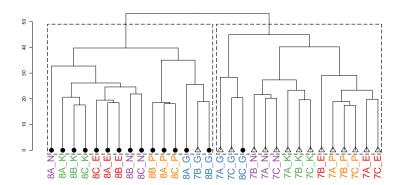
${\bf High\mbox{-}Throughput\ Sequencing\ Course}$

Statistical Inference: Sources of Variability

Biostatistics and Bioinformatics

Summer 2017

CLASS DISCOVERY



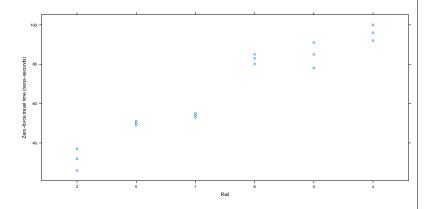
INTRA- AND INTER-SUBJECT VARIABILITY

- ► In most experiments, including RNA-Seq, the variability may not be exclusively due to measurement error
- ▶ Another source could be due to repeated measurements
- \blacktriangleright or sampling from strains or cell lines
- ▶ or due to batch effects (e.g., team effect)
- ▶ We will motivate these ideas using a classical toy example
- ► We will illustrate the caveats of properly accounting for these two sources of variability through two simulation studies

Rails Data

- ► Observation adjusted travel time for ultrasonic head-waves in the rail (nanoseconds).
- ► Data set: 6 rails; the travel time is sampled three times per rail
- ► Eighteen measurements
- \blacktriangleright Six Experimental Units
- ► Implicit assumption: The six rails are randomly selected from a *large* pool of rails
- ► What is of interest is neither the batch or any of these 6 rails (specifically)
- ▶ What is of interest is the population (the huge pool)

Rail Data



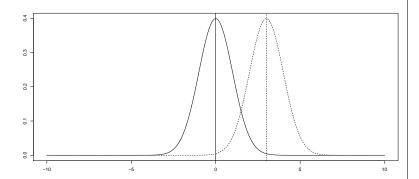
RAIL DATA: MODEL FORMULATION

- \blacktriangleright μ denotes the *true* travel time
- \blacktriangleright μ is an unknown fixed quantity
- ▶ Y_i denotes the *observed* travel time (for observation i = 1, ..., 18)
- ▶ In absence of noise, true value μ is observed
- ▶ In other words, $Y_i = \mu$ for i = 1, ..., 18

IMPORTANT FACT ABOUT NORMAL DISTRIBUTION

- \blacktriangleright Consider a normal distribution with mean 0 and standard deviation σ
- ▶ If the data are shifted by a constant μ , then
 - 1. resulting distribution remains normal
 - 2. The mean of the new distribution is $\mu + 0 = \mu$
 - 3. Its standard deviation remains unchanged
- ► The last two (but not first) property are true for any distribution

SHIFT NORMAL DISTRIBUTION



RAIL DATA: SIMPLE MODEL

 \blacktriangleright What is observed is a distorted version of μ

$$Y_i = \mu + \epsilon_i$$

- ► Notes:
 - $ightharpoonup Y_i$ is observable
 - \bullet ϵ_i is *not* observable
 - ▶ μ is an unknown parameter
- ▶ The variability observed here is exclusively attributed to the measurement error ϵ_i

LINEAR MODEL

RAIL DATA: ACCOUNT FOR TWO SOURCE OF VARIABILITY

- ▶ What is observed is a distorted version of μ
- \blacktriangleright It is distorted by a ra
- ▶ Y_{ij} : Index the rail by i = 1, ..., 6 and the replicate by j = 1, 2, 3
- ▶ Y_{23} : The obeservation for the third replicate for rail 2
- ► Model

$$Y_{ij} = \mu + b_i + \epsilon_{ij}$$

- ► Notes:
 - $ightharpoonup Y_{ij}$ is observable
 - \blacktriangleright b_i is not observable
 - $ightharpoonup \epsilon_{ij}$ is not observable
 - \blacktriangleright μ is an unknown parameter

LINEAR MIXED EFFECTS MODEL

```
lme(travel ~ 1, random = ~1 | Rail, data = Rail)

## Linear mixed-effects model fit by REML

## Data: Rail

## Log-restricted-likelihood: -61.0885

## Fixed: travel ~ 1

## (Intercept)

## 66.5

##

## Random effects:

## Formula: ~1 | Rail

## (Intercept) Residual

## stdDev: 24.805474.020779

##

## Number of Observations: 18

## Number of Groups: 6
```

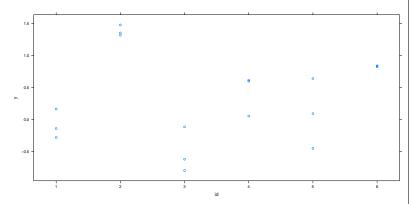
IS THE MIXED MODEL ADEQUATE?

- ► Assumptions:
 - b_i is normally distributed $N[0, \sigma_b^2]$

 - σ_b^2 does *not* depend on i (homoscedastic) ϵ_{ij} is normally distributed $N[0, \sigma_e^2]$ σ_e^2 does *not* depend on i or j (homoscedastic)
 - ► Error model is additive (could be multiplicative)

Example 1: Setup

- ▶ What are the ramifications for ignoring the clustering?
- ▶ We will sample 6 experimental units each with three replicates
- $\mu = 0, \sigma_e = 0.25, \sigma_b = 0.5$



EXAMPLE 1: SIMULATION

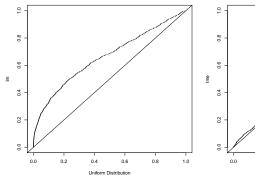
- ► Simulation outline
 - 1. Simulate a data set
 - 2. Test $H_0: \mu = 0$ ignoring the random effect (save *P*-value)
 - 3. Test $H_0: \mu = 0$ accounting for the random effect (save *P*-value)
- ▶ Repeat the three steps 999 additional times
- Given that the true $\mu = 0$ (by design), we would expect 50 of these P-values to be less than 0.05
- ► Why?

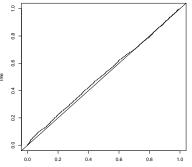
Example 1: Results

```
set.seed(210)
res = replicate(B3, sim.ranef(3, 6, 0.25, 0.5, verbose = FALSE))
mean(res[1, ] < 0.05)
## [1] 0.247
mean(res[2, ] < 0.05)
## [1] 0.072</pre>
```

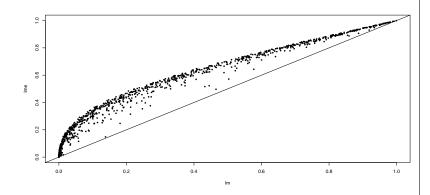
- \blacktriangleright The empirical type I error rate when not accounting for the random effect is 0.25.
- ► This inflated by a factor of 4.9.
- ► The empirical error rate when accounting for the random effect is slightly inflated
- ▶ This is due to the small sample size (n = 6)
- ► More on this later.

EXAMPLE 1: RESULTS





Example 1: Results



Example 1: Results

▶ Now, we repeat the simulation with a larger sample size

```
res = replicate(B3, sim.ranef(3, 50, 0.25, 0.5, verbose = FALSE))
mean(res[1, ] < 0.05)

## [1] 0.215

mean(res[2, ] < 0.05)

## [1] 0.052
```

- ► The empirical type I error when not accounting for the random effect remains inflated by a factor of 4.3.
- ► The empirical type I error when accounting for the random effect is now right about the nominal level of 0.05

Example 2: Setup

- ► Now consider the two-sample problem we have previously considered with a twist
- ► Question: Does treatment alter the distribution of the RNA level of a given gene?
- ► Assumptions:
 - ▶ the RNA level for the untreated group follows a normal distribution with mean μ_0 and variance σ^2
 - ► The RNA level for the treated group follows a normal distribution with mean μ_1 and variance σ^2
- \triangleright Sample *n* units from each treatments in replicates of 3
- ► Apply the two-sample t-test which does not account for the clustering

EXAMPLE 2: SIMULATION

```
set.seed(2314)
# Simulate with no clustering effect (sb=0)
pval0 = replicate(B3, sim.twosample.clustered(3, 10, 0.25, 0))
# Simulate with no clustering effect (sb>0)
pval1 = replicate(B3, sim.twosample.clustered(3, 10, 0.25, 0.5))
mean(pval0 < 0.05)
## [1] 0.049
mean(pval1 < 0.05)</pre>
## [1] 0.252
```

- ► The empirical type I error when there is no clustering effect is 0.049
- \blacktriangleright The empirical type I error when there is a clustering effect is 0.25
- ► This off by a factor of 5!