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SCOPE

» Let X denote the genetic/genomic profile of a sample

» Often we would like to discover groups, clusters or outliers
based on the genetic profiles of the samples

» These are unsupervised methods in the sense that the
algorithm knows nothing about the grouping/clustering

» The method is only aware of the genetic profile (X) and
not the outcome Y
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ON PETALS AND SEPALS

https://en.wikipedia.org/wiki/Sepal


https://en.wikipedia.org/wiki/Sepal
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A SELF-FULFILLING PROPHECY

» Statistical methods for unsupervised learning guarantee
one thing

» They will return a clustering of your data

» What they do not guarantee and are invariably unable to
verify, is the biological relevance or reproducibility of the
clustering

» In light of this Self-fulfilling Prophecy, these methods
should be used with utmost care



METHODS TO BE DISCUSSED

v

There are many methods for unsupervised class discovery.

v

We will consider three types of methods:
» Hierarchical Clustering
» k-means Clustering
» Ordination Methods (e.g., Multi-Dimensional Scaling
(MDS) and Principal Components (PC))

Note that there are many variations of these methods

v

Most mathematical details will be left out

v

v

We focus on discovering classes among samples (not genes)



DISTANCE BETWEEN TwO POINTS

v

Many class discover methods aim to quantify the similarity
(or dissimilarity) among patients

v

For each patient, the vector of gene expression can be
thought of a "point” in an m-dimensional space

» For many class discovery methods, one has to be able to
quantify the ”distance” between two points (the expression
profiles between two individuals)

v

A common distance measure is the Euclidean distance



DISTANCE (TWO POINTS ON THE PLANE)



DiISTANCE (COORDINATES)
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DISTANCE (HORIZONTAL/VERTICAL SHIFTS)

(x2,y2)

(x1y1) dx=x2-x1



PYTHAGOREAN THEOREM (ON THE PLANE)

» According to the Pythagorean theorem
h? =da® + dy® = (z2 — 21)* + (y2 — 11)?

» h is called the hypotenuse

» The distance between (z1,y1) and (z2,y2) is given by

h=/da? +dy? = /(z2 — 21)2 + (y2 — y1)?



PYTHAGOREAN THEOREM (ON THE PLANE)

» Can be extended to higher dimensions
» In a three-dimensional space the distance between
(z1,91,21) and (w2, 9, 22) is given by

V(T —22)2+ (y1 — y2)2 + (21 — 22)2

» For any given dimension, the distance is obtained as the
square root of the sum of the square of the coordinate-wise
differences



GOLUB et al LEUKEMIA DATA

» 47 patients with acute lymphoblastic leukemia (ALL)
» 25 patients with acute myeloid leukemia (AML)

» Platform: Affymetrix Hgu6800

» 7129 probe sets

» Golub et al. (1999). Molecular classification of cancer:
class discovery and class prediction by gene expression
monitoring, Science, Vol. 286:531-537.



GOLUB et al LEUKEMIA DATA

Expression data from first three features and 5 patients
dim(exprs(Golub_Merge))

## [1] 7129 72

exprs(Golub_Merge) [1:3, 1:5]

## 39 40 42 47 48
## AFFX-BioB-5_at -342 -87 22 -243 -130
## AFFX-BioB-M_at -200 -248 -153 -218 -177
## AFFX-BioB-3_at 41 262 17 -163 -28



GOLUB et al LEUKEMIA DATA: DISTANCE

Expression vector for patients 39 and 40

x <- exprs(Golub_Merge) [, "39"]
y <- exprs(Golub_Merge) [, "40"]

Lengths of these vectors

length(x)

## [1] 7129

length(y)

## [1] 7129

Distance between these two vectors
sqrt(sum((x - y)~2))

## [1] 101530.8



RELATIVE DISTANCE (FrOM CST 2011 PAPER)
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DISSIMILARITY MATRIX

» Use pairwise distances to quantify similarity (or
dissimilarity) among patients

» Construct a matrix containing all pairwise distances
» Take the first three patients in the Golub data set
dist (t(exprs(Golub_Mergel, 1:31)))
## 39 40

## 40 101530.75
## 42 94405.04 89502.29

» Patient 42 is more similar (closer) to patient 39 than
patient 40 (distance of 94405.04 vs 101530.75)

» Patient 39 is more similar (closer) to 42 than patient 40
(distance of 94405.04 vs 101530.75)



AGGLOMERATIVE HIERARCHICAL

2015 DATA:
CLUSTERING
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CLUSTERS

» Let c1,c9,...,c, denote the n samples
» Define a cluster to be a set of patients

» (c1) is a cluster with one member: ¢y
» (c1,c3) is a cluster of two members: ¢; and c3
» (c1,co,c3) is a cluster of three members of ¢1,c¢e and c3

» Note that ¢; and (c;) are different entities



NOTION OF A LINKAGE

» The distance measure quantified the distance between two
points

» In clustering, you need to think about the criterion to link
(merge) the clusters

» maximum distance (aka complete linkage)
» average distance (aka average linkage)

» minimum distance (aka single linkage)



AGGLOMERATIVE HIERARCHICAL CLUSTERING

» Agglomerate: To form clusters

» Let each of the n points be its own cluster (n clusters each
with one single member)

» Find the pair of clusters that is most similar

» Merge these two

» Now you have n — 1 clusters (1 cluster with two members
and n — 2 clusters each with a single member)

» Compute the similarities between the n — 2 ”o0ld” clusters
with the new cluster

» Repeat the last two steps until all members have been
merged into a single cluster.



CLUSTERING CITIES BY DISTANCES

ATL BOS ORD DCA
ATL 0 934 585 042
BOS 934 0 853 392
ORD 585 853 0 998
DCA 542 392 598 0



CLUSTERING CITIES BY DISTANCES (SINGLE
LINKAGE)

ATL BOS ORD DCA
ATL 0 934 585 042
BOS 934 0 853 392
ORD 585 853 0 998
DCA 542 392 598 0

DCA-BOS ATL ORD
DCA-BOS 0 542 598
ATL 542 0 585
ORD 298 585 0



CLUSTERING CITIES BY DISTANCES (SINGLE
LINKAGE)

DCA-BOS ATL ORD

DCA-BOS 0 542 598
ATL 542 0 585
ORD 998 585 0

DCA-BOS-ATL ORD
DCA-BOS-ATL 0 585
ORD 585 0



FOUR AIRPORTS (SINGLE LINKAGE)

Cluster Dendrogram
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CLUSTERING CITIES BY DISTANCES (COMPLETE
LINKAGE)

ATL BOS ORD DCA
ATL 0 934 585 542
BOS 934 0 853 392
ORD 585 853 0 298
DCA 542 392 598 0
DCA-BOS ATL ORD
DCA-BOS 0 934 853
ATL 934 0 585
ORD 853 585 0
DCA-BOS ATL-ORD
DCA-BOS 0 934

ATL-ORD 934 0



FOUR AIRPORTS (COMPLETE LINKAGE)

Cluster Dendrogram
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FOUR AIRPORTS (SIDE BY SIDE)

ATL BOS ORD DCA
ATL 0 934 585 542
BOS 934 0 853 392
ORD 585 853 0 598
DCA 542 392 598 0
DCA-BOS ATL ORD
DCA-BOS 0 934 853
ATL 934 0 585
ORD 853 585 0
DCA-BOS _ ATL-ORD
DCA-BOS 0 934
ATL-ORD 934 0
Table: Complete Linkage
ATL BOS ORD DCA
ATL 0 934 585 542
BOS 934 0 853 392
ORD 585 853 0 598
DCA 542 392 598 0
DCA-BOS ATL ORD
DCA-BOS 0 542 598
ATL 542 0 585
ORD 598 585 0
DCA-BOS-ATL ORD
DCA-BOS-ATL 0 585

ORD

585

Table: Single Linkage

0



ALL AIRPORTS (COMPARISON)
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WESTERN AIRPORTS: EXERCISE

Carry out hierarchical clustering with complete linkage

## DEN LAX SEA SFO
## DEN 0 836 1023 951
## LAX 836 0 957 341
## SEA 1023 957 0 681
## SFO 951 341 681 0



WESTERN AIRPORTS: SOLUTION
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AGGLOMERATIVE HIERARCHICAL
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AGGLOMERATIVE HIERARCHICAL
CLUSTERING COMPLETE LINKAGE

2015 DATA:




AGGLOMERATIVE HIERARCHICAL
CLUSTERING COMPLETE LINKAGE

2015 DATA:
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AGGLOMERATIVE HIERARCHICAL

CLUSTERING SINGLE LINKAGE

2015 DATA:




k-MEANS CLUSTERING

» Specify a number of potential clusters (k)

» Split of the data (either randomly or based on some
previous results) into k partitions

» Compute the mean (aka centroid) for each partition
» For the first point (sample) determine the nearest centroid

» The closeness is typically quantified using the Euclidean
distance

» Assign that point to that center
» Repeat for points 2 through n
» Assess the fit using the intra-cluster variance

» Repeat as needed.



k-MEANS CLUSTERING: DATA




k-MEANS CLUSTERING: INITIAL CLUSTERS




k-MEANS CLUSTERING: INITIAL CENTERS




k~-MEANS CLUSTERING: LABEL POINTS ACCORDING TO
CENTERS




k-MEANS CLUSTERING: UPDATE CENTERS

XX




k-MEANS CLUSTERING: UPDATE CENTERS
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k-MEANS CLUSTERING: UPDATE POINTS
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WHY NOT 4 CLUSTERS?




WHY NOT 5 CLUSTERS?




k-MEANS

» This is an example of non-hierarchical clustering
» Need to specify the number of clusters up front

» Need to specify (deterministically or randomly) the centers
of the clusters up front

» Results are sensitive to the choice of k and initial partitions

» Note: All the data points were simulated from a single
cluster!



DIMENSION REDUCTION

» Genome-wide profiling platforms are high-dimensional (m
is large)
» Visualization beyond m = 3 not possible (for mortals)
» Representing the data by a lower dimensional format
without losing too much information is desired.
» Two guiding principles:
» Keep variables with highest variability
» Reduce redundancy



MULTI-DIMENSIONAL SCALING (MDS)

» Compute the dissimilarity matrix based on a distance
measure

» Project the points into a lower dimensional space (say 2D
or 3D) while preserving the similarity matrix

» PCA is a related (and in a sense equivalent method to
MDS)

» Project the points into a lower dimensional space where the
new variables are linear combinations of the original
variables

» The new variables are chosen so as to have maximum
variance and to be uncorrelated.



BATCH EFFECT DISCOVERY

v

The MDS method is very useful for detecting batch effects
Batch effects tend to be stronger that biological effects

v

v

They also affect most probe sets (the biological effect may
only be captured by a few)

v

This can be an effective weapon in your QC arsenal (this is
how I start any new analysis)



From CCR 2008 PAPER
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ALL/AML DATA
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SEMI-SUPERVISED LEARNING

v

Heatmap illustration:
» Select a panel of probe-sets based on the two-sample t-test
» Carry out hierarchical clustering with respect to the
patients (the columns)
» Carry out hierarchical clustering with respect to the probe
sets in the panel (the rows)
» Present the results using a heatmap
» Some consider this an unsupervised analysis as the
hierarchical clustering algorithm is unaware of the classes

» This is not an accurate assessment: It is semi-supervised in
the sense that we are picking genes based on the phenotype

v

A procedure is unsupervised if the class info is only used for
annotation



R CODE TO SIMULATE HEATMAP

simulate.noise.heatmap = function(n, m, alpha) {
# Simulate Expression Matriz
EXPRS = matrix(rnorm(2 * n * m), m, 2 * n)
grp = factor(rep(0:1, c(n, n)))
rownames (EXPRS) = paste("Gene", 1:m, sep = "")
colnames (EXPRS) = paste("patient id", 1:(2 * n), sep = "")

# Get the two sample t-statistics
pvals = rowttests(EXPRS, grp)$p.value
topgenes = which(pvals < alpha)

EXPRS = EXPRS[topgenes, ]

annodat = data.frame(Condition = ifelse(grp == 0, "N", "Y"), row.names = colnames(EXPRS))
pheatmap (EXPRS, border_color = NA, show_rownames = FALSE, show_colnames = FALSE,
annotation_col = annodat, color = colorRampPalette(c("red3", "black",
"green3")) (50), annotation_colors = list(Condition = c(Y = "blue",

N = "yellow")))
return(length(topgenes))
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R CODE TO SIMULATE PC

simulate.noise.PC = function(n, m, alpha) {
# Simulate Exzpression Matriz
EXPRS = matrix(rnorm(2 * n * m), m, 2 * n)
grp = factor(rep(0:1, c(n, n)))
# Get the two sample t-statistics
pvals = rowttests(EXPRS, grp)$p.value
topgenes = which(pvals < alpha)
EXPRS = EXPRS[topgenes, ]

annodat = data.frame(Condition = ifelse(grp == 0, "N", "Y"), row.names = colnames(EXPRS))
PC = cmdscale(dist(t(EXPRS)))
plot(PC, xlab = "PC1", ylab = "PC2", col = ifelse(grp == 0, "red3", "blue3"),

pch = 19)

return(length(topgenes))



HEATMAP EXAMPLE: K = 20000,n = 20, a = 0.005

PC2




HEATMAP EXAMPLE: K = 40000,n = 20, a = 0.0025

PC2




HEATMAP EXAMPLE: K = 20000,n = 3, a = 0.005

PC2




MDS rOR GOLUB DATA
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PCA ror GoLUB DATA
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PRESERVING THE DISTANCES

» Extract and standardize expression matrix for Golub data set

scexpdat = scale(t(exprs(Golub_Merge)))
dim(scexpdat)

## [1] 72 7129
» Check means for the first 4 genes
apply(scexpdat[, 1:4], 2, mean)

## AFFX-BioB-5_at AFFX-BioB-M_at AFFX-BioB-3_at AFFX-BioC-5_at
##  -7.841417e-17 -4.460287e-18 1.491832e-17 -5.051177e-17

» Check standard deviations for the first 4 genes
apply(scexpdat[, 1:4], 2, sd)

## AFFX-BioB-5_at AFFX-BioB-M_at AFFX-BioB-3_at AFFX-BioC-5_at
## 1 1 1 1



PRESERVING THE DISTANCES

» Check distance among the first three patients

dist(scexpdat[1:3, 1)

## 39 40
## 40 125.3402
## 42 118.1911 125.0390

» Calculate MDS d = 2

MDS = cmdscale(dist(scexpdat), 2)
dist(MDS[1:3, 1)

## 39 40
## 40 4.644939
## 42 29.665656 34.287630

» Calculate MDS d = 3

MDS = cmdscale(dist(scexpdat), 3)
dist(MDS[1:3, 1)

## 39 40
## 40 9.293559
## 42 45.719192 54.869668



PRESERVING THE DISTANCES

» Check distance among the first three patients

dist(scexpdat[1:3, 1)

## 39 40
## 40 125.3402
## 42 118.1911 125.0390

» Calculate MDS d = 20

MDS = cmdscale(dist(scexpdat), 3)
dist(MDS[1:3, 1)

## 39 40
## 40 9.293559
## 42 45.719192 54.869668

» Calculate MDS d = 45

MDS = cmdscale(dist(scexpdat), 45)
dist(MDS[1:3, 1)

## 39 40
## 40 124.9860
## 42 113.3668 121.7808



REMINDER: A SELF-FULFILLING PROPHECY

» Statistical method for unsupervised learning guarantee one
thing

» They will return a clustering of your data

» What they do not guarantee and are invariably unable to
verify, is the biological relevance or reproducibility of the
clustering

» In light of this Self-fulfilling Prophecy, these methods
should be used with utmost care



