statement of the null
hypothesis, we will say that

I The null hypothesis is true
I or call it a true null hypothesis

I If the truth is stated by the statement of the alternative
hypothesis, we will say that

I The null hypothesis is false
I or call it a false null hypothesis

I We will use these terms for notational convenience



Type I and II errors

I Type I Error: Erroneously decide in favor of the alternative
hypothesis (reject a true null hypothesis)

I Type II Error: Erroneously decide in favor of the null
hypothesis (fail to reject a false null hypothesis)

I The so called ”alpha” level is the probability of a type I
error

I The ”power” of a test, is the complement of the probability
of the type II error

I IMPORTANT: There is a trade-off between these two error
rates

Type I and II errors

Power = 1− β

Type I and II error trade-off

I In our court system, a defendant is assumed innocent until
proven guilty

I Type I error: Convict an innocent defendant
I Type II error: Free a guilty defendant

I If the prosecution gets too much leeway, the the likelihood
of convicting an innocent defendant increases

I Conversely, if the prosecution is reigned in by the judge, the
likelihood of letting a guilty defendant walk free increases

I Similar analogy in the case of a smoke detector
I Dialing up the sensitivity, increases the likelihood of

annoying beeps when using your toaster
I Dialing down the sensitivity, increases the likelihood of

missing a true fire



Notation: Decision

I false-positive (FP): Reject a true null hypothesis (Type I
error)

I true-positive (TP): Reject a false null hypothesis

I false-negative (FN): Fail to reject a false null hypothesis
(Type II error)

I true-negative (TN): Fail to reject a false null hypothesis

I We will use these terms for notational convenience

Three Decision Rules

I Following the collection of data, consider using one of the
three decision rules

I Decision Rule 1: Reject H0

I Decision Rule 2: Do not reject H0

I Decision Rule 3: Flip a coin: Reject H0 if tails and do not
reject H0 if heads

I What are the type I and II error rates for these decision
rules?

I Which one would you choose?

Decision Rule 1

I Decision: Reject H0

I If H0 is true, then it will be rejected

I A false-positive decision will be made if H0 is true

I α = 1

I If H0 is false, then it will be rejected

I A true-positive decision will be made if H0 is false

I β = 0



Decision Rule 2

I Decision: Do not reject H0

I If H0 is true, then it will not be rejected

I A false-positive decision will not be made

I α = 0

I If H0 is false, then it will not be rejected

I A false-negative decision is will be made

I β = 1

Decision Rule 3

I Decision: Flip a coin: Reject H0 if tails and do not reject
H0 if heads

I If H0 is true, then the probability of rejecting it is one-half

I α = 1
2

I If H0 is false, then probability of not rejecting it is one-half

I β = 1
2

A Bad Rule is a Valid (but bad) Decision Rule
I Decision Rule 1: Reject H0

I α = 1 and β = 0
I Decision Rule 2: Do not reject H0

I α = 0 and β = 1
I Decision Rule 3: Flip a coin: Reject H0 if tails and do not

reject H0 if heads
I α = 1

2 and β = 1
2

I Note that these decision rules effectively ignore the data

I While they are poor decision rules, they are technically
valid decision rules

I A poor statistical approach will effectively reduce to one of
the three

I Note that while α+ β = 1 in all these cases, that is
generally not the case

I The type I error is generally not the complement of the
type II error



A Simple Example: Formulation

I You suspect that a coin (H on side and T on the other) is
not fair (biased)

I Let π denote the probability that the coin lands a head on
any given toss

I A coin is ”fair” if π = 1
2

I or is ”biased” otherwise (i.e., π 6= 1
2)

I It is more likely to land a tail if π < 1
2

I or more likely to land a head if π > 1
2

A Simple Example: Statistics and Plain
English

I The statistical hypotheses could be succinctly stated as:
I Test H0 : π = 1

2 against H1 : π 6= 1
2

I In English:

I We give benefit of the doubt to the fact that the coin is fair
and then will, under this assumption, ascertain if there is
enough evidence, on the basis of the data, to conclude that
the coin is biased

A Simple Example: Decision Rule

I Following the formulation of the hypotheses, we have to
decide on an experimental design and a decision rule

I These, along with the specification of the hypotheses,
should be done before collecting data. Why?

I Our experimental design: flip the coin n = 12 times

I Why n = 12 and not say n = 13 (more on this later)

I A reasonable decision rule for this type of design is to use
the so called Binomial Test

I We will skip the technical details on the test



A Simple Example: Collect Data

I We conduct the experiment and observe
## [1] "T" "T" "T" "T" "T" "H" "T" "H" "T" "T" "T" "T"

I There are (per design) 12 flips of the coin

I We observe 2 heads and 10 tails

I What would you conclude?

I Would you reject if the number of heads were 3?

I how about 4?

I or 5?

A Simple Example: Binomial Test in Action

I We conduct the binomial test
##

## Exact binomial test

##

## data: sum(x == "T") and length(x)

## number of successes = 10, number of trials = 12, p-value = 0.03857

## alternative hypothesis: true probability of success is not equal to 0.5

## 95 percent confidence interval:

## 0.5158623 0.9791375

## sample estimates:

## probability of success

## 0.8333333

I What should we conclude?

I At the α = 0.05 level, there is sufficient evidence to reject
the hypothesis that the coin is fair (P-value=0.039)

I Note that there is not sufficient evidence to reject the null
if you wish to control the type I error rate at α = 0.01

Anatomy of a Two-sample Model

I Scientific Hypothesis: Treatment affects level of the gene

I Let µ0 denote the population level for the gene of interest
in the untreated population

I Let µ1 denote the population level for the gene of interest
in the treated population

I µ0 = µ1: There is no treatment effect on the gene

I µ0 6= µ1: There is a treatment effect (gene level is
”differentiably” expressed with respect to treatment)

I µ0 < µ1: treatment increases level of gene

I µ0 > µ1: treatment decreases level of gene



Two-sample Model: Observations

I Observation from Untreated Population:

X = µ0 + ε

I Observation from Treated Population:

Y = µ1 + ε′

I For each population, the observed mRNA level is the
population level (µ0 or µ1) plus random error

I Question: When there is no treatment effect is Y = X?

Two-sample Model: Formal Hypotheses

I Null Hypothesis: H0 : µ0 = µ1

I Alternative Hypothesis: H1 : µ0 6= µ1
I Question:

I Why is the null hypothesis not µ0 6= µ1?
I and the alternative hypothesis not (µ0 = µ1)?

I Assumptions:
I Previous: In each population, the observed level is the true

level plus noise
I Additional: The random errors ε and ε′ are normally

distributed with mean 0 and common variance σ2

Two-sample Model: Experimental Design

I Drawn random sample of size n from Untreated population

I This will yield n observations X1, . . . , Xn, where

Xi = µ0 + εi

I Random sample of size n from Treated population

I This will yield n observations Y1, . . . , Yn, where

Yi = µ1 + ε′i



Two-sample Model: Assumptions

I The random errors ε1, . . . , εn are mutually independent

I The random errors ε′1, . . . , ε
′
n are mutually independent

I ε1, . . . , εn are normally distributed with mean 0 and
variance σ2

I ε′1, . . . , ε
′
n are normally distributed with mean 0 and

variance σ2

I The (two-sample) t-test is a commonly method for testing
this hypothesis under the given set of assumptions (normal
distribution with common variance)

Quick Note: Conservative versus
Anti-conservative; Robustness

I The properties of the decision rule will depend on these
underlying assumptions

I They may be greatly sensitive to these assumptions
I The type I error of a decision procedure we hope to achieve

is called the nominal level
I Example: If we claim that the nominal level of our decision

is 0.05, then we are asserting that the probability of
committing a false-positive is at most 0.05.

I If the actual type I error rate exceeds the nominal level the
test is said to be anti-conservative

I If the actual type I error rate is less than the nominal level
the test is said to be conservative

I A decision rule that is not sensitive to the underlying
assumptions, with respect to type I error control, is said to
be robust

Designing the Experiment

I The sample size to achieve the desired power at a given
type I error rate depends on the effect size

I Given everything else fixed, a larger effect size requires a
smaller size to achieve a power at a given type I error rate

I The effect size for the two-sample t-test is defined as

∆ =
|µ0 − µ1|

σ

I The numerator |µ0 − µ1| is the difference (in absolute
value) of the means

I The size of this difference (how large it is) is in relation to
(scaled by ) the standard deviation



Sample Size Formula

I The sample size formula the two-sample t-test is

n = 2
(Z1−α + Z1−β)2

∆2

I Here Z1−α denote the right α tail of a normal distribution

I Let’s forget most of the technical details

I Just observe that the sample size decreases as the effect
size become larger. Why?

I Many other sample size formulas look very similar

Our Example: The Unknown Truth

I The true values of the unknown parameters:
I µ0 = 0
I µ1 = 2
I σ = 5

I The effect size is

∆ =
|0− 2|

5
= 0.4

Forget about the Design

I What is the power if we use 3 units per group
##

## Two-sample t test power calculation

##

## n = 3

## delta = 2

## sd = 5

## sig.level = 0.05

## power = 0.05784303

## alternative = two.sided

##

## NOTE: n is number in *each* group



Forget about the Design

I What is the power if we use 6 units per group
##

## Two-sample t test power calculation

##

## n = 6

## delta = 2

## sd = 5

## sig.level = 0.05

## power = 0.09156966

## alternative = two.sided

##

## NOTE: n is number in *each* group

Forget about the Design

I What is the power if we use 12 units per group
##

## Two-sample t test power calculation

##

## n = 12

## delta = 2

## sd = 5

## sig.level = 0.05

## power = 0.1532882

## alternative = two.sided

##

## NOTE: n is number in *each* group

Now Use Experimental Design

I The required sample size, per group, to detect an effect size
of

∆ =
|0− 2|

5
= 0.4

with a power of 0.8, at the 0.05 level is n =100 per group
##

## Two-sample t test power calculation

##

## n = 99.08057

## delta = 2

## sd = 5

## sig.level = 0.05

## power = 0.8

## alternative = two.sided

##

## NOTE: n is number in *each* group

I If a smaller sample size is used, the study will be
underpowered

I What is the caveat with using a larger sample size?
I Note: These observations are based on the given

assumptions, effect size and type I and II errors



How to check the type I Error and Power

I Simulation provides a powerful framework for
understanding the properties of the decision rule

I In the case of the two-sample t-test this works as follows

1. Draw a random sample of size n from a normal distribution
with mean µ0 and standard deviation σ

2. Draw a random sample of size n from a normal distribution
with mean µ1 and standard deviation σ

3. Apply the two-sample test to the two data samples and
record the P-value

I Now repeat the last three steps a large number of times

I The distribution of these simulated P-values should be
similar to the true distribution of the P-value

Simulation Example
I Set parameters

set.seed(4141)

n = 6

mu0 = 0

mu1 = 2

sigma = 5

I Simulate data
x0 = rnorm(n, mu0, sigma)

x1 = rnorm(n, mu1, sigma)

x0

## [1] -2.1071177 -0.2402046 2.6668539 -4.4884699 2.6865668 5.1362518

x1

## [1] 6.0170556 -4.3949286 -1.4848887 -3.5189476 -8.7897573 -0.4961073

I Carry out t-test
t.test(x0, x1)

##

## Welch Two Sample t-test

##

## data: x0 and x1

## t = 1.0984, df = 9.1035, p-value = 0.3002

## alternative hypothesis: true difference in means is not equal to 0

## 95 percent confidence interval:

## -2.872410 8.312895

## sample estimates:

## mean of x mean of y

## 0.608980 -2.111262

Simulation: Important Notes

I Data are generated under the truth

I Parameters and distributions are set by you

I A simulated experiment is to mimic a hypothetical, but
real, experiment

I The truth is not known in the context of a real experiment

I IMPORTANT: The decision rule step has to remain blinded
to this truth

I Computing Exercise: Evaluate the type I error and power
for the two-sample example using simulation and formula



Stat 101 Example: One-sided or Two-sided
Test?

I Suppose that company XYZ Dairies sells milk in glass
bottles

I The company claims that the net content of each bottle is
1 gallon

I Mr. Smith, owner of the ABC Supermarket, suspects he,
and ultimately his customers, are being swindled by XYZ

I Let µ denote the mean net content (in gallons) of the
population of XYZ Dairies milk bottles

I The company claims µ = 1

I Mr. Smith hypothesizes that µ < 1

Stat 101 Example (null vs alternative)

I Mr. Smith has to give benefit of the doubt to company
XYZ’s claim (i.e., µ = 1)

I The purpose of the experiment is to ascertain if there is
sufficient evidence to the contrary (i.e., show µ 6= 1)

I The null hypothesis is formulated as H0 : µ = 0

I The alternative is formulated as H1 : µ 6= 0

I Mr. Smith has no interest in gathering evidence for
showing that XYZ overfills its bottles (i.e., µ > 1

I In this case, a one-sided hypothesis would be appropriate

Statistical versus Clinical/Biological
Significance

I Hypothesis testing is carried out to investigate statistical
and not biological significance

I It is the responsibility of the investigator to pose a
biologically relevant hypothesis.

I It is also the responsibility of the investigator to ensure
that a statistically significant finding is biologically
plausible/realistic

I Statistical significance does not necessarily imply biological
significance or vice versa



Biologically but not Statistically Significant

set.seed(1122333)

x0 = rnorm(3, 1, 1)

x1 = rnorm(3, 2, 1)

x0

## [1] -0.25824011 0.02820527 2.20878939

x1

## [1] 1.5462733 0.6578732 3.1782064

t.test(x0, x1)

##

## Welch Two Sample t-test

##

## data: x0 and x1

## t = -1.0572, df = 3.9884, p-value = 0.3502

## alternative hypothesis: true difference in means is not equal to 0

## 95 percent confidence interval:

## -4.117361 1.848295

## sample estimates:

## mean of x mean of y

## 0.6595849 1.7941176

Statistically but not Biologically Significant

x0 = c(3.0001, 3.0002, 3.0003, 3.0004, 3.0005)

x1 = c(3.0006, 3.0007, 3.0008, 3.0009, 3.001)

x0

## [1] 3.0001 3.0002 3.0003 3.0004 3.0005

x1

## [1] 3.0006 3.0007 3.0008 3.0009 3.0010

t.test(x0, x1)

##

## Welch Two Sample t-test

##

## data: x0 and x1

## t = -5, df = 8, p-value = 0.001053

## alternative hypothesis: true difference in means is not equal to 0

## 95 percent confidence interval:

## -0.0007306004 -0.0002693996

## sample estimates:

## mean of x mean of y

## 3.0003 3.0008

Distribution of P-values under H0

I Under the null hypothesis, the distribution of the P-values
is uniform

I If you repeat the experiment many times under the null
hypothesis (e.g., no differential expression), the distribution
of the P-values will look like this

Distribution of P−values
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Quantile-Quantile Plot

I An important tool to assess type I error control is the
Quantile-Quantile Plot (aka QQ-Plot)

I The plot should look like this under H0

● ●●●
● ●●

●●
●●●

●●●
●●

●● ●●●
●●

●●
●●●●

●●
●●●●●

●●
●●
●●

●●
●●

●●
●●
●●

●●●●
●● ● ●●●●●

●●●
●●●

●●
●●
● ●●

●●
●●

●●
● ● ●●

●●
●●
●●

●●●
● ●●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

P−values

U
ni

fo
rm

 D
is

tr
ib

ut
io

n

Quantile-Quantile Plot: Deviation

I A deviation in the QQ-Plot indicates that there may be
evidence to reject H0

I Or that the decision rule is not accounting for type I error:
INFLATION!!
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