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Scope

I Let X denote the genetic/genomic profile of a sample

I Often we would like to discover groups, clusters or outliers
based on the genetic profiles of the samples

I These are unsupervised methods in the sense that the
algorithm knows nothing about the grouping/clustering

I The method is only aware of the genetic profile (X) and
not the outcome Y

Fisher’s Iris Data
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Anderson's Iris Data −− 3 species



On Petals and Sepals

https://en.wikipedia.org/wiki/Sepal

Fisher’s Iris Data
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2015 Data: Agglomerative Hierarchical
Clustering
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A Self-fulfilling Prophecy

I Statistical methods for unsupervised learning guarantee
one thing

I They will return a clustering of your data

I What they do not guarantee and are invariably unable to
verify, is the biological relevance or reproducibility of the
clustering

I In light of this Self-fulfilling Prophecy, these methods
should be used with utmost care

Methods to be Discussed

I There are many methods for unsupervised class discovery.

I We will consider three types of methods:
I Hierarchical Clustering
I k-means Clustering
I Ordination Methods (e.g., Multi-Dimensional Scaling

(MDS) and Principal Components (PC))

I Note that there are many variations of these methods

I Most mathematical details will be left out

I We focus on discovering classes among samples (not genes)

Distance between Two Points

I Many class discover methods aim to quantify the similarity
(or dissimilarity) among patients

I For each patient, the vector of gene expression can be
thought of a ”point” in an m-dimensional space

I For many class discovery methods, one has to be able to
quantify the ”distance” between two points (the expression
profiles between two individuals)

I A common distance measure is the Euclidean distance



Distance (Two points on the plane)
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Distance (horizontal/vertical shifts)

●

(x1,y1)

●

(x2,y2)

dx=x2−x1

dy=y2−y1

Pythagorean Theorem (on the plane)

I According to the Pythagorean theorem

h2 = dx2 + dy2 = (x2 − x1)
2 + (y2 − y1)

2

I h is called the hypotenuse

I The distance between (x1, y1) and (x2, y2) is given by

h =
√

dx2 + dy2 =
√

(x2 − x1)2 + (y2 − y1)2

Pythagorean Theorem (on the plane)

I Can be extended to higher dimensions

I In a three-dimensional space the distance between
(x1, y1, z1) and (x2, y2, z2) is given by

√
(x1 − x2)2 + (y1 − y2)2 + (z1 − z2)2

I For any given dimension, the distance is obtained as the
square root of the sum of the square of the coordinate-wise
differences



Golub et al Leukemia Data

I 47 patients with acute lymphoblastic leukemia (ALL)

I 25 patients with acute myeloid leukemia (AML)

I Platform: Affymetrix Hgu6800

I 7129 probe sets

I Golub et al. (1999). Molecular classification of cancer:
class discovery and class prediction by gene expression
monitoring, Science, Vol. 286:531-537.

Golub et al Leukemia Data

Expression data from first three features and 5 patients

dim(exprs(Golub_Merge))

## [1] 7129 72

exprs(Golub_Merge)[1:3, 1:5]

## 39 40 42 47 48

## AFFX-BioB-5_at -342 -87 22 -243 -130

## AFFX-BioB-M_at -200 -248 -153 -218 -177

## AFFX-BioB-3_at 41 262 17 -163 -28

Golub et al Leukemia Data: Distance

Expression vector for patients 39 and 40

x <- exprs(Golub_Merge)[, "39"]

y <- exprs(Golub_Merge)[, "40"]

Lengths of these vectors

length(x)

## [1] 7129

length(y)

## [1] 7129

Distance between these two vectors

sqrt(sum((x - y)^2))

## [1] 101530.8



Relative Distance (From CST 2011 Paper)

Dissimilarity matrix

I Use pairwise distances to quantify similarity (or
dissimilarity) among patients

I Construct a matrix containing all pairwise distances
I Take the first three patients in the Golub data set

dist(t(exprs(Golub_Merge[, 1:3])))

## 39 40

## 40 101530.75

## 42 94405.04 89502.29

I Patient 42 is more similar (closer) to patient 39 than
patient 40 (distance of 94405.04 vs 101530.75)

I Patient 39 is more similar (closer) to 42 than patient 40
(distance of 94405.04 vs 101530.75)

2015 Data: Agglomerative Hierarchical
Clustering
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Clusters

I Let c1, c2, . . . , cn denote the n samples

I Define a cluster to be a set of patients
I (c1) is a cluster with one member: c1
I (c1, c3) is a cluster of two members: c1 and c3
I (c1, c2, c3) is a cluster of three members of c1, c2 and c3

I Note that c1 and (c1) are different entities

Notion of a Linkage

I The distance measure quantified the distance between two
points

I In clustering, you need to think about the criterion to link
(merge) the clusters

I maximum distance (aka complete linkage)

I average distance (aka average linkage)

I minimum distance (aka single linkage)

Agglomerative Hierarchical Clustering

I Agglomerate: To form clusters

I Let each of the n points be its own cluster (n clusters each
with one single member)

I Find the pair of clusters that is most similar

I Merge these two

I Now you have n− 1 clusters (1 cluster with two members
and n− 2 clusters each with a single member)

I Compute the similarities between the n− 2 ”old” clusters
with the new cluster

I Repeat the last two steps until all members have been
merged into a single cluster.



Clustering Cities by Distances

ATL BOS ORD DCA
ATL 0 934 585 542
BOS 934 0 853 392
ORD 585 853 0 598
DCA 542 392 598 0

Clustering Cities by Distances (Single
Linkage)

ATL BOS ORD DCA
ATL 0 934 585 542
BOS 934 0 853 392
ORD 585 853 0 598
DCA 542 392 598 0

DCA-BOS ATL ORD
DCA-BOS 0 542 598
ATL 542 0 585
ORD 598 585 0

Clustering Cities by Distances (Single
Linkage)

DCA-BOS ATL ORD
DCA-BOS 0 542 598
ATL 542 0 585
ORD 598 585 0

DCA-BOS-ATL ORD
DCA-BOS-ATL 0 585
ORD 585 0



Four Airports (Single linkage)
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Clustering Cities by Distances (complete
linkage)

ATL BOS ORD DCA
ATL 0 934 585 542
BOS 934 0 853 392
ORD 585 853 0 598
DCA 542 392 598 0

DCA-BOS ATL ORD
DCA-BOS 0 934 853
ATL 934 0 585
ORD 853 585 0

DCA-BOS ATL-ORD
DCA-BOS 0 934
ATL-ORD 934 0

Four Airports (complete linkage)
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Four Airports (side by side)
ATL BOS ORD DCA

ATL 0 934 585 542
BOS 934 0 853 392
ORD 585 853 0 598
DCA 542 392 598 0

DCA-BOS ATL ORD
DCA-BOS 0 934 853
ATL 934 0 585
ORD 853 585 0

DCA-BOS ATL-ORD
DCA-BOS 0 934
ATL-ORD 934 0

Table: Complete Linkage

ATL BOS ORD DCA
ATL 0 934 585 542
BOS 934 0 853 392
ORD 585 853 0 598
DCA 542 392 598 0

DCA-BOS ATL ORD
DCA-BOS 0 542 598
ATL 542 0 585
ORD 598 585 0

DCA-BOS-ATL ORD
DCA-BOS-ATL 0 585
ORD 585 0

Table: Single Linkage

All Airports (comparison)
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Western Airports: Exercise

Carry out hierarchical clustering with complete linkage

## DEN LAX SEA SFO

## DEN 0 836 1023 951

## LAX 836 0 957 341

## SEA 1023 957 0 681

## SFO 951 341 681 0



Western Airports: Solution
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2015 Data: Agglomerative Hierarchical
Clustering Complete Linkage
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2015 Data: Agglomerative Hierarchical
Clustering Complete Linkage
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2015 Data: Agglomerative Hierarchical
Clustering Complete Linkage
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2015 Data: Agglomerative Hierarchical
Clustering Single Linkage
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k-means Clustering

I Specify a number of potential clusters (k)

I Split of the data (either randomly or based on some
previous results) into k partitions

I Compute the mean (aka centroid) for each partition

I For the first point (sample) determine the nearest centroid

I The closeness is typically quantified using the Euclidean
distance

I Assign that point to that center

I Repeat for points 2 through n

I Assess the fit using the intra-cluster variance

I Repeat as needed.



k-means clustering: Data

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

−6 −4 −2 0 2 4

−
4

−
2

0
2

4
6

k-means clustering: Initial Clusters
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k-means clustering: Initial Centers
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k-means clustering: Label points according to
centers
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k-means clustering: Update Centers
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k-means clustering: Update Centers
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k-means clustering: Update Points
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Why not 4 clusters?
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Why not 5 clusters?
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k-means

I This is an example of non-hierarchical clustering

I Need to specify the number of clusters up front

I Need to specify (deterministically or randomly) the centers
of the clusters up front

I Results are sensitive to the choice of k and initial partitions

I Note: All the data points were simulated from a single
cluster!

Dimension reduction

I Genome-wide profiling platforms are high-dimensional (m
is large)

I Visualization beyond m = 3 not possible (for mortals)

I Representing the data by a lower dimensional format
without losing too much information is desired.

I Two guiding principles:
I Keep variables with highest variability
I Reduce redundancy

Multi-Dimensional Scaling (MDS)

I Compute the dissimilarity matrix based on a distance
measure

I Project the points into a lower dimensional space (say 2D
or 3D) while preserving the similarity matrix

I PCA is a related (and in a sense equivalent method to
MDS)

I Project the points into a lower dimensional space where the
new variables are linear combinations of the original
variables

I The new variables are chosen so as to have maximum
variance and to be uncorrelated.



Batch Effect Discovery

I The MDS method is very useful for detecting batch effects

I Batch effects tend to be stronger that biological effects

I They also affect most probe sets (the biological effect may
only be captured by a few)

I This can be an effective weapon in your QC arsenal (this is
how I start any new analysis)

From CCR 2008 Paper
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Semi-supervised Learning

I Heatmap illustration:
I Select a panel of probe-sets based on the two-sample t-test
I Carry out hierarchical clustering with respect to the

patients (the columns)
I Carry out hierarchical clustering with respect to the probe

sets in the panel (the rows)
I Present the results using a heatmap

I Some consider this an unsupervised analysis as the
hierarchical clustering algorithm is unaware of the classes

I This is not an accurate assessment: It is semi-supervised in
the sense that we are picking genes based on the phenotype

I A procedure is unsupervised if the class info is only used for
annotation

R Code to simulate Heatmap

simulate.noise.heatmap = function(n, m, alpha) {
# Simulate Expression Matrix

EXPRS = matrix(rnorm(2 * n * m), m, 2 * n)

grp = factor(rep(0:1, c(n, n)))

rownames(EXPRS) = paste("Gene", 1:m, sep = "")

colnames(EXPRS) = paste("patient id", 1:(2 * n), sep = "")

# Get the two sample t-statistics

pvals = rowttests(EXPRS, grp)$p.value

topgenes = which(pvals < alpha)

EXPRS = EXPRS[topgenes, ]

annodat = data.frame(Condition = ifelse(grp == 0, "N", "Y"), row.names = colnames(EXPRS))

pheatmap(EXPRS, border_color = NA, show_rownames = FALSE, show_colnames = FALSE,

annotation_col = annodat, color = colorRampPalette(c("red3", "black",

"green3"))(50), annotation_colors = list(Condition = c(Y = "blue",

N = "yellow")))

return(length(topgenes))

}

Heatmap Example: m = 20, 000, n = 20, α = 0.005
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Heatmap Example: m = 40, 000, n = 20, α = 0.0025
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Heatmap Example: m = 20, 000, n = 3, α = 0.005

Condition
Condition

Y
N

−2

−1

0

1

2

3

R Code to simulate PC

simulate.noise.PC = function(n, m, alpha) {
# Simulate Expression Matrix

EXPRS = matrix(rnorm(2 * n * m), m, 2 * n)

grp = factor(rep(0:1, c(n, n)))

# Get the two sample t-statistics

pvals = rowttests(EXPRS, grp)$p.value

topgenes = which(pvals < alpha)

EXPRS = EXPRS[topgenes, ]

annodat = data.frame(Condition = ifelse(grp == 0, "N", "Y"), row.names = colnames(EXPRS))

PC = cmdscale(dist(t(EXPRS)))

plot(PC, xlab = "PC1", ylab = "PC2", col = ifelse(grp == 0, "red3", "blue3"),

pch = 19)

return(length(topgenes))

}



Heatmap Example: K = 20000, n = 20, α = 0.005
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Heatmap Example: K = 40000, n = 20, α = 0.0025
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Heatmap Example: K = 20000, n = 3, α = 0.005
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MDS for Golub Data
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PCA for Golub Data
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Preserving The Distances

I Extract and standardize expression matrix for Golub data set

scexpdat = scale(t(exprs(Golub_Merge)))

dim(scexpdat)

## [1] 72 7129

I Check means for the first 4 genes

apply(scexpdat[, 1:4], 2, mean)

## AFFX-BioB-5_at AFFX-BioB-M_at AFFX-BioB-3_at AFFX-BioC-5_at

## -7.841417e-17 -4.460287e-18 1.491832e-17 -5.051177e-17

I Check standard deviations for the first 4 genes

apply(scexpdat[, 1:4], 2, sd)

## AFFX-BioB-5_at AFFX-BioB-M_at AFFX-BioB-3_at AFFX-BioC-5_at

## 1 1 1 1



Preserving The Distances

I Check distance among the first three patients

dist(scexpdat[1:3, ])

## 39 40

## 40 125.3402

## 42 118.1911 125.0390

I Calculate MDS d = 2

MDS = cmdscale(dist(scexpdat), 2)

dist(MDS[1:3, ])

## 39 40

## 40 4.644939

## 42 29.665656 34.287630

I Calculate MDS d = 3

MDS = cmdscale(dist(scexpdat), 3)

dist(MDS[1:3, ])

## 39 40

## 40 9.293559

## 42 45.719192 54.869668

Preserving The Distances

I Check distance among the first three patients

dist(scexpdat[1:3, ])

## 39 40

## 40 125.3402

## 42 118.1911 125.0390

I Calculate MDS d = 20

MDS = cmdscale(dist(scexpdat), 3)

dist(MDS[1:3, ])

## 39 40

## 40 9.293559

## 42 45.719192 54.869668

I Calculate MDS d = 45

MDS = cmdscale(dist(scexpdat), 45)

dist(MDS[1:3, ])

## 39 40

## 40 124.9860

## 42 113.3668 121.7808

Reminder: A Self-fulfilling Prophecy

I Statistical method for unsupervised learning guarantee one
thing

I They will return a clustering of your data

I What they do not guarantee and are invariably unable to
verify, is the biological relevance or reproducibility of the
clustering

I In light of this Self-fulfilling Prophecy, these methods
should be used with utmost care


