{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Statistical Estimation" ] }, { "cell_type": "code", "execution_count": 15, "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "Warning message:\n", "“package ‘dplyr’ was built under R version 3.4.1”" ] } ], "source": [ "suppressPackageStartupMessages(library(tidyverse))\n", "suppressPackageStartupMessages(library(pwr))" ] }, { "cell_type": "code", "execution_count": 14, "metadata": { "collapsed": true }, "outputs": [], "source": [ "options(repr.plot.width=4, repr.plot.height=3)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Working with probability distributions" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### 5 samples from standard normal distribution" ] }, { "cell_type": "code", "execution_count": 10, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
    \n", "\t
  1. 0.834184312954893
  2. \n", "\t
  3. -1.42097831766073
  4. \n", "\t
  5. 0.613256845929185
  6. \n", "\t
  7. 1.41229807396209
  8. \n", "\t
  9. -1.21942815702242
  10. \n", "\t
  11. 0.323522322297916
  12. \n", "
\n" ], "text/latex": [ "\\begin{enumerate*}\n", "\\item 0.834184312954893\n", "\\item -1.42097831766073\n", "\\item 0.613256845929185\n", "\\item 1.41229807396209\n", "\\item -1.21942815702242\n", "\\item 0.323522322297916\n", "\\end{enumerate*}\n" ], "text/markdown": [ "1. 0.834184312954893\n", "2. -1.42097831766073\n", "3. 0.613256845929185\n", "4. 1.41229807396209\n", "5. -1.21942815702242\n", "6. 0.323522322297916\n", "\n", "\n" ], "text/plain": [ "[1] 0.8341843 -1.4209783 0.6132568 1.4122981 -1.2194282 0.3235223" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "n <- 6\n", "(x <- rnorm(n))" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### 5 samples from normal distribution" ] }, { "cell_type": "code", "execution_count": 11, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
    \n", "\t
  1. 6.10092036878306
  2. \n", "\t
  3. 10.4553327181587
  4. \n", "\t
  5. 7.60688063076039
  6. \n", "\t
  7. 12.7554584484242
  8. \n", "\t
  9. 4.49824865096167
  10. \n", "\t
  11. 14.7050261258722
  12. \n", "
\n" ], "text/latex": [ "\\begin{enumerate*}\n", "\\item 6.10092036878306\n", "\\item 10.4553327181587\n", "\\item 7.60688063076039\n", "\\item 12.7554584484242\n", "\\item 4.49824865096167\n", "\\item 14.7050261258722\n", "\\end{enumerate*}\n" ], "text/markdown": [ "1. 6.10092036878306\n", "2. 10.4553327181587\n", "3. 7.60688063076039\n", "4. 12.7554584484242\n", "5. 4.49824865096167\n", "6. 14.7050261258722\n", "\n", "\n" ], "text/plain": [ "[1] 6.100920 10.455333 7.606881 12.755458 4.498249 14.705026" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "n <- 6\n", "mu <- 10\n", "sigma <- 5\n", "(x <- rnorm(n, mu, sigma))" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### PDF" ] }, { "cell_type": "code", "execution_count": 57, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAeAAAAFoCAYAAACPNyggAAAEDWlDQ1BJQ0MgUHJvZmlsZQAA\nOI2NVV1oHFUUPrtzZyMkzlNsNIV0qD8NJQ2TVjShtLp/3d02bpZJNtoi6GT27s6Yyc44M7v9\noU9FUHwx6psUxL+3gCAo9Q/bPrQvlQol2tQgKD60+INQ6Ium65k7M5lpurHeZe58853vnnvu\nuWfvBei5qliWkRQBFpquLRcy4nOHj4g9K5CEh6AXBqFXUR0rXalMAjZPC3e1W99Dwntf2dXd\n/p+tt0YdFSBxH2Kz5qgLiI8B8KdVy3YBevqRHz/qWh72Yui3MUDEL3q44WPXw3M+fo1pZuQs\n4tOIBVVTaoiXEI/MxfhGDPsxsNZfoE1q66ro5aJim3XdoLFw72H+n23BaIXzbcOnz5mfPoTv\nYVz7KzUl5+FRxEuqkp9G/Ajia219thzg25abkRE/BpDc3pqvphHvRFys2weqvp+krbWKIX7n\nhDbzLOItiM8358pTwdirqpPFnMF2xLc1WvLyOwTAibpbmvHHcvttU57y5+XqNZrLe3lE/Pq8\neUj2fXKfOe3pfOjzhJYtB/yll5SDFcSDiH+hRkH25+L+sdxKEAMZahrlSX8ukqMOWy/jXW2m\n6M9LDBc31B9LFuv6gVKg/0Szi3KAr1kGq1GMjU/aLbnq6/lRxc4XfJ98hTargX++DbMJBSiY\nMIe9Ck1YAxFkKEAG3xbYaKmDDgYyFK0UGYpfoWYXG+fAPPI6tJnNwb7ClP7IyF+D+bjOtCpk\nhz6CFrIa/I6sFtNl8auFXGMTP34sNwI/JhkgEtmDz14ySfaRcTIBInmKPE32kxyyE2Tv+thK\nbEVePDfW/byMM1Kmm0XdObS7oGD/MypMXFPXrCwOtoYjyyn7BV29/MZfsVzpLDdRtuIZnbpX\nzvlf+ev8MvYr/Gqk4H/kV/G3csdazLuyTMPsbFhzd1UabQbjFvDRmcWJxR3zcfHkVw9GfpbJ\nmeev9F08WW8uDkaslwX6avlWGU6NRKz0g/SHtCy9J30o/ca9zX3Kfc19zn3BXQKRO8ud477h\nLnAfc1/G9mrzGlrfexZ5GLdn6ZZrrEohI2wVHhZywjbhUWEy8icMCGNCUdiBlq3r+xafL549\nHQ5jH+an+1y+LlYBifuxAvRN/lVVVOlwlCkdVm9NOL5BE4wkQ2SMlDZU97hX86EilU/lUmkQ\nUztTE6mx1EEPh7OmdqBtAvv8HdWpbrJS6tJj3n0CWdM6busNzRV3S9KTYhqvNiqWmuroiKgY\nhshMjmhTh9ptWhsF7970j/SbMrsPE1suR5z7DMC+P/Hs+y7ijrQAlhyAgccjbhjPygfeBTjz\nhNqy28EdkUh8C+DU9+z2v/oyeH791OncxHOs5y2AtTc7nb/f73TWPkD/qwBnjX8BoJ98VVBg\n/m8AADhTSURBVHgB7Z0H2B5FvfZJI9TQi0RI6EiVLr2DAiKoFIOA5xML4lFR0QOCiVIUCSKI\nUhQBOVRFisFIgAQEAkhRQKQJEkoQQguEDuG7b84zMi5P2X2ftuX3v6773d2Z2dmZ38zuf2d3\nnn3nmAODAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCAA\nAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQg\nAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAE\nIAABCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAA\nBCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAhCA\nAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQ\ngAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAAC\nEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACECgjgUFlrBR1Kj2BIarhStIa0pLS\no9LD0t3S61IZbBlVYsFaRZ7T0nXstw1XAVaOCnGv1svCO6pWX1aX11HnrR35SS0tDAIQgEBu\nCAxVSX4ivSq9XUcPK+y/JDvoRraaIr7aKDJH4eepLKGOv85Juex8Q5m8XC4n5SpDMaZGbI8o\nQ4WoQ2sCg1snIQUEckFgIZXiCsnO0yOxejZKgb+Sflgn0vufKP1V2qJOPEEQgAAEekrAIwoM\nAkUgsL8KuXVU0Pu1frU0XdpS2kSaS7J9Q5ooTfZGzY7T0qNjDAIQgEAuCDACzkUzUIgUBHaJ\n0vxS634c+iXpSGlbaYwUzHMbdg0btWU838GPTzEIQAACfSXACLiv+Dl4BgJrRWn/Fa2H1Uu0\ncpW0lPRSCNRyAemzkt/9BltRK1+XXpFODoFa+t3xR6UtJefjEfVz0l3ShdIjUmx7a2OJWsBv\ntHxM+oi0qeRjeFLYBOlWqZG5XjtLXnr/KdLvpVa2tBLsIy0vLS65LuZiBt4/eZPxRYXNI9n8\nmN48Pi29KU2UJtXWtZhjTsk3NOtJi0h/lly/gdhy2incDLl+5jhKMic/tXhZMp+zJb/br2ce\nKGwneR9PTnOb3CldK/mVQj1rVd8rtdN/Rzser/VFJZfV7feidL30W8mMfAPndtpKcpvfIP1R\nekiqZ1nbp14ehEEAAhDIBYHrVAo7FcsX7R9KngndyuwAwn7J5TPRzr743tEk7bOK2zxK71U7\njpDnTlq/KNoO4b54f0NKmi/o35bekELasDxXYcGJOuzXUmwHaMP5hvTJ5TmKsxON7SlthHTe\nPz7uk9oeWkvsG4fbpZA2LJ9WmB1W2PbSbFuZnVbYxw7TjnRmFBbi7FDttJI2QgE3SSFdvHxL\n4Xacc0tJa1XfubRDnJdvNh5NhDn+Amm+2jJO73XfCKwqJc18s7bPVO0T8j8imSHbEIAABPpJ\n4L908HCBipcPKvzn0sekeaWkpXXAHgXG+T6i7ful2VH4LK37wh0sdsDhgv+KIpMXcju7UWGn\n2nIvLePj+YJ9n+T943Cvxw54I23HZfKo8S7JNwjxfodrO7ZQPqfxDUyc9qe1hEO09Kg9jpuh\n7WmJsBCf1QG7jMHxO8/XEvmepu3Y7Phix+Tj2umG44flZIUNkmJrVd9hShz29zIwcdu5neO4\nwNbljfN1mn9Kg6VgA22fuJ444ECTJQQgkBsCp6sk8YUxuf6C4k+U4hGRR4JrSJdKIf1VtbBV\ntbQtLXlfx9u57SAFs2MP+3n5oRChZeyAHfcjKdwE/D+tx/t9TtvBXKaHpBD/N62PqkV6/7is\nTnN2Lc6LE6TggK/WeqirHcrNUsjTj0djSzqOCxXpuo2X1qkldBnD/l7GI/cPa9uP9uP45bXd\nynZWgnifJ7Tt9rB5dOubhxD/uAMjm6D1EPei1j8j2SkvJv1AChyc5otSbK3qa14hby9fl7ap\nZTC/lnH7OP5KaQFpuORjx/uupu1gA20fHHAgyBICEMgtgT1UMjus+AKYXL9O8b5YxnaGNkK6\ni+KI2rpHUHYomyXifMGNHc+OUXzsgG9XeDwScrJHpHDMQx1Qsw21DOFebh4iassltIxHwmcn\n4u0gNpaWSoQfpu2Q758TcbFD8ugzHsmHpBOj/SeHwGh5fBTv45hXK0s64N0SO8Q3KnaCwVbS\nSqiLl0kH63TnRmmmOyCyVvVNOuDjon29epIUjm9H/34H1szcQ5yXW9bCw2Ig7YMDDvQqtExe\nMCpUdapaUAIXqtyrSx+QDpE8CvRj2Ng21cYZcUCKdV9IH5RukjzKPUg6X/KobB4pmB1yPbtR\ngb5Qx/ZEtLFgtL5ctO6y+4Yhtie1cUcckFj3aNAXbNvu0njJo9/vS8EaldPxv5eSzBwel2uS\nAxJ2RWJ7IJue2BRbzMhOMbDeMkr0ltZ/FW2H1V+EFS3fJ3lkXM8a1TdOe0u8ofWZ0fYjWvcE\nsmB+JB1bknW77RPnzXqJCYSJFyWuIlUrKYF7Va8f1jS3lntJP5A8erRtKw2RfPFOY/Mp0U+k\nPSWvN7Kkkw3png8r0bKek3P06CjNv7Ru55+05Igujt9ZG0dKa8WBifVG5XQyj4Dr2egoMHaM\nIbhZmUKaVsskp0aM4hGnb4Li0XE4xkNhpbZcVctrE2HebFTfOGnscB3ud9XBkmWuV5aQ1st2\n2yfOi/USE8ABl7hxS1Q1O9e9JY9y3pQ+JMXmx7Ue8T4jXVqL8GPAdaU/17abLfwucooU3oXO\n0rpHgA67RposhdFVI8f2mtIkrVHa56KEPnY9C++Sk3H7KeB0yTcXtrskl/UaaXXJNyG2Rsd2\nnCcc1TOXK9zA1CtXozLVy6te2NsKjB2b0zQqZ+z03Jb1bIFE4NOJ7bDZqL4h3stkuVzWYK0c\nbkjnZSfaJ86P9RITwAGXuHFLVDVfpD2qCLaxVqaGjWjpiVSxNbpwD44TaX0nKThfO/PVJD92\nDBZf6BuNqOMLdtiv0fLBKGIhrS8peSQczOVbJWwklodqOzjfn2n9y1H8GtF6o3I6Sb2bBYe7\nXMEB+xF/0jzCbMeyMHo4OpAZLS/F3By9nv/UzE7y/rCRWDaqbyJZRzY70T4dKQiZ5J9A8kKU\n/xJTwioSuEqVjkdKv9b2VlJwRGaylHScV2rmkbJHh8G8HWzOsFJbbhJt36n12Pl6tB2n78RN\nq8sVRlyDtH6wFNve2lgmDqitL6rlSlH4hGjdq5tH283KGbOIdnnn979he0+tjA4bWs4lHRRt\nd3v1Ch3gpeggblu/Iw7mJxKHhQ0tr5IC0yj4ndVG9U2ma3e7U+3TbjnYvyAEmp2kBakCxawA\nAU96OUY6pFZXj4YmS89I10oLS3aUdhLB7KSfChtavhitb6n1o6SlpX0lv2MMtqFWvib5UfY2\nUnyR12bT98OOT2Me7Z4sfaWW+Ota+gbiSsmj7xCu1f8wPyJ+RfI7b9tYKTyq/ZzWP+zAms0X\nVuosG41Ef6i0n5Wcv5ma7amSj7u/5LL1yux8D5d+XDvgx7S8SbpYmlfaRxop2Zz2wHfW6v9p\nVN/6qQce2qn2GXgJ2BMCEIBAFwh4tOtRji+mrWSnEY+WtPnOJwbr7TdCcR5t2pHVi39L4XbQ\nIe4orQe7VSsh3M4iaVMUEOJ/lIhcRNsPRvEhnZczpd9EcWdrPZgdUpw2XvfIPWy/qvXYCftm\nJMTtp/VG5lFuSJdc/lZxMaflG2UShe8c5WeWSdtCAfFx5kkk+LK2ZyfSxOlnKc6j9aS1qq/7\nR5zPtokMxkbxf07EDY7inMcOUfxA28evVEJ5jojyY7XEBNyRMAgUgYAv3ttJfjxb712fR0G3\nSl+SviAlH0derrAzpNie1oZHenZcO0n3SLHdrY3NpHgUXO9iH++Tdt2j93Wli6TwiNQX4Dsk\nH/MaKZjDg/kpwPFS2MfhHhX/RFpZmibZhku7vrOW7Y/z3k3yKD3YC1o5VvJvsGOucblC2k4v\nT1KGe0kTJd+YBHtNK1dIa0oXhMAcLLvdPjmoIkWAAASqTmA+AVhD8shlWWmQlMY88txEen+d\nxL4hdV6bSn6f1yvzqG9DabEMB/TIfT3JDLr1Ksks1pb89CEP5vZZS1pN6ladO1XPXrRPp8pK\nPhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAAQhA\nAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEI\nQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIAAB\nCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCAA\nAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQg\nAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAKdI7CY\nslpFGty5LMkJAhCAAAQgAIFWBI5RgrelhVslJB4CEIAABCDQKQJDO5VRTvNZU+Wat0XZRtbi\n19fyhdr6o1o+VltnAQEIQAACEIBARgJ/VXqPbrNqbMbjkBwCEIAABCCQiUDZR8CniMbx0lzS\nZdI9UtK2UsAG0onSK7XIG2pLFhCAAAQgAAEIDJDAatrvDull6b+lQVJsvAOOabAOAQhAAAIQ\n6CCB4cprvDRbmiSF975anQMHbAoYBCAAAQj0lEDZH0EHmK9p5ZvSH6SzpLukL0nnS3mx9VSQ\nYXkpDOWAAAQgkFMCr6tct+W0bJmKVRUHHKBM1opnRvvd8HnSLtIsqd9m53tLvwvB8SEAAQgU\nhICvmYV3wlVzwO5bz0l7ShOkk6QRUr8tjHznV0F8d4dBAAIQgMB7CcypoBclLwtvVXTAodHO\n1sp10rHSotIbUr/NzhcH3O9W4PgQgAAEekCgyg7YeB+WdvcKBgEIQAACEOglgao74CTrAxTw\nRelkye+JB2rzaEdP8gqPllvls2yrBMRDoMcE/DrE1wd/xOYtyY/9MAhAoIMEcMD/CXMJbXqS\nlpft2ILaeWcp7XuKxWsHc3vwCLoGg0XPCLi/7ihtI/kfk6wsLSLF9qw27q3Jkxn9iwLPp8Ag\nAIEBEkh+lGKA2ZRmNzte68maelWxz+lAp0nzSS/16qAcp9IEfLO3h7S/tJnkEe4k6W/SfdKD\nUpgX4Sc5y0l2zqtL20mevPgn6VfSBdKbEgaBbhPwoMY/K91YurHbByP/ahCwA/ajvlb/OKIa\nNKhlNwm4jx0kTZPsdH8qbSlleRrmtN7H+/ofmDgv50n/FQSsqwTsgH2t3KirRyHzShHAAVeq\nuftWWU849H/6mi79j+RHz+2a83BeztN5M6lRELCuEcABdw1tbzJeSIcZLfk9lz9JmYe7dhyw\nGgLrGoEVlfNVkh/dHSV5kmCnbW5leKT0qnSl5GNiEOg0ARxwp4n2IL+1dYxfSk9JfnyRlN93\nnSotJvXDcMD9oF6NY+6jaob3u71wij6G3yXPkvaVMAh0kgAOuJM0e5DXd3WM4HD9rmqqNEHy\nd6AnSjdLT0hO87Q0Ruq14YB7Tbz8x/OTnbOk16WvS4OkXprfCfvYZ0p5eMqkYmAlIIADLlAj\n+n2UHasd7TpNyu2L0+bSLZLTbyz10nDAvaRd/mMtrSreKfnJznp9rO76tTLcpaXLhEGgXQI4\n4HYJ9nD/c3QsX4SGpzym3w97VucpKdN3KhkOuFMkycevW6ZLU6ROTLJql6jL4LK4TC4bBoF2\nCJTKAQ9uh0QB9vVHNfxbMU8+SWP+sIBHDp6chUGgaAT8MQ3/NtcTrnaQnpf6bS6Dy+IyuWwf\nkTAIQKACBCapjvdIw1LWNYyAj02ZvlPJGAF3imR189lNVfc71yNyjMBlcxldVgwCAyFQqhHw\nQAAUaZ+9VVi/071M2rBJwf0OeDPJE7LelDaRemk44F7SLt+xPqEq2bH597h5N5fRZXWZMQhk\nJYADzkqsj+ntWA+SXpLsiB+TbpIul86rLf2I2u+nHP+G9FWp14YD7jXx8hzPEw3dbw8uUJVc\nVpfZZccgkIUADjgLrZykXU7lsMN9XLKjjfWSth+Qxkv9mqmJAxZ8LDOBD2sPjya/kXnP/u/g\nMrvsrgMGgbQEcMBpSeU0nT8ib0e7orRATsqIA85JQxSoGH6l4o9d5PmdbyucLrvr0Oz1UKs8\niK8WARxwtdq7J7XFAfcEc2kOsopq4o/GnFaCGrkOrovrhEGgFQEccCtCxGcmgAPOjKyyOyyh\nmk+TficNKQEF1+FiyXVy3TAINCNQKgdc9t8BN2tI4iBQNAJzqcCXSE9IY6S3pKKb6/ApyXVy\n3VxHDAKVIIADrkQzU8mSEPA/FBkp7Sr5vw6VxVwX18l1cx0xCEAAAj0jwCPonqEu7IEOVck9\nYemDha1B64K7bq6j64pBoB6BUj2CrldBwnpPAAfce+ZFOuJOKqw/EFOFL0h9vFZX1xmDQJIA\nDjhJhO22CeCA20ZY2gyWVc2elfzP7qtirqvr7LpjEIgJ4IBjGqx3hAAOuCMYS5eJJyTdLk2S\nqjRfw3V1nV13JmUJAvZvAqVywFU6qf/dgqxAoCAEfq5yLiqNkWYXpMydKKbr6jq77maAQQAC\nEOgaAUbAXUNb2Iw/o5L732huUNgatF9w190MPtN+VuRQEgKlGgGXpE0KXw0ccOGbsKMVWFm5\neTbw1zqaazEzMwOzMBMMAqVywEMztueCSr+JtFok/3ZvhuQf0t8k+V//+d2N/+EBBgEIZCMw\nXMkvkKZIP8m2aylTm8E2kpn4m9EeEWMQqBSB0artCZLvROP/JPSytp9MhDn+PmkXCUtHgBFw\nOk5VSHWSKul/m7lIFSqbso5mYSZmg1WbQKlGwK2acpgSHCb5SzV2thdJn5bWlhaVgs2vlfUl\nx/knBHdIdsRXSqtLWHMCOODmfKoS+zFV1L/33aIqFc5QTzMxG27sM0ArYdLKOGA/Cvur5I+k\nf16aV8piOyrxtZJPmkOz7FjBtDjgCjZ6osr+RwRPSb6BxeoTMBsz4p821OdThdDKOGA73EOk\ndn+Ht5HyOKgKPaONOuKA24BXkl0vVz1ukfzUCatPwGzMyKywahKojAOuZvP2p9Y44P5wz8tR\nD1BBXpKY6du6RczIrMwMqx6BUjngoRnbb2Oln9pinzUU/wHpwhbpyhztmeEXSO4saSx+n54m\nPWnKQ8AOZbz0TcmTF7HmBMzIrMxssgQzQcCKSWBQxmI/pPQTpIOl1xL7Oi8/aj5a+oH0Pamq\nNrcq/gUp7eNEf3Dgk9J8ku/usWoQ8D+jv0F6RtqpGlXuWC3/oJwWlvyzyDL8X+SOgSl5Rh7U\n2Pd4MHhjyev6nupdrhDPbv6LtFIU+36tXyU5brq0qYSlJ8Aj6PSsypTSkxOflZYqU6V6VBcz\nMzszxKpDwA7Yfmaj6lT53Zr6jn2s5JnNs6T9pD0knwiGcqbkj3Vg2QjggLPxKkPqNVUJ38mP\nKUNl+lQHszNDs8SqQaDSDjg0se8+HpDsdK1HpI9I2MAI4IAHxq2oew1Twf0Tv98WtQI5KrcZ\nmqWZYuUnUCoHPND/huQPc8xMtDXvYRJA2IRAAwKHK/x90gEN4glOT8AMzdJMMQiUmsBw1e5o\n6Y2avqvlXlJ4BP0LrY+QsGwEGAFn41Xk1B9U4X3+fKLIlchZ2c3STM0WKzeBUo2AszbVddrB\nj5wfkDxzN5gnYV0thcfRHwoRLFMRwAGnwlT4ROHRc5V/otetRjRTHkV3i25+8q20A/bPkE6T\n/JWspPlnSF+X/Hh6bDKS7aYEcMBN8ZQm0ufFDGmx0tQoPxUxU7Pl2pOfNulGSSrtgDdJQdQf\n4vDMaCw9ARxwelZFTemZuq9Lexa1AgUot9maMbOiC9BYAyxipR3wAJmxWwsCOOAWgAoe7Z/v\n3SZdVPB6FKH4ZnyrZOZY+QhUxgF7MtUZ0lJttKHfee0njW8jjyrsigMudyt/W9V7Vlqy3NXM\nRe3M2KzNHCsfgco4YDvPiyV/GtEOdGUprfkd8dck/z74OclOGGtMAAfcmE3RY1ZSBV6ROAd6\n15JmbeZmj5WLQGUccGg2v8/9l/S2dKc0TtpT8sc4PPt5AWldaYz0fcmzEZ+R/LWsn0uLSlhz\nAjjg5nyKGuuJif7lwB+LWoECl9vMzd5tgJWHQOUcsJtuHulA6R+SHXEz2fH6m9GrS1g6Ajjg\ndJyKlurLKvCL0jJFK3gJymvmZu82wMpDoJIOODSfv5y1orSr9B3pXOla6bfST6W9Jf+HEiwb\nARxwNl5FSB0cwJeKUNiSltHsuQEqV+NW2gGXqynzUxsccH7aolMlmaiMeATaKZoDyye8AnBb\nYOUgUCoHPHQAbTK/9llX8vvfRlP9/UWaOyQMAlUksI8qvZW0luTXNVh/CJj9/pKvRW6TsyUM\nAoUlsIVK/qTU7B2w48ZJWHoCjIDTs8p7ysVVwKelQ/Je0AqVz23hNnHbYMUmUOkR8KlqO3fi\nX0m+q3xBqmceAWMQqCKBE1XpR6Vjq1j5nNbZbbGH5LbZK6dlpFgQaEpgPsV6dHtm01T5jmz1\n7xf9SH0haa4eV4MRcI+Bd+lwuyhf/wpgnS7lT7YDJ+A2cdu4jbDiEijVCLiVQ4qbyR/k8Bdm\nZsSBBVhfQmW8QHLZX5CmSI2+ab1GLd23tcQgkIWAfw//c+k46fYsO5K2JwTcJm4bt5HbCoNA\n4QicpRL7oxzDClJyj9ofkTxynyndK82W3pKOkpL2QQU47dhkRJe3GQF3GXAPsvfrmfulXj89\n6UHVSnMIt43byG2FFZNAqUbAWZvAH+S4TvJvf/eVtpQ2qyP/BjIP9j0Vwg51nOTZ2zbP4Pb7\na4f/WIoNBxzTYD0tgS2V0Dd1W6TdgXR9I+A2cltt2bcScOB2CFTaAY8UuRslO69mGqf4PNiV\nKoRnbSd/buVHUH+SXIeDpWA44ECCZVoCcyvhA9IpaXcgXd8JuK3cZm47rFgESuWAk46pVVOc\nqQQfku6WPBL2e9V6ZueWB/MNg8vpyRex+XH0zpLjjpGmSRdKGASyEjhCO/jR5rey7kj6vhFw\nW/ka5rb7Zt9KwYEhkIGA7zxelqZm2KffSf0FnOelRu/l7KAfkV6RNpEYAQsClprABkrpm7ud\nUu9BwrwQcJu57dyGWHEIlGoEPDgD9zB5aVKGffqd9GoVwI+bj5aWqlOYxxW2neTvxf5B4kIq\nCFgqAr4QnC6dL12eag8S5YmA28xt5zZ0W2IQyD2BCSrhDVIWx93PSnnk60dNftfriRd7SfXM\nI9/npPBee1y9RF0MYxZ0F+F2KetxytfzCxbpUv5k230Cbju34bjuH4ojdIhAqUbAWZksrR0e\nljxa/Ii0iuROnNTcCsuL+adIJ0j/lD7epFDLK86PrO2Ex0m9NBxwL2m3f6w1lcXr0h7tZ0UO\nfSbgNnRbuk2x/BOotAOeqvbxBKYwUmy0HJfTdkwzcl9fZfcHOXppOOBe0m7vWJ64eJt0UXvZ\nsHeOCLgt3aZZJ6XmqAqVKUqpHHDWDuffz/4rRVPfkyJNP5L4PXYru6VVAuIrTeBbqv1oacdK\nUyhX5f1/g/8uuW2PLlfVqA0EqklgMVXbE7/SyD+F8NOEeSUsvwRWVdFek/bObxEp2QAJuE3d\ntm5jLL8ESjUCzor5Z9phvJR15Jz1OP1Kf4AO7FH+F9sswArav9Hj+WbhOOA2wXdx9yHK+2bp\nsi4eg6z7S8Bt6zZ2W2P5JFBZBzxc7TFLujef7dKRUo1TLnaQYzuQ2yjlsWJKfUfpfFwcsCDk\n1A5RufzhmffltHwUq30CflrlNnZbY/kkUFkHPEjt8YTkD1d4vYy2hCrl2ZBe9tKYhNVL2tmP\ntbp28eNJHj1nZ1e0PT5da2u3OZY/ApV1wG4Kf4bSDvj30g6Sf7ozoo48WsbSE8ABp2fV65R+\n3eIZshf3+sAcr28E3NbMiu4b/qYHrrQDvl5onpb8uLSZxik+r7aQCjZaWlkaKeXhsS8OWA2R\nU/uuyjVD6vVTkZziqESx3NZuc7c9li8CpXLAWSdT+f2vvxjVyu5rlaDH8WvreAdKu0ienZy0\nhxRwlXSY5BMPg4AJrCO5T/ix5JMSVg0CbmtfL/5X8tf/bpcwCEBgAAR8FxtG69O0PlXySXW+\nNFHyrEe/23Yaj+7HSL02RsC9Jt76eHMpyd3Sea2TkqKkBNz27gPuC1g+CJRqBNwO0lHaeQfp\nU9K20sJS3mx3FciO1Y7Wo5lG5kllm0u3SE6/sdRLwwH3kna6Yx2vZI9JfmWBVZOA2959wH0B\nyweByjtg/1D9WsmOKtbr2j5BsjPLi52jgjwoDU9ZIJ9wL0inpEzfqWQ44E6R7Ew+Wysb//OO\n7TqTHbkUmID7gPuC+wTWfwKVdsD+ZwwzpTCqPFrr/nzbTyU7OoefLg2W8mB3qRB+j5PFrldi\nz/LupeGAe0m7+bEWULRn+rtPYxAwAfcF9wn3Day/BCrtgH8n9v495DZ12mCYwk6S7IQ3rRPf\nj6BJOug9ksuWxsII+Ng0iTuYBgfcQZhtZuX3fu4zc7eZD7uXh4D7gvuE+wbWXwKVdsDPiP2J\nTfgPVdxTkmeO5sH84QTfEFwmbdikQH5svpnkCVlvSptIvTQccC9pNz7WvoryDebajZMQU1EC\n7hPuG+4jWP8IVNYB+/GLndnnW7C/TvEeKefB7FgPkl6SXHZPqLhJulzy3ayXN0rTJce/IX1V\n6rXhgHtN/L3HW05Bfv//jfdGEQKBdwi4b7iPuK9g/SFQWQds3M9LP2/C3XD8U57jmqTpR5RP\nGDvcxyU72lh2zg9I4yW/4+6H4YD7Qf3dY/rJjW/MrpTyNInw3RKylgcC7hvuI+4r7jNY7wlU\n2gGfL94eJe5ch/tcCvMELDu3evF1dulL0Agd1Y52RSkvkypwwH3pCv8+6A+05g+wvO/fIaxA\noD4B9xH3laPrRxPaZQKVdsCjBPc5yU7Wj5r9Pvh70q+kRyWH/0bCshHAAWfj1cnU2yszv/ff\nsZOZklepCbivuM+472C9JVBpB2zUI6WJkp1tLD/KPVzySBjLRgAHnI1Xp1J7NPOk1OtZ750q\nP/n0j4D7jPsOT0162waVd8AB93xaWU/aSfLHOYZL2MAI4IAHxq2dvQZr58mS3+cNaycj9q0k\nAfcZ9x33IfclrDcEcMC94Vypo+CAe9/c39ch/TplVO8PzRFLQsB9x33IfQnrDYFSOeCBzOTb\nWpz3kRaX/AP1erNGz1T4WRIGgTwS8Du8Q6XdpGl5LCBlKgQB9x3/LvhiyaPhP0gYBLpGYA/l\nHL/3bbQ+rmslKGfGjIB7167L6lDPSkf17pAcqeQE3Jfcp9y3sO4SKNUIOCuq+7TDLGmM5MkH\nQxpokMKx9ARwwOlZtZPSEwRvk/xbTt7btUOSfWMC7ktXSe5b7mNY9whU1gHPK6azpZO7x7ay\nOeOAe9P0Z+ow/rncYr05HEepEAH3KfetMypU535UtVQOOMso4BXR9mfY/HMjDAJFI/A1FXhP\nye99ZxSt8JQ39wTcp9y39pLc1zAIdJzApcrxcSmL4+54IUqYISPg7jbqtsreX3Dbu7uHIXcI\nvNPH3Nfc57DOEyjVCDgrHs98fkDyP1vYXFpGWqSOPDsaS08AB5yeVdaUy2sHT5D5UdYdSQ+B\nARJwX3Ofc9/DOkug0g7YU+1nSo1mP4fwcZ1lXvrccMDdaeKFlO09kn8ewlOb7jAm1/cScF+b\nKLnvuQ9inSNQKgec9XfAfxHH6SlYuuNhEOgngWE6uJ/U+HGg38t5AiEGgV4QcF/bU7pech/c\nXnI/xCAAgRwSYATc+UY5U1n6ZtH/+QqDQD8IuO+5D57Zj4OX9Jhzql5+0rpRSetHtfpAAAfc\nWehjlZ1/r75uZ7MlNwhkJuA+6L7oPom1TwAH3D5DckgQwAEngLSx+QXt68d9H20jD3aFQCcJ\nuC+6T7pvYu0RKJUDbvUO+DixGj0AXhdonwsHsB+7QKAdAp/Qzj+TfEPz+3YyYl8IdJCA++Ln\npV9IT0sXSRgE5mjlgLcRo7VacPLjFf9rwmCvaOXWsFHRpf81477SsJT13zhlOpI1JrC1os6R\n/E8WzmicjBgI9IWA+6S/luU+6p8oTZEwCDQlMEKxnkYftJ7Wn5d8R7ehFL57agfsxyz3SpdK\nrRy7kpTaPPnCM8bvTqnHle5tyZ/7xLIT8ISMF6Xx2XdlDwj0lID7qPsqk4gGhr1Uj6CzIpis\nHa6RhjTYcZTCX5YOaBBPcH0Cn1MwDrg+m1ah6yvBTOnkVgmJh0BOCLivus+672LZCFTWAfux\n6qvSgS14TVW8H7Ng6QnggNOzilOurQ0/zjtd4j9wxWRYzzMB91X3Wfdd92EsPYFSOeAsXwd6\nU4xekpZqwsoj49GSH6liEOgmgXWVuf8F3AQp3MB083jkDYFOEfDTLvdZ9133YfdlDAItCZyr\nFI3eX3iE7Ecr7lybSVh6AsGB8A44HbNNlMyP8M6QGr0OSZcTqSDQPwLuu+7D7svu01hrAqUa\nAbeu7n+m+KA2Pbq1k/X74JOko6WzpMckh58qZRlZK3nlDQecvgtso6SzpJ9JPHZOz42U+STg\nPuy+7D7tvo01J1BpB2w0S0oTpVckO9ygh7X+VQnLTgAHnI7ZJ5XM8xD4z0bpeJGqOATcp923\n3cexxgQq74ADGj8+WVXy7y8XDYEsB0QAB9wa21eUxPMQvtU6KSkgUEgC7tvu4+7rWH0COOD6\nXAhtgwAOuDE8P6I7VnpNGtM4GTEQKAWBvVUL93X3eV6xvLdJccDvZUJImwRwwPUB+gMvl0j+\n+Avvx+ozIrR8BNzX3efd930OYO8SwAG/y4K1DhHAAb8X5LIKuku6X1rlvdGEQKDUBNzn3fd9\nDvhcwP6PQKkcMLOV6dZ5JLCDCnWLNF3aQLpXwiBQJQLu8+77Pgd8LvicwCAAgS4QYAT8f1A9\nse9IyRNRjpG8jUGgygR8Dvhc8Dnhc6Pq50SpRsBqTywHBHDAc8wxUu0wRXpG2jkHbUIRIJAn\nAj4nfG74HPG5UlUrlQPmEXRVu3G+6r2XiuN3Xf6amr+NO0HCIACBdwn4nPC54XPE54rPGQwC\nEOgAgaqOgBcWu/Ok16XvSFV/vCYEGASaEvA54nPF54zPHZ9DVbJSjYCr1HB5rmsVHfDeapCn\npL9JvrPHIACB9AR8zvjc8Tnkc6kqhgOuSkv3sJ5VcsAriOsk6VXpMMknFAYBCGQn4HPncMnn\nks8pn1tlNxxw2Vu4D/WrggNeQFzHS/7Kz9XSihIGAQi0T2AlZeFzyueWzzGfa2U1HHBZW7aP\n9SqzA/YJc6DkR2UPSrtJGAQg0HkCPrd8jvlc+7Lkc69shgMueIsupPKPllaWRkrzSv22Mjrg\noYL6WWma5J9PHCyV8YKgamEQyA0Bz5L2ueZzzueez0Gfi2UxHHABW9ITFn4p+c4w/PvEeOm7\nxlOlxaR+WJkc8NwC6BHvQ9JMaZw0QsIgAIHeEfA5N07yOehz0eekz82iGw64YC34XZU3OFvf\nEU6V/Ju68yX/X+ObpSckp3laGiP12srggJcStHHSjJrMvWo/kVCVMQjkioDPQZ+L4bwcp3Wf\nq0U1HHCBWm53ldWO1Y52nSblHqS4zaVbJKffWOqlFdUBm5v/H/RvpDek+6QDpTLcaasaGARK\nQyA8mfI56nPV56zPXZ/DRTIccIFa6xyV1Y+X/V4kjfn98AvSKWkSdzBN0RzwSqr7kdLDkk/m\ni6XtpKKdzCoyBoFKEfA56nPV56y/Lz1N8rnsc7oIhgMuQivVyuhPtv1vxvJer/S/z7hPu8mL\n4IBXVSUPl+6Q/JTgr9LXpSUkDAIQKB4Bn7s+h30u+5z2ue1z/ANSXg0HnNeWqVOuSQq7RxpW\nJ65eUBgBH1svsotheXTA86q+O0o/lfwUwSeob2jGSqtJGAQgUB4CPqd9bvsc97nuc97nvq8B\nvhbkxXDAeWmJFOXYW2ncmS6TNmyS3o9lNpM8IcuPZTaReml5cMC++fiw5MdRN0ivS/7CzhXS\nV6UVJAwCECg/AZ/rPud97vsa4GuBrwm+Nvga4WtFvwwH3C/yAziuHetB0kuSHfFj0k3S5dJ5\nteWNWk6XHO/3me54vbZeO+AFVUFPOvua9Gvp79JsySfb9ZJPtG0kJlMJAgaBChPwNcDXAl8T\nfG3wNcLXCl8zfO3wNcTXEl9TemGlcsB2UFWw5VTJoyR3lKUSFX5Z23bAl0onSI9KvTY74NOk\n+STfLHTChimTZaTlpZWkFaVVpNUlM3hL8ozI26XbJN+YeN13uxgEIACBegTsANeRPiStW1tf\nWcshkq+j/gcR90r3Sw9IfpT9iOTBTSfMx39N2ljy4KnQNrTQpU9f+IeU9FO15P6B+gLSXJI/\nzDFTKqLZua4gLVmTner7a3LcSGmwZIfq+vtkuEM6V7pb8h2sbz4wCEAAAmkJ+Hrim3Ur2Dxa\nWVXye2RrFWl7yQMfO8zZ0uOSZ1x7+Vht+aSW/5L+IdlJV86q4oDjhn1BG1bR7RpVwI52huRO\nPF1yx7ZzdWd+uCaHebSLQQACEOgGAd/I31pTnL9HxR4UjK5plJYeGHxA2kby4GExydcrO+vK\nWRUdcLNGPkCRX5ROlk5plrBFnDvW6ZLv/tKYR69ZzZ3Yj3V8d4lBAAIQyBsB3/h71Gtd26Bw\ngxXu12WVNBzwfza7fxe3puRlOzZLO/9ZStuxfGfoRzh2qGnN70EwCEAAAkUm4AEE17Iit2AH\ny94pB5y1SBtpB8/CTjtizpo/6SEAAQiUgYCvkb5W+ppZeGME/J9N6EkBVr8siwMepELSfv1q\nKY4LAQh0ioC/vWCnmsayXCPT5NfXNFW8gC8k4p4FPVzyo+LnpU799EdZDcjCo+cXB7Q3O0EA\nAhCoFgHPxi68eRRVBVtblTxQ2kXyrLukPaSAq6TDJM8q7oetp4OmfWfs8k2RTpX8u7ui2/dU\nAfO/rugVUfn9YQL3J399rej2mVoFzix6RVR+n/ueafuTEtRlM9VhW2lsCeri7xJ8QdoqQ13s\nfP3tAqwABL6rMvrxhjVNmipNkM6XJko3S09Ijn9aGiMVwTxq37EIBU1RxnuVxidhGcw3EkeU\noSKqw5k1laE6bhO3TRnM54rPmTKYr2H9fgLZN45lfwS9u8h6dPVH6TvS7VI9G6RA31UeJ50j\nPSzZUWMQgAAEIACBrhDwb7DKbLuqcn4c6GUj5+v6e/T7J2l7ye9h95UwCEAAAhCAQNcIlN0B\nrylyN0ppf2f2nNLeKY2UMAhAAAIQgEDXCJTdAT8hcv5geNrJTZ4hbaddlvcrqgoGAQhAAAJ5\nJFB2B3yWoK8iXSRt2KQBwjtgvyueR7qkSVqiIAABCEAAAm0TKPskrHNFaHHpSOmj0uPSY9Iz\nkv8hwwhpYWmU9D7pTekb0g0SBgEIQAACEOgagbI7YE+uOl66VDpK2lxKjoT9nzymS54BfYL0\nqIRBAAIQgAAEukqg7A44wPNM6E/VNjzqLcP/Aw51YwkBCEAAAgUkUBUHHDeNHz1bGAQgAAEI\nQKBvBKrogPsGu8MH9ufYwjekO5x1z7NzPUrxbddaPcpUl553hi4dsGx9jHO/Sx2FbCGQhsBy\nSlSWWexLqy5zpql0AdIsqTLOV4BypimiJyhaZTC3idumDOZzxedMGczXMF/LMAhAAAIQgAAE\nIAABCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAA\nBCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAhCA\nAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgUAQCQ4pQSMrYkMD8itlIWlua\nKc2Simz+v6Cuz6q1SjxT5MrUyj5ay52ku2rbRVj4uuB22EB6U3pWKoONViWK1hZJ7mU6R1ZW\n5TaXFpCekmZLGAQKQeBTKuUM6e1IU7W+uFQ08z9Kv0SK6+L1yVKR/1n3CJX/79KLUlFsRRX0\nHilui7u1XfR/AF/Etoj7TJnOkYVVscsSfexlbX8+rjDrEMgrAd81emTygPQ5aXVprPSK5LDh\nUlFssAp6jeQL/gXSR6QtpNMl3xH/TZpLKpotpAL/UXK9iuKAB6msf5JekD4trSC5f/niOE2a\nVyqiFbEtYs5lO0cmqXI+L06TNpA+Jl0nOeyzEgaBXBOYoNK5s/pxWmxnaMPh28WBOV/folZm\nj96TdrkCXJ/dkxE5395N5ZsuueyvSUVxwAfUyvwFLWOzE3ZdkuFxmryuF7UtYp5lOkfWU8Xc\nl26JK6j1ZSXfcN+QCGcTArkj4AviMZJHLLHtow137q/EgTlf30/l+6e0f51y7qUw12dsnbi8\nBnkE7zI/Le0i3S4VxQHfrLK+Ki0oxebHt366krxoxmnyuF7ktoh57qeNf0plOEc8v+P70rZS\n0h5UwLPJQLYhUAQCdsa/k3zxX60IBU5RxkNr9fHj0KKYnz4cIfk9l60oDniYyurR+p0udB37\ni8Jel5yuKFbUtsjCt4jnSL36ra3At6Tf1IskDAJ5JRDuKH2hdwf+Zl4LmrFciyr9DGmm5Ako\nRbWiOODFBdg3b1MagL66Fr9Ug/giBBelLdKyLPo54kHDZ6TzJM878M3faAmDQGEInKaS+sJp\neQLWGlLRbV5V4CbJdSr6pIyiXPQ94cq8G41AHO74FaWiWlHaIg3fMpwjvplznwo6UutFesKS\npp1IU1ACI1Ruv4uLVW828PuVZgnJU/jvkt6orWuRG0tbFxfYd/WekOWT8gQpb5alLi57US76\n7kdmfpELXcd+pzDHL1cnrihBRWmLVjzzfo60Kn+In1srS0vrSadIvnb5J2/zSRgE+krgQR09\n3BmG5Q9blGi12j52xHmytHVZXoX2KN719d1wHi1tXULZi3LRH6oCexbqlFDwxPIabbtdFkmE\nF2mzKG3RjGkRzpFm5W8WF56yfKJZojLF+aTD8klgsor190TR7k1sJzd99+iZrBtKy0iPSHmw\nNHXxb5knSYtJHs3/QsqjpalLHsvdqkxvKoG/RhQmjyXTO9y/B34+GcF2zwgU5RwZKJDTteMn\npZ2kRk9iBpo3+0GgIwT8eOYfkh1BPQuPbxtdSOvt0+8wP4LyZydfkLbvd2E6fPwijbo8+vVj\nQD/ijM03RQ7/UxxYwPUitUUSb1nOkYNVseekrZMV1LbPfT9lObFOHEEQyA2B21SStyRP3Y/N\n3+91uH8yUhTze6B/Sv79qctfNivSRf/jgu8L4LcSjfA/tXCPTopsRWqLmHOZzpGPqmLuYxfH\nFaytX16L+1idOIIgkBsCm6okHpH4keEx0jaS7yz9kx3/ljPpmBWUW/u+SuYT8nHpkgbaX+FF\ntSJd9AcLsl97+CbuCGlb6cja9u+0LLoVqS1i1mU6R/zToz9IPuf9ymmMtKv0R8lhF0oYBHJP\nwBdHvxN2pw26UetrSUUyj9ZD+Rst8zgbOi3jol30/fh5ojQ7apcrtL6kVHQrWlsE3mU7R0ao\nYn7M7HkH4Zx/SeuHSfwMSRCw4hAYqaKuL/nnShgEOkVgfmW0rlQGx9spJuTTWQJ+tP5BaSVp\nSGezJjcIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQ\ngAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAAC\nEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAA\nAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAAQhA\nAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEI\nQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIAAB\nCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACxSMwpHhF\npsQQgECXCHxA+e4kLSk9mDjGZtreSnpDmpGIYxMCEIAABCAAgTYILKR9H5XelNaP8lld669I\nD0sLShgEIAABCEAAAh0msLXymy3dJc0pDZfulDzy3UjCIAABCEAAAhDoEoHxyvdt6XDpx7X1\nQ7TEIAABCEAAAhDoIgGPeu+QXpM8Gr5SGixhEIAABCAAAQh0mcAWyt+jYGuNLh+L7CEAAQhA\nAAIQqBG4RMvggL2OQQACEIAABCDQZQL7K387319Ip9fWHYZBAAIQgAAEINAlAiso31nSI9II\naQHpMclhjsMgAAEIQAACEOgwgaHK7ybJo9/to7z9cQ6HOc5pMAhAAAIQgAAEOkhgnPIKj56T\n2f66Fuc0GAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCAA\nAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQg\nAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAE\nIAABCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAA\nBCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAhCA\nAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQ\ngAAE6hH4/1VRDeky5lesAAAAAElFTkSuQmCC", "text/plain": [ "Plot with title “Standard normal”" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "x <- seq(-3,3,length.out = 100)\n", "plot(x, dnorm(x), main=\"Standard normal\", type='l')" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### CDF" ] }, { "cell_type": "code", "execution_count": 58, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAeAAAAFoCAYAAACPNyggAAAEDWlDQ1BJQ0MgUHJvZmlsZQAA\nOI2NVV1oHFUUPrtzZyMkzlNsNIV0qD8NJQ2TVjShtLp/3d02bpZJNtoi6GT27s6Yyc44M7v9\noU9FUHwx6psUxL+3gCAo9Q/bPrQvlQol2tQgKD60+INQ6Ium65k7M5lpurHeZe58853vnnvu\nuWfvBei5qliWkRQBFpquLRcy4nOHj4g9K5CEh6AXBqFXUR0rXalMAjZPC3e1W99Dwntf2dXd\n/p+tt0YdFSBxH2Kz5qgLiI8B8KdVy3YBevqRHz/qWh72Yui3MUDEL3q44WPXw3M+fo1pZuQs\n4tOIBVVTaoiXEI/MxfhGDPsxsNZfoE1q66ro5aJim3XdoLFw72H+n23BaIXzbcOnz5mfPoTv\nYVz7KzUl5+FRxEuqkp9G/Ajia219thzg25abkRE/BpDc3pqvphHvRFys2weqvp+krbWKIX7n\nhDbzLOItiM8358pTwdirqpPFnMF2xLc1WvLyOwTAibpbmvHHcvttU57y5+XqNZrLe3lE/Pq8\neUj2fXKfOe3pfOjzhJYtB/yll5SDFcSDiH+hRkH25+L+sdxKEAMZahrlSX8ukqMOWy/jXW2m\n6M9LDBc31B9LFuv6gVKg/0Szi3KAr1kGq1GMjU/aLbnq6/lRxc4XfJ98hTargX++DbMJBSiY\nMIe9Ck1YAxFkKEAG3xbYaKmDDgYyFK0UGYpfoWYXG+fAPPI6tJnNwb7ClP7IyF+D+bjOtCpk\nhz6CFrIa/I6sFtNl8auFXGMTP34sNwI/JhkgEtmDz14ySfaRcTIBInmKPE32kxyyE2Tv+thK\nbEVePDfW/byMM1Kmm0XdObS7oGD/MypMXFPXrCwOtoYjyyn7BV29/MZfsVzpLDdRtuIZnbpX\nzvlf+ev8MvYr/Gqk4H/kV/G3csdazLuyTMPsbFhzd1UabQbjFvDRmcWJxR3zcfHkVw9GfpbJ\nmeev9F08WW8uDkaslwX6avlWGU6NRKz0g/SHtCy9J30o/ca9zX3Kfc19zn3BXQKRO8ud477h\nLnAfc1/G9mrzGlrfexZ5GLdn6ZZrrEohI2wVHhZywjbhUWEy8icMCGNCUdiBlq3r+xafL549\nHQ5jH+an+1y+LlYBifuxAvRN/lVVVOlwlCkdVm9NOL5BE4wkQ2SMlDZU97hX86EilU/lUmkQ\nUztTE6mx1EEPh7OmdqBtAvv8HdWpbrJS6tJj3n0CWdM6busNzRV3S9KTYhqvNiqWmuroiKgY\nhshMjmhTh9ptWhsF7970j/SbMrsPE1suR5z7DMC+P/Hs+y7ijrQAlhyAgccjbhjPygfeBTjz\nhNqy28EdkUh8C+DU9+z2v/oyeH791OncxHOs5y2AtTc7nb/f73TWPkD/qwBnjX8BoJ98VVBg\n/m8AACiQSURBVHgB7d0H3Gx1fedxKVd6EakSiggRBDEUYRFBKZJVRDHKrgUREFTirrpBNxiJ\nKIKvsLFBEqW5XFRAcTXIqhBUSGAphhcQwIKLeCmXIk249Op+vmFmGcannHnulPM/5/N7vb7P\ntPPM+Z/3mZn/nDrPe56lgAIKKKCAAgoooIACCiiggAIKKKCAAgoooIACCiiggAIKKKCAAgoo\noIACCiiggAIKKKCAAgoooIACCiiggAIKKKCAAgoooIACCiiggAIKKKCAAgoooIACCiiggAIK\nKKCAAgoooIACCiiggAIKKKCAAgoooIACCiiggAIKKKCAAgoooIACCiiggAIKKKCAAgoooIAC\nCiiggAIKKKCAAgoooIACCiiggAIKKKCAAgoooIACCiiggAIKKKCAAgoooIACCiiggAIKKKCA\nAgoooIACCiiggAIKKKCAAgoooIACCiiggAIKKKCAAgoooIACCiiggAIKKKCAAgoooIACCiig\ngAIKKKCAAgoooIACCiiggAIKKKCAAgoooIACCiiggAIKKKCAAgoooIACCiiggAIKKKCAAgoo\noIACCiiggAIKKKCAAgoooIACCiiggAIKKKCAAgoooIACCiiggAIKKKCAAgoooIACCiiggAIK\nKKCAAgoooIACCiiggAIKKKCAAgoooIACCiiggAIKKKCAAgoooIACCiiggAIKKKCAAgoooIAC\nCiiggAIKKKCAAgoooIACCiiggAIKKKCAAgoooIACCiiggAIKKKCAAgoooIACCiiggAIKKKCA\nAgoooIACCiiggAIKKKCAAgoooIACCiiggAIKKKCAAgoooIACCiiggAIKKKCAAgoooIACCiig\ngAIKKKCAAgoooIACCiiggAIKKKCAAgoooIACCiiggAIKKKCAAgoooIACCiiggAIKKKCAAgoo\noIACCiiggAIKKKCAAgoooIACCiiggAIKKKCAAgoooIACCiiggAIKKKCAAgoooIACCiiggAIK\nKKCAAgoooIACCiiggAIKKKCAAgoooIACCiiggAIKKKCAAgoooIACCiiggAIKKKCAAgoooIAC\nCiiggAIKKKCAAgoooIACCiiggAIKKKCAAgoooIACCiiggAIKKKCAAgoooIACCiiggAIKKKCA\nAgoooIACCiiggAIKKKCAAgoooIACCiiggAIKKKCAAgoooIACCiiggAIKKKCAAgoooIACCiig\ngAIKKKCAAgoooIACCiiggAIKKKCAAgoooIACCiiggAIKKKCAAgoooIACCiiggAIKKKCAAgoo\noIACCiiggAIKKKCAAgoooIACCiiggAIKKKCAAgoooIACCiiggAIKKKCAAgoooIACCiigwGII\nLLEY/+u/DldgW55u3nCf0mdTQAEFGifwOFN0RROmyg64HnMxne/l9WiKrVBAAQVqL5DPzOI7\n4aVrz9yOBnaXfFdicvPtzlJAAQUU+EOB53PXAySXxZcdcL1mYTpfO+B6zRNbo4ACCoxEYMmR\nPKtPqoACCiiggAIzCrgEPCPPnB/MtvXtSdXVJJvPeUz+owIKKFCOQD4b0+8s1UmuP0YeJa0r\nO+DRzPKNeNqLyKC+eVFaCiigwDgE0hmuSFYlq5CVO8m+KLm/m+W53s1yXE+W7WSZzmUWNnI9\nl0n2a+kmn4O5nsup1rou4P58ZrauBu0gWgc0xwm+gf/LC67qXuYHMeyJZKoXJ3dbCiigQCWB\ndKTrknXI2p2sxeUanbyQy2Q1ko63/0t/lkYXkQfJQz2XD3M9eYTc27nMUmt36bW7/0puP0Fy\nO5fJkz2XuZ481Umu301aWXbAo53tvx/t0/vsCijQMoF0mhuTl3SyAZfdrMf1FUgqHdud5A7y\nW5JO7ledy3u4TCea3E/u6yQdbzpMa0wCdsBjgnY0CiigwAACWWJ9Odmik025fClZk6TSoWZN\n243kanI2uYXc2kk6XxcAQKhz2QHXee7YNgUUaINAOtvstLkd2YpsTV5EshR7PfkZuYAcT64j\nvyZZWrUKF7ADLnwG2nwFFChOYDNavFMnO3L5YpJtq1eSK8h3yFXklyTbUq2GCtgBN3TGOlkK\nKFAbgXVpyevI7mQ3kp2jsrr4IvK35DJyLckSr9UiATvgFs1sJ1UBBcYikKMfsjr5TeQN5E9I\ndoQ6n3yic3kjl1bLBeyAW/4CcPIVUGAoAjmEcGfyNrI3yTbcfyXfJQeRrF52pygQrGcF7ICf\ntfCaAgooMKhAdph6F/nPJKuWs7PU0eQscjuxFJhWwA54WhofUEABBaYUWJ170+keSLYkl5C/\nIWeSHP5jKVBJwA64EpMDKaCAAs/bAYM/J/uQHId7KnkryWFBlgIKFCpwMO3O9qHuWWwKnQyb\nrUDjBOYxRe8mOSzoafJD8kbiaWNBmEDlPNP5rMyXoeLLJeBnThye4/LyLTbnPrUUUECBlSE4\nhHyIrEhOJlna/Q2xFFBgAIHsIPH35C/Jxp3/y5vqWyRnlMk3qqfI10hOZj7ucgl43OKOT4Gp\nBfJDBUeS35Ecq3soSWds1UOgUUvA9SAdXSuymuh7JB1sN3ljrU9O6tz3Ey5PIDlkIMPk4Piq\nv2LEoEMpO+ChMPokCsxZYFX+82jyAMnasINIPuytegnYAddrfszYmvfzaDrVH5G9SHagyCqk\n60m25+SYvd46nBsZ/h29d47huh3wGJAdhQJTCGS/i0+QfDG/gexHliJWPQXsgOs5X6ZsVXaY\nuIcs2/Pom7ieTvYHPfd1r2aJ+WbyD907xnRpBzwmaEejQEcg7/UDyW3kVvIBMo9Y9RZoVAfc\n9J2wNuC1dD55tOc1lVXOWfr9Rc993au5fwFZv3uHlwoo0DiBXZmiL5KNyDHkC+RhYikwVoF8\nC2xy3czE7UZ6l4Bfz+1M98tIf+ULSc5sc2P/A95WQIHiBdZjCs4k2SSVfT6yQ+ZRxM4XBEuB\nYQtktVJWN2cp+C3k42QhuYpkafedpFvplE8hGT6HG4yzXAU9Tm3H1TaBfLHOERA5zPAysi2x\nyhRo1CroMmdB9VanU805WdOpdnMn19ciJ3bu+ymX+f3NbAfKMOeRcZcd8LjFHV9bBLZnQq8m\n2RfkQDLuIxwYpTVEATvgIWKO66my9Jvf3TyErNsZaQ47mE/uIul4sxrqOLIcGXfZAY9b3PE1\nXWB5JvBY8hT5OlmDWOUL2AGXPw+fMwVZSn4xmeShB3bAz5kl3lBgsQR25r9zLO9NZI/Feib/\nuW4CjeqA0/m0vbIteAHJN2VLAQXKFcjOll8iF5Ac7bAFmcQmJUZrKTC7QHZOsIYvkG9pOZlH\nLqvUq6sM5DAKKDCtwCt45DSSTUv/kWRPZ0uBWgvYAT939mQbcfac/go5/rkPDXQrP8z9MVK1\nA/ZcswPxOrAC/18gO1X9Bfks+R7J2e9yVitLAQUKE/gU7c0OWUeMud1uAx4zuKNrhMDqTMUP\nSc7fvF8jpsiJmE0gCzX5jN5htgF9vDyBHJ60JcnlOMsOeJzajqsJAq9hIm4lV5JNmjBBTkMl\nATvgSkwONIiAHfAgWg7bZoGscj6MPEn+jixDrPYINKoDbuM24BfwWl2F5I37ILmP5Aw5lgIK\n1Fsg79tTSU4vm7PY5bSSlgIK1FxgK9p3MslZsLL9oD83cN8JZFIH67sEDL6lwAwCm/PY9eQX\nZLMZhvOhZgs0agm42bPqman7JBfdDjcH5l9Cvk++Sc4hPyW3kwxzN8k363GXHfC4xR1fSQJv\nobHZ0ep/kRVLarhtHbqAHfDQSUf3hPvw1OlY09HmV46mq2xXytlzLicZ/lVknGUHPE5tx1WK\nQN6XnybZ3ns4yW2r3QJ2wAXN/9Noa1YvV91RI9uHF5HFOQaYfx+47IAHJvMfGi6Qczlnifd+\n8saGT6uTV12gUR1w03fCyiFFl5LHKs7fHMB/Den+YEPFf3MwBRQYosCLeK6zyWoka6N+TiwF\nGifQ9HNBZ9vuNmRexTmXJeB02tdVHN7BFFBguAJb8XTZFPQI2Z7Y+YJgKVCiwLtodLbp5tt0\n3szTVbYt7USyQ1a2N+1Ixlmugh6ntuOqq8AbaFh2tsrPB2ZVo6VAv0CjVkH3T1zTbqdj/W/k\nIZKOeCG5jPyAnNG5zCrq20gef4J8mIy77IDHLe746iaQc7Dn/Xdk3Rpme2olYAdcq9lRrTEb\nMVg63FtJOtrepHO+nnyOrEcmUXbAk1B3nHUR+CwNeZwcUJcG2Y7aCtgB13bWVGvYygyWjnYT\nkjPr1KHsgOswF2zDuAWyE+h8ktXOexBLgdkEGtUBN30v6Klm5iLuTCwFFJicwAqM+tskO0m+\nllxBLAVaJdDGDrhVM9iJVaCGAjm8KD8jmJ8TzGFGOVbfUqB1AnbArZvlTrACExVYl7GfR7LN\nd0fyW2Ip0EqBph8H3MqZ6kQrUFOB7HdxMbmHvJbY+YJgtVdgtg4450fetb08TrkCCgxJICe4\nuYhcS/6U5BSTlgIKzCDwbzy2YIrHX859r53ifu+am4B7Qc/Nzf8qQyAnwbmXnE7c7FXGPKtr\nKxu1F/RsS8DTzYSjeOCC6R70fgUUUKAjsAuXPyb5YYV9Sc40ZymgAAJz7YDFU0ABBWYTeD0D\nZG/nE8j7yNPEUkCBjoAdsC8FBRQYhcDePOlZJGeY++goRuBzKlC6gB1w6XPQ9itQP4G306Sc\nZONT5K+JpYACUwi4Q8QUKEO4K6e7PIxkh4EqlZ3aLAWaIPBuJuIUkqXeLzVhgpwGBUYlYAc8\nGtlledqXkqod8FqjaYbPqsBYBfJjCieR/KLYP4x1zI5MgQIFqnTA+ZH6Y/qm7WWd2/33dwf7\nEVey52Nb604m/K0DTHwOQzpxgOEdVIG6CWQnqy+TPye+lus2d2xPkQI5Drj3p/uqXj+iyKmd\nXKM9Dnhy9o558QXyW745vMifE1x8S59hZoGsVUw/tMPMg5Xx6GxLwJ9gMladw6RcM4f/8V8U\nUKA8gSzxHkfeS04tr/m2WAEF2i7gEnDbXwFlTv9/odlZ8s2OV5YC4xBo1BLwOMAcx+wCdsCz\nGzlEvQS6ne++9WqWrWm4QKM64NlWQU81L9fkzuyElcubyG/IXcRSQIF2CKTzzSFG7yGntWOS\nnUoFJiewHKPOG+5uMtWOWD/j/v3IXDp0/q315RJw618CxQB8kJZmtbNLvsXMskY1tFFLwFXm\nzFYM9EuSjvdRcj75BvkquYDcTLqd8j9xPcfAWoMJ2AEP5uXQkxHIDld2vpOxd6zPCLSqA84S\n7QKSDnY+yTHBU9XO3HkVyXA5EN8aTMAOeDAvhx6/wCGMMp2vO1yN394xPivQqg54f6Y7nerZ\nZCkyU2XJN511lpJXn2lAH/sDATvgPyDxjhoJvJ+2pPPNZiZLgUkKtKoDPgPpdMBrVBT/i87w\nb644vIM9I2AH7CuhrgJ5babz3b+uDbRdrRJoVAc8268hZUn2XlJ1L+cbOi+FdVv1knBiFWim\nwEFM1lfI+8h8YimgwBAFZuuAX8i4HhxgfLd2hi1pFXSW7jcls1kMwOCgChQvcCBTcDzJaSb/\nZ/FT4wQoUEOB2TqdPP70AO3OqqrUEs9cFPH3o7Qye3nP5ZSbRUygjVRgQIH9GT4/qJAdr04m\nlgIKjECg6cftbonZCrO4dVeXv5LhFnWGvYXLhbP8nw8r0ESB7GiVTjfH+3pEQxPnsNNUG4Eq\nHXB+XP4jFVvc7cwqDj7ywb7GGF5RcSzn9gz3Ka5/uue2VxVog0AOMcrq5v9KTmjDBDuNCkxS\noEoHvBoN/OIkG7kY4842rLQ9h0jlUKqsau6vXbhjO3IceaTz4MWdSy8UaIvAvkzoKeRDJDte\nWQooMGKB2TrgdF5VD0HqbeolvTcmeD0d8EXkdPI68mPy9ySHVnXrGK6kA84Sb/b4thRom8C7\nmOD55MPky8RSQAEFhiawDM/0OZIdys4jvavK0wGnQ86S/qTqYEacNsy2vXpS7XO8zRVI5/sk\nyQ8sWArUXaBRxwEPgr0xA68yxT/kkKOstiphL+JdaWd2sMqS7ttJyg74GQf/tk8gq53tfNs3\n30ue4tZ1wMszt04jT5E/m2LOvY37svT2MMmSXN0r57P+Fkmbs2o6h1u4BAyC1SqB7HBl59uq\nWd6IiW1VBzyPWfZ/SDqo28mepL/y28AnkXTAGe5QUkLlA+h+kjbbAZcwx2zjsATewxOl882v\nG1kKlCTQqg74fcyZdE5nkeVmmUvb8Pgd5CGyzizD1uXhDWnIt8kFZCUyqXIb8KTk2zfeA5jk\ndL45w5WlQGkCreqAr2TuZMelqh1qlirTYR9GrOoCdsDVrRxy7gL5Qp3ON5eWAiUKNKoDnu0w\npD9mDl1Bsvq5SmVpcj7ZtMrANRzmENqUJYMcB5lDmOZaa/KPeY68WKrUelUGchgFFkPgg/zv\nsSRf9k5ZjOfxXxVQYEgCM3XA6TxWIP93gHE9yrCLyFyOHR5gNCMbdC2eeUuSy8WpOPyKVO2A\nqw63OG3yf9srkDPZ5TC8rH7+ensZnHIFyhL4Lc3N0u8SFZu9BcNlFXR2yiqxhtUBDzrtroIe\nVMzhqwp8nAGfIG+v+g8Op0CNBbKwkj5mhxq3cWhNyyrlTOzWFZ/xY53hc1ywVV3ADri6lUNW\nF/gMgz5G9q7+Lw6pQK0FWtUB786sSAd8NZltu252wHqE5HCkHGtb10rbNiQvJeuSrGafdNkB\nT3oONG/8n2eS8n58ffMmzSlqsUCrOuDM5xNIOuEHSZZwdyTpxLL9eDOSE3FklXOGSd5L6lZb\n0aCTyZ2k287eyxu4P9M5qW3XdsDgW0MRyG945+QyD5BdhvKMPokC9RFoXQecCc6PMuRwpN5O\nK4cz9N6+m9v7k7rVJ2lQt503cf0S8n3yTXIO+SnJdu4Mk2l4Jxl32QGPW7yZ48uX4tNJTrW6\nfTMn0alquUDrOuDu/M5S5JfINeQecj/5F/IFsi9ZjdSt9qFB6VjT0c60HXsJHt+ZXE4y/KvI\nOMsOeJzazRzXskzW/yZ3kOzJbynQRIHWdsAlzszTaHRWLy9TsfFZtb6ILM4xwBVH9ZzB7ICf\nw+GNAQXyIykXkhvJJsRSoKkCjeqAZzoOuAkzMEsCl5LsCVqlfsdAWcLPzlmWAiUIrEUjzyX5\nYMr+GbcSSwEFChDIDhtNrmzbzTmq51WcyCwBp9O+ruLwDqbAJAVewsgvJvmCuROx8wXBUqAU\ngaZ3wKcyI3L41HfITDulZBtwPsCyJJGfX8yPT1gK1FkgXywvITlT3W7kXmIpoEBBAk1fBX06\n8yLnZT6K7EWyhLCQZCeybOtdmaxGNiDrkOzZfSjJUoWlQF0F9qBh+VKZHETyurUUUECBWgps\nRKvOIOmAs5dzbx7i9vUk58pdj0yiDmakaVMdTgoyiel3nNUFDmDQx8lnq/+LQyrQGIHnMyX5\nrNyhMVPUsgnJUm862k1I9h6tQ9kB12Eu1L8NR9LEJ8gH6t9UW6jASATsgEfC2u4ntQNu9/yf\nberzofN18gB5w2wD+7gCDRZoVAfc9G3ADX4dOmktEcjpUf+RvJjkZDFXEUsBBRog0PS9oBsw\ni5yEFgtszrTnVKk5y9UriZ0vCJYCTRGwA27KnHQ6mibwRiboEnIlyZLvbcRSQIEGCdgBN2hm\nOimNEMgx6YeTHIuec6/nfOb5iU9LAQUaJuA24IbNUCenaIEVaf188qckHW+2/VoKKNBQATvg\nhs5YJ6s4gfy2dk6sMY/8B/JzYimgQIMFXAXd4JnrpBUj8J9o6b+SnFZyW2LnC4KlgAIKjEPA\n44DHoVy/cSxDk/6O5FSSh5Fs/7UUUGB6AY8Dnt7GRxRQoKLAJgx3Jsm5yvNjCv9CLAUUaJGA\nq6BbNLOd1NoI7EdLcnhRfi7zFcTOFwRLgbYJuBPWaOb4+jztOSQ71FSpnJ/aar5Afm/6BPJm\n8lfkCyQnlrcUUKCFAnbAo5npd/C0/4Nke0WVejUDZanIaq7A65i0U8h9ZDtyNbEUUEABBSYs\n4E5YE54BIxz9Sjx3lnqfIjmxRk4raSmgwNwE3Alrbm7+lwKtE9iDKT6J5CcEdyEXEksBBRT4\ndwF3wvKFoMDwBdbgKfPzgdkPIKeU3JLY+YJgKaDAswJuA37WwmsKLK5AjuM9gPwtWUheRfJr\nRpYCCiigQE0F3AZc0xkzQLNyBqvLyEPkL4lfbkGwFBiyQKO2AbsKesivDp+udQJrMcUnkizp\n3kw2JceQnN3KUkABBaYVsAOelsYHFJhRYHkezc8G/ppsT3KYUc7pfAuxFFBAAQUKEXAVdCEz\nimbOIx8gt5LbyIHEL7IgWAqMQaBRq6DH4OUoKgjYAVdAmvAgSzH+nCzlBvI78gmyArEUUGB8\nAnbA47NuzZjsgOs7q/OGP4hkVfMD5GiyKrEUUGD8Ao3qgN1Tc/wvIMdYhkDOz50vRh8hK5L8\nbOCx5B5iKaCAAost0MYOOCfEX4Xkt1gfJPeRHDpiKRCBjcgHSZZ68/o4jnyFLCKWAgoooMCA\nAlsx/MnkTpJfn+lPtuvlfL05g9EkylXQk1B/dpzZieqN5IfkaXIlyfbeecRSQIH6CDRqFXR9\nWEfXkk/y1N0O9yauX0K+T75JziE5fjO/y5ph7ibvJOMuO+Bxiz8zvo25OJrk0KFHyTfIDsRS\nQIF6CtgB13O+TNmqfbg3HWs62q2nHOKZO3MKwZ3J5STD5xSC4yw74PFpr8mosor5YpJ5nZ8F\n/DBZnVgKKFBvATvges+f57TuNG5l9XK291apbB/Otr7jqww8xGHsgIeIOcVTrcN9h5AfkSfJ\nQvJ5MtOXMh62FFCgZgKN6oCXrhnusJuTX6G5lDxW8YlzfOc1ZN2KwztYPQWyRiPb/ffsZDsu\nbyP5ZaKjyYUk23otBRRQYGICTe+As213GzKP5DdZZ6ssAafTzg5ZVlkCG9LcXcnuZDeSVc3/\nRrJjVQ4lyrb+rHK2FFBAAQXGIPAuxpEP3bNJztc7XWWJaSeSD+msotyRjLNcBT2Ydr44Zgk3\nq5VPIzeTzOd84foGOYC4FgMES4GGCbgKuqAZejptzZLQUWQvcitZSHIyhWzrzckWViMbkGwn\nTOd7KLmYWPUQyBtuM5ION8kaja3JcmQBybzK/L2I/JJYCiiggAI1EtiItpxB0gFnSak3OQnH\n9eRzZD0yiTqYkaZNK0xi5DUZZ74MpWPNYWCfJmeSn5MnSGwy73L42JEkx+zmi5WlgALtEnAJ\nuMD5/Rva/I5Ou/NBnzNhLUtyYo77iTVagaziT4eZ1cJJvuhs0MmGXL6EdA8Dyjz5FbmOZFv8\nz8i15C5iKaCAAo0RWLoxU1J9QrLqObHmJjCPf8uXmFVJvsjkcrWe5Gxi6UxzuRZZm6Tz7b7W\nssYhJ764iWTb7dkkh4olvyb3EUsBBRRovED3Q7HxEzqBCcxS3yjrj3jydHRLkczH7mWud5PO\nsjdZfZMs07nMWoBcz2W2qXYvl+d6klXiyYqdpOPN8L31FDfSad5Lsm09ZxNLsuT6E3JHJ7dz\nmdXIrnEAwVJAAQXsgJ/7GshetR8gXyGLczKOrFLNKtRBfQc5NvUinn9D0l95juxMlmT7aW8e\n53byWOfy0c71XCaPkBwLnY7y4U4e5LKbB7jeXYOQjjQdbx7LNlpLAQUUUGAAgUE7iAGeushB\ns8p0S5LLxalsc96JZGmzSm3OQF8mWZqsWtkzOEuj+Z90tt1LO0MwLAUUUECBsgSG1QEPOtU7\n8A/pOKt22IM+v8MroIACTRDIZ2Q+K/OZWXy5BPzcWfhbbiaWAgoooIACIxVoYwf8AkSz925W\n32b7ZbZjZs/cOtQgS8DZyauN868O88k2KKDA8ASyCa3qprNBPiOH18IRPVNbPsC3wu+D5E0k\nh8f0V7bZ/pgcTu7qf3AMt7OjVCo7OVkKKKCAAjMLZGfS4mvUh8rUAeiTNOLTnYbkuNPs4ZtD\nZrL0myXhHMO6Plmb5DCaD5HTybhrW0aYQ4aq1gUM2D1RRdX/qetwmT/5ApQ9u0uvjzAB+UKX\n45tLr/07EzC/9Amh/fnynTPifakB05IdPHcnRzRgWrZgGt5PdhlgWtL5XjHA8A46IYF9GG9W\nbZxDtp6hDfkisjO5nGT4V5G6V1abv6HujazYvusYLm/CJlS+SHymCRPCNMzvpAmTk3mSedOE\nynsl75kmVD7D6rIJcOyeS459jOMd4d6MLksjubxyhlGn072Q7EGyGng/YimggAIKKDAygaZ3\nwFsidynJiSeqVE5CcQ3J+YotBRRQQAEFRibQ9A74duS2IVW3rWYP6XTaTVm9w6RYCiiggAJ1\nFGh6B3wq6JuS75DtZ5gB2QacHRvOJTkH8lnEUkABBRRQYGQCTT8MKXsz55d4jiJ7kewBvZBk\nb+dFZGWyGtmArEOeJIeSi4mlgAIKKKDAyASa3gFn56ovku+Ro0n2dO5fEs6PDtxGPk+OJbcQ\nSwEFFFBAgZEKNL0D7uJlT+h3dG5kqTfH/+an9+4k9xNLAQUUUECBsQq0pQPuRc2q58RSQAEF\nFFBgYgJN3wlrYrCOWAEFFFBAgZkE2rgEPJNHSY/ldGzdc0iX1O6p2prpaMS5XTvT0aRpmWp+\nlXhf015jvvdLfBXa5sYIbMSUNGUNxnpMy/MbMmfWZjpWbMi05AiBpAmVeZJ504TKeyXvmSZU\nPsPyWWYpoIACCiiggAIKKKCAAgoooIACCiiggAIKKKCAAgoooIACCiiggAIKKKCAAgoooIAC\nCiiggAIKKKCAAgoooIACCiiggAIKKKCAAgoooIACCiiggAIKKKCAAgoooIACCiiggAIKKKCA\nAgoooIACCiiggAIKKKCAAgoooIACCiiggAIKKKCAAgoooIACJQgsVUIjbeO0AivxyA5kK3I/\neZCUXPld0EzPyzoTcU/JE9Np+4Zc7kmu7dwu4SKfC5kP25Enyb2kCbUhE1HavOh3b9J75KVM\n3M5kFXIneZpYChQh8A5aeRf5fU8u4fqapLTKD6WfRXqnJdfPJyX/WPfKtP8X5AFSSm1CQ39J\neufFz7ld+g/Alzgvel8zTXqPrMaEnd33GnuY2+/rnWCvK1BXgXxrzJLJ9eRgsgU5gjxCct8y\npJRakob+M8kH/rfI68lryFdJvhH/jCxLSqsX0OBzSaarlA54Cdp6IVlE9iUbk7y+8uF4E1mB\nlFglzote56a9R85j4vK+OJFsR95MLiK5773EUqDWAt+ndXmxZnVab53Cjdz/ut47a379NZ02\nZ+m9v37AHZmeffofqPntt9C+20ja/hgppQM+pNPm93PZW+mEMy399/cOU9frpc6LXs8mvUe2\nZcLyWrq8dwK5/mKSL9wX993vTQVqJ5APxGNIllh6693cyIv7Q7131vz6e2jfAnLQFO18O/dl\neo6Y4rG63pUl+LT5bvImciUppQP+KW19lKxKeiurb7N2pf9Ds3eYOl4veV70er6HGwtIE94j\n2b/jSLI76a8buOPe/ju9rUAJAumMv0vy4b95CQ2u0Ma/6kxPVoeWUln78BmS7VypUjrgebQ1\nS+vXpNFT1FXc9zjJcKVUqfNiEN8S3yNTTd9W3PkU+fZUD3qfAnUV6H6jzAd9XsAfrWtDB2zX\n6gx/F7mfZAeUUquUDnhNgPPl7YJpoH/SefxF0zxewt2lzIuqlqW/R7LQsD85g2S/g3z525BY\nChQjcCItzQdnkh2wXk5KrxWYgMtIpqn0nTJK+dDPDlfxnm4JJPfn8U1IqVXKvKji24T3SL7M\n5TXVzVFcL2kNS5X55DCFCqxMu7MtrjdT7Q38RwyzFsku/NeSJzrXuahNVZ2WNDjf6rNDVt6U\nx5K61SDTkraX8qGf11HMv5NGT1Hf5b48vtEUj5VyVynzYjbPur9HZmt/9/HluLIe2ZYcT/LZ\nlUPeViSWAhMVuIGxd78Zdi//ZpYWbd75n3TEdaqq0/ISGp2l+Exvvg3XsapOS7ftpXzoL02D\nsxfqBd2G913+M7czX17Yd39JN0uZFzOZlvAeman9Mz3WXcvy1pkGatJjedNZ9RQ4n2b9oq9p\n1/Xd7r+Zb4/Zk3V7sj65mdShqkxLjmU+j6xBsjR/EqljVZmWOrZ7tjY9yQA5G1F357H+4XN/\njge+r/8Bb49NoJT3yFxBvso/vo3sSaZbEzPX5/b/FBiKQFbP/JqkI5iquqtvp/sgnep/Jn1f\nVkHltJOLyB6TbsyQx1/SUleWfrMaMKs4eytfinL/hb13Fni9pHnRz9uU98jHmLDfkV37J5Db\nee9nLctxUzzmXQrURuAKWvIUya77vZXz9+b+HDJSSmU70AKS40/T/qZVSR/6fwZ+PgD/e99M\nOKxzf5ZOSq6S5kWvc5PeI3sxYXmN/WPvBHau/6Dz2JuneMy7FKiNwKtpSZZIssrwGLIbyTfL\nHLKTYzn7O2buqm0dScvyhryVnDVNDuL+UqukD/0lQc5mj3yJ+wzZnRzVuf1dLkuvkuZFr3WT\n3iM59OiHJO/5bHJ6J9mbnEty35nEUqD2AvlwzDbhvGi7uZTrryAlVZbWu+2f7rKOe0NXNS7t\nQz+rn88hT/fMl3/i+tqk9CptXnS9m/YeWZkJy2rm7HfQfc8/xPXDiYchgWCVI7AuTX0lyeFK\nlgLDEliJJ9qGNKHjHZaJzzNcgaxa/xPyx2Sp4T61z6aAAgoooIACCiiggAIKKKCAAgoooIAC\nCiiggAIKKKCAAgoooIACCiiggAIKKKCAAgoooIACCiiggAIKKKCAAgoooIACCiiggAIKKKCA\nAgoooIACCiiggAIKKKCAAgoooIACCiiggAIKKKCAAgoooIACCiiggAIKKKCAAgoooIACCiig\ngAIKKKCAAgoooIACCiiggAIKKKCAAgoooIACCiiggAIKKKCAAgoooIACCiiggAIKKKCAAgoo\noIACCiiggAIKKKCAAgoooIACCiiggAIKKKCAAgoooIACCiiggAIKKKCAAgoooIACCiiggAIK\nKKCAAgoooIACCiiggAIKKKCAAgoooIACCiiggAIKKKCAAgoooIACCiiggAIKKKCAAgoooIAC\nCiiggAIKKKCAAgoooIACCiiggAIKKKCAAgoooIACCiiggAIKKKCAAgqUJ7BUeU22xQooMCKB\nzXjePcna5Ia+cezE7V3IE+Suvse8qYACCiiggAKLIfAC/vcW8iR5Zc/zbMH1R8iNZFViKaCA\nAgoooMCQBXbl+Z4m15Lnk2XINSRLvjsQSwEFFFBAAQVGJPA5nvf35K/JFzrXP86lpYACCiig\ngAIjFMhS79XkMZKl4R+RJYmlgAIKKKCAAiMWeA3Pn6Xg5OUjHpdPr4ACCiiggAIdgbO47HbA\nuW4poIACCiigwIgFDuL50/meRL7auZ77LAUUUEABBRQYkcDGPO+D5GayMlmFLCS5L49ZCiig\ngAIKKDBkgaV5vstIln736HnunJwj9+WxDGMpoIACCiigwBAFPsVzdVc99z/t1zqPZRhLAQUU\nUEABBRRQQAEFFFBAAQUUUEABBRRQQAEFFFBAAQUUUEABBRRQQAEFFFBAAQUUUEABBRRQQAEF\nFFBAAQUUUEABBRRQQAEFFFBAAQUUUEABBRRQQAEFFFBAAQUUUEABBRRQQAEFFFBAAQUUUEAB\nBRRQQAEFFFBAAQUUUEABBRRQQAEFFFBAAQUUUEABBRRQQAEFFFBAAQUUUEABBRRQQAEFFFBA\nAQUUUEABBRRQQAEFFFBAAQUUUEABBRRQQAEFFFBAAQUUUEABBRRQQAEFFFBAAQUUUEABBRRQ\nQAEFFFBAAQUUUEABBRRQQAEFFFBAAQUUUEABBRRQQAEFFFBAAQUUUEABBRRQQAEFFFBAAQUU\nUEABBRRQQAEFFFBAAQUUUECBqQT+HywK/myjJPCwAAAAAElFTkSuQmCC", "text/plain": [ "plot without title" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "x <- seq(-3,3,length.out = 100)\n", "plot(x, pnorm(x), type=\"l\", ylab='CDF')" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Percentiles" ] }, { "cell_type": "code", "execution_count": 28, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
    \n", "\t
  1. 0
  2. \n", "\t
  3. 0.385
  4. \n", "\t
  5. 1.645
  6. \n", "\t
  7. 2.326
  8. \n", "
\n" ], "text/latex": [ "\\begin{enumerate*}\n", "\\item 0\n", "\\item 0.385\n", "\\item 1.645\n", "\\item 2.326\n", "\\end{enumerate*}\n" ], "text/markdown": [ "1. 0\n", "2. 0.385\n", "3. 1.645\n", "4. 2.326\n", "\n", "\n" ], "text/plain": [ "[1] 0.000 0.385 1.645 2.326" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "round(qnorm(c(0.5, 0.65, 0.95, 0.99)), 3)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Relationship between percentiles and CDF" ] }, { "cell_type": "code", "execution_count": 27, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
    \n", "\t
  1. 0.5
  2. \n", "\t
  3. 0.65
  4. \n", "\t
  5. 0.95
  6. \n", "\t
  7. 0.99
  8. \n", "
\n" ], "text/latex": [ "\\begin{enumerate*}\n", "\\item 0.5\n", "\\item 0.65\n", "\\item 0.95\n", "\\item 0.99\n", "\\end{enumerate*}\n" ], "text/markdown": [ "1. 0.5\n", "2. 0.65\n", "3. 0.95\n", "4. 0.99\n", "\n", "\n" ], "text/plain": [ "[1] 0.50 0.65 0.95 0.99" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "pnorm(c(0, 0.385320466407568, 1.64485362695147, 2.32634787404084))" ] }, { "cell_type": "code", "execution_count": 52, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAeAAAAFoCAYAAACPNyggAAAEDWlDQ1BJQ0MgUHJvZmlsZQAA\nOI2NVV1oHFUUPrtzZyMkzlNsNIV0qD8NJQ2TVjShtLp/3d02bpZJNtoi6GT27s6Yyc44M7v9\noU9FUHwx6psUxL+3gCAo9Q/bPrQvlQol2tQgKD60+INQ6Ium65k7M5lpurHeZe58853vnnvu\nuWfvBei5qliWkRQBFpquLRcy4nOHj4g9K5CEh6AXBqFXUR0rXalMAjZPC3e1W99Dwntf2dXd\n/p+tt0YdFSBxH2Kz5qgLiI8B8KdVy3YBevqRHz/qWh72Yui3MUDEL3q44WPXw3M+fo1pZuQs\n4tOIBVVTaoiXEI/MxfhGDPsxsNZfoE1q66ro5aJim3XdoLFw72H+n23BaIXzbcOnz5mfPoTv\nYVz7KzUl5+FRxEuqkp9G/Ajia219thzg25abkRE/BpDc3pqvphHvRFys2weqvp+krbWKIX7n\nhDbzLOItiM8358pTwdirqpPFnMF2xLc1WvLyOwTAibpbmvHHcvttU57y5+XqNZrLe3lE/Pq8\neUj2fXKfOe3pfOjzhJYtB/yll5SDFcSDiH+hRkH25+L+sdxKEAMZahrlSX8ukqMOWy/jXW2m\n6M9LDBc31B9LFuv6gVKg/0Szi3KAr1kGq1GMjU/aLbnq6/lRxc4XfJ98hTargX++DbMJBSiY\nMIe9Ck1YAxFkKEAG3xbYaKmDDgYyFK0UGYpfoWYXG+fAPPI6tJnNwb7ClP7IyF+D+bjOtCpk\nhz6CFrIa/I6sFtNl8auFXGMTP34sNwI/JhkgEtmDz14ySfaRcTIBInmKPE32kxyyE2Tv+thK\nbEVePDfW/byMM1Kmm0XdObS7oGD/MypMXFPXrCwOtoYjyyn7BV29/MZfsVzpLDdRtuIZnbpX\nzvlf+ev8MvYr/Gqk4H/kV/G3csdazLuyTMPsbFhzd1UabQbjFvDRmcWJxR3zcfHkVw9GfpbJ\nmeev9F08WW8uDkaslwX6avlWGU6NRKz0g/SHtCy9J30o/ca9zX3Kfc19zn3BXQKRO8ud477h\nLnAfc1/G9mrzGlrfexZ5GLdn6ZZrrEohI2wVHhZywjbhUWEy8icMCGNCUdiBlq3r+xafL549\nHQ5jH+an+1y+LlYBifuxAvRN/lVVVOlwlCkdVm9NOL5BE4wkQ2SMlDZU97hX86EilU/lUmkQ\nUztTE6mx1EEPh7OmdqBtAvv8HdWpbrJS6tJj3n0CWdM6busNzRV3S9KTYhqvNiqWmuroiKgY\nhshMjmhTh9ptWhsF7970j/SbMrsPE1suR5z7DMC+P/Hs+y7ijrQAlhyAgccjbhjPygfeBTjz\nhNqy28EdkUh8C+DU9+z2v/oyeH791OncxHOs5y2AtTc7nb/f73TWPkD/qwBnjX8BoJ98VVBg\n/m8AACtOSURBVHgB7d0HtBvVgcZxGduYYgyYZkIMpgUILaYuPdQsIZQUdmmhxaaEhXAC2ZBA\n6GTDLhBKEvpSEiCBhRiW4kAogaWFA4ROAsZgbHo1BoNtrP0+ewZkWe+90XvSaO6d/z3ne5JG\no5l7fyO9q6mqVCgIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCA\nAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggg\ngAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAII\nIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAAC\nCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAA\nAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCA\nAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggg\ngAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAII\nIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAAC\nCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAA\nAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCA\nAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggg\ngAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAII\nIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAAC\nCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAA\nAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCA\nAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAII9EGgXx9e\ny0tbK7CeJjewtZNkaggggEB0AtPUoodjaBUdcDGWojvfh4pRFWqBQLsETteEL1aebtcMmG55\nBPw/M/hOeEB5llehW5qu+S6kWvrbHQWBCAV++FalMnqfSmXITRE2jiblIzCvZvOB4tvgCx1w\nsRahO1864GItE2rTUoGFZvAebykoEwtYYJ6A607VEUAAAQQQCFaANeD2LDrvW99QybqZZPX2\nVIOpIoAAAoUS8P9G9zv9k/j+J8rHSukKHXB7FvkKmuw9SrO+flNSEEAAgTwE3BkOVhZRFlaG\nJPGxKB6eZgHdTzO/7jvzJRmU3Hplw/d96/i4ljT+P+j7vm201XW8hvt/ZulKsx1E6YB62eBx\nep3fcFmPMh+lcS9QGr05NZiCQBQCPtL/5ShaUtxGuCNdRllaGZZkKd0ukWQx3TpDFXe89V/6\nvTY6WZmifFhz+5HuO1OVd5Jbr7Wma6/p8St+PF3xY9863u+f3vq+82kS39fBeeUsdMDtXe7V\n9k6eqSMQkkC/rUOqbUHr6k5zJWXFJMvpNs1w3V9QcXHH9obymvK64k7u78nt27p1J+q8r7yX\nxB2vO0pKTgJ0wDlBMxsEEECgCQGvsa6prJFkVd2uoiypuLhD9Za2F5XHlBsUb12YlMSdLysA\nQihyoQMu8tKhbgggUAYBd7Y+aHMDZaSyjvIFxWuxzylPKncq5ynPKs8rXlulBC5ABxz4AqT6\nCCAQnMBqqvFmSTbR7fKK960+ojysXKs8qjyjeF8qJVIBOuBIFyzNQgCBwggso5psq2yjeD+4\nD47y5uJ7lP9SHlCeULzGS0EAgZwFRmt+3l+THkCR8+yZHQJ5CFRP19vca3uxF5/94E3Kpyhe\nk/Vn2wdDXansr4xQKL0T8ClO9tyody/nVQjMLUAHPLcJQ6ITqGq/ZXXH6Jo1u0E+hfCryq+U\nicpMxWu2P1PWVdwpU/ouEFUHzCbovr8hmAICCJRXwAdM7an8q+JNyz5Yymu+Y5RXFQoCXQrQ\nAXdJwxMIIIBAQ4HFNdSdrjcnr6Xcp/xCuVrx6T8UBDIJ0AFnYmIkBBBAYNZ+x+/LYVfF5+Fe\npnxb8WlBFASaFqADbpqMFyCAQIkEBqqtuyk/VNZWxirfUW5WvJ+XgkCvBeiAZ1843Ofl+Vus\nr31KQQABBIaI4GDlMGWwcpHitd0XFAoCCDQh4AMkfHTij5WVktf5Q/UHxVeU8WHtnyqXK76Y\ned6Fo6DzFmd+HRCoarNt9WsdmHEzs1xMI5+ovKv4XN0jFHfGlGIIRHUUdDFI21eLeTTp6xV3\nsGn8wVpWuTAZdrtuz1f+mjz2yfF5nzJAByx0SuwCPge46s9kEYt/5MBHL3+geGvYKMX/7CnF\nEqADLtby6LY2B+pZd7y3KT7/0AdQeBPSc4r333hfTm05Rg88/u61A3O4TwecAzKzQKCBgC9+\nc7TiL+bjlL2V/gqlmAJ0wMVcLg1r5QMl3lbmq3l2J913J3tTzbD0rr+dT1B+nQ7I6ZYOOCdo\nZoNAIuDP+v7KK8ok5SBloEIptkBUHXDsB2Etp/fSHcrHNe8pb3L22u/TNcPSux4+Xlk2HcAt\nAghEJ7CVWvRLZQXlVOUM5SOFgkCuAv4WGHOZoMZtrdSuAW+vx273l5X64i8kvrLNi/VP8BgB\nBIIXGK4WXK14l5SP+fABmScrdL5CoCDQagFvVvLmZq8Ff1P5iTJReVTx2u4eSlrcKV+ieHyf\nbpBnYRN0ntrMq0MC1c318Zq/AzP3F2ufAeHTDB9Q1lMoYQpEtQk6zEWQvdbuVH1NVneqad7Q\n/aWUC5JhD+r2WsX7gTzOrUrehQ44b3Hm1wGB6nv6iO2Q84w31PweU3wsyP5K3mc4aJaUFgrQ\nAbcQM69Jee3Xv7t5sLJMMlOfdnCp8qbijteboc5WOvENnQ5Y8JTYBXL9NaQFpHmW8qnyW2UJ\nhRK+AB1w+MtwjhZ4LVnnJ3b01AM64DkWCQ/iFMitA9am7lnn8r6k2+3itCxtq6LqgN35lL14\nX/B4xd+UKQggEK6AD7Y8U7lT8dkOayid2KWk2VIQ6FnABydQWi/gb2m+mIdvs5RNs4zEOAgg\n0KXA2nrmCsW7lv5Z8ZHOFAQKLUAHPOfi8T5iHzl9rnLenE819WiYxv6RkrUD5lqzTfEyMgKf\nCfigKv9S0c+V6xVf/c5XtaIggEBgAservj4g67ic680+4JzBmV0nBFq+D3hxteJmxddv3rsT\nLWKeuQt4pcb/ozfKfc7MsO0CPj1pLcW3eRY64Dy1mVeHBKqH6n/nki2a+RaaziTlEWXlFk2T\nyRRfgA64+MsouBrSAQe3yKhwhwS8yfkoZYZyjjJIoZRHIKoOuIz7gBfVe3VhxR/cKYouDjDr\nCjm6oSCAQIEF/Lm9TPHlZX0VO19WkoIAAgUXGKn6XaT4Kljef1CfcRp2vtKpk/VZAxY+BYFu\nBFbXc88pTyurdTMeT8UtENUacNyLanbrjtVN2uH6xPz7lBuV3yu3KA8qryoe5y3F36zzLnTA\neYszv5AEvqnK+kCr/1EGh1Rx6tpyATrglpO2b4K7atLuWN3R+leOuirer+Sr5zykePyNlTwL\nHXCe2swrFAF/Lk9QvL/3GMWPKeUWoAMOaPlfobp683LWAzW8f3iy0pdzgPXypgsdcNNkvCA8\ngao+i9VNMtbb13L2Gu/7yjcyvobR4heIqgOO/SAsn1J0v/JJxvelT+B/XEl/sCHjyxgNAQQy\nCPgYi6EZxvuCxrkhGddbo57K8BpGQSA4gdivBe19u+sqAzMuGa8Bu9N+NuP4jIYAAq0VGKnJ\neVfQVGVDhc5XCJQ4BWLvgC/TYltV8e/9+sPcVfG+pc2UsYo3fY1RKAggkK/A1zW7u5U7FJ9q\n5J8KpSAQrUDsm6Cv1JLzlXdOVnZUJikTFf84t/f1DlG8SWw5ZWnFB3scodyrUBBAID8BX4Pd\nF9b4D8VnLlAQQCASgRXUjqsUd8A+yrk2H+qxzy88TRmudKKM1kxdpwU7MXPmiUA+Al1eC/rn\nmv80Zb986sFcAhbgIKwAF94LqvPuSb291usr6syn+MIcPsqSggAC+Qt4C5wvkPNtxUc636pQ\nECiNQOyboBstSG96digIIJCvgA+uejmZpbf2XKP4IMmvKg8rFARKJVDGDrhUC5jGIlAcgX4+\nsMrFx134ZwT9c4I+zcjn6lMQKJ0AHXDpFjkNRqCjAj7H3puavc/XF+V4XaEgUEoBOuACLXZd\npaDfIZXKXKeGHV+pzOyqmnpurvE9roanB5r54Rzl+C5e45H0XFfz6qfnGl4KsJvXeHrUrzKr\n4Df7d3tv05togg7C2Onw2buC5nh/dPNewm/2+6jLz5SfLptfQhLtzeZq2VbRtq44DRt9TmVA\ndXplUMNMqwz6TaOqTqvM+2BXr9FwH2A2V9HwI7t+zbwzp1YGzLW8P65UVpxemXd6V6+jfuly\nw6/mPVL//vMFbl77RWXAUzXj1L3f8auxqfeb9VnW82X//JbqKOiztdR9xPDys5b+53/W1N3F\nlLs+H8S9vgicrlOQd6hUttN5UOrv5izTKjP+MeeQ2Y9mVqbt2b8ywOcvz1VmVubxZTXnKlMq\nn1w0uDLAvwDVqMx8qjLjr/VP6HDxF6ZVqpv2q8z0m3+uQv0+I8Evoah7//kiOLcoY7eszDhU\nt19ORqu/wS8RqfP7zInP72cUpbjzN7VyfIOWXq9h3sRJaY0A5wG3xpGpFE9gS1XpA+UC/cs4\nXan/Ml+8GlOjIguUag24yAuCuiGAQLEFtlf1rlN+rRyp+PS/u5RGX+o1mIJAuQTmOACiXE2n\ntQgg0EaBXTRtX1PdV5hz50tBAIE6ATrgOhAeIoBAnwV20xR8kY3jlZ8pFAQQaCAwoMEwBvVd\nwJe7PEppeNBSg8n7oDYKAjEIfFeNuETxWu+ZMTSINiDQLgE64PbI+jrTqyhZO+Cl2lMNpopA\nrgL7aW4XKj9QvN+XggAC3Qhk6YD9I/Wn1k0jPY2gfng62m268+f0QQlvfQ6fLzCftfgoaB0l\nSkEgWIEDVHOfr/59hfdysIuRihdJwKch+XSjZnNckRoRQF04DSmAhUQVuxTwb/n6t7S9BtxN\nqb6lfyVf62YEnkKgJwFvVXR/tFFPI4bwfE9rwEerEYv0oiGP9+I1vAQBBMIT8BqvL9jzPeWy\nHqq/vp5/qYdxeBoBBBDIVYA14Fy5mVmLBP5N0/Garw+8oiCQh0BUa8B5gDGPngXogHs2Yoxi\nCaSd717Fqha1iVwgqg64p03QjZblkhrog7B8681JLyhvKhQEECiHgDtfn2K0j3JFOZpMKxHo\nnMD8mrU/cDqIouEBWU9q+N5Kbzp0vaz0hTXg0r8FggHQL2bO2uzMmm8wiyyqika1BpxlyYzU\nSM8oPvLMv9Rzh/I75WLlTmWC4uecPyk+B5bSnAAdcHNejN0ZAR9w5X2+vex8q/p506q/zFMQ\n6K1AqTpgr9GOV9y5Xqr4nOBGRR+syqOKx/OJ+JTmBOiAm/Ni7PwFDtYs3fn24YCr6nv6F6Ff\n3aQg0GuBUnXA+4rJneoNSn+lu+I1X3fWXktevLsReW4uATrguUgYUCCBA1UXd77ezdSHUtWv\nIVV37MMEeCkCUXXAPf0YQ3rSvM/x+7SHZe+O9xxlkLJJD+PyNAIIhCHgL4e+rOQo5fIwqkwt\nEQhDoKcO2Guy7yhZj3IelzR7mTCaTy0RQKAbAXe65yoHKJcqFAQQaKFATx3wYprXlCbmNykZ\nN6RN0EuozqsqPVk0wcCoCAQvsL9acJ7iy0z+d/CtoQEIFFCgp07Hz89sot7eT+TSb/ZNEH+P\nVC19lHdvLrkZRAOpJAJNCuyr8f2DCj7w6iKFggACbRDwUc4xl7XUuAV7aGC6udzXqdVBIrPK\ny/o7MbnPDQJlEvCBVu50fb4vZzSUacnT1twFsnTA/nH5wzPWLO3MMo7e9tEu1xzWzjiXsTXj\nHa/7J9Q85i4CZRDwKUbe3Hyocn4bGny0pvlgG6bLJBEIUiBLBzxULftlkK2bvQ/LdfcpUj6V\nypua68uWGrCBcrYyNXny3uSWGwTKIrCXGnqJcpjiA6/aUPr5LAkKAggkAj11wO68fJBSs+W+\nZl/QpvF9EMk9ypXKtsqflV8pPrc5Lafqjjtgr/H6iG8KAmUT2FMNvlT5gfIbhYIAAgi0TMDn\nJp+m+ICyW5XaTeXugN0he02/U2W0Zuw69LS/ulP1Y77xCrjznaH4BxYoCBRdIKoLcTSDvZJG\nXrjBC3zKkTdbhXAU8Vaqpw+w8prubooLHfBsB/6WT8Cbnel8y7fcQ25x6TrgBbS0rlB8Jaxv\nNVhy39Ewr719pHhNrujF17P+g+I6e9O0T7dgDVgIlFIJ+IArOt9SLfIoGluqDnigFtn/Ke6g\nXlV2UOqLfxv4QsUdsMc7Qgmh+B/Q+4rrTAccwhKjjq0S2EcTcufrXzfKsVTH6aO2SY4zZFbx\nCZSqAz5Ay8+d0xhl/h6W5bp6/jXlQ2XpHsYtytMjVJFrlDuVhZROFfYBd0q+fPPdT0125+sr\nXOVc+DGGnMFjnF2pOuBHtAR94FLWDtVrle6wj1Io2QXogLNbMWbvBfyF2p2vbztQ6IA7gB7b\nLKPqgHs6DelLWnoPK978nKV4bfJSZdUsIxdwnINVJ68Z+DxIn8LU27KkXuhp+M2SpQzPMhLj\nINAHgUP02rMUf9m7pA/T4aUIINAige46YHceCyr/aGJeH2vcyUpvzh1uYjZtG3UpTXktxbd9\nKXb4u5K1A846Xl/qxGvLK+Ar2fk0PG9+/m15GWg5AmEJvK7qeu23X8Zqr6HxvAnaB2WFWFrV\nATfbdjZBNyvG+FkFfqIRpyu7ZX1B+8ZjE3T7bEszZa+suI/ZKIYW9/RrSHerkcOUkRkbu30y\n3hMZxy/aaP7C8bjiWwoCoQucpAYcr+yq/F6hIIBAQALbqK7+tvGY0tN+XR+ANVXx6UiLKkUt\nrtsIZRVlGcWb2TtdWAPu9BKIb/6nq0n+PKZfigvQwurt+nfylQJUhCqEKxDVGnCWxXC+RnIn\nPEX5keLz+NyJef/xaoovxOFNzh7H+Z5StDJSFbpIeUNJ61l7O07D3c5O7bumAxY+pSUC3qrl\ni8t8oGzZkikyEQSKI1C6DtgN9o8y+HSk2k7LpzPUPn5Lj/dVilaOVYXSer6k+/cpNyreJHeL\n8qDi/dwex23YQ8m70AHnLR7n/Pyl+ErFl1rdMM4m0qqSC5SuA06Xt9ciz1S8j/Rt5X3lL8oZ\nyl7KUKVoxfu+3LG6o12nm8r103ObKw8pHn9jJc9CB5yndpzzmk/N+l/lNcVH8lMQiFGgtB1w\niAvzClXam5cHZay8N61PVs7LOH6rRqMDbpVkOafjH0nxAZMvKisrFARiFYiqA/Ymq5iL1wTu\nVz7J2Mh3NZ7X8H1wFgWBEASWUiXHKv7H5OMzJikUBBAIQKCn05ACaEK3VfS+XV+jemC3Y33+\npNeA3Wk/+/kg7iFQWIEVVbN7FX/B3EwpeOdb1ZHZ1eVVTwoCCJRAYE+10ft0b1C6OyjF+4D9\nD8wHZPngMq9J5FlGa2auZxFOicqz3cyr9wL+Yvm6crMSyPuGC3H0fnHzykSATdABvRWuVF19\nXeaTlR0VryFMVHwQmff1DlGGKsspSyvufI9QvFZBQaCoAtupYtcmGaVbv28pCCCAQCEFVlCt\nrlLcAXtNszYf6vFziq+VO1zpRGENuBPqYc5zP1V7mvLz8KrPGnB4y6xwNY5qDbhwujlUyGu9\n7mhXVnz0aBEKHXARlkLx63CiqjhdOaj4VW1UQzrgRioMa0ogqg449qOgGy1Zb3p2KAiEIuB/\nOhcruyg7K97vS0EAgcAFytgBB77IqH7JBHx51D8qPnrYF4t5VKEggEAEArGfhhTBIqIJJRZY\nXW33kfm+ytX6Suidr/ddOxQEEJAAHTBvAwSKKfANVes+5RHFa76vKKEXf4m4LfRGUH8EEIhL\ngIOw4lqefWmNz0k/RvGpRScofkxBAIHZAhyExTsBAQTaIjBYU71U+Zqyq+J9vxQEEIhUgIOw\nIl2wNCs4gdVUY19cY6DyT8pTCgUBBCIWYB9wxAuXpgUj8C+q6V+VfyjrKXS+QqAggAACeQiw\nDzgP5eLNY5CqdI7i/b1HKZHv763qYLLq/GonBYHeCkS1D7i3CLyutQJ0wK31DGFqK6uSPq1o\nkrJFCBXuex2r76kD3qHv02EKJRaIqgNmE3SJ38k0vWMCe2vOPr3IP5e5tvIXpQzF/2/4n1OG\nJU0bMwlwEFYmpqZHWlavuEUZmPGVvj41JX4B/970+crOyk+VMxT/MAgFAQRKKEAH3J6F/pom\n+5+KN5dkKZtqJK8VUeIV2FZNu0TRZtjKBspjCgUBBBBAoMMCozV/rwkF8sPqHdYKa/YLqbpe\n6/1UOVPxZSVLWvg1pJIu+FY2O6p9wKwBt/KtwbQQmFNgOz28UPFPCG6p3K1QEEAAgVkCHBDB\nGwGB1gssoUn+VvFxAGOUtRQ6XyFQEEAAgaIJsAm6aEukd/Xxebz7K28r3se7oUL5TKB6qPa0\nLPnZQ+4g0LxAVJugm28+r2iHAB1wO1TznaavYPWA8qHyY4XdO0KgINBigag6YDZBt/jdweRK\nJ7CUWnyB4t/tnaCsqpyq+OpWFAQQQKBLATrgLml4AoFuBRbQs8cozyve1OzTjHxN55cVCgII\nIIBAIAJsgg5kQamaA5WDlEnKK4r3+fJFVggUBHIQiGoTdA5ezCKDAB1wBqQOj9Jf8/fFUsYp\n7ypHK5y3LQQKAjkK0AHniF2WWdEBF3dJ+wM/SvGm5g+UU5RFFErTAlV9ealu0vTLeAECnwtE\n1QFzpObnC5Z7CNQK+Prc/mJ0uDJY8c8GnqX4FCNK7wR8fvTQ3r2UVyEQn0AZO2BfEH9hxb/F\nOkV5T/GpIxQELLCCcojitV6/P85WzlUmKxQEEEAAgSYFRmr8i5Q3FF9zuT7er+fr9fobeicK\nm6A7of75PH0Q1TeUm5WZyiOK9/cOVCgtE+Ba0C2jLO+EotoEXYbFeKwamXa4L+n+fcqNyu+V\nWxSfv+nfZfU4byl7KHkXOuC8xWfPbyXdnKL41KGPld8pGymUtgjQAbeFtVwTpQMOaHnvqrq6\nY3VHu0439fYlBDdXHlI8/sZKnoUOOD9tXwrRm5jvVbysfcnIHyiLK5S2CtABt5W3HBOnAw5o\nOV+hunrzsvf3ZineP+x9fedlGbmF49ABtxCzwaSW1rCDlduUGcpE5XSluy9leprSWgE64NZ6\nlnJqUXXAAyJfhP4VmvuVTzK20+d3Pq4sk3F8RiumgLdoeL//Dkk20O0rin+Z6BTlbsX7ein5\nCngLE1cKy9ecuRVYIPYO2Pt211UGKtMzLAevAbvT9gFZlLAERqi6WynbKFsr3tT8N8UHVvlU\nIu/r9yZnSscE+nm5UBBAoCQCe6qd/qd7g+Lr9XZVvMa0meJ/0t5EuYmSZ2ETdHPa/uLoNVxv\nVr5CmaB4OfsL1++U/RS2YgiBgkBkAmyCDmiBXqm6ek3oZGVHZZIyUfHFFLyv1xdbGKosp3g/\noTvfI5R7FUoxBPyBW01xh+t4i8Y6yvzKeMXLysv3HuUZhYIAAgggUCCBFVSXqxR3wF5Tqo0v\nwvGccpoyXOlEGa2Zuk4LdmLmBZmnvwy5Y/VpYCcoVytPKdMV23jZ+fSxExWfs+svVhQEECiX\nAGvAAS7vF1Tn3ZN6+x+9r4Q1n+ILc7yvUNor4E387jC9WdjxF53lkozQ7YpKehqQl8nflWcV\n74t/UnlCeVOhIIAAAtEIDIimJdkb4k3PDqV3AgP1Mn+JWUTxFxnfDq2JrybmztS3SynDFHe+\n6XvNWxxeVl5SvO/2BsWnijnPK+8plCgFqj7161eVSr/xUTaPRiHQpED6T7HJlzF6BgGv9bWz\nfFETd0fXX/FyTG99P407y9p4840zKLn1VgDf9633qaa3C+i+403izuAk7ng9fm35VA/cab6j\neN+6rybmeM31duW1JK/q1puR2eIghJKW0Wr3XQodcEnfADR7TgE64Dk9fFTtQcq5Sl8uxuFN\nqt6E2qxvM+em3qPpj1Dqi6fhg8kc7z+tzTQ9dj5Jbj9O7vvWmar4XGh3lB8lmaLbNB/ofroF\nwR2pO14/5320FAQQQACBJgSa7SCamHSQo3qT6VqKb/tSvM95M8Vrm1nK6hrpN4rXJrMWHxns\ntVG/xp1tektnKAwKAgggUHQBOuA5l5DXfK9TXp9zcNOP3Ak+0MSrvJbabEnXWpt9HeMjgAAC\nCBRAgA54zoXgjrevne+cU+QRAggggAACDQTK2AEvKgcfvevNt95/6f2YPjK3CCXrJmvX1Qd5\nlXH5FWE5UYdeC7zpz50P7KMgkAp4F1rWXWfN/I9Mp1/Y27L8Ax+pJXCIspPi02Pqi/fZ/lk5\nRnmz/skcHqeboH2QEwWBSAXOULsuvibSxtGsfAV8MGnwpd2nyhQB6FhV4oSkIj7v1Ef4vqN4\n7ddrwj6HdVllmOLTaA5TrlTyLutphgObmOmdGje9UEUTLyvkqF4+/gLkI7tDL4erAf5C5/Ob\nQy/7Jg24NPSGqP7+8u0r4p0ZQVt8gOc2ynERtGUNteFAZcsm2uLO9+EmxmfUDgnsqvl608Yt\nyjrd1MFfRDZXHlI8/sZK0Ys3m3+96JXMWL9nNZ4/hDEUf5E4KYaGqA2XJomhOV4mXjYxFH9W\n/JmJofh/WFF2AebuOU/uc8x3hrtodl4b8e0j3czane7dynaKNwPvrVAQQAABBBBom0DsHfBa\nkrtf8YUnshRfhOJxZZksIzMOAggggAACvRWIvQN+VTDrKln3rfoIaXfasWzeUVMoCCCAAAJF\nFIi9A75M6Ksq1yobdrMAvA/YBzaMVXwN5DEKBQEEEEAAgbYJxH4ako9m9i/xnKzsqPgI6ImK\nj3aerAxRhirLKUsrM5QjlHsVCgIIIIAAAm0TiL0D9sFVv1SuV05RfKRz/Zqwf3TgFeV05Szl\nZYWCAAIIIIBAWwVi74BTPB8JvXvywGu9Pv93PuUN5X2FggACCCCAQK4CZemAa1G96dmhIIAA\nAggg0DGB2A/C6hgsM0YAAQQQQKA7gTKuAXfnEdJzvhxbeg3pkOrdqK5uRxTXdk3aEVNbGi2v\nEIfF9h7jsx/iu5A6RyOwgloSyxaM4WrLvJEsmWFqx+BI2uIzBJwYipeJl00MxZ8Vf2ZiKP4f\n5v9lFAQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAAB\nBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAA\nAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQCAEgf4hVJI6dimwkJ7ZSBmpvK9M\nUUIu/l1Qt+fLSSPeDrkxSd1H6HYH5YnkcQg3/r/g5bCBMkN5R4mhjFAjQlsW9e4xfUZWUeM2\nVxZW3lBmKhQEghDYXbV8U6nW5D7dX1IJrfiH0scotW3x/TuUkH+se4jq/7TygRJKWVkVfUap\nXRZP6XHoPwAf4rKofc/E9BkZqobdUPce+0iPD6htMPcRKKqAvzV6zeQ5ZbSyhnKcMlXxsEFK\nKGUeVfQuxf/w/6Bsr2yhXKz4G/GTynxKaGVRVXis4naF0gH3U13vViYreykrKX5/+Z/jS8qC\nSoglxGVR6xzbZ+RWNc6fiwuUDZSdlXsUD/ueQkGg0AI3qnZ+s3pzWm25RA88fNvagQW/v0VS\nZ6+915ebNMDt2bX+iYI//qbq94riun+ihNIBH5zU+UDd1hZ3wm5L/fDacYp6P9RlUesZ02dk\nPTXM76WHahuo+8sr/sJ9b91wHiJQOAH/QzxV8RpLbfmuHvjNfVjtwILf30f1G6+MalDP3TTM\n7TmuwXNFHeQ1eNf5LWUn5REllA74QdX1Y2URpbZ48623rtT/06wdp4j3Q14WtZ776MF4JYbP\niI/vOFHZRqkv4zTgnfqBPEYgBAF3xtcp/ue/eggVzlDHnybt8ebQUIq3PpykeD+XSygd8EDV\n1Wvrj7vSDcqjGjZN8XihlFCXRTO+IX5GGrVvpAZ+qlzT6EmGIVBUgfQbpf/R+w18ZFEr2mS9\nFtf4byrvKz4AJdQSSge8pID95e3OLqBvT57/QhfPhzA4lGWR1TL0z4hXGvZVrlJ83IG//I1Q\nKAgEI3CBaup/nI4PwFpTCb0sqAY8oLhNoR+UEco/fR9wZe+u1kA83M+vrIRaQlkWWXxj+Iz4\ny5zfU2lO1v2QtrBkWU6ME6jAENXb++Jq0+ho4C9qnKUUH8L/hDI9ua+bwpSsbXGF/a3eB2T5\nQ3mWUrTSTFtc91D+6ft9ZPNrXekG5ToN8/MrNHgulEGhLIuePIv+Gemp/unz8+vOcGU95TzF\n/7t8yttghYJARwXGae7pN8P09hc91Gj15DXuiItUsrZlRVXaa/Fur78NF7FkbUta91D+6Q9Q\nhX0U6p1pxetu79JjL5fF6oaH9DCUZdGdaQifke7q391z6VaWb3c3UkzP+UNHKabAHarW03VV\ne7bucf1Df3v0kawbKssqE5QilCxt8bnMtypLKF6bv1ApYsnSliLWu6c6zdAIvhpRevBY/fge\n7vOB36t/gse5CYTyGektyMV64XeUHZSutsT0dtq8DoGWCHjzzPOKO4JGJd1829U/0kav6fQw\nb4LyZScnK9t1ujItnn9Ia11e+/VmQG/irC3+UuThd9cODPB+SMuinjeWz8iP1LB3la3qG6jH\n/ux7K8vZDZ5jEAKFEXhYNflU8aH7tcXX7/VwnzISSvF+oPGKzz91/WMrIf3T/5bw/Q/w3+sW\nwlHJcK+dhFxCWha1zjF9RnZUw/we+2NtA5P7NyXP7dzgOQYhUBiBTVUTr5F4k+GpytaKv1n6\nlB2fy1nfMWtQYcuJqpk/kJOUMV1klIaHWkL6pz+PkL3bw1/iTlK2UU5OHl+n29BLSMui1jqm\nz4hPPbpZ8Wfeu5z2UHZRxioedrVCQaDwAv7n6H3CftOmuV/311ZCKl5bT+vf1W0Rj4bOahza\nP31vfr5FmVmzXP6k+8OU0EtoyyL1ju0zMkQN82ZmH3eQfuY/1P1jFE5DEgIlHIFlVNX1FZ+u\nREGgVQILaULrKjF0vK0yYTqtFfCm9a8oX1L6t3bSTA0BBBBAAAEEEEAAAQQQQAABBBBAAAEE\nEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAAB\nBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAA\nAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBA\nAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQ\nQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEE\nEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBAIT6B/eFWmxggg0CaB\n1TTdHZRhyri6eWymx1sq05U3657jIQIIIIAAAgj0QWBRvfZlZYayfs101tD9qcqLyiIKBQEE\nEEAAAQRaLLCVpjdTeUKZVxmkPK54zXcjhYIAAggggAACbRI4TdOtKj9Tzkju/0S3FAQQQAAB\nBBBoo4DXeh9TPlG8NnybMo9CQQABBBBAAIE2C2yh6Xst2FmzzfNi8ggggAACCCCQCIzRbdoB\n+z4FAQQQQAABBNosMErTd+d7oXJxct/DKAgggAACCCDQJoGVNN0pygRliLKwMlHxMD9HQQAB\nBBBAAIEWCwzQ9B5QvPa7Xc20fXEOD/NzHoeCAAIIIIAAAi0UOF7TSjc910/28uQ5j0NBAAEE\nEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAAB\nBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAA\nAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBA\nAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQ\nQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEE\nEEAAAQQQQAABBBBAAAEEEECgkcD/A/CX8WYZxM1AAAAAAElFTkSuQmCC", "text/plain": [ "plot without title" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "x <- seq(-3,3,length.out = 100)\n", "plot(x, pnorm(x), type=\"l\", ylab='CDF')\n", "abline(h=0.65, col='red', lty=2)\n", "abline(v=0.385, col='blue', lty=2)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "**Exercise**\n", "\n", "Assume that IQ has a normal distribution with mean = 100 and standard deviation = 15." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "**Exercise 1**\n", "\n", "If your IQ is 154, what percentile are you?" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [] }, { "cell_type": "markdown", "metadata": {}, "source": [ "**Exercise 2**\n", "\n", "What percentage of the population has IQ between 70 and 120?" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [] }, { "cell_type": "markdown", "metadata": {}, "source": [ "**Exercise 3**\n", "\n", "What IQ do you need to be in the top 10 percentile?" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [] }, { "cell_type": "markdown", "metadata": { "collapsed": true }, "source": [ "## One sample model" ] }, { "cell_type": "code", "execution_count": 1, "metadata": { "collapsed": true }, "outputs": [], "source": [ "mu <- 0\n", "sigma <- 1\n", "n <- 6" ] }, { "cell_type": "code", "execution_count": 2, "metadata": { "collapsed": true }, "outputs": [], "source": [ "x <- rnorm(n, mu, sigma)" ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
    \n", "\t
  1. 0.964404467414068
  2. \n", "\t
  3. 0.233532508165446
  4. \n", "\t
  5. -1.41560321218151
  6. \n", "\t
  7. -1.16570049438986
  8. \n", "\t
  9. -1.03987265775232
  10. \n", "\t
  11. -2.37490060325525
  12. \n", "
\n" ], "text/latex": [ "\\begin{enumerate*}\n", "\\item 0.964404467414068\n", "\\item 0.233532508165446\n", "\\item -1.41560321218151\n", "\\item -1.16570049438986\n", "\\item -1.03987265775232\n", "\\item -2.37490060325525\n", "\\end{enumerate*}\n" ], "text/markdown": [ "1. 0.964404467414068\n", "2. 0.233532508165446\n", "3. -1.41560321218151\n", "4. -1.16570049438986\n", "5. -1.03987265775232\n", "6. -2.37490060325525\n", "\n", "\n" ], "text/plain": [ "[1] 0.9644045 0.2335325 -1.4156032 -1.1657005 -1.0398727 -2.3749006" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "x" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Point estimates" ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [ { "data": { "text/html": [ "-0.799689998666571" ], "text/latex": [ "-0.799689998666571" ], "text/markdown": [ "-0.799689998666571" ], "text/plain": [ "[1] -0.79969" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "mean(x)" ] }, { "cell_type": "code", "execution_count": 5, "metadata": {}, "outputs": [ { "data": { "text/html": [ "-1.10278657607109" ], "text/latex": [ "-1.10278657607109" ], "text/markdown": [ "-1.10278657607109" ], "text/plain": [ "[1] -1.102787" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "median(x)" ] }, { "cell_type": "code", "execution_count": 6, "metadata": {}, "outputs": [ { "data": { "text/html": [ "1.20265264827186" ], "text/latex": [ "1.20265264827186" ], "text/markdown": [ "1.20265264827186" ], "text/plain": [ "[1] 1.202653" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "sd(x)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Interval estimates" ] }, { "cell_type": "code", "execution_count": 8, "metadata": { "collapsed": true }, "outputs": [], "source": [ "me <- qt(0.975, df=n-1) * sd(x)/sqrt(n)" ] }, { "cell_type": "code", "execution_count": 9, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
    \n", "\t
  1. -2.06179655017835
  2. \n", "\t
  3. 0.46241655284521
  4. \n", "
\n" ], "text/latex": [ "\\begin{enumerate*}\n", "\\item -2.06179655017835\n", "\\item 0.46241655284521\n", "\\end{enumerate*}\n" ], "text/markdown": [ "1. -2.06179655017835\n", "2. 0.46241655284521\n", "\n", "\n" ], "text/plain": [ "[1] -2.0617966 0.4624166" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "xbar <- mean(x)\n", "c(xbar - me, xbar + me)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "**Exercise 4**\n", "\n", "Simulate 10 samples from a normal distribution with mean = 100 and standard deviation = 15.\n", "\n", "- Find the sample mean, median, standard deviation, margin of error and 90% confidence interval of the mean" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [] }, { "cell_type": "markdown", "metadata": {}, "source": [ "**Exercise 5**\n", "\n", "Simulate 200 samples from a normal distribution with mean = 100 and standard deviation = 15.\n", "\n", "- What percentile is a person with IQ = 154 in this population?\n", "- What percentage of this population has IQ between 70 and 120?\n", "- What IQ do you need to be in the top 10 percentile in this population?" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [] }, { "cell_type": "markdown", "metadata": {}, "source": [ "**Exercise 6**\n", "\n", "Compare the t and normal distributions. Overlay plots of the PDF for the standard t-distribution with 1, 5 and 30 degrees of freedom on the standard normal distribution on the same plot. Use different colors and/or line styles." ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "R", "language": "R", "name": "ir" }, "language_info": { "codemirror_mode": "r", "file_extension": ".r", "mimetype": "text/x-r-source", "name": "R", "pygments_lexer": "r", "version": "3.4.0" } }, "nbformat": 4, "nbformat_minor": 2 }