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Classification Problem
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Clear-cut case
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Clear-cut case?
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Clear-cut case??

x1

x2

00

0

0

0
0

00

0

0

0
0

0
0

0

0
0

0
0

0

1

1

1

1

1

1

1

1

1

1 1

11

1

1

1

1

1

1 1

Less Clear-cut case
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Less Clear-cut case
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Less Clear-cut case
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Regression Problem

set.seed(10) x <- 1:10 y = x + rnorm(10, 0.5)

par(mfrow = c(1, 1), bg = "white") plot(x, y, xlim = c(0, 10), ylim = c(0, 10), pch = 19)
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Linear Regression (lin)

par(mfrow = c(1, 1), bg = "white") plot(x, y, xlim = c(0, 10), ylim = c(0, 10), pch = 19) modlm =

lm(y x) lines(x, predict(modlm), col = 3)
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Spline Regression (spl)
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Connect the dots (ctd)
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Which Approach?
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Supervised Learning (Classification)

I Goal: Predict a binary outcome (Y ) on the basis of
baseline information (X)

I Y assumes the value 0 or 1 (e.g., control vs case, or AML
vs ALL)

I X could be single variable or be a vector of multiple
variables

I Example: Can you predict Y on the basis of two genes say
X1 and X2

I Note that a goal is to build a machine that will take on two
values X1 and X2 and return a 0 or a 1

I You can denote this machine as a function g(x1, x2)

Classifier

I We will denote the predictor or classifier by g(x)

I x = (x1, x2) is the vector of gene expressions for genes 1
and 2

I Based on x, the classifier g makes a prediction for the
outcome

I Note that g(x) = 0 or g(x) = 1

I The prediction is correct if Y = 1 and g(x1, x2) = 1, or
Y = 0 and g(x1, x2) = 0

I The prediction is wrong if Y = 0 and g(x1, x2) = 1, or
Y = 1 and g(x1, x2) = 0



Prediction Assessment

g(x1, x2) = 0 g(x1, x2) = 1
Y = 0 True-Negative False-Negative
Y = 1 False-Negative True-Positive

Steps to Construct a Classifier

I Collect a random data set of size n to build (train) a
classifer

I This is called the training data

I On the basis of these data, construct the classifier gn

I It is subscripted by n to emphasize that it is trained on the
basis of the training data

I Note that the final performance of gn is not be judged on
the basis of the training data

I It is to be judged on the basis of its performance on future
data

I Called testing data

Steps in Notation

I Collect the training data (X1, Y1), . . . , (Xn, Yn)

I Construct a classifier gn on the basis of the training data

I Apply gn to a new data set X∗
1 , . . . , X

∗
k to get

I k predictions: Ŷ ∗
1 , . . . , Ŷ

∗
k

I Compare the predictions to the observed outcomes
Y ∗
1 , . . . , Y

∗
k

I Note that at the testing stage, you are blinded to the Y ∗
k



k-Nearest Neighborhood (Non-parametric)

I Generally, non-parametric methods (e.g., k-NN) are
preferred

I These do not make strong assumptions on the specific
shape of the underlying relationship, if there is one,
between X and Y

I For each x (point on the scatter plot), identify the k
nearest neighbors

I Among the k neighbors, count the number of responders
(say rx)

I Set
η̂(x) =

rx
k

k-Nearest Neighborhood
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3-Nearest Neighborhood
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5-Nearest Neighborhood
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Mean Regression Model

I E(Y ) is the unconditional (on X) mean of Y .

I Model the mean relationship between Y and X

η(x) = E(Y |X = x)

I η(x) is the conditional (on X) mean of Y given that X has
realized the value x.

Bayes Classifier

g(X) =

{
1 if η(X) ≥ 1

2 ,

0 if η(X) < 1
2

I This classifier is ”optimal” in the sense that there is no
better classifier with respect to minimizing the error
(P (g(X) 6= Y )).

I Suppose that g∗ is another classifier. Then

P (g(X) 6= Y ) ≤ P (g∗(X) 6= Y )

I Note that the optimality concerns η(x) and not η̂(x).



Logistic Regression (Parametric)

I Most commonly used method for modeling the relationship
between a binary response and a set of co-variables

logit(η(x)) = β0 + β1x1 + β2x2,

where

logit(η(x)) = log

(
p

1− p

)
,

for p ∈ (0, 1) is called the ”logit” function.

Estimating η(x)

I Estimate the model parameters (β0, β1 and β2) using
maximum-likelihood estimation to get β̂0, β̂1 and β̂2

I For the logistic model

η̂(x) =
exp(β̂0 + β̂1x1 + β̂2x2)

1 + exp(β̂0 + β̂1x1 + β̂2x2)

Other Classification Methods

I Fisher’s Linear Discriminant

I Support Vector Machines (SVM)

I Classification and Regression Trees (CART)

I Random Forests (aggregated trees)

I Methods for ”Deep” learning



Bias versus Variance

I A very important principle in statistical modeling is the so
called bias-variance tradeoff

I The bias of η̂(x) is

b(x) = η̂(x)− η(x)

I The variance of η̂(x) is

v(x) = E(η̂(x)− η(x))2)

I The bias-variance tradeoff implies that both cannot be
minimized simultaneously

I For example for the k-NN method increasing k increases
bias while decreasing variance

Training and Testing

I In practice, the model is first estimated (trained) using an
initial set of data

I This data set is usually called the ”training” data

I Once the model is trained, then it is applied to an
”independent” set of data

I This data set is usually called the ”testing” (or validation)
data set

Parsimony

I The model should be parsimonious (less is more)

I Including too many noisy/unimportant features often
degrades the performance of the classifier.

I Including highly dependent induces problems (e.g.,
multi-collinearity from simple linear regression).

I Additional complication: It is not
practically/computationally feasible to include tens of
thousands of features in the model.



Overfitting

I Two many parameters compared to the number of data
points in the training set

I A complicated model will fit the training set well

I It will however perform poorly for an independent set.

Overfitting
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Linear Regression (lin)

par(mfrow = c(1, 1), bg = "white") plot(x, y, xlim = c(0, 10), ylim = c(0, 10), pch = 19) modlm =

lm(y x) lines(x, predict(modlm), col = 3)
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Spline Regression (spl)
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Connect the dots (ctd)
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RSS: 4.1 (lin) vs 1.9 (spl) vs 0 (ctd)

●

●
●

●

●

●

●

●

●

●

0 2 4 6 8 10

0
2

4
6

8
10

x

y



New Data Set
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Two Challenges in Building a Classifier

1. Feature Selection:
I It is neither feasible nor provident to build a classifier based

on all available variables
I A subset of the variables has to be selected to build the

model
I This is also called feature extraction

2. Tuning Parameter Selection:
I Statistical methods may have one or more parameters that

have to be set
I For example when using k-NN, one has to decide what k

should be (e.g., 1, 3 or 5 or how about 8)?
I Choosing the defaults set by the software is inappropriate
I The feature selection method could also have tuning

parameters that have to be set (e.g., the number of features
to be selected)

I The performance of the method could be highly sensitive to
the choice of these parameters



Feature Selection

I Reasonable Feature Selection is critical if not the most
important component of model building.

I You cannot expect to build a good model if you select poor
features.

I This is also called Feature Extraction

I We will talk about a few approaches that have been used in
the literature.

Feature Selection (ranked based on
test-statistic)

I Compute the two-sample t-test for all m features (based on
the training set)

I Identify the top say 10 or 15 features (e.g, ranked based on
the absolute value of the test statistic).

I Build a model on these ”top” features (based on the
training set)

I Alternatively, you could select all features for which the
P-value is less than a certain threshold (say 0.001).

I You can also use the Wilcoxon rank sum statistic to
protect against choosing features with outliers.

Feature Selection (Ordination Methods)

I A standard approach for reducing the dimension in the
microarray setting is the method of Principal Components
(PCs)

I The PCs are combinations of the original variables (gene
expressions) that have maximum variability

I The are also constructed as to be uncorrelated with another

I This attempts to address the issue of high dimension and
multi-collinearity simultaneously.

I One can use the principal components (say the first two or
three) as the features

I Alternatively, one can first reduce the dimension by using
the two-sample test-statistic approach and then get the
PCs



Tuning

I You cannot expect to be able to build a model using
default values provided by the software package.

I If you use k-NN you need to decide which k (e.g., 3 or 5 or
7) you want to use

I If you use the simple feature selection method you need to
determine how many ”top” features you want to use

I If you are doing PC dimension reduction, you need to
determine how many PCs you want to use.

I In some books and articles, ”tuning” only refers to the
choice of the model parameter (e.g., k in k-NN)

I Must take a broader perspective as the choices in the FS
part also affect the results.

Validation

I Split the data into a training and a mutually exclusive
testing set

I Build the model (including feature selection, tuning) on the
training set

I Evaluate the performance of the model on the testing set

I IMPORTANT: The model is built based on the training
set. The testing set should not contribute any information.

I Violating this principle will invariably result in bias

Error Substitution Validation

I Error Substitution Validation: The testing set is empty.

I Test the model you just built on the training set

I This approach cannot be recommended under any
circumstance.

I Analogy: Assess the fit of the linear model by plotting the
fitted (from the data) to the observed data.

I A bona-fide testing set is required.

I Will demonstrate how this can lead to noise discovery



Hold-out Method

I Split the data into two parts

I Keep the testing set locked up

I Better yet, ask an ”honest” broker to keep it from you until
you are ready to test the model

I This approach is reasonable if you have a large number of
cases

I It may be problematic if the outcomes are sparse

k-fold Cross-Validation

I Many microarray experiments are from smaller (e.g., pilot)
studies

I It is not impossible to get reasonably size training and
testing sets this cases

I A reasonable approach to get around this is k-fold
cross-validation (CV)

I Randomly split cases into k (nearly) equally sized subsets
(folds).

I At each step take of these k portions as the testing set and
construct the training set based on the other k − 1 portions

I Special case is Leave-One-Out CV (LOOCV) where k = n

I For really small data sets, LOOCV is often the best (most
practical) choice.

Naive Cross-Validation

I Naive Validation: Do the feature selection once based on
all n cases

I In each CV step use the same set of features.

I This will invariably make the results look better than they
really are

I It should be avoided unless one feels very certain about the
features (say biologically relevant gathered a priori



Proper Cross-Validation

I Choose the first fold and set it aside the other k − 1 folds

I Carry out Feature Selection on the other k − 1 folds

I Train the model based the top features on the k − 1 folds

I Test the model on the first fold left out

I Repeat the above for the second fold (set aside the second
fold, leave in the first and the next k − 2 folds).

Important Illustration (Fig 8.5) from Simon
et al.

Simulate Data for k-NN Prediction

I Simulate expression from 1000 genes for 40 patients. Let the first 20
be responders and the remaining 20 be non-responders

set.seed(123)

n = 20

m = 1000

EXPRS = matrix(rnorm(2 * n * m), 2 * n, m)

rownames(EXPRS) = paste("pt", 1:(2 * n), sep = "")

colnames(EXPRS) = paste("g", 1:m, sep = "")

grp = rep(0:1, c(n, n))

I Pick the top 10 features based on the two-sample t-test

stats = abs(rowttests(t(EXPRS), factor(grp))$statistic)

ii = order(-stats)

I Filter out all genes except the top 10

TOPEXPRS = EXPRS[, ii[1:10]]



Error Resubstitution and Naive CV

I Error resubstitution (Training and Testing set are the same)

mod0 = knn(train = TOPEXPRS, test = TOPEXPRS, cl = grp, k = 3)

table(mod0, grp)

## grp

## mod0 0 1

## 0 17 0

## 1 3 20

I Cross-validated predictions (the features selection is not part of the
CV process)

mod1 = knn.cv(TOPEXPRS, grp, k = 3)

table(mod1, grp)

## grp

## mod1 0 1

## 0 16 0

## 1 4 20

I Note that in both examples, TOPEXPR not EXPR is used.

R Function to Implement Proper CV based on
k-NN

top.features <- function(EXP, resp, test, fsnum) {
top.features.i <- function(i, EXP, resp, test, fsnum) {

stats <- abs(mt.teststat(EXP[, -i], resp[-i], test = test))

ii <- order(-stats)[1:fsnum]

rownames(EXP)[ii]

}
sapply(1:ncol(EXP), top.features.i, EXP = EXP, resp = resp, test = test,

fsnum = fsnum)

}

# This function evaluates the knn

knn.loocv <- function(EXP, resp, test, k, fsnum, tabulate = FALSE, permute = FALSE) {
if (permute)

resp = sample(resp)

topfeat = top.features(EXP, resp, test, fsnum)

pids = rownames(EXP)

EXP = t(EXP)

colnames(EXP) = as.character(pids)

knn.loocv.i = function(i, EXP, resp, k, topfeat) {
ii = topfeat[, i]

mod = knn(train = EXP[-i, ii], test = EXP[i, ii], cl = resp[-i], k = k)[1]

}
out = sapply(1:nrow(EXP), knn.loocv.i, EXP = EXP, resp = resp, k = k, topfeat = topfeat)

if (tabulate)

out = ftable(pred = out, obs = resp)

return(out)

}

Proper Cross-Validation

I Finally, we conduct proper cross-validation using the previous R

function
I At each iteration, the top 10 features are selected based on the data

from the n− 1 samples in the training set

knn.loocv(t(EXPRS), as.integer(grp), "t.equalvar", 3, 10, TRUE)

## obs 0 1

## pred

## 0 7 7

## 1 13 13

I Note that EXPRS not TOPEXPR is used.

I The classification rate is 50% (as expected)



Naive LOOCV: Quantitative trait

I Repeat the last experiment with a noisy quantitative
outcome

I First simulate a data matrix of dimension n = 50 (patients)
and m (genes)

I Next draw the outcome for n = 50 patients from a standard
normal distribution independent of the data matrix

I There is no relationship between the expressions and the
outcome (by design)

I We consider m = 45 and m = 50000

I We conduct Naive LOOCV using the top 10 features

Naive LOOCV: Quantitative trait
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Figure taken from Owzar et al; Clin Transl Sci 2011.

Training, Validation and Testing Approach

I Before you test the model, you must freeze it

I You may want to split the Training set further into a
Training and Validation set

I Use the Validation set to ”tune” the model.



Final Remarks

I It is OK to try different methods (other classifiers, feature
selection or tuning methods)

I Keep track of what you have done and report it (brief
description in the paper and details in supplementary
material)

I Be careful if you have too few responders

I You could have a model that will classify most patients as
a non-responder.

I In this case a 00 (Y = 0 and g(X) = 0) may not be
bona-fide true-negative

I The gold-standard for model validation, is to follow up the
cross-validatiion by permutation resampling

I The R function provided can be used for this purpose

Pre-processing Challenge

I The X profiles from the testing set need to be
”compatible” to those used to train the model

I In classical experiments with a few biomarkers, the labs
had internal controls to ensure that the measurements were
properly normalized

I For RNA-Seq data, you observe counts (not expressions)

I Number of reads mapped to genes are not comparable

I Why?

I The current ”state” of the art is to ”normalize” the counts
into expressions

I This is a practical but not rigorous solution

I One has to up the ante if the classifier is to be used for
important decision (e.g., treating a patient with a toxic but
potentially effective drug)

On Data and Answers

”The data may not contain the answer. The combination of
some data and an aching desire for an answer does not ensure
that a reasonable answer can be extracted from a given body of
data.”

John Wilder Tukey


