{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Set up environment" ] }, { "cell_type": "code", "execution_count": 1, "metadata": { "scrolled": true }, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "Loading tidyverse: ggplot2\n", "Loading tidyverse: tibble\n", "Loading tidyverse: tidyr\n", "Loading tidyverse: readr\n", "Loading tidyverse: purrr\n", "Loading tidyverse: dplyr\n", "Conflicts with tidy packages ---------------------------------------------------\n", "filter(): dplyr, stats\n", "lag(): dplyr, stats\n", "\n", "Attaching package: ‘foreach’\n", "\n", "The following objects are masked from ‘package:purrr’:\n", "\n", " accumulate, when\n", "\n", "Loading required package: S4Vectors\n", "Loading required package: stats4\n", "Loading required package: BiocGenerics\n", "Loading required package: parallel\n", "\n", "Attaching package: ‘BiocGenerics’\n", "\n", "The following objects are masked from ‘package:parallel’:\n", "\n", " clusterApply, clusterApplyLB, clusterCall, clusterEvalQ,\n", " clusterExport, clusterMap, parApply, parCapply, parLapply,\n", " parLapplyLB, parRapply, parSapply, parSapplyLB\n", "\n", "The following objects are masked from ‘package:dplyr’:\n", "\n", " combine, intersect, setdiff, union\n", "\n", "The following objects are masked from ‘package:stats’:\n", "\n", " IQR, mad, sd, var, xtabs\n", "\n", "The following objects are masked from ‘package:base’:\n", "\n", " anyDuplicated, append, as.data.frame, cbind, colMeans, colnames,\n", " colSums, do.call, duplicated, eval, evalq, Filter, Find, get, grep,\n", " grepl, intersect, is.unsorted, lapply, lengths, Map, mapply, match,\n", " mget, order, paste, pmax, pmax.int, pmin, pmin.int, Position, rank,\n", " rbind, Reduce, rowMeans, rownames, rowSums, sapply, setdiff, sort,\n", " table, tapply, union, unique, unsplit, which, which.max, which.min\n", "\n", "\n", "Attaching package: ‘S4Vectors’\n", "\n", "The following objects are masked from ‘package:dplyr’:\n", "\n", " first, rename\n", "\n", "The following object is masked from ‘package:tidyr’:\n", "\n", " expand\n", "\n", "The following object is masked from ‘package:base’:\n", "\n", " expand.grid\n", "\n", "Loading required package: IRanges\n", "\n", "Attaching package: ‘IRanges’\n", "\n", "The following objects are masked from ‘package:dplyr’:\n", "\n", " collapse, desc, slice\n", "\n", "The following object is masked from ‘package:purrr’:\n", "\n", " reduce\n", "\n", "Loading required package: GenomicRanges\n", "Loading required package: GenomeInfoDb\n", "Loading required package: SummarizedExperiment\n", "Loading required package: Biobase\n", "Welcome to Bioconductor\n", "\n", " Vignettes contain introductory material; view with\n", " 'browseVignettes()'. To cite Bioconductor, see\n", " 'citation(\"Biobase\")', and for packages 'citation(\"pkgname\")'.\n", "\n", "Loading required package: DelayedArray\n", "Loading required package: matrixStats\n", "\n", "Attaching package: ‘matrixStats’\n", "\n", "The following objects are masked from ‘package:Biobase’:\n", "\n", " anyMissing, rowMedians\n", "\n", "The following object is masked from ‘package:dplyr’:\n", "\n", " count\n", "\n", "\n", "Attaching package: ‘DelayedArray’\n", "\n", "The following objects are masked from ‘package:matrixStats’:\n", "\n", " colMaxs, colMins, colRanges, rowMaxs, rowMins, rowRanges\n", "\n", "The following object is masked from ‘package:base’:\n", "\n", " apply\n", "\n", "\n", "Attaching package: ‘limma’\n", "\n", "The following object is masked from ‘package:DESeq2’:\n", "\n", " plotMA\n", "\n", "The following object is masked from ‘package:BiocGenerics’:\n", "\n", " plotMA\n", "\n", "\n", "Attaching package: ‘gridExtra’\n", "\n", "The following object is masked from ‘package:Biobase’:\n", "\n", " combine\n", "\n", "The following object is masked from ‘package:BiocGenerics’:\n", "\n", " combine\n", "\n", "The following object is masked from ‘package:dplyr’:\n", "\n", " combine\n", "\n", "\n", "---------------------\n", "Welcome to dendextend version 1.8.0\n", "Type citation('dendextend') for how to cite the package.\n", "\n", "Type browseVignettes(package = 'dendextend') for the package vignette.\n", "The github page is: https://github.com/talgalili/dendextend/\n", "\n", "Suggestions and bug-reports can be submitted at: https://github.com/talgalili/dendextend/issues\n", "Or contact: \n", "\n", "\tTo suppress this message use: suppressPackageStartupMessages(library(dendextend))\n", "---------------------\n", "\n", "\n", "Attaching package: ‘dendextend’\n", "\n", "The following object is masked from ‘package:stats’:\n", "\n", " cutree\n", "\n", "\n", "Attaching package: ‘plotly’\n", "\n", "The following object is masked from ‘package:IRanges’:\n", "\n", " slice\n", "\n", "The following object is masked from ‘package:S4Vectors’:\n", "\n", " rename\n", "\n", "The following object is masked from ‘package:ggplot2’:\n", "\n", " last_plot\n", "\n", "The following object is masked from ‘package:stats’:\n", "\n", " filter\n", "\n", "The following object is masked from ‘package:graphics’:\n", "\n", " layout\n", "\n" ] } ], "source": [ "source(\"pilot_config.R\")" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Recall that after the tutorial one, we have created the hts-pilot-2018.RData.\n", "\n", "```\n", "scratch\n", "└── analysis_output \n", " ├── out \n", " │ └── hts-pilot-2018.RData \n", " └── img \n", "```" ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [ { "data": { "text/html": [ "'/home/jovyan/work/scratch/analysis_output/out'" ], "text/latex": [ "'/home/jovyan/work/scratch/analysis\\_output/out'" ], "text/markdown": [ "'/home/jovyan/work/scratch/analysis_output/out'" ], "text/plain": [ "[1] \"/home/jovyan/work/scratch/analysis_output/out\"" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "OUTDIR" ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [], "source": [ "# file directory\n", "cntfile <- file.path(OUTDIR, \"hts-pilot-2018.RData\")" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Read in results" ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [ { "data": { "text/html": [ "/home/jovyan/work/scratch/analysis_output/out/hts-pilot-2018.RData: 'e8d7991f674b7a9284abae8f38656c2e'" ], "text/latex": [ "\\textbf{/home/jovyan/work/scratch/analysis\\textbackslash{}\\_output/out/hts-pilot-2018.RData:} 'e8d7991f674b7a9284abae8f38656c2e'" ], "text/markdown": [ "**/home/jovyan/work/scratch/analysis_output/out/hts-pilot-2018.RData:** 'e8d7991f674b7a9284abae8f38656c2e'" ], "text/plain": [ "/home/jovyan/work/scratch/analysis_output/out/hts-pilot-2018.RData \n", " \"e8d7991f674b7a9284abae8f38656c2e\" " ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "### Import count data\n", "attach(cntfile)\n", "tools::md5sum(cntfile)" ] }, { "cell_type": "code", "execution_count": 5, "metadata": {}, "outputs": [ { "data": { "text/html": [ "/home/jovyan/work/HTS2018-notebooks/josh/info/2018_pilot_metadata_anon.tsv: '20b31fdc4487d0cd8cc3c9300584faca'" ], "text/latex": [ "\\textbf{/home/jovyan/work/HTS2018-notebooks/josh/info/2018\\textbackslash{}\\_pilot\\textbackslash{}\\_metadata\\textbackslash{}\\_anon.tsv:} '20b31fdc4487d0cd8cc3c9300584faca'" ], "text/markdown": [ "**/home/jovyan/work/HTS2018-notebooks/josh/info/2018_pilot_metadata_anon.tsv:** '20b31fdc4487d0cd8cc3c9300584faca'" ], "text/plain": [ "/home/jovyan/work/HTS2018-notebooks/josh/info/2018_pilot_metadata_anon.tsv \n", " \"20b31fdc4487d0cd8cc3c9300584faca\" " ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stderr", "output_type": "stream", "text": [ "Parsed with column specification:\n", "cols(\n", " Label = col_character(),\n", " RNA_sample_num = col_integer(),\n", " Media = col_character(),\n", " Strain = col_character(),\n", " Replicate = col_integer(),\n", " experiment_person = col_character(),\n", " libprep_person = col_character(),\n", " enrichment_method = col_character(),\n", " RIN = col_double(),\n", " concentration_fold_difference = col_double(),\n", " `i7 index` = col_character(),\n", " `i5 index` = col_character(),\n", " `i5 primer` = col_character(),\n", " `i7 primer` = col_character(),\n", " `library#` = col_integer()\n", ")\n" ] } ], "source": [ "### Import metadata\n", "tools::md5sum(METADTFILE)\n", "\n", "mtdf <- readr::read_tsv(METADTFILE) %>%\n", " mutate_at(vars(\n", " `Label`,\n", " `Strain`,\n", " `Media`,\n", " `enrichment_method`,\n", " `library#`,\n", " `libprep_person`,\n", " `experiment_person`\n", " ), factor)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Recall that there are 204 samples and 8498 genes" ] }, { "cell_type": "code", "execution_count": 6, "metadata": {}, "outputs": [ { "data": { "text/html": [ "\n", "\n", "\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\n", "
LabelRNA_sample_numMediaStrainReplicateexperiment_personlibprep_personenrichment_methodRINconcentration_fold_differencei7 indexi5 indexi5 primeri7 primerlibrary#
2_MA_C 2 YPD H99 2 expA prepA MA 10.0 1.34 ATTACTCGAGGCTATAi501 i701 1
9_MA_C 9 YPD mar1d 3 expA prepA MA 10.0 2.23 ATTACTCGGCCTCTATi502 i701 2
10_MA_C 10 YPD mar1d 4 expA prepA MA 9.9 4.37 ATTACTCGAGGATAGGi503 i701 3
14_MA_C 14 TC H99 2 expA prepA MA 10.0 1.57 ATTACTCGTCAGAGCCi504 i701 4
15_MA_C 15 TC H99 3 expA prepA MA 9.9 2.85 ATTACTCGCTTCGCCTi505 i701 5
21_MA_C 21 TC mar1d 3 expA prepA MA 10.0 1.81 ATTACTCGTAAGATTAi506 i701 6
\n" ], "text/latex": [ "\\begin{tabular}{r|lllllllllllllll}\n", " Label & RNA\\_sample\\_num & Media & Strain & Replicate & experiment\\_person & libprep\\_person & enrichment\\_method & RIN & concentration\\_fold\\_difference & i7 index & i5 index & i5 primer & i7 primer & library\\#\\\\\n", "\\hline\n", "\t 2\\_MA\\_C & 2 & YPD & H99 & 2 & expA & prepA & MA & 10.0 & 1.34 & ATTACTCG & AGGCTATA & i501 & i701 & 1 \\\\\n", "\t 9\\_MA\\_C & 9 & YPD & mar1d & 3 & expA & prepA & MA & 10.0 & 2.23 & ATTACTCG & GCCTCTAT & i502 & i701 & 2 \\\\\n", "\t 10\\_MA\\_C & 10 & YPD & mar1d & 4 & expA & prepA & MA & 9.9 & 4.37 & ATTACTCG & AGGATAGG & i503 & i701 & 3 \\\\\n", "\t 14\\_MA\\_C & 14 & TC & H99 & 2 & expA & prepA & MA & 10.0 & 1.57 & ATTACTCG & TCAGAGCC & i504 & i701 & 4 \\\\\n", "\t 15\\_MA\\_C & 15 & TC & H99 & 3 & expA & prepA & MA & 9.9 & 2.85 & ATTACTCG & CTTCGCCT & i505 & i701 & 5 \\\\\n", "\t 21\\_MA\\_C & 21 & TC & mar1d & 3 & expA & prepA & MA & 10.0 & 1.81 & ATTACTCG & TAAGATTA & i506 & i701 & 6 \\\\\n", "\\end{tabular}\n" ], "text/markdown": [ "\n", "Label | RNA_sample_num | Media | Strain | Replicate | experiment_person | libprep_person | enrichment_method | RIN | concentration_fold_difference | i7 index | i5 index | i5 primer | i7 primer | library# | \n", "|---|---|---|---|---|---|\n", "| 2_MA_C | 2 | YPD | H99 | 2 | expA | prepA | MA | 10.0 | 1.34 | ATTACTCG | AGGCTATA | i501 | i701 | 1 | \n", "| 9_MA_C | 9 | YPD | mar1d | 3 | expA | prepA | MA | 10.0 | 2.23 | ATTACTCG | GCCTCTAT | i502 | i701 | 2 | \n", "| 10_MA_C | 10 | YPD | mar1d | 4 | expA | prepA | MA | 9.9 | 4.37 | ATTACTCG | AGGATAGG | i503 | i701 | 3 | \n", "| 14_MA_C | 14 | TC | H99 | 2 | expA | prepA | MA | 10.0 | 1.57 | ATTACTCG | TCAGAGCC | i504 | i701 | 4 | \n", "| 15_MA_C | 15 | TC | H99 | 3 | expA | prepA | MA | 9.9 | 2.85 | ATTACTCG | CTTCGCCT | i505 | i701 | 5 | \n", "| 21_MA_C | 21 | TC | mar1d | 3 | expA | prepA | MA | 10.0 | 1.81 | ATTACTCG | TAAGATTA | i506 | i701 | 6 | \n", "\n", "\n" ], "text/plain": [ " Label RNA_sample_num Media Strain Replicate experiment_person\n", "1 2_MA_C 2 YPD H99 2 expA \n", "2 9_MA_C 9 YPD mar1d 3 expA \n", "3 10_MA_C 10 YPD mar1d 4 expA \n", "4 14_MA_C 14 TC H99 2 expA \n", "5 15_MA_C 15 TC H99 3 expA \n", "6 21_MA_C 21 TC mar1d 3 expA \n", " libprep_person enrichment_method RIN concentration_fold_difference i7 index\n", "1 prepA MA 10.0 1.34 ATTACTCG\n", "2 prepA MA 10.0 2.23 ATTACTCG\n", "3 prepA MA 9.9 4.37 ATTACTCG\n", "4 prepA MA 10.0 1.57 ATTACTCG\n", "5 prepA MA 9.9 2.85 ATTACTCG\n", "6 prepA MA 10.0 1.81 ATTACTCG\n", " i5 index i5 primer i7 primer library#\n", "1 AGGCTATA i501 i701 1 \n", "2 GCCTCTAT i502 i701 2 \n", "3 AGGATAGG i503 i701 3 \n", "4 TCAGAGCC i504 i701 4 \n", "5 CTTCGCCT i505 i701 5 \n", "6 TAAGATTA i506 i701 6 " ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "head(mtdf)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Check the label between metadata and mapping results" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Recall that we got two data frames in the previous tutorial: \n", "- genecounts: gene counts for each **sample**\n", " - Note: We will need to convert it into gene counts for each **library** later\n", "- mapresults: the mapping results \n", " - Note: There are 204 samples" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "The metadata (`mtdf`) contains the information of each sample. Here we need to make sure if the label in the metadata matches the sample names we have in `mapresults` and `genecount`\n", "\n", "The code chunk below allows us to check to see if we can match the labels to the those in the metadata file. There should not be any output from the code chunk." ] }, { "cell_type": "code", "execution_count": 7, "metadata": {}, "outputs": [ { "data": { "text/html": [], "text/latex": [], "text/markdown": [], "text/plain": [ "character(0)" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [], "text/latex": [], "text/markdown": [], "text/plain": [ "character(0)" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "### Use setdiff to check to see if we can match the labels to the those in the metadata file\n", "myregex <- \"_[A-Z](100|[1-9][0-9]?)_L00[1-4].*\"\n", "\n", "mapresults$expid %>%\n", " str_replace(myregex, \"\") %>%\n", " setdiff(mtdf$Label)\n", "\n", "mtdf$Label %>%\n", " setdiff(str_replace(mapresults$expid, myregex, \"\"))" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Construct gene count matrix for each library" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Add the \"Label\" to the count matrix and mapping results, then merge in phenotype data (by Label)" ] }, { "cell_type": "code", "execution_count": 8, "metadata": {}, "outputs": [], "source": [ "### Add \"Label\" to genecounts\n", "genecounts %>%\n", " mutate(Label = str_replace(expid, myregex, \"\")) ->\n", " annogenecnts" ] }, { "cell_type": "code", "execution_count": 9, "metadata": {}, "outputs": [], "source": [ "### Collapse the gene counts within each label\n", "annogenecnts %>%\n", " select(-expid) %>%\n", " group_by(Label) %>%\n", " summarize_all(sum) %>%\n", " gather(gene, value, -Label) %>% \n", " spread(Label, value) ->\n", " annogenecnts0" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Show the resulting data frame in each step" ] }, { "cell_type": "code", "execution_count": 10, "metadata": {}, "outputs": [ { "data": { "text/html": [ "\n", "\n", "\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\n", "
expidCNAG_00001CNAG_00002CNAG_00003CNAG_00004CNAG_00005
1_MA_J_S18_L001_ReadsPerGene.out.tab0 66 38 74 33
1_MA_J_S18_L002_ReadsPerGene.out.tab0 59 25 79 25
1_MA_J_S18_L003_ReadsPerGene.out.tab0 74 27 79 32
1_MA_J_S18_L004_ReadsPerGene.out.tab0 66 22 69 24
1_RZ_J_S26_L001_ReadsPerGene.out.tab0 50 16 51 26
1_RZ_J_S26_L002_ReadsPerGene.out.tab0 45 7 51 31
\n" ], "text/latex": [ "\\begin{tabular}{r|llllll}\n", " expid & CNAG\\_00001 & CNAG\\_00002 & CNAG\\_00003 & CNAG\\_00004 & CNAG\\_00005\\\\\n", "\\hline\n", "\t 1\\_MA\\_J\\_S18\\_L001\\_ReadsPerGene.out.tab & 0 & 66 & 38 & 74 & 33 \\\\\n", "\t 1\\_MA\\_J\\_S18\\_L002\\_ReadsPerGene.out.tab & 0 & 59 & 25 & 79 & 25 \\\\\n", "\t 1\\_MA\\_J\\_S18\\_L003\\_ReadsPerGene.out.tab & 0 & 74 & 27 & 79 & 32 \\\\\n", "\t 1\\_MA\\_J\\_S18\\_L004\\_ReadsPerGene.out.tab & 0 & 66 & 22 & 69 & 24 \\\\\n", "\t 1\\_RZ\\_J\\_S26\\_L001\\_ReadsPerGene.out.tab & 0 & 50 & 16 & 51 & 26 \\\\\n", "\t 1\\_RZ\\_J\\_S26\\_L002\\_ReadsPerGene.out.tab & 0 & 45 & 7 & 51 & 31 \\\\\n", "\\end{tabular}\n" ], "text/markdown": [ "\n", "expid | CNAG_00001 | CNAG_00002 | CNAG_00003 | CNAG_00004 | CNAG_00005 | \n", "|---|---|---|---|---|---|\n", "| 1_MA_J_S18_L001_ReadsPerGene.out.tab | 0 | 66 | 38 | 74 | 33 | \n", "| 1_MA_J_S18_L002_ReadsPerGene.out.tab | 0 | 59 | 25 | 79 | 25 | \n", "| 1_MA_J_S18_L003_ReadsPerGene.out.tab | 0 | 74 | 27 | 79 | 32 | \n", "| 1_MA_J_S18_L004_ReadsPerGene.out.tab | 0 | 66 | 22 | 69 | 24 | \n", "| 1_RZ_J_S26_L001_ReadsPerGene.out.tab | 0 | 50 | 16 | 51 | 26 | \n", "| 1_RZ_J_S26_L002_ReadsPerGene.out.tab | 0 | 45 | 7 | 51 | 31 | \n", "\n", "\n" ], "text/plain": [ " expid CNAG_00001 CNAG_00002 CNAG_00003\n", "1 1_MA_J_S18_L001_ReadsPerGene.out.tab 0 66 38 \n", "2 1_MA_J_S18_L002_ReadsPerGene.out.tab 0 59 25 \n", "3 1_MA_J_S18_L003_ReadsPerGene.out.tab 0 74 27 \n", "4 1_MA_J_S18_L004_ReadsPerGene.out.tab 0 66 22 \n", "5 1_RZ_J_S26_L001_ReadsPerGene.out.tab 0 50 16 \n", "6 1_RZ_J_S26_L002_ReadsPerGene.out.tab 0 45 7 \n", " CNAG_00004 CNAG_00005\n", "1 74 33 \n", "2 79 25 \n", "3 79 32 \n", "4 69 24 \n", "5 51 26 \n", "6 51 31 " ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "genecounts[1:6, 1:6]" ] }, { "cell_type": "code", "execution_count": 11, "metadata": {}, "outputs": [ { "data": { "text/html": [ "\n", "\n", "\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\n", "
expidCNAG_00001CNAG_00002CNAG_00003CNAG_00004CNAG_00005Label
1_MA_J_S18_L001_ReadsPerGene.out.tab0 66 38 74 33 1_MA_J
1_MA_J_S18_L002_ReadsPerGene.out.tab0 59 25 79 25 1_MA_J
1_MA_J_S18_L003_ReadsPerGene.out.tab0 74 27 79 32 1_MA_J
1_MA_J_S18_L004_ReadsPerGene.out.tab0 66 22 69 24 1_MA_J
1_RZ_J_S26_L001_ReadsPerGene.out.tab0 50 16 51 26 1_RZ_J
1_RZ_J_S26_L002_ReadsPerGene.out.tab0 45 7 51 31 1_RZ_J
\n" ], "text/latex": [ "\\begin{tabular}{r|lllllll}\n", " expid & CNAG\\_00001 & CNAG\\_00002 & CNAG\\_00003 & CNAG\\_00004 & CNAG\\_00005 & Label\\\\\n", "\\hline\n", "\t 1\\_MA\\_J\\_S18\\_L001\\_ReadsPerGene.out.tab & 0 & 66 & 38 & 74 & 33 & 1\\_MA\\_J \\\\\n", "\t 1\\_MA\\_J\\_S18\\_L002\\_ReadsPerGene.out.tab & 0 & 59 & 25 & 79 & 25 & 1\\_MA\\_J \\\\\n", "\t 1\\_MA\\_J\\_S18\\_L003\\_ReadsPerGene.out.tab & 0 & 74 & 27 & 79 & 32 & 1\\_MA\\_J \\\\\n", "\t 1\\_MA\\_J\\_S18\\_L004\\_ReadsPerGene.out.tab & 0 & 66 & 22 & 69 & 24 & 1\\_MA\\_J \\\\\n", "\t 1\\_RZ\\_J\\_S26\\_L001\\_ReadsPerGene.out.tab & 0 & 50 & 16 & 51 & 26 & 1\\_RZ\\_J \\\\\n", "\t 1\\_RZ\\_J\\_S26\\_L002\\_ReadsPerGene.out.tab & 0 & 45 & 7 & 51 & 31 & 1\\_RZ\\_J \\\\\n", "\\end{tabular}\n" ], "text/markdown": [ "\n", "expid | CNAG_00001 | CNAG_00002 | CNAG_00003 | CNAG_00004 | CNAG_00005 | Label | \n", "|---|---|---|---|---|---|\n", "| 1_MA_J_S18_L001_ReadsPerGene.out.tab | 0 | 66 | 38 | 74 | 33 | 1_MA_J | \n", "| 1_MA_J_S18_L002_ReadsPerGene.out.tab | 0 | 59 | 25 | 79 | 25 | 1_MA_J | \n", "| 1_MA_J_S18_L003_ReadsPerGene.out.tab | 0 | 74 | 27 | 79 | 32 | 1_MA_J | \n", "| 1_MA_J_S18_L004_ReadsPerGene.out.tab | 0 | 66 | 22 | 69 | 24 | 1_MA_J | \n", "| 1_RZ_J_S26_L001_ReadsPerGene.out.tab | 0 | 50 | 16 | 51 | 26 | 1_RZ_J | \n", "| 1_RZ_J_S26_L002_ReadsPerGene.out.tab | 0 | 45 | 7 | 51 | 31 | 1_RZ_J | \n", "\n", "\n" ], "text/plain": [ " expid CNAG_00001 CNAG_00002 CNAG_00003\n", "1 1_MA_J_S18_L001_ReadsPerGene.out.tab 0 66 38 \n", "2 1_MA_J_S18_L002_ReadsPerGene.out.tab 0 59 25 \n", "3 1_MA_J_S18_L003_ReadsPerGene.out.tab 0 74 27 \n", "4 1_MA_J_S18_L004_ReadsPerGene.out.tab 0 66 22 \n", "5 1_RZ_J_S26_L001_ReadsPerGene.out.tab 0 50 16 \n", "6 1_RZ_J_S26_L002_ReadsPerGene.out.tab 0 45 7 \n", " CNAG_00004 CNAG_00005 Label \n", "1 74 33 1_MA_J\n", "2 79 25 1_MA_J\n", "3 79 32 1_MA_J\n", "4 69 24 1_MA_J\n", "5 51 26 1_RZ_J\n", "6 51 31 1_RZ_J" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "annogenecnts[1:6, c(colnames(annogenecnts)[1:6], \"Label\")]" ] }, { "cell_type": "code", "execution_count": 12, "metadata": {}, "outputs": [ { "data": { "text/html": [ "\n", "\n", "\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\n", "
gene1_MA_J1_RZ_J10_MA_C10_RZ_C11_MA_J
CNAG_00001 0 0 0 0 0
CNAG_00002 265 204 269 76 130
CNAG_00003 112 40 171 24 124
CNAG_00004 301 207 407 141 272
CNAG_00005 114 125 50 25 38
CNAG_000061904 1295 3571 1015 2073
\n" ], "text/latex": [ "\\begin{tabular}{r|llllll}\n", " gene & 1\\_MA\\_J & 1\\_RZ\\_J & 10\\_MA\\_C & 10\\_RZ\\_C & 11\\_MA\\_J\\\\\n", "\\hline\n", "\t CNAG\\_00001 & 0 & 0 & 0 & 0 & 0 \\\\\n", "\t CNAG\\_00002 & 265 & 204 & 269 & 76 & 130 \\\\\n", "\t CNAG\\_00003 & 112 & 40 & 171 & 24 & 124 \\\\\n", "\t CNAG\\_00004 & 301 & 207 & 407 & 141 & 272 \\\\\n", "\t CNAG\\_00005 & 114 & 125 & 50 & 25 & 38 \\\\\n", "\t CNAG\\_00006 & 1904 & 1295 & 3571 & 1015 & 2073 \\\\\n", "\\end{tabular}\n" ], "text/markdown": [ "\n", "gene | 1_MA_J | 1_RZ_J | 10_MA_C | 10_RZ_C | 11_MA_J | \n", "|---|---|---|---|---|---|\n", "| CNAG_00001 | 0 | 0 | 0 | 0 | 0 | \n", "| CNAG_00002 | 265 | 204 | 269 | 76 | 130 | \n", "| CNAG_00003 | 112 | 40 | 171 | 24 | 124 | \n", "| CNAG_00004 | 301 | 207 | 407 | 141 | 272 | \n", "| CNAG_00005 | 114 | 125 | 50 | 25 | 38 | \n", "| CNAG_00006 | 1904 | 1295 | 3571 | 1015 | 2073 | \n", "\n", "\n" ], "text/plain": [ " gene 1_MA_J 1_RZ_J 10_MA_C 10_RZ_C 11_MA_J\n", "1 CNAG_00001 0 0 0 0 0 \n", "2 CNAG_00002 265 204 269 76 130 \n", "3 CNAG_00003 112 40 171 24 124 \n", "4 CNAG_00004 301 207 407 141 272 \n", "5 CNAG_00005 114 125 50 25 38 \n", "6 CNAG_00006 1904 1295 3571 1015 2073 " ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "annogenecnts0[1:6, 1:6]" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Metadata" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Add \"Label\" to read map results and merge in phenotype data (-> annomapres)" ] }, { "cell_type": "code", "execution_count": 13, "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "Warning message:\n", "“Column `Label` joining character vector and factor, coercing into character vector”" ] } ], "source": [ "mapresults %>%\n", " mutate(Label = str_replace(expid, myregex, \"\")) %>%\n", " full_join(mtdf, by = \"Label\") ->\n", " annomapres" ] }, { "cell_type": "code", "execution_count": 14, "metadata": {}, "outputs": [], "source": [ "grpvars <- vars(Label, Strain, Media, experiment_person, libprep_person, enrichment_method)\n", "sumvars <- vars(prop.gene, prop.nofeat, prop.unique, depth)\n", "\n", "annomapres %>%\n", " group_by_at(grpvars) %>%\n", " summarize_at(sumvars, mean) -> \n", " annomapres0" ] }, { "cell_type": "code", "execution_count": 15, "metadata": {}, "outputs": [ { "data": { "text/html": [ "\n", "\n", "\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\n", "
expidngenemapnambnmultinnofeatnunmapdepthprop.geneprop.nofeatprop.uniqueexperiment_personlibprep_personenrichment_methodRINconcentration_fold_differencei7 indexi5 indexi5 primeri7 primerlibrary#
1_MA_J_S18_L001_ReadsPerGene.out.tab2399781 647 66100 20347 2690 2489565 0.9639359 0.008172914 0.9721088 expA prepB MA 10 3.64 CGCTCATT AGGCTATA i501 i703 18
1_MA_J_S18_L002_ReadsPerGene.out.tab2362228 652 65234 20004 2684 2450802 0.9638592 0.008162226 0.9720214 expA prepB MA 10 3.64 CGCTCATT AGGCTATA i501 i703 18
1_MA_J_S18_L003_ReadsPerGene.out.tab2436776 697 66538 20549 2672 2527232 0.9642075 0.008131030 0.9723385 expA prepB MA 10 3.64 CGCTCATT AGGCTATA i501 i703 18
1_MA_J_S18_L004_ReadsPerGene.out.tab2417485 616 65066 20505 2585 2506257 0.9645798 0.008181523 0.9727614 expA prepB MA 10 3.64 CGCTCATT AGGCTATA i501 i703 18
1_RZ_J_S26_L001_ReadsPerGene.out.tab2366742 1431 395848 768146 7218 3539385 0.6686874 0.217028100 0.8857155 expA prepB RZ 10 3.64 GAGATTCC AGGCTATA i501 i704 26
1_RZ_J_S26_L002_ReadsPerGene.out.tab2331658 1337 388079 755654 7022 3483750 0.6692954 0.216908217 0.8862037 expA prepB RZ 10 3.64 GAGATTCC AGGCTATA i501 i704 26
\n" ], "text/latex": [ "\\begin{tabular}{r|lllllllllllllllllllllllll}\n", " expid & ngenemap & namb & nmulti & nnofeat & nunmap & depth & prop.gene & prop.nofeat & prop.unique & ⋯ & experiment\\_person & libprep\\_person & enrichment\\_method & RIN & concentration\\_fold\\_difference & i7 index & i5 index & i5 primer & i7 primer & library\\#\\\\\n", "\\hline\n", "\t 1\\_MA\\_J\\_S18\\_L001\\_ReadsPerGene.out.tab & 2399781 & 647 & 66100 & 20347 & 2690 & 2489565 & 0.9639359 & 0.008172914 & 0.9721088 & ⋯ & expA & prepB & MA & 10 & 3.64 & CGCTCATT & AGGCTATA & i501 & i703 & 18 \\\\\n", "\t 1\\_MA\\_J\\_S18\\_L002\\_ReadsPerGene.out.tab & 2362228 & 652 & 65234 & 20004 & 2684 & 2450802 & 0.9638592 & 0.008162226 & 0.9720214 & ⋯ & expA & prepB & MA & 10 & 3.64 & CGCTCATT & AGGCTATA & i501 & i703 & 18 \\\\\n", "\t 1\\_MA\\_J\\_S18\\_L003\\_ReadsPerGene.out.tab & 2436776 & 697 & 66538 & 20549 & 2672 & 2527232 & 0.9642075 & 0.008131030 & 0.9723385 & ⋯ & expA & prepB & MA & 10 & 3.64 & CGCTCATT & AGGCTATA & i501 & i703 & 18 \\\\\n", "\t 1\\_MA\\_J\\_S18\\_L004\\_ReadsPerGene.out.tab & 2417485 & 616 & 65066 & 20505 & 2585 & 2506257 & 0.9645798 & 0.008181523 & 0.9727614 & ⋯ & expA & prepB & MA & 10 & 3.64 & CGCTCATT & AGGCTATA & i501 & i703 & 18 \\\\\n", "\t 1\\_RZ\\_J\\_S26\\_L001\\_ReadsPerGene.out.tab & 2366742 & 1431 & 395848 & 768146 & 7218 & 3539385 & 0.6686874 & 0.217028100 & 0.8857155 & ⋯ & expA & prepB & RZ & 10 & 3.64 & GAGATTCC & AGGCTATA & i501 & i704 & 26 \\\\\n", "\t 1\\_RZ\\_J\\_S26\\_L002\\_ReadsPerGene.out.tab & 2331658 & 1337 & 388079 & 755654 & 7022 & 3483750 & 0.6692954 & 0.216908217 & 0.8862037 & ⋯ & expA & prepB & RZ & 10 & 3.64 & GAGATTCC & AGGCTATA & i501 & i704 & 26 \\\\\n", "\\end{tabular}\n" ], "text/markdown": [ "\n", "expid | ngenemap | namb | nmulti | nnofeat | nunmap | depth | prop.gene | prop.nofeat | prop.unique | ⋯ | experiment_person | libprep_person | enrichment_method | RIN | concentration_fold_difference | i7 index | i5 index | i5 primer | i7 primer | library# | \n", "|---|---|---|---|---|---|\n", "| 1_MA_J_S18_L001_ReadsPerGene.out.tab | 2399781 | 647 | 66100 | 20347 | 2690 | 2489565 | 0.9639359 | 0.008172914 | 0.9721088 | ⋯ | expA | prepB | MA | 10 | 3.64 | CGCTCATT | AGGCTATA | i501 | i703 | 18 | \n", "| 1_MA_J_S18_L002_ReadsPerGene.out.tab | 2362228 | 652 | 65234 | 20004 | 2684 | 2450802 | 0.9638592 | 0.008162226 | 0.9720214 | ⋯ | expA | prepB | MA | 10 | 3.64 | CGCTCATT | AGGCTATA | i501 | i703 | 18 | \n", "| 1_MA_J_S18_L003_ReadsPerGene.out.tab | 2436776 | 697 | 66538 | 20549 | 2672 | 2527232 | 0.9642075 | 0.008131030 | 0.9723385 | ⋯ | expA | prepB | MA | 10 | 3.64 | CGCTCATT | AGGCTATA | i501 | i703 | 18 | \n", "| 1_MA_J_S18_L004_ReadsPerGene.out.tab | 2417485 | 616 | 65066 | 20505 | 2585 | 2506257 | 0.9645798 | 0.008181523 | 0.9727614 | ⋯ | expA | prepB | MA | 10 | 3.64 | CGCTCATT | AGGCTATA | i501 | i703 | 18 | \n", "| 1_RZ_J_S26_L001_ReadsPerGene.out.tab | 2366742 | 1431 | 395848 | 768146 | 7218 | 3539385 | 0.6686874 | 0.217028100 | 0.8857155 | ⋯ | expA | prepB | RZ | 10 | 3.64 | GAGATTCC | AGGCTATA | i501 | i704 | 26 | \n", "| 1_RZ_J_S26_L002_ReadsPerGene.out.tab | 2331658 | 1337 | 388079 | 755654 | 7022 | 3483750 | 0.6692954 | 0.216908217 | 0.8862037 | ⋯ | expA | prepB | RZ | 10 | 3.64 | GAGATTCC | AGGCTATA | i501 | i704 | 26 | \n", "\n", "\n" ], "text/plain": [ " expid ngenemap namb nmulti nnofeat nunmap\n", "1 1_MA_J_S18_L001_ReadsPerGene.out.tab 2399781 647 66100 20347 2690 \n", "2 1_MA_J_S18_L002_ReadsPerGene.out.tab 2362228 652 65234 20004 2684 \n", "3 1_MA_J_S18_L003_ReadsPerGene.out.tab 2436776 697 66538 20549 2672 \n", "4 1_MA_J_S18_L004_ReadsPerGene.out.tab 2417485 616 65066 20505 2585 \n", "5 1_RZ_J_S26_L001_ReadsPerGene.out.tab 2366742 1431 395848 768146 7218 \n", "6 1_RZ_J_S26_L002_ReadsPerGene.out.tab 2331658 1337 388079 755654 7022 \n", " depth prop.gene prop.nofeat prop.unique ⋯ experiment_person libprep_person\n", "1 2489565 0.9639359 0.008172914 0.9721088 ⋯ expA prepB \n", "2 2450802 0.9638592 0.008162226 0.9720214 ⋯ expA prepB \n", "3 2527232 0.9642075 0.008131030 0.9723385 ⋯ expA prepB \n", "4 2506257 0.9645798 0.008181523 0.9727614 ⋯ expA prepB \n", "5 3539385 0.6686874 0.217028100 0.8857155 ⋯ expA prepB \n", "6 3483750 0.6692954 0.216908217 0.8862037 ⋯ expA prepB \n", " enrichment_method RIN concentration_fold_difference i7 index i5 index\n", "1 MA 10 3.64 CGCTCATT AGGCTATA\n", "2 MA 10 3.64 CGCTCATT AGGCTATA\n", "3 MA 10 3.64 CGCTCATT AGGCTATA\n", "4 MA 10 3.64 CGCTCATT AGGCTATA\n", "5 RZ 10 3.64 GAGATTCC AGGCTATA\n", "6 RZ 10 3.64 GAGATTCC AGGCTATA\n", " i5 primer i7 primer library#\n", "1 i501 i703 18 \n", "2 i501 i703 18 \n", "3 i501 i703 18 \n", "4 i501 i703 18 \n", "5 i501 i704 26 \n", "6 i501 i704 26 " ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "head(annomapres)" ] }, { "cell_type": "code", "execution_count": 16, "metadata": {}, "outputs": [ { "data": { "text/html": [ "\n", "\n", "\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\n", "
LabelStrainMediaexperiment_personlibprep_personenrichment_methodprop.geneprop.nofeatprop.uniquedepth
1_MA_J H99 YPD expA prepB MA 0.9641456 0.0081619230.9723075 2493464
1_RZ_J H99 YPD expA prepB RZ 0.6689001 0.2170956210.8859957 3541358
10_MA_C mar1d YPD expA prepA MA 0.9618651 0.0098185730.9716837 3282785
10_RZ_C mar1d YPD expA prepA RZ 0.7497438 0.2006516860.9503955 1742594
11_MA_J mar1d YPD expA prepB MA 0.9669597 0.0087178980.9756776 2062181
11_RZ_J mar1d YPD expA prepB RZ 0.7030020 0.1955471510.8985491 2621913
\n" ], "text/latex": [ "\\begin{tabular}{r|llllllllll}\n", " Label & Strain & Media & experiment\\_person & libprep\\_person & enrichment\\_method & prop.gene & prop.nofeat & prop.unique & depth\\\\\n", "\\hline\n", "\t 1\\_MA\\_J & H99 & YPD & expA & prepB & MA & 0.9641456 & 0.008161923 & 0.9723075 & 2493464 \\\\\n", "\t 1\\_RZ\\_J & H99 & YPD & expA & prepB & RZ & 0.6689001 & 0.217095621 & 0.8859957 & 3541358 \\\\\n", "\t 10\\_MA\\_C & mar1d & YPD & expA & prepA & MA & 0.9618651 & 0.009818573 & 0.9716837 & 3282785 \\\\\n", "\t 10\\_RZ\\_C & mar1d & YPD & expA & prepA & RZ & 0.7497438 & 0.200651686 & 0.9503955 & 1742594 \\\\\n", "\t 11\\_MA\\_J & mar1d & YPD & expA & prepB & MA & 0.9669597 & 0.008717898 & 0.9756776 & 2062181 \\\\\n", "\t 11\\_RZ\\_J & mar1d & YPD & expA & prepB & RZ & 0.7030020 & 0.195547151 & 0.8985491 & 2621913 \\\\\n", "\\end{tabular}\n" ], "text/markdown": [ "\n", "Label | Strain | Media | experiment_person | libprep_person | enrichment_method | prop.gene | prop.nofeat | prop.unique | depth | \n", "|---|---|---|---|---|---|\n", "| 1_MA_J | H99 | YPD | expA | prepB | MA | 0.9641456 | 0.008161923 | 0.9723075 | 2493464 | \n", "| 1_RZ_J | H99 | YPD | expA | prepB | RZ | 0.6689001 | 0.217095621 | 0.8859957 | 3541358 | \n", "| 10_MA_C | mar1d | YPD | expA | prepA | MA | 0.9618651 | 0.009818573 | 0.9716837 | 3282785 | \n", "| 10_RZ_C | mar1d | YPD | expA | prepA | RZ | 0.7497438 | 0.200651686 | 0.9503955 | 1742594 | \n", "| 11_MA_J | mar1d | YPD | expA | prepB | MA | 0.9669597 | 0.008717898 | 0.9756776 | 2062181 | \n", "| 11_RZ_J | mar1d | YPD | expA | prepB | RZ | 0.7030020 | 0.195547151 | 0.8985491 | 2621913 | \n", "\n", "\n" ], "text/plain": [ " Label Strain Media experiment_person libprep_person enrichment_method\n", "1 1_MA_J H99 YPD expA prepB MA \n", "2 1_RZ_J H99 YPD expA prepB RZ \n", "3 10_MA_C mar1d YPD expA prepA MA \n", "4 10_RZ_C mar1d YPD expA prepA RZ \n", "5 11_MA_J mar1d YPD expA prepB MA \n", "6 11_RZ_J mar1d YPD expA prepB RZ \n", " prop.gene prop.nofeat prop.unique depth \n", "1 0.9641456 0.008161923 0.9723075 2493464\n", "2 0.6689001 0.217095621 0.8859957 3541358\n", "3 0.9618651 0.009818573 0.9716837 3282785\n", "4 0.7497438 0.200651686 0.9503955 1742594\n", "5 0.9669597 0.008717898 0.9756776 2062181\n", "6 0.7030020 0.195547151 0.8985491 2621913" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "head(annomapres0)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Store the results" ] }, { "cell_type": "code", "execution_count": 17, "metadata": {}, "outputs": [ { "data": { "text/html": [ "/home/jovyan/work/scratch/analysis_output/out/HTS-Pilot-Annotated-STAR-counts.RData: '79338a9ad2efa4bcd1e6e9fd2a2b0ef7'" ], "text/latex": [ "\\textbf{/home/jovyan/work/scratch/analysis\\textbackslash{}\\_output/out/HTS-Pilot-Annotated-STAR-counts.RData:} '79338a9ad2efa4bcd1e6e9fd2a2b0ef7'" ], "text/markdown": [ "**/home/jovyan/work/scratch/analysis_output/out/HTS-Pilot-Annotated-STAR-counts.RData:** '79338a9ad2efa4bcd1e6e9fd2a2b0ef7'" ], "text/plain": [ "/home/jovyan/work/scratch/analysis_output/out/HTS-Pilot-Annotated-STAR-counts.RData \n", " \"79338a9ad2efa4bcd1e6e9fd2a2b0ef7\" " ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "outfile <- file.path(OUTDIR, \"HTS-Pilot-Annotated-STAR-counts.RData\")\n", "save(mtdf, annogenecnts0, annomapres0, annogenecnts, annomapres, file = outfile)\n", "tools::md5sum(outfile)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Visualize the mapping results" ] }, { "cell_type": "code", "execution_count": 18, "metadata": {}, "outputs": [], "source": [ "### Figures for mapping results\n", "mygeom <- geom_point(position = position_jitter(w = 0.3, h = 0))\n", "mypal <- scale_colour_manual(name=\"\", values =brewer.pal(3,\"Set1\"))\n", "mytheme <- theme(axis.text.x = element_text(angle = 90, hjust = 1)) + theme_bw()\n", "myfacet <- facet_grid(Strain~ Media, drop=TRUE, scales=\"free_x\", space=\"free\")" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Show the fraction of unique mapped reads among all reads (prop.unique)" ] }, { "cell_type": "code", "execution_count": 19, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAABDgAAALQCAIAAAD6tVcNAAAACXBIWXMAABJ0AAASdAHeZh94\nAAAgAElEQVR4nOzdeZQTZbr48TfpbL0vMm4tiwzQNgoICqJz7+BFFFc2EUVFVMZBvS7IoKjt\nXIQfoqMIDCqKu0cUHKUR9Y6gMuhcHBkX3AdapV2gRRl6z1pJqn5/1JmcTHc6vNWdpZJ8P4fD\nqa56q+pJ5UmlntRbVRZN0wQAAAAAmIk13QEAAAAAQEcUKgAAAABMh0IFAAAAgOlQqAAAAAAw\nHQoVAAAAAKZDoQIAAADAdChUAAAAAJgOhQoAAAAA07GlO4Ceamtrmz59erqjAIAuVVVVLVu2\nLOakyZMnK4qS4ngAIHPZbLYNGzZYrfzUnhMyvlAJh8P5+flLlixJdyAAEMOMGTMqKiq6murx\neB588MFUxgMAmWvhwoV1dXWapqU7EKQI9SgAAAAA06FQAQAAAGA6FCoAAAAATIdCBQAAAIDp\nUKgAAAAAMB0KFQAAAACmQ6ECAAAAwHQoVAAAAACYDoUKAAAAANPJ+CfTA93g8/nOPvvsrqZu\n3brV7/e/9NJLb7/9dkNDg81mq6ysHD169NSpU4uKilIZJwAk0J133llfX//oo4+6XC59jMfj\nueqqq4YNGzZ//vwHH3xw/fr1QgiLxVJeXj5kyJBZs2b17t1bCBGZZLVa8/PzKysrhw8fPnny\n5MMOOyyNLwdA1qNQQS5yOp2PPfaYPlxXV7d06dKampp+/frpY9xu94033rh///5LLrmkurq6\nsLDwu++++9///d/8/PwLL7wwbUEDQM/Mmzdv1qxZDz744Lx58/QxK1assFqtN9xwg/5nRUXF\n8uXLNU1raGh4+OGHb7nllqeeekqvaiKTfD7fN9988/LLL2/cuHHJkiXDhw9P2+sBkO0oVJCL\nrFbrgAED9GGPxyOE6N27d2TM0qVLGxoannjiicrKSn3MgAEDxo0b19LSkpZoASAhioqKampq\n5s6dO3LkyDFjxrz11ltbt25dtWpVfn6+3sBqtfbp00cI0bdvXyFETU3NV199NXTo0OhJQohj\njjnmzDPPnDNnzpIlS55//nm73Z6mFwQgy3GNCvBvwuHwli1bxo8fH6lSIsrKytISEgAkytCh\nQy+55JKlS5d++umnK1asuOqqqwYNGhSzpV69KIoSc6rNZrv44osPHDjw+eefJzFcALmNQgX4\nNz///LPf7+/fv3+6AwGApLjsssv69es3d+7c6urqadOmxWzz008/PfPMM4WFhVVVVV0tR99P\nNjQ0JCtQADmPrl8AAOSQvLy8mTNn3nzzzZdffrnFYomedODAgXHjxgkhwuHwUUcdtWjRouLi\n4q6Wo2maEKLDEgAggShUgH9z6KGHulyu+vr6dAcCAMmiX1Vis3U8BqioqFi6dKnFYqmoqCgp\nKYm/EH0/2bmXLAAkCl2/gH9js9nGjh27adOmzv0ZuJgeQHazWq1HH310v379DlqlhEKhtWvX\n/uIXvxgyZEhKQgOQizijAnR09dVX79y58+qrr77kkkuOOeaYoqIi/fbEo0eP5vbEAHKTqqo/\n/PCDEMLr9e7evXvDhg0NDQ1LlizpfFoGABKF/QvQUXFx8apVq1588cU333zz6aefttvtRx11\n1GmnnXbOOeekOzQASI+mpqaZM2fqD3w84ogjTjjhhLvuuosHPgJIKgoV5Lphw4Zt3bq1w0iX\nyzVjxowZM2akJSQASKqY+73rrrvuuuuui9k+ziQASB6uUQEAAABgOhQqAAAAAEyHQgUAAACA\n6VCoAAAAADAdChUAAAAApkOhAgAAAMB0KFQAAAAAmA6FCgAAAADTSd0DH7/66qv169fv3r17\n//79p59++vXXXx+n8Ycffvjss8/u3bu3tLR03Lhx06dPt1gsXTVubW199dVXkxAyAPSUpmlx\npgaDQXZfACCpqakp3SEgpVJXqPj9/iOOOOKUU055/vnn47esq6tbvHjxWWedNXfu3N27d69a\ntUpV1UsvvTRmY5/P19zcvHbt2iSEDAAJ0Nra2tUkn8/H7gsA5A0ePHjBggVxfr/uifz8/GnT\npg0YMCAZC0c3pK5QGTp06NChQ4UQtbW18VvW1tZWVlbOnj1bCNG3b999+/Zt3LjxggsucDqd\nnRvn5eWVl5efffbZnSepqhoIBPLy8hwOh2SQfr9f07T8/HzJ9qFQKBgM2u12m01qS2qa5vf7\nDYWkKEo4HHa5XJKfSaMhCSF8Pp/FYnG5XIZCcjqdVqtU10H9jbDZbHa7XXIVfr9fCCEfUjAY\nDIVCRkMiNw6K3JAMKU5urF27trCwsKt5XS7XxIkTO4/X88Fqtcbc78VkNB/C4bCiKIY2vtF8\n6N7GN5oPhj6YekgOhyMvL0+mfTc+mIFAQFXVZO8rMj03UrOvSGpudGNfkTW5kcbvkTfeeOPn\nn38+7bTTJDPHkPfff//111//9a9/TaFiHqkrVOTt3LlzzJgxkT9HjBjxwgsv1NfXV1dXd27s\ncDgOPfTQm266qfOkcDjc3NzscrmKiookV93S0hIKhXr16iXZ3ufzeTye4uJiyZ2CpmmNjY0O\nh6OkpERyFW1tbYqiVFRUSH4mA4FAe3t7YWGh/K7wwIEDNputrKxMsr3b7fb7/eXl5ZJ782Aw\n2Nramp+fH+dwrQP93G5FRYVke6/X6/V6S0tLJb/DyA3JVZAbMuLnxgsvvBDnG72goCDm7kvP\nB7vdXlpaKhlGe3t7IBCQzwdFUdra2goKCgoKCiRX0djYaLVay8vLJdt7PB6fz1dWViZ5TBMK\nhVpaWgzlQ3Nzs6qqhxxyiGR7PR9KSkokDy5VVW1qanI6ncXFxZKraG1tDQaD8vsKv9/vdruL\niookj+SyIzf0fUVG54a+r8jN3DD0PZLY3Pjyyy/37Nlz0kknJaNQ+fHHHxO+TPSQ6QoVTdNa\nWlqiE1ofju6VeNddd23ZskUfLi4udrlcjY2NXS0wEAgEAgH5tQsh4iwtZnu32+12uyVnEUIE\ng0Gjq2hqapL8tUNv7/F4vF6vfEihUEg+JF1LS4uh9j6fT/8tXIbRN0LX1tZmqD25IYPcSFJI\nOlVV48xoKB90zc3Nhtp7vV6fzyfZWNO0cDhsNKQ4Pd9i8vv9ycsHvX17e7uhkBRFMboKo1vJ\n7XZ7PB759pmeG/pWyujc0NsHAgFFUZIUks6cuSH/PZLY3AiFQpLLQXYwXaEiIz8/P/IDRmFh\noaqqXRXW4XDYYrHId2QMh8NCCPkyXVVVTdNSsAqr1Sp/MKpvEEMhWSwWQyEJIy9B0zR9K8nP\nYnQrRVZh9FWTGwcNidw4qMgbIdm+g5gzdmPLmHbjG9oy2fTBlGwf2Uo59cHs3hthqtzQ96hG\n34isyQ3zvBHIbqYrVCwWS1lZWXRxrw9H9/SYO3fu3LlzI1Ovu+66mKcU9dOyDofDaBcO+ROU\neveewsJCQ9177Ha70e49ZWVlhrr35OfnG+rek5eXZ7R7T0lJiaHuPS6Xy2j3Hvk3Qv91p7i4\n2FD3HnLjoMgNGUZzI1pXPSL0fLDZbEa7cJSWlhrqwpGfn5/srl/FxcWGuvc4nU6j3XuM5kNR\nUZGhrl8Oh8No9x75kPTuPQUFBYa692R6bkT2FZmbG5F9RW7mRrK7fnWVG/LXxiA7mPE5KtXV\n1Tt27Ij8uWPHDpfL1b9//zSGBAAAACCVUleoKIpSX19fX1+vKIrb7a6vr//222/1Se++++78\n+fMj/R2nTJnS0NCwevXq77//fuvWrRs2bJgwYYL8LSwAAAAAZLrUnUHbu3fvnDlz9OGGhob3\n3nvParW+/PLLQojGxsadO3dGLpCqqqqqqalZs2bN5s2bS0tLJ0+efPHFF6csTgAAAABpl7pC\npX///q+88krMSRMmTJgwYUL0mJEjR44cOTIlcQEAAAAwnay6Jqmhsnf0n4f/8F3nBpUNe1IX\nEAAAAIBuyZ5CpUOVIoT4qU8/IYSrbmf0VH2AcgUAAAAws+wpVOLoXMP05NRK56V1eCwcVRBy\nVmtVtRDiJyEEHwQAsYxesLmrSdsXjk9lJADMLycKlQTqXKXEbMMhGnJEnE8EH4SeG79se2SY\nYzhkgThVij6VPAcQjULFAJkqBQC6IfoAbvvC8Sff+UZXDTiSQxajVgEQLXsKlcqGPV0VEp0n\n8UMv0HOU7onS4Wfm+L86I8XOfeCjyDDH0ACQSmZ8Mn23VTbs0f9Fxjg//TgyKbpZqiMDAGSa\n0Qs2n7LwzQ5j0hVMjqAUBBAte86oRNNLkXA43Nzc3GFkDxcr8xMyhRByhOQnAshEXdUk9E3q\nie0Lx1PsJdxBNykZi8yVnYVK8nQoQnw+n8fjKS4udjqdCVxL9MFf8c4vA8OG7ztYJN1eRWQ5\n9I5DN8TvchlzfIf2kdOeAMygw1Fvwo9x9QW63W6/319WVmazcRzSIzKFH9U1Mhc7CHPpfMzX\nXn1sUteiDwditaFWgYzoPNEPPsrLy/Py8mI2jnF372HD87/alcT4MkGHn5m3LxyvaVrn6+kF\nv4wiyTof9XbIzNSGAyDXUahkqm4XEvJ9dahVgJTpfAj42vUn2O320tLStMSDrmTxwTqdsgCY\nTVZdTA8AQELELEiyuEqRQSVjQjmek8h6nFEBACCG7QvHq6ra1NTkdDqLi4vTHQ4gZfPc0dHP\nihUUM8hkFCrmIn8bpW53ykrBKmBCkTddvx4pXW9u5/TjYnrAJA56Sy6Od80p8r5omtbY2Ch4\np5BFKFRMJ/pIrrJhT1tbm6IogWHDE3hk2eFg0fnpxzabraysTL8ohUtTsk/n0jSN73L0eoPB\nYGtra1rCANBZnFqFY18AqUehYkadjyCP2PN98lZx4MCB6JFUKTmCihRAZ9sXjlcUpa2traCg\noKCgIN3hAMhpFCoAAGSA6HMdm+eOjvzJuQ4A2YpCJeliPDhCiPZ/Dff8J+2YF5xEPxeFX80R\nE4kBZJAOPbKir5bWJ1GuAMg+3J44uQ562br8U026PXsPV4EsQE0CZD3uHQwg+1CoJBEVAswj\nulapbNhD6QIAAEyOrl9AruhV/017e3thYWG6AwEAADg4CpUkkn9iCQAAcfTwISfnPvCRfGMA\nMAm6fmU/OvkAQBaIU13EmTR6webTl/6t80iuaQFgfpxRSa4ORYJ+gqV455clJSXJWL4QIhAI\n6N178vPzE7IKAIBJbF84Xn/6uN1uLy0t7eHSRi/YzKkVAGZGoZJSR+79obGxMd1RAAAAAGZH\n1y8AAAAApsMZFQAAEkO/8OO1609IdyBS6PcFwOQoVAAA6KaYl6R3uMWWLl1VQfTtwjoMpyUe\nAJBHoQIAQHcYunFWGq9cf3PeKYFAoKKiQlCfAMgoXKMCAAAAwHQoVAAAAACYDoUKAAAAANOh\nUAEAoDsMXe/BxSEAYBQX0wMA0E2dy4/W1tZgMNirV6+0xJP10nhPAgCpR6ECAADMKOZ91aJH\nUrQA2Y2uXwAAICMZukM0gIyT62dUGip76wOVDXv0gcCw4Q1RDSLjAQBAylCEAMjpMyqRKiUy\n7Dl2SJw2AAAAAFIjdwsV+QqEWgUAgBTj+hMAGd/1S9O0cDjc3t4ec5IQIhgMxpzaWZyCpKsl\nhMNhIYTf71cURSpcIYQQoVBIMiS9sRDC7XZbLBaZ9npIgUBAn1FSV9swTkgej0cyJFVVhRCK\nougDkrNYLBb5kPRX7fV6rVap2ttobkRWYbQ9uRFfN3JDf+8yOjc6rC7O7qt7G1+yvb7NA4GA\nHr8MTdNUVTUaktfrlcwH/VUb3Vd0tQ3jhOTz+QKBgOQswuAHs9v7imAwKNO+27khv69IQW7o\nL/agufHmvFNOX/o3ffi1608494GPOjfoaqXJzg39jcjZ3JD/HknsfkM+J5EdMr5QsVgsVqs1\nPz+/8yRVVRVFycvLizm1rdOYw77/9ue+R8dcS8wliH99Vu12u8PhkIlW07RAINBVSDGpqqqq\nqsvlkjzMUhRFD8npdEquIhAIdLUNY/J6veFwWD6kUCgUDAZtNpv8KvSdsnx7v98fCoWcTqfN\nJpXS8XMjplAoFA6H5duTGzLtczM3olkslpgzapqmKEo3Nr7T6ZTc+MFgMBgM2u12l8sluQpF\nUboKOCafz6eHlJeXJ9M+HA4ripLsfAiHww6Hw263y7RXVdXoBzMcDquqKt9e/2A6HA75fUX3\nckP+g5mC3NBfhUxubPv9aeJfB99vzjvFPLmhp2vO5ob894jR3IjsymLmhmScyBoZX6gIISwW\nS8xDEL3stlqtMadWNuzpcArFZrMVfvl558tU4lxPr+8H8/LyJI+B9F87ugo4Jv0XBZvNJvnh\njP+q46xFvr0eSV5enuTBh/6qjYYkhOhGSJKzdGMrRd4Iyfbkhkz73MyNDmLOmIJ80H8ZTU0+\nGFqF0Y2vaVryQtK3UvfeCMn2+u/H8q+a3JCPJ6m5oW9VckNyLYl6IyTP/CBrZEOh0m2RWiW6\nFHF++nGvXr06jwcAAACQMjldqIiuSxFKFACZJdKVX8eFyACATEdXPwDIeJ2fOMEzKAAAmY5C\nBQAyGzUJACArUagAAAAAMB0KFQDIbFyOAgDIShQqAJCFqF4AAJmOQgUAMt72hePfnHdK9J9p\nDAYAgITI9dsTA0DWeO36EyoqKnhyMwAgO/B9BgAAAMB0KFQAAAAAmA6FCgAAAADT4RoVHFxD\nZe/OI3+KGq5s2JOyYAAAAJALOKOCBIhZyQAAAADdRqGCg6AIAQAAQOpRqAAAAAAwHQoVHATX\nnwAAACD1KFRwcAetVShmAAAAkFjc9QtSoksRt9vdWlUtqE8AAACQNBQq6A7npx+Xl5enOwoA\nAABkLbp+AQAAADAdChUAAAAApkOhAgAAAMB0uEYFQGz6sz4DQniiRnIHBQAAkBqcUQEQg16l\nyI8HAABILAoVAB3Fr0aoVQAAQApQqAAAAAAwHQoVAAAAAKZDoQKgo/hXzHM9PQAASAHu+gUg\nhsqGPZFrUahMAABA6lGoAIitsmHPgQMHbDb2EgAAIA3o+gUAAADAdChUAAAAAJgOhQoAAAAA\n06FQAQAAAGA6FCoAAAAATIdCBQAAAIDpUKgAAAAAMB0KFQAAAACmk9JHuX344YfPPvvs3r17\nS0tLx40bN336dIvF0rmZpmkvvfTSli1bDhw4UFhYOHTo0Msuu+wXv/hFKkMFAAAAkEapO6NS\nV1e3ePHiwYMHL1u27NJLL62trX3uueditqytrV27du3UqVMfeOCBefPm1dfX33XXXSmLEwAA\nAEDape6MSm1tbWVl5ezZs4UQffv23bdv38aNGy+44AKn09mh5T/+8Y/BgwePGzdOCHHEEUec\nc845jzzySDAYtNvtKYsWAAAAQBqlrlDZuXPnmDFjIn+OGDHihRdeqK+vr66u7tByyJAh69at\n27Vr1zHHHNPc3Lxt27YRI0ZEVylffPHFTz/9pA8riqJpWiAQ6LxGVVWFEOFwOObUmDRNE0LI\ntw+FQkKIYDBoaPmqqsqvQn8ViqLE7CbXmR5MKBSSX4UemHz7cDish2S1Sp2R09sn9Y3QVxEM\nBvXNdVDkhuQqBLmRhJA6zBtzxhTkg56iqckHfUCyfWo+mPqMksvvxhthNCT5NyI3cyOVO23J\n3NBDIjckA0tUbkjuyZE1UlSoaJrW0tJSXl4eGaMPNzU1dW48adKkUCh02223CSHC4fCIESNu\nvfXW6Abr1q3btGmTPlxaWtqrV6/29vauVh0MBuUPFnVxlhaT3+/3+/3y7UOhkNFVuN1uQ+0D\ngYChnUg4HDYaksfjMdReURRFUQzNYjQkr9drqD25IYPckGQ0JJ2maXFm7MbGN5oPRjd+/IBj\nMrrxU5APPp/PUHsT7ivIDUnkhoxkf48kMDckK1tkjZReTC/p3Xffra2tnT17dnV19YEDB55+\n+ul7773397//faTcP+OMMwYOHKgPq6r6xhtvFBYWdl6Oqqo+n89utzscDslV+3w+VVVjLi2m\nYDCoKIrT6bTZZLekx+PJy8tzuVyS7f1+fzgcLigokP+1IxAIOBwO+Z5yHo/HarXm5+dLtg8E\nAqFQSD6kcDjs9/sNvRH6HqqgoECyvf5GuFyuvLw8mfbkhnxIhnJDUZRgMEhuyLNYLDFn1DTN\n6/UayocUfDC7lw/5+fmSZ9hSsPH1kOTzQX8jbDZb517KXdE/mPIhGf1gZkdu6CFldG7oIeVm\nbhj6HvF6vRaLJVG5IfnuIGukqFCxWCxlZWXNzc2RMfpwRUVF58ZPPPHE2LFjzzzzTCFE3759\ni4qKbr755rq6umOOOUZv8Otf//rXv/51ZDlvvfVWzA9AOBz2+Xx5eXmGPh6qqsq3F0IoiuJw\nOCT3U5qm6Qej8qsIBoPhcNjlcknuzfXfOex2u/wqjH7BhMPhUCjkdDol9xfBYNDv99tsNvlV\n6L9pybfXNE2vCiR3neSG5Cq6kRvBYJDckNfV97d+wGFo44dCoVAoJJ8PiqLoB6PyqzB6wKGq\nqp4PkuV6KBTSj/zkV+H3+w2FpGlaMBh0OBySx7uqqupHfobKs3A4bOgl6AejkgeX2ZEbke+R\nzM2NbuwryA0Z8XNDMk5kjdS939XV1Tt27Ij8uWPHDpfL1b9//84tA4FAdCLqVT4n+wAAAIDc\nkbquX1OmTJk/f/7q1avPPPPM+vr6DRs2TJo0Sf+x+d13333llVcWLFigd+c4+eSTN23a1K9f\nv2OOOaaxsfHJJ5887LDDBgwYkLJQAQBAV0Yv2NzVpO0Lx6cyEgDZLXWFSlVVVU1NzZo1azZv\n3lxaWjp58uSLL75Yn9TY2Lhz5079VhJCiKuuuqqkpGTdunVNTU2FhYWDBw++7LLL5PuAAgCA\nJIlTpURPpWIB0HMpvZh+5MiRI0eO7Dx+woQJEyZMiPzpdDovu+yyyy67LIWhAQCAhBm9YDO1\nCoAe4pokAAAAAKZDoQIAAGRxngRAylCoAAAAADAdMz7wEQAAmFbkpAq3/wKQVBQqAACgOyLV\nSGNjo9VqLS8vT288ALIMXb8AAAAAmA6FCgAAAADToVABAAAAYDoUKgAAAABMh0IFAAAAgOlQ\nqAAAAOSocx/46JSFb6Y7CiA2bk8MAACQQzo/AGf0gs08+gYmxBkVAACAnDB6weauHtMZ5/Gd\nQLpQqAAAAAAwHQoVAAAAAKZDoQIAAADAdLiYHgAAIKdxJT3MiUIFAAAgJ+gFSfR1869df0JF\nRUX6IgLioVABAADIIZHzJ+3t7YFAIL3BAHFwjQoAAAAA06FQAQAAAGA6FCoAAAAATIdCBQAA\nAIDpUKgAAAAAMB0KFQAAAACmQ6ECAAAAwHR4jgoAAACyxIMPPhhn6nXXXZeySNBzFCoAAADI\nEu+8805kOBwONzc39+rVKzKGQiWzUKgAAAAgS7z44ouR4W+++eaqq66KHoPMwjUqAAAAAEyH\nQgUAAACA6VCoAAAAADAdChUAAAAApsPF9AAAAMgSl1xySWQ4FAp1GPPcc8+lISZ0F4UKAAAA\nssQJJ5yQ7hCQMBQqAAAAyBJz585NdwhIGK5RAQAAQNYKh8OqqqY7CnQHZ1QAAACQJT755BNN\n04YPHy6EaGpqWrp06QcffGCz2c4888z//u//ttk49M0kWfJuaZoWZ2TMqUaXFqelpmmSs/Qk\nJEOrkG/fObYkhdS9VWRuSOSGoSXnYEjxZyQfkhRSKj+YJgyJ3Dhoy5wNKXNzo7OVK1dOnDhR\nL1RWrFhRX19/1VVX+Xy+F198saKiYsaMGd1bLNIi4wsVTdPC4XBra2tXDRRF0e/5ICMcDgsh\n4iytA/1Mos/n8/v9krMIIYLBoPwq9JDa2tosFot8SH6/X1EU+ZDib8OYq3C73ZLt9X1NIBAI\nBoOGVmE0JI/HI7mVdOSG5FqSnRt+vz+ncqNDeDFn1LdMKBQy+krb29sl23fjg3nQ/W3MkNxu\nt+TG796+QtM0oyF5vV6fzyc5i+jWB7Mb+4pAICDTPjtyQ99KGZ0bekiKopgnN3SpyQ3575HE\n5obMnrmhoeGXv/yl3vjdd9997LHH+vfvL4To3bv3k08+SaGSWTK+ULFYLHl5eWVlZZ0nhcPh\n5uZmh8NRVFQkubSWlpZQKBRzaTH5fD6Px1NQUOB0OmXaa5rW2Nhot9tLSkokV9HW1qYoSmlp\nqdUqdUFRIBBob2/Pz8/Pz8+XXMWBAwe62oYxud1uv99fXFycl5cn017/jnc6nYWFhZKraGpq\nEkLIh+T1er1eb1FRkd1ul2lPbkiuIjW54XK5cio3olmt1pgz6vlgs9lKS0slF9Xe3h4IBEpK\nSiTzQVGUtrY2l8tVUFAguYrGxsauAo7J4/H4fL7i4mLJvhahUKilpcXQvqK5uVlVVaP5UFhY\n6HA4ZNqrqtrU1GS324uLiyVX0draGgwG5UPy+/1ut7ugoMDlcsm0z47ciOwrMjc3IvuK3MwN\n+e+RxOaGTMLYbLbm5mYhRHNzs8ViOfroo/XxVVVV+/fvlwwDJsHF9AAAAMgSQ4YM2bBhQzgc\nrqioKC4urq+v18fv2rXr0EMPTW9sMCrjz6gAAAAAuiuvvPKGG2747W9/O3HixPHjx9fU1Eyc\nONHv969fv/6KK65Id3QwhkIFAAAAWWLQoEHLli374x//uHz5cn3Mo48+WlZWdvnll59//vnp\njQ1GUagAAAAgewwePHj16tU//fRTQ0ODpmmHHHJInz59JC+ehKlQqAAAACDbHH744YcffrgQ\nIhwOG7rxI8yDQgUAAABZggc+ZhPu+gUAAIAssXLlyh9++EEfjjzw8aKLLnrzzTfXrl2b3thg\nFGUlAAAAsgQPfMwmnFEBAABAluCBj9mEQgUAAABZggc+ZhO6fgEAACBL8MDHbEKhAgAAgCzB\nAx+zCYUKAADINmeteD8yvH3h+DRGkjVGL9gc/aeZtyoPfMwaFCoAACBLdDiYjow081F1Rui8\nYc2/VSMPfETm4mJ6AACQDWJWKei5rjbs6AWb2eZIKgoVAACQ8ThiThI2LNKIQkI0m7YAACAA\nSURBVAUAAAAxUKUgvShUAABANjP5pRQAukKhAgBAqvFDdcLFrEa2LxxPlZJUbF4kFXf9AgAg\ndSIlij7w9m1jYk7l+K8bti8cH9mAr88ZpapqeuPJAtGbVPfa9ScUFhb+1z1/FWQpko9CBQCA\ntDn17nfEv8qV6CNC89/71ZwiG625uTm9kWQNfZPqCakoSltbm6BEQapQqAAAkGZ6uQKYFpUJ\n0oJrVAAAAACYDoUKAAAAANOhUAEAIHXoQgMAkihUAABIqYPWKtxUFwAEF9MDAJB6kTrE7/e7\n3e6ioqLI9fSUKACgo1ABACD9qE8AoAO6fgEAAAAwHQoVAAAAAKZDoQIAAADAdChUAAAAAJgO\nhQoAAAAA06FQAQAAAGA6FCoAAAAATIdCBQAAAIDpUKgAAAAAMB0KFQAAAACmQ6ECAAAAwHRs\nqVzZhx9++Oyzz+7du7e0tHTcuHHTp0+3WCwxW3q93ueee+69995raWmpqKg444wzpk2blspQ\nAQAAAKRR6gqVurq6xYsXn3XWWXPnzt29e/eqVatUVb300ks7t1QU5fbbbw+Hw5dddtmRRx7Z\n3t7u8/lSFicAAACAtEtdoVJbW1tZWTl79mwhRN++ffft27dx48YLLrjA6XR2aPnKK6/885//\nfOSRR4qLi1MWHgAAAADzSN01Kjt37hwxYkTkzxEjRvj9/vr6+s4t//a3vw0dOnTNmjUzZ86c\nPXv2Qw891N7enrI4AQAAgMz11ltvWSyWp59+Ot2B9FSKzqhomtbS0lJeXh4Zow83NTV1brxv\n377vvvvu5JNPvuOOO9ra2h577LGFCxfed999kQtannrqqQ8++EAfdjgc4XC4tbU15kqFEIqi\nxJwaUzgcFkIYbe/1ev1+v+QsQohQKGR0FW1tbV1dz9OBqqpCCL/fryiKfEhdbcM4Ibndbsn2\n+hsRCARCoZDkLPqrkA9Jb+/xeCS3ErkhHxK5cVBGc6NDeHF2X93IB/mfdfRV+P3+YDAoP0tX\nAcekb3y322104xvKB03TjG4lj8djqEdxMBiUX4UevNGt5PP5AoGATPvsyI3IvsJQbhjdVyQ1\nN/SQTJUbkbWkIDfkv0cSmxvyCWA2+/btu//++zdt2vT9999brdbDDjts+PDhEyZMuOSSS/QG\nX3311fPPPz9lypShQ4emN1RTSenF9JJUVS0sLLzppptsNpsQwuFw1NTU/OMf/zj22GP1Brt3\n737//ff14dLS0l69esXZmaqqqn/U5cnvmnXhcFj/XEnqRkhGP5lGQ9I0zeirNto+BW+E0a1E\nbsggNyQZDUlmRhNu/G6ElOwUFab8YCY7pNzMDRO+ESYMKQW5kYKQusoNvVLKON98883JJ5/c\n3Nx8zjnnXHTRRXl5ebt3796yZUtdXV10obJw4cIBAwYkpFAZO3asz+ez2+09X1R6pahQsVgs\nZWVlzc3NkTH6cEVFRefGFRUVJSUlepUihOjTp48QYv/+/ZFCpaam5pZbbtGHW1tbb7311kMO\nOaTzcsLhcEtLi8vlKiwslIyztbU1FArFXFpMPp/P6/UWFRV1vtImJk3TmpqaHA6H/OU37e3t\niqKUl5dbrVL99AKBgNvtLigoyM/Pl1xFY2OjzWYrLS2VbO/xePx+f1lZWV5enkz7YDDY1taW\nn59fUFAguQo9PaJPwcWnvxElJSWSn0lyQ3IV5IYMo7kRzWq1xpxRzwe73V5SUiK5KLfbHQgE\n5PNBUZT29nZDG7+pqclqtZaVlUm293q9Pp+vtLQ0sj+PT/8l2FBILS0tqqrG/CqJE1JxcbHD\n4ZBpr6pqc3Oz0+ksKiqSXEVbW1swGJTPB7/f7/F4CgsLXS6XTPvsyA19X5HRuaHvK3IzNwx9\njyQ2NzL0yHvJkiUHDhx4/PHHZ82aFT2+rq7O6KK8Xq/Mp8BqtUqmjcml7hqV6urqHTt2RP7c\nsWOHy+Xq379/55bHHXfcTz/9FCnW9+zZI4Q47LDDIg3y8/NL/kXfQVi6oLfvamrP2+uzGG2f\nmyEldRUmDMli1jfChCFld2503sV1kJowuprFaPvM2vhdzUJIGRpSbr5qQuo8NeN8/fXXQoiJ\nEyd2GF9VVaUP3Hnnneedd54QYsaMGforPfXUU4UQL730ksVi+dOf/rRw4cKBAwc6HI5FixYJ\nIVpbW++4446TTjqpV69eTqezf//+8+bNi+533eEaFX0569ev/8Mf/jBo0CCn09mnT5+77rrL\n/GeoUleoTJkypaGhYfXq1d9///3WrVs3bNgwYcIE/cfmd999d/78+V6vV285adIkj8fzwAMP\nfP/9959//vnDDz88aNCg6urqlIUKAAAAJMSAAQOEEGvWrOmqweWXX75kyRIhxO23375169at\nW7euWLEiMnX+/PlvvvnmkiVLtmzZMmnSJCHEnj17Hn300RNOOOGOO+5Yvnz5qFGjli1bdvbZ\nZ8cvPG655Za333575cqV77zzzhlnnHHHHXesXr06YS8yOVJ3jUpVVVVNTc2aNWs2b95cWlo6\nefLkiy++WJ/U2Ni4c+fOSH/EysrKxYsXP/XUU7/73e+KiopGjBhx+eWXZ24ZDQAAgJx1++23\nb9iw4aabblq1atV//dd/jRgx4le/+tVxxx0XadCvX78hQ4YIIaqrq/VzKdEcDsfbb78d3Rdu\n4MCBDQ0NkY5w11577dChQ2tqarZs2TJu3LiuwqioqPjzn/+sH1GPGjXqr3/968qVK6+++urE\nvdDES+nF9CNHjhw5cmTn8RMmTJgwYUL0mGOOOeYPf/hDquICAAAAkmLgwIGfffbZH//4x9de\ne+3RRx/VRw4ZMuThhx/+1a9+ddDZr7jiig5X7ERf/hoMBsPh8OTJk2tqarZv3x6nUNH7lenD\nVqv1xBNPXL9+vaqqklcopYV5IwMAAACyQJ8+fe6///66urqWlpY33njjyiuv/PLLL8855xz9\nSuz4jj766M4jn3766VNOOaWwsNDhcOTn5w8ePFh08diPiN69e0f/WVJSot8dweBLSSkKFQAA\nACAVSktLTz/99CeeeGLevHmtra1r16496Cydbx+6bNmyK664olevXo8//vjbb7/93nvvvfba\na+Jfz97pSszLKEx+Pb0Zn6MCAAAAZLETTjhB/OvetqKLKqIrTzzxxNFHH71x48bIXP/3f/+X\n8AjNgDMqAAAAQLK89tprra2t0WM0TdPPpehdtoQQ+lPU4vfdirBarZqmRZ7kEQ6H9ZuGZR/O\nqAAAAADJsmLFimnTpo0bN27EiBGlpaX//Oc/X3311S+++GLo0KEzZ87U2wwbNszlcj3wwAMO\nh6OsrOzQQw8dO3ZsVwucOnXqnXfeedZZZ02bNq29vX3dunUm78HVbRQqAAAAQLLcc889tbW1\nW7duXb169YEDBwoKCgYNGrR48eIbb7wx8pj50tLS559/fuHChXPmzAkEAmPGjIlTqNTU1Nhs\ntqeeeuq666477LDDpk6desMNN8S85j7TUagAAAAAyXLiiSeeeOKJB202efLkyZMnR4+ZOnVq\nzFMlNputpqampqYmemR0y3HjxkX/GXM5jzzyyCOPPCITfxpxjQoAAAAA06FQAQAAAGA6FCoA\nAAAATIdCBQAAAIDpUKgAAAAAMB0KFQAAAACmQ6ECAAAAwHQoVAAAAACYDoUKAAAAANOhUAEA\nAABgOhQqAAAAAEyHQgUAAACA6VCoAAAAADAdChUAAAAApkOhAgAAAMB0KFQAAAAAmA6FCgAA\nAADToVABAAAAYDoUKgAAAABMh0IFAAAAgOlQqAAAAADZY86cOUcddVSHkQMGDLj66qv14UAg\nsGjRokGDBrlcroEDB65cuTLSLM6k1LOlcd0AAAAAUuymm25at27dww8/PGLEiA8++OCaa66x\nWCzXX399/EmpR6ECAAAApJPFYtEHNE1L9rpUVX3mmWduvfXWCy+8UAgxcODAnTt33nXXXdde\ne63FYulqUl5eXrID64yuXwAAAEDaRKqUDsNJEg6Hg8FgQUFBZExRUdHPP/9cV1cXZ1Kyo4qJ\nQgUAAABIjyRVJg0NDZZ/t3v3bn2S3W4/44wzHnrooc8//1zTtE8++eShhx7SZ4kzKRlBHhSF\nCgAAAJBVDj300I//Xe/evSNTn3jiieOPP/7444+32+3jx4+fNm2aEELv3BVnUupxjQoAAACQ\nVex2+/HHHx89xuFwRIYPO+yw2tpaRVH2799/xBFHPPbYY0KIAQMGxJ+UepxRAQAAANIjBVfP\nd8XhcOh3MV61atWJJ57Yp08fmUmpxBkVAAAAIG00TdOvVElZ0fKXv/xl165dw4YN279//wMP\nPLB79+633377oJNSj0IFAAAASKcUn1fJy8t7+OGHv/76a6fT+R//8R/btm0bPnz4QSelnoFC\nJRQKffrpp/v37z/55JPLysqSFxMAAACA7lmxYsWKFSs6jPzmm28iw2PGjPn8889jzhtnUurJ\nXqOydu3ao4466sQTTzz77LN37dolhPjxxx8PPfTQNWvWJDM8AAAAALlI6ozK5s2bL7nkkhEj\nRsybN+/mm2/WRx555JFDhw5dv379pZdemswID0LTNFVVfT5f50mqqgohwuFwzKkx6bPItw8G\ng0IIRVH0GSUZCikcDgsh/H6/5G22Q6FQJDB5XW3DOKsIBAKSIekvIRQKya9CPwHajZD0gYMi\nN+QZyg09JHJDnqZpMWfUX2Y3Nr58Pujtg8GgoY3fVcAxRTa+ZNbpW9JoPhgKKfLB1F++zPJF\nkvNB30qKokh2/CA3khSS0dxIwb7CzLkhufxIYInKDUNfqcgCUoXKkiVLjj/++O3bt4dCoUih\nIoQ4+eSTn3vuuaTFZkDMD1hkpNEn6XSjvaFZDLXXW8rPYrR9hxkNtTQUkqFVdLt95obUjfYm\nzA2js5jwjUhZSJIzmirljIZkwhRNZcoZbW+2VXRvd2S0febmhgl3Xylbhan2G8huUoXKRx99\ntGjRIpvN1uEnyT59+uzbty85gcmyWCxWq9XlcnWeFA6HvV5vXl5ezKkx+f1+VVXl22uapiiK\n3W53Op2S7d1ud1cBx6QoihDC6XRarVL99AKBgN/vt9ls8qswGlIoFAoGg06nU/LpP/rPcoZC\n8nq9Qgj59qqqKoricDjsdrtMe3JDchXkhgyjuRHNYrHEnFHTNI/HY2jjB4PBUCgknw+KohjN\nB4/H01XAMek/vjocDptN6rsmFAoZ3fg+n89QSJF8iH6eQPz2Ho/HUEiBQCAcDhvKh0AgYLfb\nJWfJjtzQ9xUZnRvd2FeQGzLi54ZknMgaUu93OByOebC1f/9+ye9+AAAAAJAnVagMGjRo27Zt\nHUZqmvbKK68cd9xxSYgKAAAAQE6TKlRmzpz5pz/96amnnoqMcbvd11xzzfvvv3/55ZcnKzQA\nAAAAuUqqULnhhhvGjx9/5ZVX9u3bVwhx2WWXHXLIIatXrz7vvPN+85vfJDlCAAAAADlHqlCx\n2WyvvvrqQw89dPTRR5eUlOzbt++4445bsWLFhg0buKoJAAAAQMLJPpk+Ly/v2muvvfbaa5Ma\nDQAAAAAI+SfTAwAAAEDKUKgAAAAAMB2prl9FRUVxprrd7gQFAwAAAABCSBYq48aNi/4zFAp9\n8803dXV1Q4YM6d+/f3ICAwAAAJC7pAqVl19+ufPI2tra3/72t2vXrk10SAAAAAByXfevUZky\nZcrEiRPnzZuXwGgAAAAAQPTwYvqhQ4du27YtUaEAAAAAgK5Hhcpnn31msVgSFQoAAACATLdu\n3TqbTfZpjXFILeLDDz/sMKapqen1119/6qmnJk2a1PMgAAAAAJjZ3//+9z/84Q8ff/zxd999\nN2vWrMcffzzZa5QqVEaOHBlz/OjRo1euXJnQeAAAAIDcovdR0jQt3YHEFgwG7Xa7x+MZMGDA\n1KlTFyxYkJr1ShUqy5cvj/7TYrFUVFRUVVWNGjUqOVEBAAAAucVisSSkVpk6darNZjvhhBNW\nrFjR2to6YcKExx9/fNOmTXfcccf3339/yimnPP3005WVlUKIzZs333333V988UUgEKiurl64\ncOFZZ50VWYjFYunfv/+aNWt+/vlnt9s9duzYsWPHCiHuvffeDmsMh8O33377k08+6fP5zjrr\nrDFjxvT8VQjJQmXOnDkJWRkAAACAaMm45Hvz5s0Oh+PVV1/dt2/fpZdeev755/t8vsceeywv\nL2/WrFk33HDD+vXrhRCtra1XX331sGHDrFbrunXrJkyY8Mknnxx77LH6QjZu3Pi73/2urq5O\nCOF0OuOsbsmSJQ8//PDq1atPOumk9evX//73v0/Iq0jAZS4AAAAAei5RJ1XKy8ufeuqpvLw8\nIcQll1zy8MMP//jjj4cddpgQYu7cuTfddJPebNq0aZFZFixY8Je//OWFF15YtGiRPqZ37953\n3XWX1XqQm2+pqrp06dL58+dPnz5dCHHzzTd/8MEHtbW1PX8VPbrrFwAAAIBuS9IddI8//ni9\nShFCVFZWVlZW6lWKEOLII49sb2/3er1CiH379t14440jRow46qijDj/88Pfff/+7776LLOS4\n4447aJUihNi7d29bW9t//ud/RsaktOuXy+WSXJzf7+9BMAAAAEBOS8hJFYfDEb3ADn8KIVRV\nFUKce+65JSUly5Yt69u3b35+/uWXX64oSqRlfn6+zLr0aKP7hsXvJyZPqlA599xz//GPf+zc\nubOysrKqqspisezatauhoaG6unrw4MEJiQMAAADIKel9IGFTU9OOHTv+8pe/nHrqqUIIVVW/\n+uqrbtwrq3fv3iUlJZ988slJJ52kj/n4448TEqFUoTJ37tzx48c/+eSTM2fO1E8Aqar65JNP\nzpkz5/HHHz/llFMSEgoAAACQO9J7P+KysrJf/OIXr7/++qmnnqrftmvPnj1xChWfz6dfWO/z\n+Zqamj755BOLxaJfiD937tx77rnntNNOGzBgwF//+tc1a9YkJEKpQuXWW2+dOXPmFVdcERlj\ntVp/85vf7Nix47bbbnvnnXcSEgoAAACA1LBarevXr7/xxhuPOOKIwsLCCy64IP6T3Ovq6oYP\nH64Pf/XVVxs2bMjLywuFQkKImpoat9s9evRol8s1ePDgW2+9NSE3/pIqVD766KMZM2Z0Hj98\n+PBnnnmm50EAAAAASIiXXnop+s9bb7311ltvjfx55plnRs7k/Od//ueOHTtkFiKEOP7447s6\nBWSz2e6777777rsvMua2227rRuQdSN31y+FwxOxq9tFHHyXqWhkAAAAAiJAqVM4999zVq1c/\n+uij+skdIUQoFHrkkUcee+yx8847L5nhAQAAAMhFUl2/7rvvvr///e+zZ8+uqakZOHCgpmlf\nf/11Y2NjVVXVvffem+wQAQAAAOQaqTMqhx9++EcffXTnnXceeeSRn3322eeff15ZWblw4cIP\nP/ww8uwYAAAAAEgUqTMqQoji4uIFCxYsWLAgqdEAAAAAgJA8owIAAAAAqdTlGZWnn35aCDFj\nxoy8vDx9uCuXX355goMCAAAAkNu6LFT0xztedNFFeXl50Y967IxCBQAAAEBidVmovPnmm0II\nh8MRGQYAAACA1OiyUBk3blzMYQAAAABINi6mBwAAAGA6srcn1qmq2t7ermla9MiysrKEhgQA\nAAAg10kVKqqqrl69euXKlfX19YqidJjaoW4BAAAAgB6SKlQWL168YMGCgQMHTpkypbS0NNkx\nAQAAAMhxUoXKY489NmvWrEcffdRq7dE1LR9++OGzzz67d+/e0tLScePGTZ8+3WKxxGm/a9eu\n2267TdO0l19+uSfrBQAAAJBZpAqPn3/++aqrruphlVJXV7d48eLBgwcvW7bs0ksvra2tfe65\n5+K0b2tru++++4YPH96TlQIAAADIRFJnVPr06dPa2trDNdXW1lZWVs6ePVsI0bdv33379m3c\nuPGCCy5wOp2dG2uadv/9948bN87lcu3YsaOHqwYAAACQWaQKlSuvvHLlypWnn356/J5a8e3c\nuXPMmDGRP0eMGPHCCy/U19dXV1d3brxu3bpQKHTRRRfF7PTV1NTk8/n0Yf0uZOFwuHMzfWRX\nU2PSbwwg315VVf1/yVn05XcvJMmbFhgNKbIWoyHpK5IPydAqdN0ISXIWckNyFd0LidwwJOaM\nps0HkcyNn4J8MPqquxFSzu4rRI7lBt8jkqvQJSo3uIFTrpEqVAYNGvTEE0+MHj36kksu6d27\nd4dyZdKkSQddgqZpLS0t5eXlkTH6cFNTU+fGn3766aZNm1asWNFVXbRs2bJNmzbpw6Wlpb16\n9Wpubu5q1YFAIBAIHDTCaHGWFpPH4/F4PPLtg8Gg0VUYPaPl8/kitZyMcDic7JD8fr/f7zc0\ni9GQ2tvbDbUnN2SQG5KMhqRTVTXOjKFQyGwbvxv50NbWltSQhPGN73a7DbVXFKXzHS/jMxqS\n1+v1er3y7ckNSeSGDBN+j3SVG6FQyNBykOmkCpULLrhACFFfX//+++93nprY6ra5ufn++++f\nM2dOdFXTwciRIwsKCvRhq9X66aefulyumIEFAoG8vDy73S65dkVRVFWNubSYQqFQKBSy2+15\neXmSs/j9/m6E5HQ6JU9nhcPhYDBos9lsNtmH5Pj9fqvV6nA4JNsHg8FwOCwfkqqqiqIYetX6\nMWLMboEx6W+Ew+GQvJKK3JAPidw4KKO5Ec1iscTZfaVg4xvNB4vFkuyNbyikQCCgaZrRD6ap\n8kH/YMrvK7IjN/SQyI34TJsbRr/aEpgbPbxeGhlH6gP/4osv9nA1FoulrKwsup7WhysqKjq0\n/Pbbb1taWhYtWqT/qWmapmmTJk2aNm3axRdfrI+cOHHixIkTI8u57rrrioqKOq80HA4HAgG7\n3R5zakwtLS2qqsq39/l8oVDI5XJJfgI1TdMPRuVX0dbWpihKYWGh5IczEAgEg0Gn05mfny+5\nCv1gVD4kt9sdDocLCgok91PBYFBRFIfDUVhYKLkK/Qcq+ZC8Xm8oFMrPz5f8wiA3JFdBbsgw\nmhvRLBZLzBkjx0Dyi21vbw+Hw/L5oP8S7HA4Ir/7HJR+DCQfksfjCYVCBQUFkgeXoVBI3/jy\n+RAMBg1tfD0fXC6X5JGcqqr68bH8KlpbWw2F5Pf79Q+m5PFrduRGZF+Rubmh7ytyNjfkv0cS\nmxvyBRKyg9QOYurUqT1fU3V19Y4dO2bNmqX/uWPHDpfL1b9//w7NBg8e/MADD0T+3LJlyyuv\nvPLHP/6xrKysqyX/85//jJ4lInLkJ//TQiAQUFVV/uMXCoWCwaDD4ZD/5Ph8PqvVKv/Tgh6S\ny+WS/9Vc/7VD/mcnoyEpihIOh+VDinzTy//spJ/cl//ZKRgMhkIhp9Mp/0sYuZGMkMiNzuJf\nsRMIBGLuvkTyN76eD4Y2vs/n6+oUUExGN3738kHTNPkPph6S/AczZfsKU30wU5AbekjkRnym\nzQ2jISUwN3788UchxAsvvCC5NEO+/vrrZCwWPSGbZz03ZcqU+fPnr169+swzz6yvr9+wYcOk\nSZP0z9K77777yiuvLFiwoKCgwOVy9e3bNzKX3gEsekxnTU1NzzzzTLLjB4DuKS4u7mqSoijs\nvgBAntVqffXVV5O3/JKSkuQtHEalrlCpqqqqqalZs2bN5s2bS0tLJ0+eHOnK1djYuHPnzu5d\nIFVUVLRq1aqERgoACWOxWKqqqrqaunz5cvmbpAEA3G5397rayigtLY2zx0bqWWQuhY+fEEZv\nkQEAAAAA8UmdURk3blz0n6FQ6JtvvqmrqxsyZEjni0wAAAAAoIekzqjEVFtb+9vf/vadd945\n9thjExsTAAAAgBzX/UJFCDFr1qwff/zx9ddfT2BAAAAAANCj5+YMHTp027ZtiQoFAAAAAHQ9\nKlQ+++wzyRtvAwAAAIA8qYvpP/zwww5jmpqaXn/99aeeemrSpEmSa/rqq6/Wr1+/e/fu/fv3\nn3766ddff338NT777LN79+4tLS0dN27c9OnTqYgAAACA3CFVqIwcOTLm+NGjR69cuVJyTX6/\n/4gjjjjllFOef/75+C3r6uoWL1581llnzZ07d/fu3atWrVJV9dJLL43Z2OfzPf744zEnaZoW\nCoWsVqv8o8FDoZCmafIPvlVVNRwO5+XlST5bVwgRDAYtFov8I11NGFI4HFZV1WazSVaPKXgj\nTBgSuSHTPkdy49BDD73wwgtjTnrkkUeCwWDMSd3b+PJbRn+luZYP+qdAPiQhRDAYzPR9Bbkh\ng9yQYYbcaGhoKC8vT9Lv1/n5+eedd16/fv2SsXB0g1TeLF++PPpPi8VSUVFRVVU1atQo+TUN\nHTp06NChQoja2tr4LWtraysrK2fPni2E6Nu37759+zZu3HjBBRfoj7HvwO/3b9q0adasWZ0n\nqarq9XrtdnvMGWPyer2qqso/SCgYDAYCAZfLJfkJ1DTN4/HYbDaXyyW5Cr/fHwqFCgsLJT+T\noVDI7/c7nU75/Y7b7bZarQUFBZLtA4FAMBgsKCiQ3E+Fw2Gfz2fojfB4PEKIwsJCyfaKoiiK\nkp+fL/mFQW5IroLckBE/N+65556qqqquCpX169dfc801ncfr+ZCXl5efny8ZRvfyweFwOBwO\nyVV4PB6LxZK8fOjextc0zWg+JPWD6fP5wuGw0X2F/AeT3JBcRbJzQw8pN3PD0PdIYnPj2Wef\n9Xq9EydOTEah8vHHH+/YsWP48OEUKuYh9WmcM2dOsuOItnPnzjFjxkT+HDFixAsvvFBfX19d\nXR2zfVlZ2ZQpUzqPD4fDzc3NLpdLfqfQ0tISCoV69eol2d7n83k8nuLiYsldp6ZpjY2NDoej\npKREchVtbW2KolRUVEjuzQOBQHt7e2Fhofx+6sCBAzabraysTLK92+32+/3l5eWSR37BYLC1\ntTU/P1/+C6OpqUkIUVFRIdne6/V6vd7S0lLJXSe5IbkKckNG/Ny49957wTT0fwAAIABJREFU\n48xrt9tj7r70fLDb7aWlpZJhtLe3BwIB+XxQFKWtra2goED+AKKxsdFqtZaXl0u293g8Pp+v\nrKxM8sgvFAq1tLQYyofm5mZVVQ855BDJ9no+lJSUSB6Cq6ra1NTkdDqLi4slV9Ha2hoMBuX3\nFX6/X3/StuTxbnbkhr6vyOjc0PcVuZkbhr5HEpsbf/7zn71e79ixY+VP6chra2vbsWNHwheL\nnpA9E5cymqa1tLREJ7Q+rB+d6JYtW/bOO+/ow4WFhaqqNjc3d7VARVHiTO0gHA4LIeTbq6oq\nhPB4PF6vV3IWIUQwGDS6ipaWFvnz40IIn8/n9/vlQ9J3uIZCamtrk2yvh+T3+xVFMbQK+ZD0\nVbS3txv6iYXckEFuJDykDvPGnFEPOxQKGQ2jtbVVsn0kHwKBgPwshvIhsvEl2+sCgYB8PnTv\ng+l2u82TD/pW8nq9Pp9PPqRMz43IvsLQG2Gq3NC3Us7mhvz3SGJzIxQKSS4H2cF0hYoMn88X\n/c3ncrn0tI5J0zSjz4qJs7TOC0/NKlRVNbTrlG8fmUs+JJ3R9qlZhaE3gtyQnIvcOGjjboQU\nEX/3lQUbP9lvlqFVpPKDaXT5OfXB7N4bYarciLTPzdwwzxuB7Nb9QuXTTz/Ve13v2rUrcfEI\ni8VSVlYWXXnrw9E9PWpqampqaiJTr7vuupjndiOnZY124ZA/U6x37ykqKjLUvcdut2dB956y\nsjKzde8pKSkx1L2H3DgockOG0dyIZrVaY87Y7S4c5eXl5uneo3f9Ki0tNdS9x+VyJbt7T3Fx\nsaGuXw6Hw2j3HvmQUta9x1S5oe8rMjo3ut31KztyI9ldv7rKDfmL8pEdut/Dz+fz1dXV1dXV\nJTAaXXV1dXQfwR07drhcrv79+yd8RQAAAADMqfuFyqhRo9rb2+U7HyuKUl9fX19fryiK2+2u\nr6//9ttv9Unvvvvu/PnzI135p0yZ0tDQsHr16u+//37r1q0bNmyYMGGC/I0+AAAAAGS67p9B\ns1qt8l0jhBB79+6N3D2soaHhvffes1qtL7/8shCisbFx586dkQukqqqqampq1qxZs3nz5tLS\n0smTJ1988cXdjhMAAABAxkldV7/+/fu/8sorMSdNmDBhwoQJ0WNGjhzZ1VMmAQAAAGQ9A4XK\n119/vXHjxvr6ek3TfvnLX06aNGnAgAHJiwwAkNFOu3ebEGLb709LdyAAgIwk+2je+fPnL126\nNPpWcfPnz7/lllvuvvvupMUGmEVDZe/CLz9PdxRAJhm9YLM+8B//b4sQYvvC8WkNBwCQeaQu\npl++fPl999130UUXbdmy5dtvv921a9dLL700atSoe+65Z8WKFckOEUiXhsreDZW99WHPsUMC\nw4YnYxWR/4FU+vVdW6P/jNQVAJAQkb3KWSve1//U/6U1KGQYqUJl1apVN9544/PPPz927Nh+\n/fpVVVWdf/7527ZtGzNmzEMPPZTsEJHRGip77+/XXz/Ejz7uzyDRMSc2/ugq5cej+gSGDW+v\nPjaBywc6i3mgkPBDhxSsAsgIcTI/Fz4UoxdsPmflhyI3XiySQapQ+eGHH2bOnNlhZF5e3qWX\nXvrDDz8kISpkoZZBx6Q7BGOSXVN1tfxMrOVSzDdkmD7AtjIqcqygD5z7wEcxpyZqLQDEv38i\nzn3gI/3PrP+Y5HiFhkSRKlQOP/xwt9vdebzb7e7dmwMFdCnmcWTCDy6TcbQaZ5kcHKeLfkYu\nUqVERqYrnuww9g//l7KDBo5OkGu6yvkOPxnkoJx94TBKqlCZPn364sWLI8850e3fv//BBx+8\n+uqrkxMYMl4qj/WbB1ZFL9z8B6/xIzR//KnXYZtkxLtsNjJHBj0/euD4A9BFfxb04fHLtqcv\nnJRiP4BEkSpUhg8f/uWXX1ZVVS1atOi555578sknb7rppkGDBpWVlfXv3//lKMkOF+ggcrQa\nuQwmgcvsdgOkUjLejtaq6iQt2fySeoSRkIV3dQEM1+kiE2Vf0kq+oux74UgGqdsTT58+XR9Y\nsGBB9PiPPvro/PPPjx4Tff9i5DKZY/3Khj2JXen+fv0Tsnx9xoOe9Oj28mUOf5OxfTJXWgqG\nyK0OsuONSNkxQfRtiD0ej8/nKysrs9kS9nDhSE0SWRGX6sKEDN1PIjqfAUST+vJ48cUXkx0H\n0A1JPX7tcHja0tISCoV69eqVqCXHCT47joxTKbHlRDLuQ21+WXOcxDEfMp1e0mxfOP7Uu995\n7foTIiMzJbE7xNnY2Gi1WsvLy9MVDzKaVKEyderUZMeBLBN91BgMBltbW/Pz8wsLC1MZg8l/\nC+8Qm6ZpjY2NDoejpKQkXSGZk2Q5mry32+SJJKnzIY6iKG1tbQUFBQUFBWkJqRs6dPrfvnC8\n/nwGwGw6fOLinE7pqmXnS1yAHGTsdHxbW9t3330nhOjXrx+HU0gvOlAhGW/uT336JXyZSAj5\nvjQZ9NszcoSekK2trcFg0NCZ+XMf+Ojt28bowyQ2cpDUxfRCiF27do0fP768vHzYsGHDhg0r\nLy8/88wz6+rqkhoc0JXcvMo5N1U27In+l//5p/mff6oPJ3xdPNwmjg5VgcmvXDdzbEBXYubt\nqXe/k/pIAJOQOqPyzTffnHLKKc3NzSeffPKQIUOEEF988cXmzZtPPvnk999/f8CAAUkOEuio\nw0Gq1+v1er2lpaV2uz1dIQFZTD9+Omflh6/PGSX+vXdKan7ipfBA1pO8gTgnVZBTpAqV//mf\n//F6vZs3bz7jjDMiI994440JEyYsWLDgueeeS1p4QCJld0+w7H51qVHZsCccDjc3N7tcrqKi\nonSHYxZmKBK6Ojhrbm5WVfWQQw5JcTxAulCrIKdIdf166623rr322ugqRQhxxhlnXHPNNW+9\n9VZyAgMSrHPvncizMjK0Y0979bGBYcP39e4r6JuEVDlrxfud+4ClKxgga/A5AmKSOqPS0tIy\ncODAzuMHDhzY0tKS6JCAJIoc0Ds//Tj6z4w7HRFdmWTuq4D50R0FSIGYnyC/3+92u4uKilwu\nV+pDMoPInZrTHQjSRuqMypFHHvm3v/2t8/i//e1vRx55ZKJDAhKv8wmH3HxWBgAA5mTyW3Qg\nLaQKlSlTpqxZs+aee+7x+/36GL/fv2TJkueee27KlCnJDA9InQzqPRUn1Ax6FTA/+YMGDi8A\nJMS4+97VB2I+Uga5RvZi+jfffPO222676667BgwYoGna7t273W73kCFDfv/73yc7RKCHcu3Y\nnQ5gSBSeMA0gNahGEJPUGZWysrLt27ffeeed/fv3//rrr3fv3t2/f/+FCxe+9957ZWVlyQ4R\n6AlDVUpGlDQZESQAAN1z7gMf/cf/2xI9hjImZ8k+mb6wsHDBggULFixIajRAh7MBPT85EJk9\nF47vOZECAMg43LQDXTl4oeL1ehctWjRlypRRo0alICCgobJ3/uefilSVFhl3cB8JuK2tTVGU\niooKq1Xq1CgAAGbD2RLEcfBCJT8/f9myZeedd14KokGOi1QmviHD9FpFJO6Ki+iF8FA/AADM\njPMnEDKFisVi6dOnz759+1IQDRDhGzIs3SEAAIDk6lCQuN1uv9/PJdDQSfUYmTFjxooVK0Kh\nULKjQS7jlrsAAACIkLqYvrq6+umnnz722GOvuOKKo48+2ul0Rk+dNGlScmJDDjloKcItdwEA\nAHKKVKFy4YUX6gO33XZb56mapiUyIgAAAAA5T6pQefHFF5MdB3KZZM8uTqoAAADkDqlCZerU\nqcmOA7msc/nR1NQkhKioqEhHOAAAAEg/Hr8AAAAAwHRkn0wvhPj66683btxYX1+vadovf/nL\nSZMmDRgwIHmRAQAAAMhZUoWKpmnz589funRp9HXz8+fPv+WWW+6+++6kxQYAAAAgR0l1/Vq+\nfPl999130UUXbdmy5dtvv921a9dLL700atSoe+65Z8WKFckOEQAAAECukSpUVq1adeONNz7/\n/PNjx47t169fVVXV+eefv23btjFjxjz00EPJDhH4/+zdeXwURfo/8JojMzlJOANEFg0RCIJg\nOFRuEBFWE4IGIchyqMixqIC6yJ0goICwuFyiu3JIOBUEVrkPEUQRUEAN92lArtyZe7p/f/T3\nN6/ZzGRS3TNd09P5vP/gNXSqp6p7nq7pp7u6JtQJ05rhZysBAAAA6FElKtevXx8yZEi5hTqd\nbtCgQdevX5ehVQAhLC+hgWdOgiwFoCJPTN8V7CYAAIASUSUqdevWLS0t9VxeWlraoAFOvwC8\nyE9qLLxwT1GQrgD49tyiE8KLJ6bvQgIDAFDFUSUqmZmZM2fOdDgc7gvv3LmzePHikSNHytMw\ngJCEVARAFCEbcc9Jnpp7GCkKAAAQylm/HnvssZycnCZNmgwZMqRRo0ZWq/XMmTMrVqxISkpK\nTEz86quvXCXT09NlaypAiLG2fMzqsTAvoYHnD1wCACGk43v7yi15YvquH7KfCUpjAAAg6KgS\nlczMTOHF9OnT3ZefOHHihRdecF/iPn8xGzzPcxzndWSa0Bi73e71r15xHEcIoS8v3GWyWCx2\nu51yFUKI0+kUW0VZWZlGo6F8c0KI1WoVXlCqaB96JWysyWSibJKwV202G314CCXF7iWz2Wy1\neqYGFb5/wGOjqEkyzVvlJTSIPZfr9U+IjUqFaGz4qM5H9yVrPLh2vvCCsrWi4kFokslk0mq9\n373vMe+I63VFd1F8V8dxXEX70EeTLBaLzWajKS98EA6Hg74K4fgSW95qtZYbtuC7SaEeG66+\noqLY8Hx/Iv7ARGxUSnJs0H+PBDY2RH1/gQpQJSqbNm2Sux2SaTQajUZjNBo9/8RxnNVq1el0\nXv/qlXB40JcnhDgcjrCwsLCwMJrCPM9bLBatVktfhdPp5DjOYDBQ9uZ2u91ut+v1evoqLBZL\nRfvQK47jnE4nfZMcDofNZhPVJOGcUsIHoddThbQcsXHnwUTKt/L6PogNyipCMTZ887oiz/NW\nq1VsPDidTqPRSHnCIex8UVtqtVpFxQPP8w6Hw2Aw6HQ6ylU89Zh35Lsp3Sv6q3BOKbZJer2e\nvtMW+0E4HA6O4+jL22w24cA0GAwyNUmBseHqKyhjw+l0ij0w5Y4Noa9AbFQqsLFB+eUCqkH1\nzZ2RkSF3O/yh0Wi8ditC2q3Vaik7HeGtCCH05YVLETqdjv47z0eDfTeJ8uAUrnbQN8lVC315\n4UxRr9eLOvmQ9YMQzhTpv2AYxIYPXod+ITbo20NUFBsV7V4J8SCEgV6vF3WJWtZ4EM4U9Xq9\n1yyR/kGUTjP3VzQATKPR8Dzvu0muin7IfsY9HoTlvoeWCUeNrPEghJys3yMKjA1XX0F5BUHY\nq2I/iEpjw50C+wrEhte3oq+3aiotLY2JianorzzPm0ymf/7zn5s2bbpw4YLBYEhKSnr22WfH\njh0bFxfHsp2UqDoIAKhUufTDbDaXlZXFxMRIvtAOoGLMHpevqCLXcjwGAwBBxnGmDRvNe/fy\nRcVhLZpHjxqlq1Nb8ptFRkb+/PPPwuvjx48PHz48JyenWbNmwpLCwsIuXbpcv3594sSJ7dq1\ni4uL+/333//9739HR0e//fbbAdiWQEOiAgAArHnNDRwOR2FhYURERFRUlByVPjF91/4Jnbwu\nR64CAMGSP3K0+euvhdfWo0dNGzbW3vGNvuFfpL2bVqtt1aqV8LqwsJAQ0rhxY9eS4cOHX7hw\n4fTp00lJScKSVq1aDRw48O7du35tg2ww1A8AANTJ83ZK9znfEUI6zzoQjOYAAJRn/vobV5Yi\n4IqKCidOlKMuu92+bt26IUOGuLIUl9q1pd/DkRUSFQAAqOrwyy0AEBTW7w57WXjkeyLD/GY3\nbtwoKytr0aJFwN9ZPkhUAABAhSrKPZ5bdIJxSwAAKsR7mwSc54kMP/jB/kdE/IdEBQAAADdV\nACAIDO3aeVnYpjWhmxBPlAYNGkRFRZ05cybg7ywfPEwPAAAq5PX5eJPJZDKZqlWrRvnDFAAA\nsorsm2764gvroe9cSzQREXGzZ8tRl8FgGDBgwMqVK996661yj6ncvXtXmY+p4I4KAAAAAEAw\naLU1V62MnTzJ0LZtWJPGkRkZdfbsCmvaRKba5s6d26hRo7Zt286dO/fbb7/95Zdf1q5d2717\n91WrVslUo59wRwUAAAAAIDg0BkP06FHRo0cxqKtGjRo//vjjggULcnJysrKyjEbjww8/nJmZ\nOXz4cAa1S4BEBQAAAABAbbp27er5AH1UVNTUqVOnTp0alCaJhaFfAAAAAACgOEhUAEBt8hIa\nuF4UPNzE2vIx94UAAAAQEpCoAICqCAlJubTkzoOJQWoOAAAASIREBQDUyfMWCm6qAAAAhBAk\nKgCgHkhFAAAAVAOJCgBUIchkAAAAQgUSFQBQCcokBLkKAABASECiAgBqgPQDAABAZfCDjwCg\nBgl5N7wuN5lMJpMpNjY2LCyMcZMAAADAH7ijAgAAAAAAioNEBQAAAAAAFAeJCgCARMKDMWWP\ntCB4SAYAACDQ8IwKAIB07vmJ63VFD8wAAAAAPdxRAQCQwj1FsbZ8rKI/AQAAgDRIVAAAAAAA\nQHGQqAAAiFbpPRPcVAEAAPATEhUAAAAAAFAcJCoAAOJQ3i3BTRUAAAB/IFEBABAHk3oBAIBi\nZWRkNG3a1GQyuZYUFxcnJiYOGzaMEDJ27FiNRqPRaLRabf369TMyMs6dOycUc/1Jp9PFxcW1\nbt36nXfeuXbtWnA2gxCC6YkBACRwz1UKCwsdDketWrWC2B4AAAhRRSb78v0Xjpy/W2JxNKlX\nbUT3pFYNq/vzhp9++mnLli3ffPPNTz/9VFgyevRovV6/aNEi4b/x8fEHDx7kef7ixYtvv/12\nr169fvvtt8jISPc/lZSUnDp1asmSJcuWLdu2bVv37t393ExpkKgAAAAAAASB3cm9sfr4uVvF\nwn9/vpo/8rNjy19p1/Iv0nOV6tWr5+TkdOvWrVevXi+88EJOTs7GjRuPHj0aHR0tFNDr9U2b\nNiWEJCcnE0LS0tJOnDjRqVMn9z8RQtq1azdkyJBu3boNHjz40qVLRqPRny2VBkO/AAAAAACC\nYPvJPFeW4jL/61w/37ZTp06TJ08ePnz4oUOHRo8ePXv27NatW3stGRUVRQixWCxe/2owGN59\n9928vLzDhw/72SRpkKgAAAAAAATB2ZvlsxRCyIXbJQ4n7+c7T5s2rVmzZt26dXv88cffeust\nr2WuXr2anZ0dGxtbURpDCGnRogUh5NKlS362RxokKgAAAAD+emL6rmA3AUKPMczLqXiYTqvT\navx8Z51ON336dI7jsrOzNZr/ebe8vDy9Xq/X6x966KE///zzyy+/rFGjRkXvw/M8IaTcOzCD\nZ1QAAAAAqAjZyA/Zz3SYsVdY8kP2M0FtEYS2zk3rbPrxermFnZrUCUheEBYW5vrXXXx8/N69\ne7VabXx8fM2aNX2/yenTpwkhjRo1CkCDxMMdFQAAAAARPG+eCEtwUwXEaptYc8CTDd2X1K8e\n8fazybJWqtfrmzdv3qxZs0qzFJvNNmfOnAceeKBjx46yNqkiuKMCAAAAUDmvecgT03fhpgr4\nY2yvph0a1/7u3N1Si71pvWpprR8ID9MFqzEOh+Ps2bOEEGF64sWLF1+8eHHbtm0GgyEo7UGi\nAgAAACCdewKDvAUkaJtYs21iJTc32Lh9+3ZycrJWq42Ojk5MTOzRo8fWrVsbNmxY+ZrywNAv\nAAAAgErQD+vCADBQiK5du/I836ZNG/eFCxcu/OOPP7yWX7hwIc/zPM87nc6ioqKff/75ww8/\nDGKWQhjfUTl+/Pjnn3/+xx9/xMbG9ujRIzMz0+scAjzPf/HFF/v27bt3715UVNSjjz46ePDg\n2rVrs2wqAAAAgAC5B0BQsLujcu7cuZkzZzZr1mzBggWDBg3avHlzTk6O15KbN29et25dRkbG\nokWL3n777cuXL8+aNYtZOwEAAAD8gcQGICDY3VHZvHlzQkLCiBEjCCENGza8devW1q1b+/Xr\nZzQay5X8/fffmzVr1qNHD0JIvXr1nn322Y8//thut3tOrwYAAAAgN8/HTpxOZ0FBgdFojImJ\nCUqTAKoCdolKbm5uly5dXP9NSUnZsGHD5cuXk5PLT8HWokWL9evXnz17tmnTpgUFBYcPH05J\nSXHPUi5dunT//n3htdls5nnebrd71shxnPCv1796JfyoDX15p9Mp/Eu5ivD+FTXYd5O0Wqrb\nX2Kb5KqFvrywYx0Oh/CiUg6Hg8j8QbiaJKo8YoOyFsRGYJtUbl2vK0qIB9eWUv4sF8t4EDaH\nskkMDkz6vSS8f6j3FYgN+iro95I6vkdCLjYoAwZUg1GiwvN8YWFh9erVXUuE1/n5+Z6F09PT\nHQ7HxIkTCSFOpzMlJeXdd991L7BixYqdO3cKr2NjY2vVqlVUVFRR1TabzWaziWqtj3fzymQy\niSpvt9vFVlFSUiKqvMVisVgs9OWFp6ZkbZLVarVaraJWEduksrIyUeURGzQQG5TENknA87yP\nFR0Oh9i3LS4uFlVe7M733WCvSktLZW0SUeSBKba82Ww2m8305REblBAbNMTGhtjvkQDGBv1V\nJ1AHJU5PfOTIkc2bN48YMSI5OfnevXsrV66cO3fu1KlTXel+586d4+PjXeW///77iIgIz/fh\ned5isej1evoxY1arleM4r+/mlcPhsNvtBoNBp6Od8dpsNut0OvrpqG02m9PpDA8Pp7/aYbPZ\nwsLC9HraD9dsNmu1Ws8xeBWx2+0Oh4O+SRzHWa1WUR+E0AOGh4dTlhc+CKPRSHlvAbFB3yTE\nRqXExoY7jUbjo/sStfOlxYOoLTWbzRqNhn7nC/FAv/OlxQPP8/Q7X2gS/YEpfBCiDkxpfQX9\ngamO2BCaFNKxITSpasaG2O+RAMYGZcCAajBKVDQaTVxcXEFBgWuJ8LpGjRqehf/zn/907969\nV69ehJCGDRtGR0e/8847586da9q0qVCgZ8+ePXv2dL3PDz/8EBUV5fk+TqdTOOHw+lev7HY7\nx3H05c1ms3AORNkp8DwvnIzSV+F0Op1OZ2RkJOXBabVabTabwWCg7wqFk1H6JpWWljocjoiI\nCMre3G63W63WsLAw+iqEa2b05U0mk91uDw8Pp/wOQ2xQVoHYoCE2NtxpNBqvK7rOj+nfluM4\nUfEg3DUyGAyRkZGUVQjnQPRNKisrE+KB8pzG4XCIjQebzSZq55tMJiGXpjy55DhObDwIQx/p\ny1ssFqGvoDyTU0dsCPOfhnRsOJ1OIXeqmrFB/z0S2Nigv/YH6sAuMU1OTj558qTrvydPngwP\nD09MTPQsabVa3Q8YIcsXhkUCAAAAAEBVwC5Ref755/Py8pYvX37t2rUDBw5s2bIlLS1NuNh8\n5MiRCRMmuAaGPvnkkzt37ty/f//NmzfPnDmzbNmy+Pj4pKQkZk0FAAAAAIDgYveMSpMmTSZP\nnrxmzZpdu3bFxsb27dt34MCBwp/u37+fm5vrekBq+PDh1apVW79+fX5+flRUVLNmzQYPHkw/\n4BIAAAAAAEId04fp27Zt27ZtW8/laWlpaWlprv8ajcbBgwcPHjyYYdMAAAAAAEBBMHkCAAAA\nAAAoDhIVAAAAAABQHCQqAAAAAACgOEhUAAAAAABAcZCoAAAAAACA4iBRAQAAAAAAxUGiAgAA\nAAAAioNEBQAAAAAAFAeJCgAAAAAAKA4SFQAAAAAAUBwkKgAAAAAAoDhIVAAAAAAAQHGQqAAA\nAAAAgOIgUQEAAAAAAMVBogIAAAAAAIqDRAUAAAAAABQHiQoAAAAAACiOPtgNAAAAAAAIjKys\nLFHLQclwRwUAAAAAVELrhuO48+fPnzhxQqvFGW9Iwh0VAAAAAFCJadOmuf/X6XTOnTs3MTEx\nWO0BfyC/BAAAAAB10ul0L7zwwqZNm4LdEJACiQoAAAAAqFZBQUFZWVmwWwFSYOgXAAAAAKjE\n2rVrXa95nr9///7evXvbt28fxCaBZEhUAAAAAEAlvv76a9drh8Nx79691q1bv/POO0FsEkiG\nRAUAAAAAVCInJ8f9v/n5+e+9996xY8c6d+4crCaBZHhGBQAAAADUqUaNGq+88spnn30W7IaA\nFEhUAAAAAEC1tFrt7du3g90KkAJDvwAAAABAJY4dO+Z6LTxMv2nTpkceeSSITQLJkKgAAAAA\ngEpMmDDB/b8REREpKSlvvvlmsNoD/kCiAgAAAAAq8c0337heazSa8PDwIDYG/IREBQAAAABU\nIiIiguO4srKymJiYYLcF/IWH6QEAAABAJX799deMjIy0tLQRI0bk5+cTQg4ePPjTTz8Fu10g\nBRIVAAAAAFCJRYsWPf300wsWLIiIiBB+pd7pdJb7cRUIFRj6BQAAAAAqce/evZEjR2o0Go1G\ns3TpUkJIUlLSlStXgt0ukAJ3VAAAAABAJcLDwzmOI4TEx8cXFBQQQrRard1uD3a7QAokKgAA\nAACgEl26dPnss884jjMajULGcvDgwYYNGwa7XSAFhn4BAAAAgErk5eUdOXLk4MGDDzzwQGlp\n6bhx486cOTNr1qxgtwukQKICAAAAACqh0+k6d+4svO7atWt8fPwbb7zx0EMPBbdVIA0SFQAA\nAABQiWnTpgW7CRAwIZ+o8DzvdDqFh6W8stlsPv5ajtPpJITQlxfGPpaVlZlMJspVCCF2u11s\nFYWFhRqNhqY8z/OEELPZbLFY6Jvkex96bVJxcTFleaFJFovFZrOJqoK+SUIVJSUllHtJgNig\ngdgIeJPKret1RaHZDodDbDOKioooy7viwWq10q8iKh5cO5+yvMBqtdLHg7QDs7S0VDnxIOwl\nk8lkNpvpmxTqseHqK0R9EIqKDWEvVdnYoP8eCWxsOBwOyvcBdQj5REWj0eh0uurVq3v+STgw\nDAZDdHQ05bsVFhY6HA6v7+aV2WwuKyuLiooyGo005Xmev3//flh93E3/AAAgAElEQVRYWLVq\n1SirKC4uttlscXFxWi3VzAdWq7WkpCQiIiIiIoKyinv37ul0uri4OMrypaWlFoulWrVqOp2O\nprzdbi8qKgoPD4+KiqKsQviFJvoPwmQymUymmJiYsLAwmvKIDcoqEBs0xMaGO61W63VFIR70\nen1sbCzlW5WUlFit1tjYWMp4sNlsxcXFERERkZGRlFXcv3+/ogZ7VVZWZjabY2Ji9Hqq7xqH\nw1FYWGg0GunjoaCggOM4sfEQHR1tMBhoynMcl5+fbzAY6H/iuqioyG630zfJYrGUlpZGRkaG\nh4fTlFdHbLj6itCNDVdfUTVjg/57JLCxQRMwWVlZopaDkmHWLwAAAABQCa0bu91+7ty5w4cP\nC/eCIOSE/B0VAAAAAABBuWdUOI779NNPRQ0yBOXAHRUAAAAAUCetVjt48OA9e/YEuyEgBRIV\nAAAAAFCzgoICYX4FCC1IVAAAAABAtcLDw7/55hvKWV5AUZCoAAAAAIBKXLx4sdzM2hqNxmAw\n/Pzzz7m5ucFqFUiDRAUAAAAAVGL48OE3btzwXH7s2LF169axbw/4A4kKAAAAAKhco0aNLly4\nEOxWgDiYnhgAAAAA1CM7O9vz15YtFsuff/4ZlPaAZEhUAAAAAEA9HnrooZiYGM/lLVu2ZN8Y\n8AcSFQAAAABQj8GDByclJQW7FRAAeEYFAAAAAFRCp9Phd+hVA3dUAAAAAEAl9u7dG+wmQMAg\nUQEAAAAAVeF5/u7du4SQ2rVr4wZL6EKiAgAAAAAq4XQ6161bt379+rKyMkJIVFRUZmZmZmam\nVovnHUIPEhUAAAAAUIl///vfBw4ceO2115KSkmw225kzZ9auXVtWVvbaa68Fu2kgGhIVAAAA\nAFCJHTt2LFmyJCEhQfhvq1at6tevv2jRIiQqoQh3wQAAAABAJcLCwlxZiiA5OdlqtQarPeAP\nJCoAAAAAoBINGzY8ffq0+5LDhw8//vjjwWoP+ANDvwAAAABAJVq1ajVp0qSePXsmJSXZ7fbT\np08fO3bs5Zdf3r9/v1Cge/fuwW0h0EOiAgAAAAAqsXLlSkLItm3b3BcuWbLE9RqJSghBogIA\nAAAAKoEffFQTPKMCAAAAAACKg0QFAAAAAAAUB4kKAAAAAAAoDhIVAAAAAABQHCQqAAAAAACg\nOEhUAAAAAABAcZCoAAAAAACA4iBRAQAAAAAAxUGiAgAAAAAAioNEBQAAAAAAFAeJCgAAAAAA\nKA4SFQAAAAAAUBwkKgAAAAAAoDhIVAAAAAAAQHGQqAAAAAAAgOIgUQEAAAAAAMVBogIAAAAA\nAIqjZ1nZ8ePHP//88z/++CM2NrZHjx6ZmZkajcZrSZPJlJOTc/To0cLCwho1avTs2fPFF19k\n2VQAAAAAAAgidonKuXPnZs6c2bt37/Hjx1+6dGnp0qUcxw0aNMizpM1mmzRpktPpHDx4cP36\n9UtKSsxmM7N2AgAAAABA0LFLVDZv3pyQkDBixAhCSMOGDW/durV169Z+/foZjcZyJbdt23b3\n7t2PP/44JiaGWfMAAAAAAEA52D2jkpubm5KS4vpvSkqKxWK5fPmyZ8nvv//+0UcfXbNmzZAh\nQ0aMGLFkyZKSkhJm7QQAAAAAgKBjdEeF5/nCwsLq1au7lgiv8/PzPQvfunXr6tWrTz755JQp\nU4qLiz/99NPs7Ox58+a5HmhZv379L7/8IrzW6/VOp9NrJsPzPCHEbrfT5zlOp5MQIra8xWKx\n2WyUqxBCHA4HfRUOh4MQUlpaWtHzPF6bZLVahRUpVbQPfTSprKyMskkcxxFCbDab8IJyFY1G\nI/aDMJlMWi1V7o3YoG+S0mJD+OxCOjbKVeej+5K28ynLC/vcarUK7afB8zzHcWKbZDKZKONB\n2GqxfUVF+9BHk8xms9VqpVyFiDwwJfcVdrudprzk2KDvKxjEhrCxIR0bQpOqbGzQf48Ett+g\nj0lQB6YP01PiOC4qKmrcuHF6vZ4QYjAYJk+e/Pvvvz/yyCNCgV9//XXv3r3C69jY2Fq1avno\nVpxOp9iwFvUFRv5/h0uP4zixVYg62SWEOBwOUSejPM/L3SSxH4SEJon9IBAbNBQYG0T+D4JB\nkwS+d6+EeBBbnsGBiXigIfbAZNBXIDZoVM3YCOL3CH2mCurAKFHRaDRxcXEFBQWuJcLrGjVq\neBauUaNGtWrVhCyFEPKXv/yFEHLnzh1XojJ+/PhRo0YJr0tKSmbMmOF+r8bF6XQWFxcbjcbI\nyEjKdhYXFzudTq/v5pXFYjGbzVFRUQaDgaa8cGcpLCwsOjqasorS0lK73R4bG0t5Pdhms5WV\nlUVERISHh1NWUVBQoNPpqlWrRlneZDJZrVb6JgkXnMLDwyMiIiirKCoqIoTExsZSlhc+iJiY\nGFfY+IbYoKwCsUFDbGy402q1XlcU4kGv19M/qldWVmaz2eh3vt1uLy0tFbXzCwsLtVotfTyY\nzWaLxVKtWjWdTkdTXtj5oppUXFzMcVxcXJyoJkVHR4eFhdGU5ziuqKjIYDBERUVRVlFSUuJw\nOOjjwWq1mkymyMhIzyc2vVJHbAh9RUjHhtCkqhkbor5HAhsblD05qAa7zzs5OfnkyZOvvPKK\n8N+TJ0+Gh4cnJiZ6lmzevPmxY8ecTqcQozdu3CCExMfHuwq4pzcFBQUajcZHT+f7r56FCSH0\n5YUDW6vVUq4i3JaV1iTKTkRsk1y1iG0SfRXC9Q9RVQjka5JrLcQGTS2IDZoqxG6Ci9cVGcSD\ncBlY7J4hcu58CVsttklijwJhE6paX4HYoH9/xAalQMUG5RA1UA12D9M///zzeXl5y5cvv3bt\n2oEDB7Zs2ZKWliZcJDhy5MiECRNMJpNQMj09vaysbNGiRdeuXTtz5syyZcsaN26cnJzMrKkA\nAAAAABBc7O6oNGnSZPLkyWvWrNm1a1dsbGzfvn0HDhwo/On+/fu5ubmu8Y4JCQkzZ85csWLF\nW2+9FR0dnZKSMnToUOTQAAAAAABVB9Ohfm3btm3btq3n8rS0tLS0NPclTZs2nTNnDqt2AQAA\nAACAsrAb+gUAAAAAAEAJiQoAAAAAACgOEhUAAAAAAFAcJCoAAAAAAKA4SFQAAAAAAEBxkKgA\nAAAAAIDiIFEBAAAAAADFQaICAAAAAACKg0QFAAAAAAAUB4kKAAAAAAAoDhIVAAAAAABQHCQq\nAAAAAACgOEhUAAAAAABAcZCoAAAAAACA4iBRAQAAAAAAxUGiAgAAAAAAioNEBQAAAAAAFAeJ\nCgAAAAAAKA4SFQAAAAAAUBwkKgAAAAAAoDhIVAAAAAAAQHGQqAAAAAAAgOIgUQEAAAAAAMVB\nogIAAAAAAIqDRAUAAAAAABQHiQoAAAAAACgOEhUAAAAAAFAcJCoAAAAAAKA4SFQAAAAAAEBx\nkKgAAAAAAIDiIFEBAAAAAADFQaICAAAAAACKg0QFAAAAAAAUB4kKAAAAAAAoDhIVAAAAAABQ\nHCQqAAAAAACgOEhUAAAAAABAcZCoAAAAAACA4iBRAQAAAAAAxdEHuwH+4nme4ziLxeL5J47j\nCCFOp9PrX70SVqEvb7fbhX95nqdcRahFbJOsVqtGo6Ep73A4hH/pqxDbJKfTKTRJq6VKdIXy\nopok7E/68sJW22w2oa5KITZkahJiQyye572uKGymtJ0vXzzwPF9Rg300yWazCXVVSsLOF9sk\nVzwIddG8v9gmSe4rKMsrMzZIxcHso0khHRssv0coy1eF2KD8dEA1Qj5REXg9F3QtFHWmKK28\nqFVElRdKSigv31aL3bEK/CAU2CQJ5RUYG2JXUeAHwaxJvldU4J6RUIXYkEP3FaJNEgprNBrE\nRmCb5Cofuk2SUIXkzxpUKeQTFY1Go9VqIyIiPP/kdDrNZrNOp/P6V6+sVivHcfTlCSE2m81g\nMBiNRprCPM+XlZWJapLdbnc6neHh4ZSXqK1Wq9VqDQsLo6+irKyson3oldPpdDgcRqNRp9PR\nlLfb7RaLRa/X01dhNpsJIfTleZ632WxGozEsLIymPGKDsgoJsWG32xEb9DQajdcVeZ43mUyi\ndr7D4XA4HPTxYLPZLBaLqHgwmUwVNdgrjuOEeNDrqb5rHA6H2WwWFQ8Wi0VUk3iet9vtBoPB\nYDDQlOc4zmQyiYoH4fadqE2wWq0GgyE8PJymvDpiw/U9ErqxIaGvQGzQ8B0blO0E1cDnDQAA\nAAAAioNEBQAAAAAAFAeJCgAAAAAAKA4SFQAAAAAAUBwkKgAAAAAAoDhIVAAAAAAAQHGQqAAA\nAAAAgOIgUQEAAAAAAMVBogIAAAAAAIqDRAUAAAAAABQHiQoAAAAAACgOEhUAAAAAAFAcJCoA\nAAAAAKA4SFQAAAAAAEBxkKgAAAAAAIDiIFEBAAAAAADFQaICAAAAAACKg0QFAAAAAAAUB4kK\nAAAAAAAoDhIVAAAAAABQHCQqAAAAAACgOEhUAAAAAABAcZCoAAAAAACA4iBRAQAAAAAAxUGi\nAgAAAAAAioNEBQAAAAAAFAeJCgAAAAAAKA4SFQAAAAAAUBwkKgAAAAAAoDj6YDcAAAAAIAie\nmL5LePFD9jOEkOcWnTg0uVtQWwQA/wN3VAAAAKCq6z7nu2A3AQDKQ6ICAAAAVY7rdor7686z\nDgSpOQDgBRIVAAAAgP/jnsAAQHAhUQEAAICqBdkIQEhAogIAAABVSKVZCtIYAIVAogIAAAAA\nAIqDRAUAAACqEGEyYt9wUwVACfA7KgAAAFC1eOYqJpPJZDJVq1bNYDAEpUkA4Al3VAAAAAAA\nQHGY3lE5fvz4559//scff8TGxvbo0SMzM1Oj0fgof/bs2YkTJ/I8/9VXXzFrJAAAAAAABB27\nOyrnzp2bOXNms2bNFixYMGjQoM2bN+fk5PgoX1xcPG/evMcee4xZCwEAAAAAQCHY3VHZvHlz\nQkLCiBEjCCENGza8devW1q1b+/XrZzQaPQvzPD9//vwePXqEh4efPHmSWSMBAAAAAEAJ2CUq\nubm5Xbp0cf03JSVlw4YNly9fTk5O9iy8fv16h8MxYMAAr4O+zGaz3W4XXpeWlhJCeJ73LOZa\n6PWvPtCXF0ryPE+5ij9NElUFfXnPtsnUJGlVhG6TEBui3rkKNsn3iogHmZrE8sBUYJMQG5WW\nrLJNCt3YAHVjlKjwPF9YWFi9enXXEuF1fn6+Z+FTp07t3Llz4cKFFT3BMmvWrJ07dwqvY2Nj\na9Wqdf/+/YqqtlgsFotFVGt9vJtXpaWlQr5EyWazia2ioKBAVHlh9hL68g6HQ2yTCgsLRZU3\nm81ms1nUKmKbVFxcLKo8YoMGYoOS2CYJOI7zsaLdbpc7HsTufKfTKbZJRUVFsjaJiN/5JSUl\nospbrVar1SpqFbFNKisrKysroy+P2KCE2KAh9/dIAGPDdZ0aqgjFTU9cUFAwf/78sWPHumc1\n5TRv3tzhcAiv9Xr9xYsXKxo/ZrPZdDqdXk+7mTabjed5r+/mldPpdDgcYWFhWi3t0z5Wq1Wr\n1YaFhVGWt9vtHMcZDAbfEw+Ua5Jer9fpdPRN0mg09BMyOhwOp9NJ3ySO4+x2u6gPQmyTxH4Q\niA36JiktNmw2GyEkpGPDnUaj8dF9iYoHYefTN4PBgSk2HhjsfKFJYg9MUU0SDkyxfQX9gSk5\nNhTVaYvtvhQYGxKapJrYCOL3CP2RC+rAKFHRaDRxcXHuKbvwukaNGuVKXrlypbCwcMaMGcJ/\nhXt/6enpL7744sCBA4WFAwYMGDBggOt9xowZExMT41mp0+m02WxhYWHR0dGU7SwsLHQ4HF7f\nzSuz2exwOMLDwyn7HZ7nrVarXq+nr6K4uNhms0VHR1MenFartaSkxGg0RkREUFYhfA3TN6m0\ntNTpdEZFRVH2U3a7vaioyGAwREVFUVYhXDKhb5LJZHI4HJGRkZS9M2KDsgoFxoZwGzakY8Od\nRqPxuiLP8/fv3xe180tKSoSdTxkPNpvNbrcbjcbIyEjKKoRzIPomlZWVmc3myMhIyjM5h8Nh\ns9lExUNBQQHHcaLiwWQyRUREUJ42cRwn9sAsKioS1SSLxVJaWhoeHh4eHk5TXnJs0PcVDGKj\ntLTUYrGEdGwIfUWVjQ367xEJseF0OiuKDfoECdSB3R2V5OTkkydPvvLKK8J/T548GR4enpiY\nWK5Ys2bNFi1a5Prvvn37tm3b9tFHH8XFxVX0zvn5+atWrfJcznGc2WwOCwujz+PNZjPHcaLO\np202m9FopOxqeZ43mUx6vZ7+gorVahVOsyivdjgcDqvVajAY6C+olJWVabVaUZ2O3W6PiIig\n7NecTqfFYhH1QQj3lOm/I4UPIjw8nLILQ2xQVoHYoOE7NjiO87GuzWbz2n0J8aDT6ShPUIj4\neBB2vqh4MJlMGo1GvniQtvN5npcvHiQcmBaLRcgYKcsLB6bYvgKxUSm5Y0NoEmKjUoGNjTt3\n7hBCtm/fLsetlXPnzgX8PcFP7BKV559/fsKECcuXL+/Vq9fly5e3bNmSnp4uHN5HjhzZtm3b\n9OnTIyMjw8PDGzZs6FpLGADmvsTT3bt33XMbAABF8XGqZLVa0X0BANDTarUbNmyQ7/3pk1tg\ngF2i0qRJk8mTJ69Zs2bXrl2xsbF9+/Z1DeW6f/9+bm6u67ETUaKioj744AOvf7p79+78+fNb\nt27dr18/yndbvHhxXl7e+++/T1n+yJEj27dvHzBgQKtWrWjKm83m7OzsJk2aDBs2jLKKVatW\n5ebmTp06lfIazKlTp9atW/fcc8917NiRsorJkyfXrVv39ddfpyz/5Zdf/vTTT+PGjYuPj6cp\nf+XKleXLl3fp0qV3796UVXzwwQccx02aNImy/K5duw4cOPDqq68mJSXRlEdsUFYhd2xcvnz5\nk08+6dq1a69evSirED6CiRMnUpYXYmP48OGNGjWiKX/nzp0FCxa0adMmIyODsorFixffvHlz\n9uzZXv+q1WpbtGhR0bozZsxwOp2eyx0Ox5QpUx566CFhSncaa9euPX369Lvvvuvj/rO73Nzc\nVatWPfPMM926daOsIjs7Ozo6+q233qIsv23btu+//37MmDEPPPAATfkbN24sWbKkQ4cOqamp\nlFXMnz+/tLR0+vTplOX379+/e/fuIUOGeJ1w0lNBQcGcOXNatmyZmZlJWcXy5cuvXLkya9Ys\nygvzx44d27x58wsvvNC2bVua8kJsJCYmvvbaa5RNysnJOXPmzMSJE2NjY2nKS4iNrKysatWq\njR8/nrL81q1bjx49KmtsfPjhh2VlZfSxsW/fvj179gwdOrRp06Y05RnExo8//rhly5aMjIw2\nbdrQlLfb7VOnTm3UqNHw4cMpmyQ2Nn7//ffVq1eLio3p06fHxcWNGzeOsrwQG6+//npCQoLX\nAkVFRZStlSA2NjYlJUWmNwcJmD5M37ZtW68dcVpaWlpamtdV+vbt27dvXx/vaTAYevTo4fVP\nV69eJYTUr1+/ogKeVq9effPmTfry9+7d2759e/PmzSlXEaYeqlmzJn0VX3/9NSGkS5culCcf\nHMetW7eucePG9FVMnTo1JiaGvvwPP/zw008/PfHEE5RnfsIv4Tz44IP0VSxcuNDpdNKXP3/+\n/IEDB1JSUtq1a0dTHrFBWYXY2Dh69Cgh5Mknn/Qc1enViRMniMjY+Oc//8nzvITYoDwLvHLl\nChEfG7du3aIv766iL3thzoDq1avTv+2+ffsIIR07dqxbty5NeWEITaNGjeirmDVrVlRUFH35\nn3/+mRDSrl27Zs2a0ZT/7bfflixZ0qBBA/oqli1bZrVa6ctfu3aNENKqVatOnTrRlL9169ac\nOXPi4+Ppq9i4ceOVK1e6d+9OOTZGmGaqWbNmlFVIiI29e/eeOXOmY8eOlFcQJMTGzJkzRcXG\nyZMnjx49Sh8bv/76KyHkL3/5C30VS5cutdls9OWvXr26Z8+eVq1aUV7KuXnzJiFEVGwI9wGe\neuopyqFcxcXFW7ZsoY8Nq9U6depUUbGxZ88eQkinTp3q1KlDU16I6qSkJPoq3nvvPWmxQXk1\nAdQNkycAAAAAAIDiIFEBAAAAAADF0eCHPwEAAAAAQGlwRwUAAAAAABQHiQoAAAAAACgOEhUA\nAAAAAFAcJCr+MplMW7ZsKSoqcl9YVFS0ZcsWi8USkFUYVEEIsVqtv/322y+//CLMlVkpseXl\n3mo2e0kd5P6sGWCwCSrYSzQYHGgMoPuSowpSZY4Cdwz6CgaU1kOqo5+BoGD6OypB4ePn83Q6\nXY0aNVq3bt23b19h2ngJ5Xfu3HnixIlyP/YSGxt7/PhxnU7n9fdhxK7CoIq8vLzp06ffuXOH\nEBIVFfXuu++2bNmyov0goTyDrWawl+SOJTZVyP1ZM9hqBuHKoAoaDOJB7gNNHfGggu5LQhUq\n6CvkjiUJq6igk5ewCoNwBbVSf6LSvn37iv7EcVx+fv6mTZsKCwtdP/8stvyhQ4e8/iRlz549\nt23b5vVwErsKgypWr14dFhY2ZcqU8PDwdevWffzxx8uWLfNcXXJ5CU1S4F6SO5bYVCH3Z81g\nqxmEK4MqaDCIB7kPNHXEgwq6LwlVqKCvkDuWJKyigk5ewioMwhVUi6/y9uzZk5qaKrl8//79\nL1265Fns0qVLAwYM8PoOYldhUMXgwYOPHTsmvP7zzz9TU1OLi4u9vrO08hKapMC9VCk/Y4lN\nFQw+a7FNErsKg00I+l6i5H88MDjQxDZJ7CrovmSqIuhHAfsekkFfIbZJEsorsIcMej8DoQvP\nqJDk5GR/yjscDpPJ5FmsrKzM4XB4fQexqzCoorCwsG7dusLr+Ph4rVZbWFjo9Z2llZfQJAXu\npUr5GUtsqmDwWYttkthVGGxC0PcSJf/jgcGBJrZJYldB9yVTFUE/Ctj3kAz6CrFNklBegT1k\n0PsZCF1IVEhCQoI/5evXr3/+/HnPYufOnatfv77XdxC7CoMqeJ7XaDTuSziO8/rO0spLaJIC\n91Kl/IwlNlUw+KzFNknsKgw2Ieh7iZL/8cDgQBPbJLGroPuSqYqgHwXse0gGfYXYJkkor8Ae\nMuj9DIQu9T+jIrcOHTps2rSpffv2rqsLhJC8vLwvvvji+eefD8gqDKoghEyaNEmn0wmvOY6b\nOnWq678rVqzwv7zcW81mL6mD3J81Aww2QQV7iQaDA40BdF9yVEGqzFHgjkFfwYDSekh19DMQ\nFEhU/NWnT5/vvvtuzJgxTz31VMOGDQkh165d27dvX/369fv06ROQVRhUkZqaKmqrxZaX0CQF\n7iV1YPBZy43BJqhgL1FicKDJDd2XTFVUnaPAhUFfwYACe0gV9DMQLBqe54PdhuBLS0vbtm2b\n5PIlJSUrV6787rvvhOm9w8PDO3fuPGzYsKioqIreQewqDKqo1IYNG/r37+9Pebm3Wgl7yc9Y\nUkgV/n/WAW+S2FXk3gQ2VdDwPx4YHGiB3QQJq6D7klZFpVTQV8gdSxJWUUEn77mKEsIVQhLr\np/cVSey8Il7L2+32W7du3bp1y+FwlPvT+vXrvb6P2FUYVOFDQPaShCZVzb2k7irQpAAKlQNT\nQpMCuEqo7CVlfo/4UAUPTDTJn1WCG64QivAwfcDo9fq6devWrVvXNUzTJScnJyCrMKiCAbm3\nWh17CYAxBgeaCqig+6qaHxwoBMIVxKqiiQrHcT/++GNWVpbw3+XLl7v+9Pvvvwv3GcspKSnZ\nvXu3Z3mo4hjEkgrC1ccmkNDZCoVAPHiuAqoR2NhIS0u7fPmy7xqVEEsqOKgBZFLlHqbPz8/f\nvXv37t2779+/37RpU2FhvXr1XAXefffdxMTEadOm1ahRw33Fu3fvLl68uGfPnuXKQ5XFIJZU\nEK6VbgIJha1QCMSDQrYC5BCs2FD4EYHDAaq4qpKo8Dx/6tSpHTt2HDt2zOl09uvXr3fv3rVq\n1fJauKCg4O23354+fbow1wSAOwaxpIJwFbUJRKlboRCIB1CxqhkbKjioAdhQ/9CvkpKSLVu2\njBw58oMPPoiNjZ0zZ45Wq+3cubOPfnDChAkNGzacMGHC6dOnWTYVFI5BLKkgXCVsAlHeVigE\n4kEhWwFyYBMbN27cuFiBAG2HOCo4qAFYUv8dlWHDhiUnJ2dmZrZv395gMNCsEh4ePnXq1GXL\nlk2fPv3111/v3r273I2EkMAgllQQrhI2gShvKxQC8aCQrQA5sImN+fPnV/QnsVP6BoQKDmoA\nltR/R0Wn09ntdofDwXEc/Vparfbvf//7wIEDP/roow0bNsjXPCXD433lMIilYIVrAD9raZtA\n/N4KVc5qoILuS8XxUDWFXF8xZsyYWRWgrC6wz/eroJMnoTNLAaiA+hOVlStXdunSZevWrYMH\nD/7oo49+++03+nX79es3bty4DRs2LFq0SFSfwmBOG1mryM/PX79+/auvvjp79myz2SwsLPd4\n37vvvpufn19uReHxPs/yErZCgXuJQSyxD9eAf9b+bIK0rWAQrsyOiHKC0n2RgB6YqowHQQD3\nUqBO+2TtUUO0r0hKSmpRgUqrqHSTCdutVkgnT6nSVXA1AWiof+hXRERE7969e/funZubu2PH\njmnTpnEct3fv3l69eiUkJFS6eteuXWvWrDl79uyzZ8/SVMdg3hL5qmD5eJ/cU53IsZcYxBKz\ncJXvs/ZzE+i3oirMasC4+yIyHJhqigeXoMzUFKwZAlXQV4gl6/P9Kujk/Ye5zoCe+u+ouCQn\nJ48fP37FihVDhw798ccfR40aNXbsWJoVW7RoMXfuXKvV6qMMz/O//PLL+++//8orr6xdu7Zb\nt27/+c9/5syZU1F5oVO4du0afftlrYLZ432itkJpe8lF1liSuwpmn7XkTah0K6rgrAZyh5zc\nB6Y/m1DpVqim+5JA1iapoK8Qi+XcD6HeyUuYpUCBRxCEAHl/+F6pOI47ceLEzJkzPf909epV\nq9XquTw/P//QoUOey4uLizdv3vzaa6/1799/yZIl586d62VtQOIAACAASURBVNOnz9WrV33U\nnpqa+ttvv2VlZfXv3//UqVOu5ZcuXUpNTQ1KFS+88MKUKVMOHDjg2nbfVaSmpl66dMnpdC5e\nvDg9PX3fvn2+31/CVihwL3kVwFhiUwWDz1rUJkjYCgabEJS9RCmw8SD3gSl2EyRshQq6r9TU\n1IMHD16oQFCaxKuirzCbzRzHUVbNi99kXv6tVmYnn+qTZ/mg9DOgDuof+uWVRqNJSUlJSUnx\n/FNF9z0jIiLy8vI8lzOYt4RBFf483lenTp2PPvro7t27/fv3D+xWKG0veRXAWGJTBYPP2pOP\nTSDit4LBJgRlL1EKbDwEZQ6ikIsHBntJ7ORUDJqkgr4iPDycEHL9+vWDBw8KBRISErp169ag\nQQOv7+Pn8/1ybLViO/kxY8bQD77CXGcgmfoTlXPnzvn4a5MmTTwXlpaWXrx4Ua/XP/LIIxqN\nxul07ty5c/369VardcCAAeUKM+jXGFSxcuXKgwcPbt269ZNPPunQoUOPHj3oa+nXr1/t2rX/\n9a9/3blzp3fv3oHdCkXtJbljiU0Vcn/WEjZB7FYwCFcGVdBgEA9yH5jqiAcGZ36iTvvYNEkF\nfQUhZPPmzatWrdJoNMLApx9++OHLL78cMmTI888/71nYn00msm210jp5QVJSUmJiIuXbKvnS\nDyic+hOVd955x8dfPa9UXbhwISsrq6SkhBDSvHnzsWPHzp49+/79+88999yzzz7r+Q4M+jUG\nVTB4vE/urpPBXpI7lthUIfdnLXYTJGyFmmY18I1BPMh9YKojHhic+Yk67WPTJBX0FcePH1+1\nalXfvn1ffPHFyMhIQojJZFq/fv2qVasaNmzYunXrwG6yHFutwE5eAoVc+oFQpP5ERaPR1K5d\n++mnn27durVWW/nkATk5OQ8++ODAgQP37Nmzf//+KVOm9OzZMzU11Wg0ei3PoF9jOTVKcnJy\ncnLyq6++unfv3p07d27dujUxMXHhwoWVViE83pednV1RAbm7TgZ7Se5YYlOFi0yftdhN8Gcr\n5AtXllX4wCAe5D4w1REPCjzzY9mk0O0rvvrqq7/+9a9Dhw51LYmMjHz55ZetVutXX33lmai4\nSN5kEuitVmAnL4ECjyAIGcF+SEZ2N2/eXLFixaBBg4YNG7Zu3bp79+75Lj9o0KDTp0/zPF9Y\nWJiamvr111+Lqq6oqOjLL78cPnx4amrqm2++6bWM8OBauYXXr19/5ZVXaJ4SY1CFQNbHxCvd\nCgXuJQaxxDhcXQL4WYvdBD5AWxFysxrQYB8PAT8wVRkPAd9LXsuLIneP6hJafUX//v1zc3M9\nl+fm5vbv37/S6gSBfb5fBZ08L36WgnKYhSuogPoTFYHdbj906NCkSZPS09Pfe++9n376qaJj\nLC0t7fr168LrPn36SPvyCGy/FqwqJDCbzevWraMvL/eZnxx7iUEsMQ5XaXx/1vSbwAdvK8SG\na7CqYB8PAT8wVRkPAdxLfp72ydGkAApiX9G3b19XeXfXrl17/vnn6ZovUaC2WrGdPM/z165d\nW7Vq1ezZs2fPnr1q1Sqvu9oHZYYrKI36h34J9Hp9p06dOnXqlJeX9/HHH8+YMWPNmjXVqlXz\nLMnzvEajcf1Xp9NJqC6w85YwqILB431eyT1llhwfBINYkrUKNp81/SZI2Ap1zGpAj3H3RWQ4\nMEM9HrwK4F4SOzkVgyYRVfQVderUuXDhguduPH/+fJ06dTzLs3m+n6iikxc1S4FXDObMBBXQ\n8Dwf7DYwYrFYvv322127dl2/fr1jx46jR4/2OkdeWlpaXFyc0Bfcv3/f9VqwYsWKcuUD3q9t\n3LiRfRVpaWk+qhD7eF90dLTnmwS26wzKXnKRKZbYVMHgsxa1CRK2gsEmMNtLlOSLB7kPTLGb\nIGErVNB9EY/Tvrt37xJCfJz2MWiSCvqK1atXHzp0aPbs2e5pye3btydOnNi1a9fBgwf7uckM\ntlqZnfzx48ffe+89z1kKtm7dOm3aNM+Hf5j1M6A+VeKOyuXLl3fu3Hnw4MHatWv36tWre/fu\nUVFRFRVOTU0V9eYM5i1hUAWDx/vknuqEwV4iMscSmyoYfNaiNkHCVqhsVgPf5I4HBnMQqSAe\n5N5LYienYtAkooq+IiMj44cffhg9evRTTz314IMP8jx/9erV/fv316lTJyMjw7M8m7kfVNDJ\ni52lgEG4glqp/47K+PHjr1271qFDh2eeeeaRRx4JyHtu2LDBNZ93nz59fPQIXqebzMrKstvt\nrk6hbt26vjsFBlXcunVr165d+/btCwsL69mz59NPP12zZk0fe+Bvf/vbP/7xjxYtWhQVFf3t\nb38bOXLkX//6Vx/lJWyFAveS3LHEpgq5P2s5NqHcVjAIVwZV0GAQD3IfmOqIB7n30pQpUxo0\naDBixIhyy5ctW3bz5s333nuPfZOIKvoKQkhJScmKFSu+++47q9VKCDEajZ06dRo2bFhMTIzn\numI3mShjqxl38oSQAQMGZGVlNW3atNzys2fPZmVlrV+/vtxyBuEKaqX+OyoXL16Mi4u7cOHC\nhQsXPP+6bNkyCe+Zk5Pj6hQ+/vjjXbt2/fe//921axdlv3bp0qV//OMfjzzyyAMPPLB///70\n9HTfnQKDKurVqzd06NBBgwYdPXp0586dGzZsaN26da9evVq3bu0+OtaluLg4Li6OEBIbG6vV\naj17K/+3QoF7Se5YYlOF3J+1HJtQbisYhCuDKmgwiAe5D0x1xAODvTRo0CDP5d26dcvKygpK\nk4gq+gpCSExMzBtvvDF69Oh79+4RQmrVqqXXV3jmI3aTiTK2mnEnTwix2Wxe7wJFRkba7XbP\n5QzCFdRK/YmKtOE39Bj0awyqEMj6eJ/cXSeDvSR3LLGpQiDfZ62CTWBZhW8MdqbcB6Y64kHu\nvST2tI9Bk1xCuq9IS0tbuHBhYmKiXq+vW7cu5VqyPt+vjiNC7CwFCrn0A6FI/YnK8OHDKy1T\n7rapBLL2a8yqIP/7eF/37t2FuWi8mjRpkvC2HMdNnTqV8jFxuc/8ZN1LDGKJTbgKZPqsVbAJ\njKvwgdnOlO/AVFM8yLeXxJ72MWiSOxX0FWLRbzJR8FbLd0S0b99+7dq1zZs3LzdLwdq1a7t2\n7VpRLUG/9AOhSP2JCo1yt02lka9fY1MFg8fExW6FAvdSpQISS3JXweyzrkhIbELQ9xKlQIVc\nEFOykIgHgUx7Sdppn6xNEgT9KGDQo5Yj9/P9NJR/RIidpcAluJd+IBQhUQkABv2a3FW4Hu+b\nPn06zeN90q4Jyd11KuELRvnYfNayYrAJKthL9IJ+MuonFXRf0k775P7g1HEU3Lhxg+M4r39K\nSkoqt0TsJhNFbjWDDy4yMnLOnDkrVqzYv3+/a5aCzp07Dxs2TJi2zlOo9zMQLEhU/MWgX2NQ\nBYPH++TuOtXxBcMAg89abuqY1UAhVHAyqoLuS8JpH4MPTh1Hwfz58yv6k+esuGye75cbmw9O\n1CwFKuhnIFiQqPiLQb/GoAoGVy/k7jrV8QXDgAquVKlpVoOgU8HJqAq6LyLytI9Nk9RxFIwZ\nM6ZevXqUhdWxyQqcpUAF/QwECxKVypWWljocDmECCsHy5ctdr9VxzsTg6oXcWxESXzC+Yykg\n1q5d++yzz8bGxlZUhWKvVFmt1suXL+fn5xNCatSokZiY6D5lvvtWqGxWA8bKxUNIHDieGMeD\n3HtJwuRU6vhe8F+lnWpSUpLX39HySuGbzHFcbm7unTt34uPjk5OTXY+bK7+TD9F+BpQAiUp5\ndrv9k08+OXPmTMuWLUeMGPH5559v3ryZ5/k2bdpMmDBBOHNyvzxTdc6Z/Lx6IfdWKGQvuRMb\nSwGxcePGDh06uCcqEqpgfKWK5/mcnJxt27ZZLBbXwvDw8LS0tJdeekn4Mha7FSExqwEzV65c\nGTdu3FdffUU89qQCD5yK+NiKSim8+5JAIU1ifBQEpVMth/Emb9iwISEhoWPHjkVFRdnZ2Rcv\nXhSWN27ceNq0acKUWcrv5BUSrhCKkKiUt27dukOHDnXp0uXnn39eunTp0aNHR48ebbfbV69e\nvX37dt/TWVQE50yU5N4KxntJjlgqJz09vdwSjuPefPNN4bVwSqd8a9eu/eqrr/r27ZuSklK9\nenVCSEFBwcmTJ7ds2aLVagcOHBjsBoY8nucrep6YhkK6Fz+3Qm4K2UvuFNgkP8nRqSr8/Hjn\nzp2vv/46IWT16tVms3nWrFl/+ctfbty4sWzZspUrV77xxhvBapioWQpoqC9cISCqYqLi+07x\n4cOHhw4d2rt378uXL48dO3b06NHPPPMMIcRqtR48eDAgJ5egGgxiyfdQLo1G89hjj7Vo0cK1\nZOXKlWlpacLpfhDRj+MihOzdu/fvf/97t27dXEvq1q2bnJxcr169NWvWIFHxzX1nLlq0yGuZ\n0tJSVs2Rolw8hOhW+Cngp32hqNJxXGI71Y0bN7r3PF4F8fyYZihXYWFhdHQ0IeTMmTMjR44U\nevvY2NiRI0cuWLAgKM0WiJqlAEAy9ScqYu8U379/v1GjRoSQBx98UKPRuL4hmjRpsmnTpqBs\nAihEUGLJ91Cu2bNnf/jhhw8//PCAAQOEL7lVq1Y99dRTDRs29HtzJZIwjquoqMjrIPJGjRoV\nFRXJ3eBQVNEgqD179tSrV8/zpwlsNhvT9lHwMY4rhLYigKrgaZ+EcVxiO1Xfv6MVFGKHcsXF\nxd26datx48ZWq9X9txGrVatWUlLCuPHuRM1SACCZ+hMVsXeKDQaD8HWo1Wo1Gk1YWJiwXKvV\nKnnUQRBRPt6nAgxiSexQruTk5AULFsyfP3/KlClvv/22fDdS7Ha70H6e58+ePctx3MMPP2ww\nGIS/un/WEsZxNWjQYOfOnSNGjCi3fOfOnQ888IAcm+NwOMpNqeRnuJrN5oiICN9lAnhEVDQI\nqk6dOi+99FLnzp3LLRcuPweq9oDwMY5LCVvBvvtSwWmf2KNAwjiukPiC9t29iB3K1b59+y++\n+CIlJeWJJ57YunXrm2++qdfrnU7nli1bhJxNDpVOykJEzlIAIJn6ExWxd4oTEhLy8vKaN29O\nCNm0aZOru7l9+3Z8fLxMjaTpFPwU2DMzmR7vE4vByYQ/Q7kkxJKEoVyxsbHZ2dnr168fO3as\nK6UJoDt37syaNevKlSspKSnvvvvuBx98cPLkSUJI3bp1Z8yYIcxQ5P5ZSxjHNWjQoFmzZp0+\nfbpcbpOXlzdlyhT/N+HUqVNNmjQRrq1u27btyy+/LCgoiIuLe/75512ZoZ/hOmDAgNatW//1\nr39t3bq1K1cvR0IVYgdBJSYmXr582fMUP+Doh/ZJGMfFYCt27Nhx5MiRuLi49PR011X5Gzdu\nvPfee5988gkJRvfF8rRPpqtLYo8CCYNjg/IF7ZvY7kXsUK6XXnrpt99+GzVqVIsWLX788cdT\np07Vq1fvzz//LCsrmzlzpkwbFZBJWfzHcVxeXl5+fr5Go6lXr17t2rXd/6q+i6HglfoTFbF3\nivv06ePq+1xXawgh58+fb9eunUyNDHinIPeZWRAf7/Nn5h9Pos5XGMSStKFcGo0mMzOzWbNm\n8+fPD/hlxVWrVjkcjpEjRx4+fPj9998vLCycN2+eRqNZunTp559//s4775QrL2EcV9u2befM\nmbN58+Zvv/22sLCQEBIXF5ecnPzGG280adLE/02YOnWqMPfr4cOH//3vf3fs2LFp06a5ubmf\nffZZ7dq1O3To4H8VPM/n5eXNmDEjPj6+V69ePXr0cD+cJRM7CCojI8N9xJ3LAw88sHDhQv/b\nQ8QP7ZMwjkvurdi9e/eyZctatGjx559//uMf/xg7dqyQFNnt9j///NP/9xcoIRdyx+Dqktij\nQMLg2KB8QfsmtnsRO5QrMjJy7ty527Zt+/7774UbSsXFxe3atUtPT09ISAjIJsg0KYufsxRs\n375906ZNwjeCICkpadSoUQ8//LDw31C/AwmU1J+oiL1T3KlTJ6/v4zkuRTIGMzX5c2am8Mf7\nAjjzj9jzFQax5M9QrpYtW3700UdXrlyhubJIP5TrzJkz77zzTosWLZ588skhQ4ZkZWUJycPL\nL7/s9bOWNo6rSZMmEydOFNpDCKnocmxFKG8Ybt26tVevXqNHjyaEpKWlLVq0aOvWrV4PBwlD\nuSZMmMBx3DfffLNu3bq1a9d26NChd+/eycnJojakHLGDoBo3buz1fQwGQ6Cu1osd2idhHJcc\nW+H+YX399dfp6ekvv/wyIWT37t3/+te/jEbj448/Lu2dvZIjF/LztE/C1SW5jwIJ47gYfEGX\nQz8YgbJ7kTCUy2AwZGRk+DOXT8AnZZF7loLt27fn5OSkpqYajcZvvvmmY8eO9erV++abbyZN\nmjRnzhwMOatS1J+osL9TXOk4Lv9nagp416mQx/vknr+o3F4Se77CJpb8GcpVvXr1SqNI7FCu\nsrIy4YZ7XFycTqerWbOmsLxWrVpePws/x3EJKYrnQeRO8g3DvLy8wYMHu/7bqVOnefPmea1C\n2lCupKSkN9544+WXX967d++OHTsOHjz44IMP9u7du3fv3pVsdgUUOJRL7NA+Npsg6vbFrVu3\nRo4cKbzu2bNnRETEvHnzpk6dGhMT408b/MmF/Dztk+nqktxHgQrGcbmj7F78H8rlOTdapQI+\nKYu0WQroh3Jt37591KhRXbp0IYQ89thjWVlZq1at6tmz57Rp09asWTNt2jQJtUOIUn+iEqg7\nxe4jjnyrdByX2E6BQdcZxMf7Ajh/kdixFmLPVyTEUqVN8krUUC6xVYgdylWrVq1ff/21bt26\n586dI4ScPXtWCNSzZ8+6khZ3ARnH5XkQuZN8w1Cn07mfDoaFhVmtVq8l/RnKFR0dnZ6e3qdP\nn59//vmbb75Zvny55ERFgUO5xA7tC+AmVNQJS7g1ajKZXP/t1KlTaWnprFmzhLyiIrLmQhJO\n+xhcXZL7KAjKOC7fMyD7MxiBsnsRO5SLZm60cpQ5KYuooVz37t1zLU9MTCwpKSkoKKhZs+Zz\nzz330UcfydE8UCz1JyqBulNc0YgjCeO4xHYKDLrOID7eF6j5iySMtRB7viI2lvwc/kEzlEtC\nFWKHcnXv3n3p0qUHDx68ePHiSy+9tGrVqhs3bmi12p07d6ampnqtQuw4LsmDIemHck2dOlWn\n05WWll67ds01sujWrVtecy2Bn0O5NBpNSkpKSkrK3bt3KVfxpMChXGKH9gVwEyrqK8Tevnjw\nwQfPnz/funVr15LevXsXFRX5eDaXTS4kCpurS7IeBQzGcUn+JXv6voWI715EDeWSMDeaAidl\nETuUq3bt2pcuXapfvz4h5OrVq0ILCSFxcXFOpzPgzQMlU3+iIpbYEUfSxnFJ6xTk6zoZPN4n\n9/xFEsadSzhfEcX/ofCVDuWSUIXYoVwvvviiTqfLzc0dMGBAenp6vXr1/vOf/1it1s6dO7/4\n4ou+208zjov4MRiS8oah+3mPe9aXm5vbpk0bH+9PP4glKSmpoqE75YY3KI3YoVxyT9FGxPcV\nYm9fdO3a9cCBA+UWDhgwoKSk5ODBg15XYZALicXs6lJIHwWSf8mefpio5O7FxfdQLglzoylw\nUhaxQ7m6du26bNmymzdvGo3G//73v08++aRw8+3y5ctC9gJVR9VNVCoaRSB2xJHkX9yT0CnI\n13UyeLxP7vmLJIw7l3C+ImqclbSh8HJXIXYol0ajcf+UO3ToIHaaLN/juIgfBxHlDcNnn33W\n6+rCBelK0QxiCe5PRPtD7FCuQE3R5mMwrdi+Quztix49evTo0cNz+fDhw4cPH+51FQa5kFiM\nJ48K0aNAwlm+gH6YqNjuRexQLglzozGblIWe2KFcGRkZhYWFX3zxhcPhSElJcR19DRo0qOgg\nBbWquolKoEYc+Tm4U1SnIF/XyWCmdrnnL5Iw1kLs+QqD4R8MqpAwlKsc39f/GAyGJJKGcrmr\n9CaPJ7FDuSRUERQSZmnzc4o2QQB/8JHB7QsGuZBYQZk8KiADGlmScJbvZ99CKush2fwItdyT\nsogldihXWFjYqFGjRo4cyXGcTqdzLX/00UcD2zBQPvUnKgx+Mc3PwZ00nYL/XadvgZqp3cdV\nUrkn/2FwssJg+AeDKsQO5RJ7/Y/BYEj/x1pUepPH/0EslVahEP4M5aJJURj84GOgbl/46L4Y\ndC9iMbi6JOEokDZ9iHzEnuVL6FvE9pDMfoRa1qFcnnzPdyptKJdGo3HPUqBqUn+iwuYX0wLS\nI1T0Nen/aVmlVZBAXGwjPq+SStixor7zpJ2syDrOSkKTGFQhdiiX2Ot/DAZDir1hKOEmj9hB\nLAx+HEkmcg/lYvCDj4G6feGj+2IwlKtS5ZIiCVeXxGYRYo8CNr+kKYrYs3wJw0TF9pCMf4Ra\npqFcnnzPd4qhXCCZ+hMVlr+Y5mePUNHXpJ8j7GmqEEvCVVKxO1bsd56EkxW5x1lJaFJQRpgE\n9lFOloMhXXyPs/L/l4vYVBEssg7lUsgPPrqT0H0xGMol4ZfsRV1dYpBFMPglTbH8nwG50h8t\nEdtDsv8RajmGcom9NIOhXCCZ+hMVZr+YJqDpEeT4KUOZqgjgVVKxGHznKXAmHwZVMHiUk8Fg\nyHJ8j7OSfJOHcRVBJ8dQLsY9sLsgdl9iKTaLYDB9iKzEnuVL+NESsT2kAn/mUgJpl2YwlAsk\nUH+iwuAX07wK4Jw2QawigFdJifzfeWIHNihwJh8GVbB5lFPW4dEMfs5Mmb+YxlKgzvKD1QOT\nQHdfslJmFqHAX4+Rm4TpjMX2kEH5mcuAU8elGQgJ6k9UGPximlcBnNOGQRUMrpLK/Z3H4Acf\nGQz/YFAFs0c5iWzDoxn8nJkCfzGNsUCd5TPogUPoJk9FlJlFKPCes9wkTGcstodk8DOXDKjv\n0gwolvoTFbkxmNOGQRUMrpLK/Z2nwB98VCbGj3LKMTyawc+ZKfAX02SigrP8ELrJUxFlZhEK\nvOcsNwkjXdVxh0QClV2aAcVCouIvBnPaMKiCwVVSub/z2Pzgowqwf5Qz4Bj8nJkCfzFNJio4\ny1fgTR6xlJlFKPCes9wkjHRVYA/JTChemoGQg0TFXwzmtGFQBYOrpHJ/5zH4wUd1UMejnAx+\nzkxpv5gmExWc5SvwJo9YyswiquA9Z3V0j4yF1qUZCDlIVPzF4DuSQRUMrpLK/Z1XBb9TpVHN\nQAUGF/OqwvVCFZzlK/Amj1jKzCKq4D1n1XSPjIXQpRkIORph4nyQ7Pz58xaLxXMucJvN9scf\nfwTkEiODKhjYu3fvgQMHZs2aVW75p59+evDgwZycHIW/PyhWQUHBlStXmjVr5jl+KYSqCBZ1\ndC9VEHo8AKgKkKgAAAAAAIDiaIPdAAAAAAAAgPKQqAAAAAAAgOIgUQEAAAAAAMVBogIAAAAA\nAIqDRAUAAAAAABQHiQoAwP+4d+/ekCFD6tevr9Vq27RpE+zmeHH79u1q1aotXrw4IO/2xRdf\naDSar776yp832bt3r0ajWblypfDf3bt363S6kydPBqB9AABQVSFRAQD4H2+99dbatWvHjBmz\ncePGuXPn+vlu58+fz8rKOn36dEDaJpg8eXKNGjVee+014b/Hjx/XaDSvvvpqAKvwU8+ePTt0\n6DB+/PhgNwQAAEIYfpkeAOB/7Nmzp3v37pMmTQrIu50/fz47OzspKcnzRxWluXbt2ooVK+bN\nm2cwGALyhjIZP3583759Dxw40K1bt2C3BQAAQhLuqAAA/I8///yzevXqwW5FeSaTSXixbNky\nrVY7aNCg4LanUs8++2zNmjWXLl0a7IYAAECoQqICAPB/xowZo9FoeJ7fsGGDRqPRaDRr1qwp\nKiqaMmXK448/XqtWLaPRmJiY+Pbbb5eWlrqv6HA4Fi5c2Lp166ioqJiYmEcffXT69OmEkKys\nrNTUVELI3/72N+ENu3btKqxSWFj41ltvPfTQQ0ajMT4+/qWXXrp48aLrDYXnRjZu3Jidnf3w\nww8bDIYZM2YIf9qwYUObNm3q1KlDuVE07SeEcBw3b968pKQko9H48MMPL1y4sFwBh8OxYMGC\nVq1aRURExMTEdO3adffu3T7qDQsLe/rpp7dt2+ZKsQAAAETB0C8AgP/z5ptvZmRkdOvWrVu3\nbtOmTSOEJCcn37hx45NPPsnIyMjMzDQYDIcOHVqwYMGxY8e+/fZbjUZDCHE4HM8999yuXbu6\ndOkybdq0atWqnT17dtOmTdnZ2UOHDjUajZMmTZo0adLTTz9NCImLiyOElJWVde7c+cyZMy+9\n9FL79u0vXLiwbNmyHTt2HD16tEmTJq72TJgwISEhYfbs2XXr1g0LCyOEXLly5erVq+np6fQb\nVWn7BTNnzszPz3/ttddiYmLWrVs3bty427dvv//++8JfnU5nWlrarl27+vXr9+qrr1osljVr\n1vTq1SsnJyczM7Oiqtu3b79+/frDhw/37NlT1AcBAABACCE8AAC4IYT079/f9V+LxWKz2dwL\nzJo1ixCyZ88e4b///Oc/CSGvv/46x3GuMk6nU3ixfft2Qsjnn3/u/g7Z2dmEkFmzZrmW7Nq1\nixDyzDPPCP/dtGkTIaRx48Z2u919ReHdFi9e7L7wp59+IoS88sorXjen0vYLddWoUeP27dvC\nEpvN1rFjR61We+HCBWHJkiVLCCGfffaZ601sNltKSkp8fLzQwj179hBCVqxY4V7Rjh07CCEf\nfvih14YBAAD4hqFfAAC+GI1G4W4GIcRut1sslr59+xJCfvjhB2HhmjVrIiIiZs+e7X6DQqv1\n1bt++eWX0dHR7pNi9ezZ88knn9yzZ09xcbFr4bBhw/T6/7nvfffuXUJIzZo1A9h+wauvvuoa\nThYWFvbOO+9wHOeas3j16tV16tTJzMy0/H9OpzMzM/P27dunTp2qqGqhnXfu3KFvLQAAgAsS\nFQCASqxcubJ9+/ZR/6+9uwmF7wsDOH5MGcNvTCzGj/h4+AAABApJREFUQmHG9ZZmslJKUbJR\nRBIp2dgoC8lYWKhZTFMmRDaIjdUsvKRsMDZel6gxyngrZaG8FEXDzP0vbv/b/LyMUcr91fez\nO889Z+4zs7pP555n/vzR6/XJycnFxcVCiNvbW+Xq8fFxXl6e0WiM/wPPzs4kSTIYDNFBu90e\niUQuLi7UiNVq/XC5LMs/mL9CCb4Znp6eKsOjo6Pr6+vkv/X19YmYdYiSZ3T9BgBA/DijAgCx\njIyM9Pb21tXVTU9PZ2ZmJiUl3dzc1NbWRiIRZYIsy999Fo9zSVJS0puI2WwWQtzc3MR/ry/z\nj0FNMhKJ5Ofnz87Ovp9TVFT02XIlz/jP/QMAEI1CBQBimZmZsVqtS0tL6lP75uZm9ITCwsJA\nIPD4+PjhpsqHBYkkSScnJ8/Pz9GbKn6/X6fTWSyWGMnYbDYhRDAY/MH8FYFAIHp4dHQkhMjN\nzVWGBQUFfr/fZrN9a+NIydNut8e/BAAAFa9+AUAsOp1OluVwOKwMw+Gw2+2OntDW1vb09DQw\nMBAdVN/OSk1NFe/es2psbHx8fIxuAezz+XZ2dqqrq00mU4xkLBZLTk7Ozs7OD+avmJmZUQ7A\nCCFeX1+HhoYSEhLq6+uVSHt7eygUcjgcb946u7q6inHr3d3dxMTE8vLy+LMFAEDFjgoAxNLU\n1OR0Omtqapqbmx8eHrxe75uH9a6uruXl5dHR0f39/ZqaGpPJFAwGV1ZW/H6/EKKkpMRgMIyP\nj+v1+rS0tIyMjKqqKofDMTc319/ff3h4qLYnTk9PHxsb+zKflpaW4eHhq6urzMzM6Pj+/r7L\n5XozWWm4HDt/RXZ2dmlpaWdnp9Fo9Hq929vbfX19+fn56nf0+XyTk5N7e3v19fVms/ny8nJ3\nd/fg4OCzMyqhUGh1dbWuri4lJeXLLwUAwAd+q90YAGiT+Ls98cvLi8vlkiRJr9dnZWX19PSc\nn58LIbq7u9U5oVDI4/HY7XaDwaD84aPT6VSvLiwslJSUKAdOKisrleDd3V1PT09OTk5iYqLZ\nbG5tbVV7Acv/twxeXFx8n975+blOpxscHFQjSnviD11eXn6Zv3Kv+fl5j8eTm5ur1+slSRoe\nHo7utizLcjgcnpiYKCsrMxqNBoPBYrE0NDSobZfftydeXFwUQqyvr3/39wcAQJEgf7N7DADg\nd3V0dKytrQWDwfen7bWjoqJCCLGxsfHbiQAA/lWcUQGAf4zb7b6/v5+amvrtRD61urq6tbUV\nfQgHAIDvYkcFAAAAgOawowIAAABAcyhUAAAAAGgOhQoAAAAAzaFQAQAAAKA5FCoAAAAANIdC\nBQAAAIDmUKgAAAAA0BwKFQAAAACaQ6ECAAAAQHMoVAAAAABoDoUKAAAAAM35D5fTdeDJ7d0G\nAAAAAElFTkSuQmCC", "text/plain": [ "plot without title" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "options(repr.plot.width = 9, repr.plot.height = 6)\n", "\n", "p1 <- ggplot(annomapres, \n", " aes(x = factor(Label), \n", " y = prop.unique, \n", " shape = Strain, \n", " color = Media)) +\n", " myfacet + \n", " mygeom + \n", " mytheme + \n", " mypal\n", "\n", "print(p1)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Show the fraction of reads mapped to genes (prop.gene)" ] }, { "cell_type": "code", "execution_count": 20, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAABDgAAALQCAIAAAD6tVcNAAAACXBIWXMAABJ0AAASdAHeZh94\nAAAgAElEQVR4nOzdeZgU5bn4/eq9e7aeGXAd2UZgHIRhURQ9RnIIiuuwiCg7aoxoUJGgoJiD\n+CIxAZGAorgEcwTRICCYHJkoYhJRDgKiJIFRGKM4oGSW7p7et/r9UW/6dGZ6mqeHXmq6v5+L\ni6um6ql67q6+u7rurk0jy7IEAAAAAGqizXQAAAAAANAahQoAAAAA1aFQAQAAAKA6FCoAAAAA\nVIdCBQAAAIDqUKgAAAAAUB0KFQAAAACqQ6ECAAAAQHX0mQ7gdDkcjokTJ2Y6CgBoV0VFxfLl\ny2NOGjt2rN/vT3M8ANB56fX6LVu2aLX81J4TOn2hEgqFLBbLkiVLMh0IAMQwderU0tLS9qa6\nXK5nnnkmnfEAQOe1aNGi2tpaWZYzHQjShHoUAAAAgOpQqAAAAABQHQoVAAAAAKpDoQIAAABA\ndShUAAAAAKgOhQoAAAAA1aFQAQAAAKA6FCoAAAAAVIdCBQAAAIDqdPon0wMd4PF4rrvuuvam\n7ty50+v1vvnmmx988EF9fb1ery8rKxs2bNj48eMLCgrSGScAJNFjjz1WV1f3wgsvmM1mZYzL\n5brzzjsHDhw4b968Z555ZtOmTZIkaTSakpKSAQMG3HHHHd26dZMkKTJJq9VaLJaysrLBgweP\nHTv2rLPOyuDLAZD1KFSQi0wm04svvqgM19bWLlu2bMGCBT179lTGOJ3O+++//+TJk5MnT66s\nrMzPz//HP/7xhz/8wWKx3HLLLRkLGgBOz9y5c++4445nnnlm7ty5ypgVK1Zotdr77rtP+bO0\ntPTpp5+WZbm+vv6555576KGH1q5dq1Q1kUkej+fIkSNvvfXW1q1blyxZMnjw4Iy9HgDZjkIF\nuUir1fbu3VsZdrlckiR169YtMmbZsmX19fUvv/xyWVmZMqZ3794jR4602WwZiRYAkqKgoGDB\nggVz5swZOnTo8OHD33vvvZ07d65evdpisSgNtFpt9+7dJUnq0aOHJEkLFiz44osvqqqqoidJ\nknTBBRdcc801s2fPXrJkyWuvvWYwGDL0ggBkOa5RAf5NKBTasWPHqFGjIlVKRHFxcUZCAoBk\nqaqqmjx58rJlyz777LMVK1bceeedffv2jdlSqV78fn/MqXq9ftKkSQ0NDQcPHkxhuAByG4UK\n8G++//57r9dbXl6e6UAAICWmTZvWs2fPOXPmVFZWTpgwIWab77777re//W1+fn5FRUV7y1G2\nk/X19akKFEDO49QvAAByiE6nmz59+oMPPjhjxgyNRhM9qaGhYeTIkZIkhUKh88477/HHHy8s\nLGxvObIsS5LUagkAkEQUKsC/OfPMM81mc11dXaYDAYBUUa4q0etb7wOUlpYuW7ZMo9GUlpYW\nFRXFX4iynWx7liwAJAunfgH/Rq/XjxgxYvv27W3PZ+BiegDZTavV9urVq2fPnqesUoLB4IYN\nG84444wBAwakJTQAuYgjKkBrM2fOPHTo0MyZMydPnnzBBRcUFBQotyceNmwYtycGkJvC4fA3\n33wjSZLb7T569OiWLVvq6+uXLFnS9rAMACQL2xegtcLCwtWrV2/cuPHdd9995ZVXDAbDeeed\n96Mf/ej666/PdGgAkBlNTU3Tp09XHvh4zjnnXHTRRU888QQPfASQUhQqyHUDBw7cuXNnq5Fm\ns3nq1KlTp07NSEgAkFIxt3uzZs2aNWtWzPZxJgFA6nCNCgAAAADVoVABAAAAoDoUKgAAAABU\nh0IFAAAAgOpQqAAAAABQnfTd9euLL77YtGnT0aNHT548edVVV917771xGu/du/fVV1/99ttv\nrVbryJEjJ06cqNFo0hYqAAAAgMxK3xEVr9d7zjnnTJ069Zxzzonfsra2dvHixf369Vu+fPmU\nKVM2b968fv369AQJAAAAQA3Sd0SlqqqqqqpKkqTNmzfHb7l58+aysrK77rpLkqQePXqcOHFi\n69atN998s8lkSkegAAAAADJNjQ98PHTo0PDhwyN/Dhky5I033qirq6usrFTGfPLJJ8eOHVOG\ng8Gg3W5/++23MxAoAJyKLMtxpgYCATZfACCoqakp0yEgrVRXqMiybLPZSkpKImOU4ejU3Lp1\n6/bt25Vhq9Vqt9s3bNiQ5jgBQJDdbm9vksfjYfMFAOL69eu3cOHCFF26bLFYJkyY0Lt371Qs\nHB2gukJFxOjRo4cMGaIMe73etWvXXn311W2bybIcDAa1Wq1OpxNccjAYlGXZYDAItg+Hw6FQ\nSKfTabWiV/sEAgGNRqPXi655FYYUCoXC4bBerxfcTHTgjQgEApIkJfqqUxqSCt8IFYZEbrS1\ncePG/Pz89uY1mUw33XRTzElZkA8dW/kJhaTCV01IIjq2rVBVbighdfY3QoUhxc+N999///vv\nv//Rj34kHoC4PXv2vPPOO1deeSWFinqorlDRaDTFxcXNzc2RMcpwaWlpZMzQoUOHDh0amfqH\nP/zhwQcfbLuoUCjU3NxsNpsLCgoEe7fZbMFgsGvXroLtPR6Py+UqLCwUvH5GluXGxkaj0VhU\nVCTYhcPh8Pv9paWlgp9Jn8/X0tKSn59vsVgEu2hoaNDr9cXFxYLtnU6n1+stKSkR3JMLBAJ2\nu91iscTZXWtFOYAW/abH53a73W631WoV3NqSG4JdkBsi4ufGpk2b4nxD5+fnx9x8KflgMBis\nVqtgGC0tLT6fTzwf/H6/w+HIy8vLy8sT7KKxsVGr1UYf8Y7P5XJ5PJ7i4mLBfZRgMGiz2RLK\nh+bm5nA43KVLF8H2Sj4UFRUZjUaR9uFwuKmpyWQyFRYWCnZht9sDgYD4tsLr9TqdzoKCArPZ\nLNI+O3JD2VZ06txQthW5mRsJfY8kNzdqa2uPHTt26aWXpqJQOX78eNKXidOkxueoVFZW7t+/\nP/Ln/v37zWZzeXl5BkMCAAAAkE7pK1T8fn9dXV1dXZ3f73c6nXV1dV999ZUyadeuXfPmzXO7\n3cqf48aNq6+vX7Nmzddff71z584tW7ZUV1dzyy8AAAAgd6Tv1K9vv/129uzZynB9ff3HH3+s\n1WrfeustSZIaGxsPHToUDAaVqRUVFQsWLFi3bl1NTY3Vah07duykSZPSFicAAACAjEtfoVJe\nXr5t27aYk6qrq6urq6PHRF+FAgAAACDXqPEaFQAAAAA5jkIFAAAAgOpQqAAAAABQHdU9R+V0\n1Jd1i/7z7G/+0XZqWf2xdIYEAAAAoAOyp1BpVaVIkvRd956SJJlrD0VPpVwBACBThi2siTN1\n96JRaYsEgPplT6ESR9sapr6sW4drlehSp6l3X0mSCuuORHdBFYRc5hs4+Ds+BR2i7MBFdtRu\nWLWvVQP24dDZxa9SAKCVnChUkqjVkRlFQ3nvVm3YS0PuaPtDgMSnIHGRHbg4e3KtKhkg+wxb\nWEOGA4jgYvoExNwhA3JZnA8Fnxdx/MwMAEBb2XNEpaz+WHs7Rm0n8VsvAABqw+GUDuCyH2Sx\n7ClUpKjyI1KWmD77NDIpMpIqBUgKjpkgu8Xc/2O373Qoa49DiEl0ypXJ2XTo1LKqUIlQSpFQ\nKNTc3Nxq5GkuVmTPjEIIOULwEwF0Ru3t/2X3bl+cvd4kvurdi0Y5nU6v11tcXKzXZ+d+iKpk\nd9Iiu3GNSmLiFyFl9cc6S5VSX9Yt8q/tGPY+cfo6y2dBDXYvGhW9G7F70aiPH7s6MtyqZVoj\nQy6J/9s8h0EApB+/ZCQsevfL4/G4XK7CwkKTyZTBkBLVqg7xDRzsi9WGHU2cUqskUX4lLSkp\n0el0mQqp82pVhPz+3osMBkPb8UCm8MM8gDTjiErOET9awnEVAGiFPXWoikhCkrTovDiiojqt\nyoPCQ3/zDRx8ok0zDncAQOrsXjSq7clOOb7Dl+MvX7Ui74ssy42NjQaDwWq1ZjYkIFkoVNSl\n7UGMlsoL22tJrQIAqbN70ahwONzU1GQymQoLCzMdTsrFrM0AIIMoVHKO+J2aKISyTEN5b0mS\nlOuReHMBtKX8Nu/3+x0OR15eXl5eXqYjApDTKFRykbKTGv20Gb1eX1xczFGaLNaqOuW9Bjqd\n6MMdNXOGRf7kjCwA2YpCpbNKymNhlIGGhoZkLRPqxH0RgM6u1UlZo5bvbjWJcgVA9uGuX+oi\nWCpQUeD0Ub0A2YTLSwBkH46oqE6rIsThcPj9ft/AwRQnSC4yCgAAqBlHVDqHc459nekQ0IlR\nkwAAgE6HQgXICa1qFUoXIMtwjQqA7MOpX0Cu6Fp3pKWlJT8/32KxZDoWAIlR6pD2LkShSgGQ\nlShUAADoHHYvGsXTxwHkDk79AgAAAKA6FCoAAAAAVIdCBQAAAIDqUKgAAAAAUB0KFQAAAACq\nQ6ECAAAAQHUoVAAAAACoDoUKAAAAANWhUAEAAACgOtnwZHpZlkOhUNvxysj2pra3qMiMIsLh\nsPK/4CzK8jsWkjKQ9JAivSQaktKReEgJdaHoQEiCs5Abgl10LCRyIyExZ1RtPkipXPlpyIdE\nX3UHQsrZbYWUY7nB94hgF4pk5YZgnMganb5QkWU5HA47nc6YkyRJCgQCMafGpHwCxdsrnyKv\n1+v3+wVnUeZKtAuXy6XRaETaKy/B7/cHg0HxkNpbh3FCcrvdgu2VN8Lv9ye6dU70jfN4PIJr\nidwQD4ncSHpIreaNs/nqQD6kdOXH2d7GpKwZt9ud6MpPKB9kWU50LXk8Hp/PJziLJEnBYDDR\nLhJdSz6fLxAIiLTPjtyIhJRQbiS6rUhpbighqSo3Ir2kITfEv0eSmxsd/kkInVSnL1Q0Go1O\np7NarW0nhUKh5uZmo9FYUFAguDSbzRYMBmMuLSaPx+NyufLy8kwmk0h7WZYbGxv1en1RUZFg\nFw6Hw+/3FxUVabVC5+n5fL6Wlhaz2WyxWAS7aGhoaG8dxuR0Or1eb0FBgU6nE2kfCATsdrvJ\nZMrPzxfsoqmpSZIk8ZDcbrfb7c7PzzcYDCLtyQ3BLsgNEYnmRjStVhtzxkg+iC+2paXF5/MV\nFhYK5oPf73c4HGazOS8vT7CLxsbG9gKOyeVyeTyegoICvV7ouyYYDNpsNqPRKJ4Pzc3N4XC4\nA/lgNBpF2ofD4aamJoPBUFhYKNiF3W4PBALiIXm9XqfTabFYzGazSPvsyI3ItiKh3EhoW5Hq\n3FC2FTmbG+LfI8nNDcGEQdbgGhUAAAAAqkOhAgAAAEB1KFQAAAAAqA6FCgAAAADVoVABAAAA\noDoUKgAAAABUh0IFAAAAgOpQqAAAAABQHQoVAAAAAKpDoQIAAABAdShUAAAAAKgOhQoAAAAA\n1aFQAQAAAKA6FCoAAAAAVIdCBQAAAIDqUKgAAAAAUB0KFQAAAACqQ6ECAAAAQHUoVAAAAACo\nDoUKAAAAANWhUAEAAACgOhQqAAAAAFSHQgUAAACA6lCoAAAAAFAdChUAAAAAqkOhAgAAAEB1\nKFQAAAAAqA6FCgAAAADVoVABAAAAoDoUKgAAAABUh0IFAAAAgOpQqAAAAABQHQoVAAAAAKpD\noQIAAABAdShUAAAAAKiOPp2d7d2799VXX/3222+tVuvIkSMnTpyo0WjaNpNl+c0339yxY0dD\nQ0N+fn5VVdW0adPOOOOMdIYKAAAAIIPSd0SltrZ28eLF/fr1W758+ZQpUzZv3rx+/fqYLTdv\n3rxhw4bx48evWrVq7ty5dXV1TzzxRNriBAAAAJBx6Tuisnnz5rKysrvuukuSpB49epw4cWLr\n1q0333yzyWRq1fLvf/97v379Ro4cKUnSOeecc/311z///POBQMBgMKQtWgAAAAAZlL4jKocO\nHRoyZEjkzyFDhni93rq6urYtBwwYcOTIkcOHD0uS1Nzc/OGHHw4ZMoQqBQAAAMgdaTqiIsuy\nzWYrKSmJjFGGm5qa2jYeM2ZMMBh8+OGHJUkKhUJDhgyZP39+dIPVq1d//PHHyrDZbA6FQjab\nrb2u/X5/nKmthEIhSZLE24fDYUmS3G63x+MRnEWSpEAgkGhIdrs95vU87YXk8Xh8Pp94SPHX\nYcwuWlpaBNvLsixJks/nCwQCCXWRaEhOp1NwLSnIDcFeUp0bXq83p3KjVXgxZ1TWTDAYTPSV\nOhwOwfaRle/3+8Vn6Vg+CK78jm0rlO+XhEJyuVxut1twFqlDH8wObCu8Xq9I++zIDWUtderc\nUEJKz/eIYG4o0pMb4t8jyc2NYDAouBxkh7ReTC9o165dmzdvvuuuuyorKxsaGl555ZVf/epX\nP//5zyMpe/z48UOHDinDVqu1a9eucRI3HA4rn0NxiX4MlA+VOFmWU91Foq+6AyEl2l6Fb4QK\nQ8rN3EhDFyrMDZEZ+WAKyoKQVPjBzM03Ig0b7SzIjUTXUhK7UCol5I40FSoajaa4uLi5uTky\nRhkuLS1t2/jll18eMWLENddcI0lSjx49CgoKHnzwwdra2gsuuEBpsHjx4sWLF0eWM2vWrK5d\nu7ZdTigUam5uNpvNBQUFgnHabLZgMBhzaTF5PB6Xy1VYWNj2SpuYZFlubGw0Go1FRUWCXTgc\nDr/fX1paqtUKnafn8/laWlry8/MtFotgFw0NDXq9vri4WLC90+n0er0lJSU6nU6kfSAQsNvt\nFoslPz9fsAvlUFvM9IjJ7Xa73W6r1Sp4iiC5IdgFuSEi0dyIptVqY86o5IPBYLBarYKLamlp\n8fl84vng9/sdDkdeXl5eXp5gF42NjVqtNvrYeHwul8vj8RQXF+v1Qt81yi/BCeVDc3NzOBzu\n0qWLYHslH4qKioxGo0j7cDjc1NRkMpkKCwsFu7Db7YFAQDwfvF6v0+ksKCgwm80i7bMjN5Rt\nRafODWVbkZu5kdD3SHJzgwsBck36rlGprKzcv39/5M/9+/ebzeby8vK2LX0+X/QHRjmQ0oHy\nHQAAAEAnlb5CZdy4cfX19WvWrPn666937ty5ZcuW6upq5cfmXbt2zZs3L3JW6GWXXbZ9+/b3\n33//+PHjBw8efO65584666zevXunLVQAAAAAmZW+a1QqKioWLFiwbt26mpoaq9U6duzYSZMm\nKZMaGxsPHToUOX/xzjvvLCoqev3115uamvLz8/v16zdt2jTB82cAAAAAZIG0Xkw/dOjQoUOH\nth1fXV1dXV0d+dNkMk2bNm3atGlpDA0AAACAiqTv1C8AAAAAEEShAgAAAEB11PgcFSSqvqxb\nZLhr3RHfwMGR5zCV1R/LSEgAAADA6aBQ6dyiSxRFQ3nvtg0oVwAAANC5cOoXAAAAANXhiErK\ntT3o4ZOkln8Nc6wDAAAAaIsjKqnVtkpJtAEAAACQgyhUAAAAAKgOp36lUBqOlpTVH4v0opxF\n5vP5oq+n59QyAAAAdEYUKp1e21LE9Nmn+fn5FoslI/EAAAAAp49CJYWiD3cAALLVsIU1uxeN\nGrawpr0GuxeNSmc8AJAdKFRSq9WpWcpw4aG/FRUVZTQuAEASRIqTOFWK9K9KJi0RAUD24GL6\nlCurP6b8kyTp3G+/MX32aaYjAgAkQfzi5HQaAwAkjqgAAADVihR4v7/3oh/96sNWUzlOBWQ3\njqgAAAA1ij4MdcOqffEbAMg+FCoA0qq+rFvk38me5ZkOB+i4hH7O57f/RFGEAODULwDp0/Y+\neL6Bgy1fHM5IMMDpi77Zl1KK2O32QCDQtWtXZaQylSoFADqAQgUAgI6LX4RQonRY/Ds+A8gF\nnPoFAAA6JepAILtxRAUAAKhRpA4JBoM2m81iseTn52c2JADpxBEVAJnEk4UAAEBMHFEBkD7K\nk0+VS+rL6o8FAgG73Z7poAAAgBpRqABIN6VcAQAAiINTvwAAAACoDoUKAAAAANWhUAEAAACg\nOhQqAAAAAFSHi+ljUG5JJHHJLwAAAJAhOV2oRAoS6V81ievCAW0bUK4AAIAsM2xhTfSfkcdr\nAuqRu4VKdJWi/NleQRJnEgAAQCfSqj6JHk+tArXhGpX/06p0AQAAyCbtVSmAOuXuERUAAHLB\nVcs+ajuS384BqB9HVP5Pe+d3cd4XAKCTinOeT5ojAYBE5W6hErP8yP/bQZFmAAB0dtQqiMZB\nNqhQTp/6FbMIMX32adeuXdMfDAAAQErtXjSqbYH60cKrtNrc/eUaatbpCxVZlsPhsMvlijlJ\nkqRgMBhzakzhcFiSJPH2wWBQkiSfz6cMCAqFQuJdhEIhSZLcbrdGoxFv7/f7ldciqL11GJPy\nYj0ej2BISiSBQEC8C+W9SzQkr9fr9/vFl09uiCA3TinR3GjVXZzNV0L5oLzSDuSD0pdgtAnl\nQyAQkCTJ4/EI7gN1IB/C4XB76zBOSF6vVxk4pQ7kg7JiO7CtUGYUDCmh3GjPjoeuiLkQckM8\npM6YGzseuiIy7Pf7Q6FQSr9HkpsbgqsCWaPTFyqSJGk0Gr0+xgtRPkXtTY1J2ZURb690odVq\nBWdRNiIJhaR8YvV6veBGROlCPCRFQiEpm06dTif4BaNsVhINSUr8jdDpdDqdTrw9uSGC3Dil\nRHOjlZgzdiAfgsFgKBQSzwdFQitfo9EkFJLy/oqv/A7kg/JiOxBSQh/MhEJKNB9kWQ4EAomG\nJP5G/OmRHw5f8kHMSfGXkNLcUNI1oQ+mz+dTVW50ICS15Yakyu1G/NxIKE5kgU5fqCgfAJPJ\n1HaS8qOCTqeLOTUmj8cjSZJ4e2U7ZTAYBGeRZdnpdGq1WvEufD6fJElGo1H8sKzX69Xr9eJd\ntLS0tLcOYwoEAoFAwGg0Cn7BKPvTCb0Ryk8v4u2VLxiDwWAwGATbkxsiyA0RieZGtPZWbwfy\nQdkHEs8HjUbj8XgSygen05lQPiiFq9FoFNxHCQaDbrc7oZXvdrtlWU4oH/x+v8FgMBqNIu0j\nvziId+H1ekOhkHh7ZedS/I3oQG68O/dyn89XWlqqntyIbCvEc0NKcFuR6txQthWdPTdUuN2I\nnxucopZrOn2hAgAAACieeeaZOFNnzZqVtkhw+ihUAAAAkCX+9Kc/RYZDoVBzc3P0TZIoVDoX\nChUAAABkiY0bN0aGjxw5cuedd0aPQefCqX4AAAAAVIdCBQAAAIDqUKgAAAAAUB0KFQAAAACq\nw8X0AJAlbli176OFV2U6CgDIpMmTJ0eGlSfwRI9Zv359BmJCR1GoAECnN2xhjTJw+aJ3lYHd\ni0ZlLhwAyJiLLroo0yEgaShUACALDVtYQ60CIAfNmTMn0yEgabhGBQA6t8jhFABAW6FQKBwO\nZzoKdARHVCCkvqybMlBWf0ySJN/Awd/9a5IyBgAAIOMOHDggy/LgwYMlSWpqalq2bNknn3yi\n1+uvueaan/70p3o9u76dCUdUcGqRKkUZtldUtjcVQPpxihcARKxcufKbb75RhlesWFFXV3fn\nnXfeeuut77777oYNGzIbGxJFWYlTEKlD6su6cVwFyKDdi0a1OgGM6gVAbqqvrz///PMlSQoG\ng7t27XrxxRfLy8slSerWrdtvfvObqVOnZjpAJIBCBQCywbtzL/f5fKWlpVoth8oB5C69Xt/c\n3CxJUnNzs0aj6dWrlzK+oqLi5MmTGQ0NCeP7DKfAoRIAANBZDBgwYMuWLaFQqLS0tLCwsK6u\nThl/+PDhM888M7OxIVEcUUESUMwAAAA1uP322++7776f/OQno0ePHjVq1IIFC0aPHu31ejdt\n2nTbbbdlOjokhkIFp6bUIZELUaKvWqFEAQAA6tG3b9/ly5f/+te/fvrpp5UxL7zwQnFx8YwZ\nM2666abMxoZEUahAVKQmsdYe8nq9JSUlOp0usyEBAAC00q9fvzVr1nz33Xf19fWyLHfp0qV7\n9+7stHRGFCoAAADINmefffbZZ58tSVIoFNJoNJkOBx1BoQIAAIAswQMfswnvFgAAAE7tyid2\nKgNqflLTypUrR48erRQqkQc+ejyejRs3lpaW8hyVzoVCBQAAZJtrV+yJDKt5r7qzaPVIWeVP\nda5YHviYTXiOCgAAyBLDFtYo/1qNzFQ82aG9FajOFcsDH7MJhQoAAMgG6txv7uzir1UVrnMe\n+JhNOPULAAB0eircY84CnXGt8sDHbEKhAgAAgCzBAx+zCYUKAABpFf0r9QcPD89gJDlCndd8\nI3V44GPWoFABACB9Wp1L88Nf/On3914UcxK71wnZvWhUzPOUWI2no+1a/f29F92wal9kaiaC\nEhV54CM6LwoVAAAyKbLbh9MUvVf9zuxLwuFwly5dMhtSFoheq39e8J8Oh2Pn/CstFktmo0KO\noFABAABZIvIbv3KDWiRFZK36/f7MRoJcw+2JAQAAAKgOhQoAAOmj8tP6AUA9KFQAAEgrkVqF\negYAuEYFAIB0U+qQYQtrPnh4uNPpjL6enhIFABRpLVT27t376quvfvvtt1ardeTIkRMnTtRo\nNDFbut3u9evXf/zxxzabrbS09Oqrr54wYUI6QwUAINV2Lxrl9XolSfrg4eFmsznT4QCAuqSv\nUKmtrV28ePG11147Z86co0ePrl69OhwOT5kypW1Lv9//yCOPhEKhadOmnXvuuS0tLR6PJ21x\nAgAAAMi49BUqmzdvLisru+uuuyRJ6tGjx4kTJ7Zu3XrzzTebTKZWLbdt2/bPf/7z+eefLyws\nTFt4AAAAANQjfYXKoUOHhg8fHvlzyJAhb7zxRl1dXWVlZauWH330UVVV1bp163bv3m02m6uq\nqqZNmxZdtBw/ftxutyvDLpdLluVgMNi2x3A4rPwfc2pMsixLkiTeXukiFAoJzqIsv72A44ek\n1Qrd+SAUCkkJvupEQ4q8aiW2FIUkdeiNaO9kwpjtyQ3BXsiN+BLNjVZizphl+SDYvgMhpfqD\nqbTv2BuRUEjir5rcEI9HSmVuKCGRG4K9JCs3BL9ckDXSVKjIsmyz2UpKSiJjlOGmpqa2jU+c\nOPGPf/zjsssue/TRRx0Ox4svvrho0aKlS5dG9jNWr169fft2ZdhqtXbt2tVms7XXtd/vT/T5\nRHGWFpPb7Xa73eLtA4FAol04HI6E2ns8noTOlwuFQqkOyefz+Xy+hGZJNCSn01D849EAACAA\nSURBVJlQe3JDBLkhKNGQFOFwOM6MwWAw1Svf6/Uq10gIUjbmCXXR0tKSUPs05IPL5UqovQq3\nFeSGIHJDRKq/R5KYGx3+SQidlBrv+hUOh/Pz8x944AG9Xi9JktFoXLBgwd///vcLL7xQaTB0\n6NC8vDxlWKvVfvbZZzGvQZRl2efz6XQ6g8Eg2LXf7w+Hw+JXNAaDwWAwaDAYdDqd4Cxer7cD\nIZlMJsHfg0OhUCAQ0Ov1ytoTDEmr1RqNRsH2gUAgFAqJhxQOh/1+f0KvWvkqantaYHuUN8Jo\nNAr+JkRuiIdEbpxSorkRTaPRxNl8pWHlJ5oPGo0m1Ss/oZB8Pp8sy4l+MFWVD8oHU3xbkR25\noYREbsSn2txI9Kstibkh+O4ga6SpUNFoNMXFxc3NzZExynBpaWnbxqWlpUVFRZGNUffu3SVJ\nOnnyZKRQGT169OjRoyPLmTVrVkFBQdvlhEIhn89nMBhiTo3JZrOFw2Hx9h6PJxgMms1mwU+g\nLMvKzqh4Fw6Hw+/35+fnC344fT5fIBAwmUwWi0WwC2VnVDwkp9MZCoXy8vIEt1OBQMDv9xuN\nxvz8fMEulB+oxENyu93BYNBisQh+YZAbgl2QGyISzY1oGo0m5oyRfSDxxba0tIRCIfF8UH4J\nNhqNkd99TknZBxIPyeVyBYPBvLw8wZ3LYDCorHzxfAgEAgmtfCUfzGaz4J5cOBxW9o/Fu7Db\n7QmF5PV6lQ+m4P5rduRGZFvReXND2VbkbG6If48kNzfECyRkh/QVppWVlfv374/8uX//frPZ\nXF5e3rZl//79v/vuu8jpiceOHZMk6ayzzkpPnAAAAAAyLn2Fyrhx4+rr69esWfP111/v3Llz\ny5Yt1dXVyo/Nu3btmjdvXuQUzDFjxrhcrlWrVn399dcHDx587rnn+vbt2/aaewAAAADZKn3X\nqFRUVCxYsGDdunU1NTVWq3Xs2LGTJk1SJjU2Nh46dChygVRZWdnixYvXrl37s5/9rKCgYMiQ\nITNmzBA8exIAAABAFkjrxfRDhw4dOnRo2/HV1dXV1dXRYy644IJf/vKX6YoLAAAkYNjCmsjw\n7kWjrl+5VxnIXEQAspAa7/oFAABUK7pKif4zMkDFAiApuMsbAAAQ1apK6XAbADglChUAAJBk\n1CoATh+FCgAAAADVoVABAACiuP4EQNpQqAAAgATsXjTqlOUK9QyA08ddvwAAQMKiS5HGxkat\nVltSUjJsYQ0lCoBk4YgKAABIDqoUAElEoQIAAABAdShUAAAAAKgOhQoAAAAA1aFQAQAAALLH\ne++9p9FoXnnllUwHcrooVAAAAIAUOnHixNy5c/v3719YWGi1Wvv27XvLLbesX78+0uCLL754\n7LHHPv/88wwGqULcnhgAAABIlSNHjlx22WXNzc3XX3/9rbfeqtPpjh49umPHjtra2smTJytt\nvvjii0WLFvXu3buqqur0exwxYoTH4zEYDKe/qMyiUAEAAABSZcmSJQ0NDS+99NIdd9wRPb62\ntjbRRbnd7ry8vFM202q1ZrM50YWrEKd+AQAAAKny5ZdfSpI0evToVuMrKiqUgccee+zGG2+U\nJGnq1KkajUaj0fzwhz+UJOnNN9/UaDS/+93vFi1a1KdPH6PR+Pjjj0uSZLfbH3300UsvvbRr\n164mk6m8vHzu3LlOpzOy5FbXqCjL2bRp0y9/+cu+ffuaTKbu3bs/8cQTsiyn+rWfJo6oAAAA\nAKnSu3fvDz/8cN26dbNnz47ZYMaMGSaT6ZFHHnnkkUeuuuoqSZKKi4sjU+fNm1dWVrZkyZKz\nzz5bOZvr2LFjL7zwwvjx4ydOnGg0Gv/85z8vX758z549f/rTnzQaTXthPPTQQ3379l25cmVx\ncfFLL7306KOPdunSZebMmcl+uclEoQIAAACkyiOPPLJly5YHHnhg9erV//mf/zlkyJD/+I//\n6N+/f6RBz549BwwYIElSZWWlciwlmtFo/OCDD/T6/9tp79OnT319feQSlHvuuaeqqmrBggU7\nduwYOXJke2GUlpb+z//8j1LJXHLJJX/+859Xrlyp8kKFU78AAACAVOnTp8/nn38+Z84cjUbz\nwgsvzJw5c8CAAVVVVbt27RKZ/bbbbouuUiRJMplMkSolEAh4vd6xY8dKkrR79+44y1HOK1OG\ntVrtxRdffPTo0XA43JGXlC4UKgAAAEAKde/e/amnnqqtrbXZbH/84x9vv/32v/3tb9dff/2x\nY8dOOW+vXr3ajnzllVcuv/zy/Px8o9FosVj69esnSVJTU1Oc5XTr1i36z6KiIr/f39LSkuBL\nSSsKFQAAACAdrFbrVVdd9fLLL8+dO9dut2/YsOGUs5hMplZjli9fftttt3Xt2vWll1764IMP\nPv7449///veSJMU/PBLz8hWVX0/PNSoAAABAWl100UWSJEWOqMS5CL6tl19+uVevXlu3bo3M\n9Ze//CXpEaoBR1QAAACAVPn9739vt9ujx8iyrBxLUU7ZkiSpsLBQOtW5WxFarVaW5VAopPwZ\nCoWWLFmSzIhVgyMqAAAAQKqsWLFiwoQJI0eOHDJkiNVq/ec///n222//9a9/raqqmj59utJm\n4MCBZrN51apVRqOxuLj4zDPPHDFiRHsLHD9+/GOPPXbttddOmDChpaXl9ddfV/kZXB1GoQIA\nAACkypNPPrl58+adO3euWbOmoaEhLy+vb9++ixcvvv/++yOPmbdara+99tqiRYtmz57t8/mG\nDx8ep1BZsGCBXq9fu3btrFmzzjrrrPHjx993330xr7nv7ChUAAAAgFS5+OKLL7744lM2Gzt2\nrHKX4Yjx48fHPFSi1+sXLFiwYMGC6JHRLUeOHBn9Z8zlPP/8888//7xI/BnENSoAAAAAVIdC\nBQAAAIDqUKgAAAAAUB0KFQAAAACqQ6ECAAAAQHUoVAAAAACoDoUKAAAAANWhUAEAAACgOhQq\nAAAAAFSn0z+ZXpblUCjU3NzcXgO/3x9naiuhUEiSJPH24XBYkiSXy+V2uwVnkSQpEAgk2oXN\nZtNoNCLtlSePejwer9crHlL8dRgzJIfDIdheCcnr9fr9/oS6EA9J6aKlpUVwLSnIDRHkRtJD\najVvzBmVsIPBYKJh2O12wfaRfPD5fOKzJJQPkZUv2F7h8/nE86FjH0yn06mefFDWktvt9ng8\n4iF19tyIbCsSeiNUlRvKWsrZ3BD/HklubgSDQcHlIDt0+kJFo9HodLqSkpK2k5QPhtFoLCgo\nEFyazWYLBoMxlxaTx+NxuVz5+fkmk0mkvSzLjY2NBoOhqKhIsAuHw+H3+4uLi7VaocNfPp+v\npaXFYrFYLBbBLhoaGnQ6XXFxsWB7p9Pp9XqLiop0Op1I+0AgYLfbzWZzfn6+YBdNTU2SJIm/\nEW632+12FxYWGgwGkfbkhmAX5IaIRHMjmlarjTmjkg96vd5qtQouqqWlxefzWa1WwXzw+/0O\nh8NiseTl5Ql20djY2F7AMblcLo/HU1hYqNcLfdcEg0GbzWYymcTzobm5ORwOJ5oPBQUFRqNR\npH04HG5qajIajYWFhYJd2O32QCAgHpLX63U6nXl5eWazWaR9duRGZFvReXMjsq3IzdwQ/x5J\nbm4IJgyyBqd+AQAAAFAdChUAAAAAqsMRNAAx1Jd1UwZ8kuT690ll9cfSHw8AAMg1HFEB0Fqk\nSgEAAMgUChUAiaGMAQAAaUChAgAAAEB1KFQAJIZrVAAAQBpQqABojVIEAABkHHf9AhCDUqs0\nNDTo9XrxBz4CAAAkC0dUAAAAgOwxe/bs8847r9XI3r17z5w5Uxn2+XyPP/543759zWZznz59\nVq5cGWkWZ1L6cUQFAAAAyCEPPPDA66+//txzzw0ZMuSTTz65++67NRrNvffeG39S+lGoAAAA\nAJmk0WiUAVmWU91XOBz+7W9/O3/+/FtuuUWSpD59+hw6dOiJJ5645557NBpNe5N0Ol2qA2uL\nU78AAACAjIlUKa2GUyQUCgUCgby8vMiYgoKC77//vra2Ns6kVEcVE4UKAAAAkBkpqkzq6+s1\n/+7o0aPKJIPBcPXVVz/77LMHDx6UZfnAgQPPPvusMkucSakI8pQoVAAAAICscuaZZ37677p1\n6xaZ+vLLLw8aNGjQoEEGg2HUqFETJkyQJEk5uSvOpPTjGhUAAAAgqxgMhkGDBkWPMRqNkeGz\nzjpr8+bNfr//5MmT55xzzosvvihJUu/eveNPSj+OqAAAAACZkYar59tjNBqVuxivXr364osv\n7t69u8ikdOKICgAAAJAxsiwrV6qkrWh5//33Dx8+PHDgwJMnT65atero0aMffPDBKSelH4UK\nAAAAkElpPq6i0+mee+65L7/80mQyXXHFFR9++OHgwYNPOSn9KFQAAACA7LFixYoVK1a0Gnnk\nyJHI8PDhww8ePBhz3jiT0o9rVAAAAACoDoUKAAAAANWhUAEAAACgOhQqAAAAAFSHQgUAAACA\n6lCoAAAAAFAdChUAAAAAqkOhAgAAAEB1EihUgsHgvn373nnnHZvNlrqAAAAAAEC0UNmwYcN5\n55138cUXX3fddYcPH5Yk6fjx42eeeea6detSGR4AAACAXCRUqNTU1EyePPm8885bunRpZOS5\n555bVVW1adOmlMUGAAAAIEcJFSpLliwZNGjQ7t27Z82aFT3+sssu++yzz1ITGAAAAIDcJVSo\n7Nu3b8qUKXq9vtX47t27nzhxIgVRAQAAAMhpQoVKKBQymUxtx588edJgMCQ7JAAAAAC5TqhQ\n6du374cffthqpCzL27Zt69+/fwqiAgAAAJDThAqV6dOn/+53v1u7dm1kjNPpvPvuu/fs2TNj\nxgzxzvbu3Xv//fffdNNNt99++2uvvSbLcvz2hw8fHjt27JgxY8S7AAAAAJAFhAqV++67b9So\nUbfffnuPHj0kSZo2bVqXLl3WrFlz4403/vjHPxbsqba2dvHixf369Vu+fPmUKVM2b968fv36\nOO0dDsfSpUsHDx4suHwAAAAAWUOoUNHr9W+//fazzz7bq1evoqKiEydO9O/ff8WKFVu2bNFq\nRZ/Esnnz5rKysrvuuqtHjx4jRowYO3bstm3bfD5fzMayLD/11FMjR44cMGCA6EsBAAAAkGmv\nv/5627twdYBomaHT6e65557du3fb7faWlpZ9+/bdf//9Op1OvKdDhw4NGTIk8ueQIUO8Xm9d\nXV3Mxq+//nowGLz11lvFlw8AAAAgRf73f/933LhxvXr10mg04idVnY4k1DoiZFm22WwlJSWR\nMcpwU1NT28afffbZ9u3bV6xYodFoYi5t69atf/vb35RhrVYbDoedTmfMTiVJCgQCMafGFA6H\nJUkSbx8MBiVJ8nq9gUBAcBZJkkKhUKJduFyu9tZG24VLkuTz+ZQBQe2tw5iUF+t2uwVDUtaq\n3+8/5VVJEUrLRNeSx+Np7xhdzOWTGyLIjVNKNDdadRdn85XSfIisfGVAMNqE8kEJye12Cx57\n79jKb28dxgnJ6/X6/X7xkILBoHgXyucr0fY+n0+JTTCkzp4bkW0FuXHK9urMDfHvkeTmRkLf\nX52L8haIfxumWSAQMBgMLperd+/e48ePX7hwYXr6TaxQCYfDLS0trVZicXFxEgNqbm5+6qmn\nZs+eHV3VtPLJJ59s375dGbZarV27dvV6ve01DoVCiaZ1nKXFFAgEEt0ZTTQkwX2siGAwKLhd\nU4TD4URfdaIhpeGNEPx2iSA3RJAbghINSSHLcpwZ07DyE82H+AHHlOjKTzQkKSvyIdFtBbkh\niNwQkWhuJBpSEnNDvHjupDQaTVJqlfHjx+v1+osuumjFihV2u726uvqll17avn37o48++vXX\nX19++eWvvPJKWVmZJEk1NTW/+MUv/vrXv/p8vsrKykWLFl177bWRhWg0mvLy8nXr1n3//fdO\np3PEiBEjRoyQJOlXv/pVqx5DodAjjzzym9/8xuPxXHvttcOHDz/9VyEJFirhcHjNmjUrV66s\nq6trmzoiK1Sj0RQXFzc3N0fGKMOlpaWtWn711Vc2m+3xxx+PLFyW5TFjxkyYMGHSpEnKyDlz\n5tx9993KcEtLy+OPPx6zqgmFQg6Hw2Qy5eXlibxMSZIcDkcoFIpTI7Xi9Xo9Hk9+fr7RaBRp\nrxxZMhgMBQUFgl04nc5AIGC1WgV/dvL7/S6Xy2KxmM1mwS6am5t1Ol1RUZFge7fb7fP5xEMK\nBoMtLS1ms9lisQh2YbfbJUmyWq2C7ZU3orCwUPCESHJDsAtyQ0SiuRFNq9XGnFHJB71eX1hY\nKLgol8vl9/vFV77y43RCK99ms2m1WvF88Hg8Xq+3qKhI8DxhZeUnFJLD4QiHw+K/lykhFRQU\nCD4ELBwO2+12o9GYn58v2EVLS0swGBTPB5/P53a78/LyYj6vrK3syA1lW9Gpc0MJKTdzI6Hv\nkeTmRlIue1AhwSNaCampqTEajW+//faJEyemTJly0003eTyeF198UafT3XHHHffdd9+mTZsk\nSbLb7TNnzhw4cKBWq3399derq6sPHDhw4YUXKgvZunXrz372s9raWkmS4ufhkiVLnnvuuTVr\n1lx66aWbNm36+c9/npRXIfR+L168eOHChX369Bk3bpz4/kErlZWV+/fvv+OOO5Q/9+/fbzab\ny8vLWzXr16/fqlWrIn/u2LFj27Ztv/71r6O3NdHlTXNzs0ajibOliz+1bWNJksTbKx9srVYr\nOItS1HUsJMGNSKIhRXpJNCTxLpTfPxLqQpG6kCJzkRsivZAbIl0k+hIiYs6YhnxQfgZOdM1I\nqVz5HXjViYaU6KdAeQm5tq0gN8SXT24ISlZupGKHXm2SdVClpKRk7dq1ymqcPHnyc889d/z4\n8bPOOkuSpDlz5jzwwANKswkTJkRmWbhw4fvvv//GG29EDhh069btiSeeOGV6hMPhZcuWzZs3\nb+LEiZIkPfjgg5988snmzZtP/1UIFSovvvjiHXfc8cILL4jf46utcePGzZs3b82aNddcc01d\nXd2WLVvGjBmjFGe7du3atm3bwoUL8/LyzGazchNkhfLDQ/QYAAAAIDukqPoaNGhQpNgrKysr\nKytTqhRJks4999yWlhbleN2JEyeefPLJv/zlLydPngwGg3a7PXqvu3///iI7/99++63D4fjB\nD34QGTN8+PD0FSrff//9nXfeeTpViiRJFRUVCxYsWLduXU1NjdVqHTt2bORUrsbGxkOHDiV6\n4ikAAACQZZJyUCX6zHONRtPqT+lfJzXccMMNRUVFy5cv79Gjh8VimTFjRvRVHoInWyrRRp8b\nJni+4ikJFSrdu3dXzgs/TUOHDh06dGjb8dXV1dXV1TFnGTt27NixY0+/awAAAEBVMnsyW1NT\n0/79+99///0f/vCHkiSFw+EvvvjikksuSXQ53bp1KyoqOnDgwKWXXqqM+fTTT5MSodBBkttv\nv33lypWqvWMaAAAA0OnI7UhP78XFxWecccY777wjy3IwGJw/f/6xY8fitPd4PAcOHDhw4IDH\n42lqajpw4MBnn30mSZJWq50zZ86TTz555MgRSZL+/Oc/r1u3LikRCh1R6du378svvzxs2LDJ\nkyd369atVfE3ZsyYpIQCAAAAID20Wu2mTZvuv//+c845Jz8//+abb46/V19bWzt48GBl+Isv\nvtiyZYtOp1Ou3ViwYIHT6Rw2bJjZbO7Xr9/8+fOTcuMvoULl5ptvliSprq5uz549badypAUA\nAABQiTfffDP6z/nz58+fPz/y5zXXXBPZe//BD36wf/9+kYVIkjRo0KD2dvv1ev3SpUuXLl0a\nGfPwww93IPLWixVptHHjxtPvCQAAAAAECRUq48ePT3UcAAAAABCRwB2Hg8Hgvn373nnnHZvN\nlrqAAAAAAEC0UNmwYcN555138cUXX3fddYcPH5Yk6fjx42eeeWayLuoHAAAAgAihQqWmpmby\n5MnnnXde9CUy5557blVV1aZNm1IWGwAAAIAcJVSoLFmyZNCgQbt37541a1b0+Msuu0y5fTIA\nAAAAJJFQobJv374pU6bo9a2vvO/evfuJEydSEBUAAACAnCZUqIRCIZPJ1Hb8yZMnDQZDskMC\nAAAAkOuECpW+fft++OGHrUbKsrxt27b+/funICoAAAAAOU2oUJk+ffrvfve7tWvXRsY4nc67\n7757z549M2bMSFVoAAAAAHKVUKFy3333jRo16vbbb+/Ro4ckSdOmTevSpcuaNWtuvPHGH//4\nxymOEAAAAEDOESpU9Hr922+//eyzz/bq1auoqOjEiRP9+/dfsWLFli1btNoEHhkJAAAAACJa\n38irPTqd7p577rnnnntSGg0AAAAASOJPpgcAAACAtKFQAQAAAKA6Qqd+mc3mmOM1Go3FYunR\no8eoUaPmzp3btWvXpMYGAAAAIEcJHVG54YYbzj//fJ/Pd+aZZ15xxRVXXHHFGWec4fP5ysvL\nhw4darPZfvnLXw4aNKi+vj7V4QIAAADIBUKFygMPPHDs2LF169Z9/fXX77333nvvvffNN9/8\n93//97Fjxx577LGvvvpq/fr1J06cWLhwYarDBQAAAJALhE79mj9//owZMyZPnhwZo9Fopk6d\numfPnocffviDDz6YNGnS+++/X1NTk7I4AQAAAOQQoSMq+/fvr6qqaju+qqpq7969yvCwYcO+\n//77ZIYGAAAAIFcJFSoGg+HAgQNtx3/66acGg0EZ9vl8+fn5yQwNAAAAQK4SOvXruuuue/75\n5wcPHjxjxgydTidJUigU+s1vfrNmzZqJEycqbfbs2dOzZ8/UBRrHP//5z1WrVrUdL8uy1+vV\n6XRGo1FwUT6fLxwOWywWwfbBYDAQCBiNRmW1iPB4PFqt1mQyJRSS2WzWaDQi7UOhkN/vNxgM\ner3o0zwTDcnv94dCIfGQwuGwz+fT6/WRsvaUvF6v1P7t5toKBALBYNBkMmm1QrU3uZGikMiN\ntsLhcPx5Y26+pNSvfCUfElr5Ho9Ho9GkbuV3LB9kWRb/YCohiX8w07atUNUHMw25oYREbsSn\n2txINKQk5sbx48clSXrjjTcEl5aQL7/8MhWLxekQyrOlS5fu3r37xz/+8fz58/v06SPL8pEj\nRxoaGs4///xf/epXkiR5vd5vvvlm0qRJKY42tqampt/+9rcZ6RoATqmwsLC9SX6/n80XAIjT\narVvv/126pZfVFSUuoUjURpZlkXa2e32ZcuWbd26ta6uTpKk8vLyMWPGzJ07N+NvZyAQ+PTT\nTzMbAwC0R6PRVFRUtLep3Lt3b/xDLgCAaE6ns6CgIEULt1qtFRUVKVo4OkC0UAEAAACAtBE6\nNxQAAAAA0olCBQAAAIDqiN60oa3PPvvslltukSTp8OHDIu2/+OKLTZs2HT169OTJk1ddddW9\n994bp/HevXtfffXVb7/91mq1jhw5cuLEiYL3owAAAACQBTpeqHg8ntraWvH2Xq/3nHPOufzy\ny1977bX4LWtraxcvXnzttdfOmTPn6NGjq1evDofDU6ZM6XCoAAAAADqXjhcql1xySUtLi3j7\nqqoq5fH2mzdvjt9y8+bNZWVld911lyRJPXr0OHHixNatW2+++Wbx+4IDAAAA6NQ6XqhotdoU\n3R7u0KFDw4cPj/w5ZMiQN954o66urrKyUhlz9OjRxsZGZViv1w8ZMiQVYQAAAADIlI4XKiki\ny7LNZispKYmMUYabmpoiY9auXbt9+3ZluLi4+LrrrmtvUcrNlwUffCv96xnSibbXaDSCl9B0\nOKREuxBvL6n4VRNSKrogN9IfUllZmXJFX1urVq0KBAIdW+xpts/NfEjbqyYkkfbkBiG11z5O\nFydPniwpKUnRpcsWi+XGG2/s2bNnKhaODkigUPnyyy+VBz7Ksnz++eePGTOmd+/eqYssjquv\nvrpPnz7KcDgc3rhx4/Tp09s2C4fDgUBAp9Pp9aIv0+/3y7Isfo5ZKBQKBoN6vV6n0wnO4vP5\ntFqtwWAQbB8IBMLhsNFoFPxMdiwkjUZjNBpTFFLH3ghJksRDUl61wWAQ3BSSG+IhJZQbwWAw\nFAqRG9GeeuqpioqK9gqVrVu33nnnnW3Hy7Ls9/tTmg8deKUdywdVfTATDanDb0TqthXZkRtK\nSJ06N5SQcjM3EvoeSXSjHT83NmzY4PF4Ro8enYpC5dNPP92/f//gwYMpVNRD6AMvy/K8efOW\nLVsW/XTIefPmPfTQQ7/4xS+SG5BGoykuLm5ubo6MUYZLS0sjY6688sorr7wyMvW9996LuRMQ\nCoWam5vNZrP4KWo2my0YDHbt2lWwvcfjcblchYWFgtsdWZYbGxuNRmN7j6luy+Fw+P3+0tJS\nwU2nz+draWnJz8+3WCyCXTQ0NOj1+uLiYsH2TqfT6/WWlJQIbqcCgYDdbrdYLPn5+YJdKAfQ\not/0+Nxut9vttlqtgltnckOwC3JDRPzcePrpp+PMazQaY26+lHwwGAxWq1UwjJaWFp/PJ54P\nfr/f4XDk5eXl5eUJdtHY2KjVaqOPeMfncrk8Hk9xcbHgzmUwGLTZbAnlQ3Nzczgc7tKli2B7\nJR+KiooEd5vC4XBTU5PJZCosLBTswm63BwIB8W2F1+tVnrRtNptF2mdHbijbik6dG8q2Ijdz\nI6HvkeTmxrvvvnvs2LERI0aIH6IR53A49u/fn/TF4nQIvc1PP/300qVLb7311h07dnz11VeH\nDx9+8803L7nkkieffHLFihVJj6mysjI6Ufbv3282m8vLy5PeEQAAAAB1EipUVq9eff/997/2\n2msjRozo2bNnRUXFTTfd9OGHHw4fPvzZZ58V7Mnv99fV1dXV1fn9fqfTWVdX99VXXymTdu3a\nNW/ePLfbrfw5bty4+vr6NWvWfP311zt37tyyZUt1dTW3/AIAAAByh9Ah12+++abtRSA6nW7K\nlCk//elPBXv69ttvZ8+erQzX19d//PHHWq32rbfekiSpsbHx0KFDwWBQfcHlqwAAIABJREFU\nmVpRUbFgwYJ169bV1NRYrdaxY8dOmjRJsBcAAAAAWUCoUDn77LOdTmfb8U6ns1u3boI9lZeX\nb9u2Leak6urq6urq6DFDhw4dOnSo4JIBAAAAZBmhU78mTpy4ePHiyBEPxcmTJ5955pmZM2em\nJjAAAAAAuUvoiMrgwYPXr19fUVExffr0888/3+fzHTx4cO3atb179y4vL1dO31KMGTMmZaEC\nAAAAyBVChcrEiROVgYULF0aP37dv30033RQ9Jvr+xQCAHHfDqn0f/vxHmY4CANApCRUqGzdu\nTHUcAIBsMmxhjTJwxf+3Y/eiUZkNBgDQGQkVKuPHj091HICa1Zd1y//bwUxHAXRWwxbWUKsA\nOevaFXvYAqBjEnuup8Ph+Pzzzz///HOHw5GigAD1qC/rVl/2/9/XznXhAN/AwanoIvI/kAaR\nAx1XPrEz5vjk9pKi5QOdRZzMz/oPxbCFNZHXqAxHjwFEiBYqhw8fHjVqVElJycCBAwcOHFhS\nUnLNNdfU1tamNDhkgfqybid7liu7+NH7/Z1IdMzJjT+6Sjl+XnffwMEtlRcmcflATJF9hRtW\n7YuMkZK328SOCBAt+hNxw6p9yf24qVbkBV6/cm97k4BTEipUjhw5cvnll//xj3+89NJLf/KT\nn/zkJz8ZNmxYTU3NZZddduTIkVSHCGREqmuq9pbfGWs5dBYx9w/SttPA3glyTXs5H32cIY3h\nAJ2PUKHyX//1X263u6am5qOPPlqzZs2aNWt27dpVU1Pjdrtb3QcMiBa9z23re0HbkUnvJQ3L\npJDIIGXlewYMjP4Tp2PEL/8S/efp7zax4wUooj8LyvCo5bszF05anXI7wIYCgoQKlffee++e\ne+65+uqro0deffXVd99993vvvZeawNDppXMnsrlPRfTZZerff40fofrjz4joKiWyilhX4tSw\nZ5CUGNq7AIbT39EZkbRAHEJ3/bLZbH369Gk7vk+fPjabLdkhIfvVl3Urqz+WrEUlZTkJLTOJ\n8UNQ2zclpSWKvaKyoP5YNr3R4jtDp3mHruh5XS6Xx+MpLi7W64W+a0REapJIR8oZ8OztQVUS\nup9Elt0WT/DDmGWvGikidETl3HPP/eijj9qO/+ijj84999xkh4RsILKvn/ROT/YsT8ryy+qP\nnXL39HSWLzIvBwrEpWhdcUO2ToqKBQCyhtCvXOPGjXv66acvvPDC2bNnm81mSZK8Xu/y5cvX\nr18/Z86cFEcItOuUJ1Cdzs/hrea12WzBYLBr164dXmCrJbMHLC7N6yoV96HOuLa/XPr9fofD\nkZeXl5eXl5GQOqDVSf+7F426dsWeDMYDtKfVJ669+jkrDym0elGNjY1arbakpCRT8aBTEypU\n/uu//uvdd999+OGHn3jiid69e8uyfPToUafTOWDAgJ///OepDhGdUfRefiAQsNvtFoslPz8/\niV109h39VoWQLMuNjY1Go7GoqChTIXVeKT1HK5tOAMsycW6plJX7f+i8lIS02+2BQCApP3gB\nOULo1K/i4uLdu3c/9thj5eXlX3755dGjR8vLyxctWvTxxx8XFxenOkSgwzp7MQNJ+E1M1nv9\nXfeeSVkOko5zugAg14he4Jifn79w4UJuRgz1KKs/Rh2SC1odzWhqapIkqbS0NBV9xXm4DQdV\nMivRKoWDKgCQBU5dqLjd7scff3zcuHGXXHJJGgICxEX2Hd1ut9vttlqtBoMhsyEhW1GrZFZ7\nVUdzc3M4HO7SpUua4wEApMGpCxWLxbJ8+fIbb7wxDdEAQAaV1R8LhULNzc1ms7mgoCDT4QAA\nkNNOfY2KRqPp3r37iRMn0hANAAAAAEiCF9NPnTp1xYoVwWAw1dEAAAAAgCR4MX1lZeUrr7xy\n4YUX3nbbbb169TKZTNFTx4wZk5rYAAAAAOQooULllltuUQYefvjhtlNlWU5mRAAAAABynlCh\nsnHjxlTHAQAAAAARQoXK+PHjUx0HAAAAAEQIXUwPAAAAAOkk+mR6SZK+/PLLrVu31tXVybJ8\n/vnnjxkzpnfv3qmLDAAAAEDOEipUZFmeN2/esmXLoq+bnzdv3kMPPfSLX/wiZbEBAAAAyFFC\np349/fTTS5cuvfXWW3fs2PHVV18dPnz4zTffvOSSS5588skVK1akOkQAAAAAuUboiMrq1avv\nv//+6JqkoqJizJgxP/rRj5599tnZs2enLDwAAAAAuUjoiMo333wzffr0ViN1Ot2UKVO++eab\nFEQFAAAAIKcJFSpnn3220+lsO97pdHbr1i3ZIQEAAADIdUKFysSJExcvXhwMBqNHnjx58pln\nnpk5c2ZqAgMAAACQu4SuURk8ePD69esrKiqmT59+/vnn+3y+gwcPrl27tnfv3uXl5W+99Vak\n5ZgxY1IWKgAAAIBcIVSoTJw4URlYuHBh9Ph9+/bddNNN0WOi718MAAAAAB0jVKhs3Lgx1XGc\nppgFUmRkouWTeHulpSzLgrOcTkgJdSHevm1sKQqpY1103pDIjYSWnIMhxZ+RfEhRSOn8YKow\nJHLjlC1zNqTOmxvIbkKFyvjx41MdR4fJshwKhex2e3sN/H5/q6tr4giFQpIkxVlaK+FwWJIk\nj8fj9XoFZ5EkKRAIiHehhORwODQajXhIXq/X7/eLhxR/HcbsIub9FWJStjU+ny8QCCTURaIh\nuVwuwbWkIDcEe0l1bni93pzKjVbhxZxRWTPBYDDRV9rS0iLYvgMfzFNub2OG5HQ6BVd+x7YV\nsiwnGpLb7fZ4PIKzSB36YHZgW+Hz+UTaZ0duKGupU+eGEpLf71dPbijSkxvi3yPJzQ3xLTOy\ng1ChomYajUan0xUXF7edFAqFmpubjUZjQUGB4NJsNlswGIy5tJg8Ho/L5crLyzOZTCLtZVlu\nbGw0GAxFRUWCXTgcDr/fb7VatVqhOx/4fL6WlhaLxWKxWAS7aGhoaG8dxuR0Or1eb2FhoU6n\nE2mvfMebTKb8/HzBLpqamiRJEg/J7Xa73e6CggKDwSDSntwQ7CI9uWE2m3MqN6JptdqYMyr5\noNfrrVar4KJaWlp8Pl9RUZFgPvj9fofDYTab8/LyBLtobGxsL+CYXC6Xx+MpLCzU64W+a4LB\noM1mS2hb0dzcHA6HE82H/Px8o9Eo0j4cDjc1NRkMhsLCQsEu7HZ7IBAQD8nr9Tqdzry8PLPZ\nLNI+O3Ijsq3ovLkR2VbkZm6If48kNzcEEwZZQygvAQAAACCdKFQAAAAAqA6FCgAAAADVoVAB\nAAAAoDoUKgAAAABUh0IFAADg/7V3p/FRVGnD/6s7+0YCsiOiISxBUAziqKwigzCaAA4qqDeK\niiLjhoobuwIOKjw4qIjLsMjqAoKjsgqijIqIImpEWcWAsmRPp/d+XtTz73/udKdTVd11urry\n+77gE6pP9Tmn+qrTdVWdqgZgOCQqAAAAAAyHRAUAAAAwA/m3MusiSZLNZps1a1b37t3T0tIa\nN27cs2fP6dOnl5aWRrvhwfG7OQAAAECUeL22NW9Xb93qKytP6NY1/d5745o30/xmqamp3377\nrfz3nj17xo4du2LFii5dushLSktL+/Xr99tvvz355JOXXXZZVlbWTz/99MYbb6Snpz/66KMR\n6EukkagAAAAA0VE8bnz1hx/Kfzu++MK25u1mH38U3+48be9mtVq7d+8u/y1fJ+nYsaN/ydix\nY3/99dfvv/8+JydHXtK9e/ebb7759OnTYfVBN0z9AgAAAKKg+sOP/FmKzFtWVvrkk3rU5XK5\nVq1addttt/mzFL9mzbRfw9EViQoAAAAQBY7PPg+ycNd/JY8n4nUdP368qqqqW7duEX9n/ZCo\nAAAAANHg8wZb6JN8vshXpcN76o1EBQAAAIiCxMsuC7Lw0h5SfORvI2/btm1aWtr+/fsj/s76\nIVEBAAAAoiB1+LCkvn1qLrGkpGTNnq1HXYmJiSNHjlyyZMnBgwdrvcTN9AAAAABqsFrPWbok\nc9JTiT17JnTqmDpiRPMtmxI6d9Kptueee659+/Y9e/Z87rnnPv300++++27lypUDBgxYunSp\nTjWGiccTAwAAANFhSUxMH39v+vh7BdTVpEmTr776at68eStWrJg+fXpSUlKHDh1GjRo1duxY\nAbVrQKICAAAAmE3//v0Db6BPS0ubMmXKlClTotIktZj6BQAAAMBwSFQAAAAAGA6JCgAAAADD\nIVEBAAAAYDgkKgAAAAAMh0QFAAAAgOGQqAAAAAAwHBIVAAAAAIZDogIAAADAcEhUAAAAABgO\niQoAAAAAwyFRAQAAAGA4JCoAAAAADIdEBQAAAIDhkKgAAAAAMBwSFQAAAACGQ6ICAAAAwHDi\nRVa2Z8+et9566/fff8/MzBw4cOCoUaMsFktgMZ/P9+67727btu3MmTNpaWkXXXTR6NGjmzVr\nJrKpAAAAAKJI3BWVAwcOzJw5s0uXLvPmzbv11lvXrl27YsWKoCXXrl27atWqESNGLFiw4NFH\nHz18+PCsWbOEtRMAAACIUSNGjOjcubPNZvMvKS8vz87OHjNmjCRJDz30kMVisVgsVqu1devW\nI0aMOHDggFzM/1JcXFxWVlaPHj0mTpx47Nix6HRDkiSRicratWvbtGlzzz33tGvXbsCAAcOH\nD9+wYYPD4Qgs+dNPP3Xp0mXgwIGtWrXq1q3btddee/jwYZfLJaypAAAAgABlNtdz//lp6LxP\nB8zedu/ir787VhLmG77++us2m+3BBx/0Lxk/fnx8fPyCBQvk/7Zo0aKwsPDHH39ctGjR/v37\nBw8e7M9q5Jd++OGHzZs3jxs3bsuWLRdeeOEnn3wSZpM0E5eoFBYW5uXl+f+bl5dnt9sPHz4c\nWLJbt24HDx78+eefJUkqKSn5/PPP8/LyEhIShDUVAAAA0JvL431g2Z61Xx//s8xuc7i/PVo8\n7t+79/0WVq7SuHHjFStWLF68+L333pMkacWKFW+//faqVavS09PlAvHx8Z07d87Nzc3Pz3/h\nhReOHj36zTff1HrpsssuGzt27O7duy+++OLRo0cHvbQggKB7VHw+X2lpaePGjf1L5L+Li4sD\nCw8bNsztdj/55JOSJHk8nry8vCeeeKJmgcWLF3/99dfy34mJiR6Pp6ysLGilkiQ5nc6grwbl\n8XgkSVJb3maz2e12hatIkuR2u9VWUV5eHvR+nkBer1eSJLvd7nQ6lTeprm0YokmVlZUKy8sf\nhMPhcLvdCleRe6G8SXL5qqoqhVuJ2FDeJGKjXmpjo1bzQgxfGuKhoqJCYXm5Crvdrvx6tc/n\nq6vBQckbv7KyUu3GVxUPPp9P7Vaqqqqqrq5WuIokSS6XS3kVcuPVbqXq6mqFxwHmiA3/WKEq\nNtSOFbrGhtwkQ8WGvxYBsaH8eySysaE8AGLFB3uLDpwsr7Vw7oeFy+69Mpy37dOnz6RJk8aO\nHdusWbPx48fPnj27R48eQUumpaVJklTXsUpiYuITTzxRUFDw+eefX3311eE0SRuhN9MrtGvX\nrrVr195zzz25ublnzpxZsmTJc889N2XKFH/IHjp0aPfu3fLfmZmZTZs2DTGYer1eeVdXTu00\nM4/HI+9XCmlokto9U22TfD6f2l6rLS/gg1C7lYgNJYgNhTRPTw2xogE3voYm6R2ikiF3TL2b\n1DBjw4AfhAGbJCA2BDSprtiQMyUz+flE7SxFkqRf/6xwe3zxcYrS+LpMnTp127ZtV1111dVX\nX/3II48ELXP06NEZM2ZkZmbWlcZIktStWzdJkg4dOmTmRMVisWRlZZWU/P9XsuS/mzRpElj4\nzTffHDBgwODBgyVJateuXXp6+sSJEw8cONC5c2e5wKRJkx577DH577KysieeeOKcc84JfB+P\nx1NaWpqcnCwni0qUlZW53e6g7xZUdXW1zWZLT09PSkpSUt7n8xUXFycmJmZkZCisoqKiwul0\nNm7c2GpVNE/P4XBUVlampqampKQorOLs2bPx8fGZmZkKy1dVVdnt9qysrLi4OCXlXS5XeXl5\nSkpKamqqwirk8Kh5CS40+YNo1KiRwimCxIbCKogNJdTGRk1WqzXoinI8JCQkNGrUSOFbVVZW\nOhwO5fHgdDorKipUbfzi4mKr1ZqVlaWwvM1mq66uzszMjI9X9F0jnwlW1aTS0lKv1xv0qyRE\nkzIyMhITE5WU93q9JSUlSUlJ/ikT9SovL3e5XMrjwW63V1VVpaWlJScnKylvjtiQx4qYjg15\nrGiYsaHqeySysWG+GwGSEoJs+YQ4a5w1rCxFkqS4uLhp06YNGjRoxowZtS5PFRUVyZvX4/F0\n7NjxvffeC7GnyMmhwoufESfuikpubu7evXvvvPNO+b979+5NTk7Ozs4OLOlwOGruMPKmqZm7\np6Sk+PcQeXnQzedfqHbjKi8vl5SfkKBTFf7yClcxbJO0VRG7TTLsB2HAJmmrItabpHBF4iGy\nTVLbawM2SUMV/vLERr0lY7pJGqrwl4/d2Ih1fTs3f+er32ot7NOpeUR6L+d1gdldixYttm7d\narVaW7RoUW/m/P3330uS1L59+wg0SD1xN9Nff/31RUVFixYtOnbs2Pbt29etW1dQUCCfbN61\na9fjjz/uf+DAFVdcsXHjxk8++eTEiRP79+9fuHBhixYtcnJyhDUVAAAA0FvP7HNGXtGu5pLW\njVMevTZX10rj4+O7du3apUuXerMUp9M5Z86cc889t3fv3ro2qS7irqh06tRp0qRJy5cv37Rp\nU2Zm5vDhw2+++Wb5pbNnzxYWFvrnI44dO7ZRo0arV68uLi5OS0vr0qXL6NGjFc6fAQAAAGLF\nQ4M79+rY7LMDpyvtrs6tGhX0ODc5QdH0aT243W75ubsVFRX79u176aWXDh48uGHDBoVTIiNO\n6M30PXv27NmzZ+DygoKCgoIC/3+TkpJGjx49evRogU0DAAAAoqBn9jk9s7Xc6Bhxf/75Z25u\nrtVqTU9Pz87OHjhw4Pr169u1a1f/mvow4lO/AAAAAISjf//+gc9Jmz9//vz584OWD/FStIi7\nRwUAAAAAFCJRAQAAAGA4JCoAAAAADIdEBQAAAIDhkKgAAAAAMBwSFQAAAACGQ6ICAAAAwHBI\nVAAAAAAYDokKAAAAAMMhUQEA1O/yaZui3QQADcvl0zYx8jRw8dFuAADA6GodK/j/++WMa6LR\nHAAmJA8sWyf2ClzOUNNgcUUFAKDItf/aU2sJJzsB6IThBRKJChqUojZto90EIPbUdTkl6H8N\nSJ49EtjOupYDEM+/Jw58fleIV9HQMPULDUVgllLWKTe96Li8vE3R8Wg0CjC6WscHQ+bvjlZL\ntKnr+IbjHsCwrlvwTbSbAKPgigoalqI2bYvatP3jvPP9/631BwC1YuWgn6QFMCYl+yD7acNE\nooIGITAPcVx8SVRaAsSQWD8yqKv9fWdtF9wSAIAGTP0C/p+iNm2ZAAZoEyuP5Rkw57P/3N8j\ncHmstB8wn7pOKLBLQiJRQUPAtC5Am1oHCmfPnrVarY0bN45We1Sp6+iH6e+AodQaZyorK+12\ne1ZWVrTaA0Nh6hdMTlWWQkoDNFixPs8NAMyHKyowOf9sLoVJCBPAAHMIOm/EZrPZbLZGjRol\nJiaKbxIAQBUSFRhLrTxBQNpAWgIAAGBAJCownKI2bVP275MiPRGrZkLi8XhKSkqSk5PT09Mj\nWAUAAAAihXtUYCD+zKS628WBC1FLRe6FkiSdbNtO/i8bCgAAmAmJCgyKXCU0eZv4fw1G/i8b\nCgAAmAaJCoyCg2zN2HQAAMB8SFRgCPUeanMsXlOIrcGGAgAA5kCiAgAAAMBwSFQQfcp/4UTv\nlsQErj4BAICGgMcTI/oCf8mkuLhYkqQmTZpEozkAACBWTZ8+XdVyGBmJChBj/HldeXm50+ls\n0qSJ1cqlUcSwy6dt8v+K/HULvtn2WG95oVTHr8sDDUT/Zz/9z/09ot2K2FPzO9Htdh88eLCi\noqJnz55RbBI0I1EBAESNnJDUzFWufu7zqLYIiDJ5pwhcSN6u0NSpU2v+1+PxPPfcc9nZ2dFq\nD8LBiVgAgCH0fmZbrSVBj9gAE6sV89ct+CZwIVSJi4v7+9///s4770S7IdCCRAUAEB01D784\nFAOC6v/sp/If7COalZSUVFVVRbsV0IKpXwAA42LGCxqOelMRdgclVq5c6f/b5/OdPXt269at\nV155ZRSbBM1iPlHx+Xxer7e6ujrwJa/XK0mSx+MJ+mpQ8irKy7tcLkmSnE6nvKJCqprk8Xgk\nSbLb7RaLRUl5t9vtb5hydW3DEFU4HA6FTZK74Ha7lVfh8/kkNR+Ev0nyH/UiNpRTFRtyk4gN\n5Xw+X9AV5W5q2PjK40Eu73K5VG38uhoclH/jB426q/65U+H7hKhRbZP8O6bc/XrJH4Su8SBv\nJafTKdelsEnmjo1A8lZVO1boGhsRHysU7hGhdwdJVGwofH9/wyIVG0q+Uj/88MOa73bmzJke\nPXpMnDhRYQNgKDGfqMiC7mD+hQp3v9DvFrq8qlVUlZdLKl9FbflaK6oqqapJqqrQXN4gTTrb\nvkNG4Y/+Jp1t3+GcQ7/K/9b7/jEdG2pXaYCxoXZFQw1HapsUIuT8s1mUuOqfO3c82S+CTVK1\nirDyRqtC23Cktrxxhi/DfrXVUu/uoKGKWBk3FFqxYkXN/xYXFz/zzDO7d+/u27evtjdEFMV8\nomKxWKxWa3JycuBLHo/HZrPFxcUFfTUou93u9XqVl/f5fE6nMyEhISkpSWH5ysrKuhoclNPp\nlCQpKSlJ4SNoHQ6H3W6Pj49XXoXaJrndbpfLlZSUFBcXp6S8fFpOVZNsNpskScrLe71ep9OZ\nmJiYkJCgpLyusSH/3mJCQkLN2DjbvoMUskfEhsIqYjo2AlkslqAr+ny+qqoqVRvf5XK53W7l\n8eB0OtXGQ1VVVV0NDko++ZqYmBgfX/u7Juj0FbfbXVpampKSkpaWprCK6upqVU3yx0NiYqLC\n8lVVVariweFweDweVfHgcDgSEhIUrmKO2JDHiqCxUVd5tTum3rGhYawIERuq7j+pq8aGEBsa\nHsffpEmTO++884UXXiBRiUUxn6gAxlSc0zFp37fS//6d+KI2bQN/3RIA0MAFTd3tdntlZWV6\nerq28yDws1qtf/75Z7RbAS1IVIBIqpmWSJJ0JjsnsAC5CgAAOtm9e7f/b/lm+nfeeefCCy+M\nYpOgGYkKEDG1shTHxZdEqyUAADRMjz/+eM3/pqSk5OXlPfjgg9FqD8JBogKIxkUVAAB08tFH\nH/n/VnV7DAyIRAWIjFqXUwAAgHgpKSnyYzAyMjKi3RaEi0QFiIxaF0mqq6vlUVLhE+EAAED4\nfvjhh6lTp5aUlHTs2PHZZ59t0qTJjh070tLSevbsGe2mQTXVT3kDAAAAjGnBggV//etf582b\nl5KSIv9KvcfjqfXjKogVXFEBAACASZw5c2bcuHHyT0a+8sorkiTl5OQcOXIk2u2CFlxRAQAA\ngEkkJyd7vV5Jklq0aFFSUiJJktVqdblc0W4XtCBRAQAAgEn069fv3//+t9frTUpKkjOWHTt2\ntGvXLtrtghZM/QIAAIBJFBUV7dq1a8eOHeeee25lZeWECRP2798/a9asaLcLWpCoAAAAwCTi\n4uL69u0r/92/f/8WLVo88MADF1xwQXRbBW1IVAAAAGASU6dOjXYTEDHcowIAAADAcLiiAgAA\nAJOYPn26quUwMq6oAAAAwCSsNbhcrgMHDnz++ec+ny/a7YIWXFEBAACASdS6R8Xr9b7++usW\niyVa7UE4uKICAAAAc7JaraNHj96yZUu0GwItSFQAAABgZiUlJR6PJ9qtgGokKgAAADCt5OTk\njz76KC4uLtoNgWokKgAAADCJgwcPOhyOmkssFktiYuK3335bWFgYrVZBGxIVAAAAmMTYsWOP\nHz8euHz37t2rVq0S3x6Eg0QFAAAAJte+fftff/012q2AOjyeGAAAAOYxY8aMpKSkWgvtdvsf\nf/wRlfZAMxIVAAAAmMcFF1yQkZERuPziiy8W3xiEg0QFAAAA5jF69OicnJxotwIRwD0qAAAA\nMIm4uDh+h940uKICAAAAk9i6dWu0m4CIIVEBAACAqfh8vtOnT0uS1KxZMy6wxC4SFQAAAJiE\nx+NZtWrV6tWrq6qqJElKS0sbNWrUqFGjrFbud4g9JCoAAAAwiTfeeGP79u133313Tk6O0+nc\nv3//ypUrq6qq7r777mg3DaqRqAAAAMAkPv7445dffrlNmzbyf7t37966desFCxaQqMQiroIB\nAADAJBISEvxZiiw3N9fhcESrPQgHiQoAAABMol27dt9//33NJZ9//vlf/vKXaLUH4WDqFwAA\nAEyie/fuTz311KBBg3Jyclwu1/fff7979+477rjjk08+kQsMGDAgui2EckITlT179rz11lu/\n//57ZmbmwIEDR40aVdcD42w224oVK7744ovS0tImTZoMGjToxhtvFNlUAAAAxJwlS5ZIkrRh\nw4aaC19++WX/3yQqMURconLgwIGZM2cOGTLk4YcfPnTo0CuvvOL1em+99dbAkk6n86mnnvJ4\nPKNHj27dunVFRUV1dbWwdgIAACBG8YOPZiIuUVm7dm2bNm3uueceSZLatWt38uTJ9evX33DD\nDUlJSbVKbtiw4fTp06+++mpGRoaw5gEAAAAwDnGJSmFhYb9+/fz/zcvLW7NmzeHDh3Nzc2uV\n/O9//3vRRRctX778yy+/TE5Ovuiii0aPHl0zaSkuLvZfY6moqPD5fB6PJ7BGeWFdrwbl8/n8\nKyrh9XrlfxWuIr+/tibJf0S8Sf5a1DZJrkh5k1RVIdPQJIWrEBsKq9DWJGJDlaArGjYeJD03\nvoB4UNtrDU1qsGOF1MBig+8RhVXIIhUbCtsJ0xCUqPh8vtLS0saNG/uXyH8XFxcHFj558uTR\no0evuOKKyZMnl5eXv/766zNmzHj++ef9N7TMmzdv48aN8t+ZmZllHm7/AAAgAElEQVRNmzYt\nKSmpq2qHw6H2mXQh3i2oqqoq+ddPFXK5XGqrKCsrU1W+urpa1Xw5j8ejd5Psdrvdble1itom\nVVRUqCpPbChBbCiktkkyr9cbYkW32220ja8hHsrLy3VtkqR+41dWVqoq73Q6nU6nqlXUNslm\ns9lsNuXliQ2FiA0lDPg9UldsuN1uVe+DWGfEp355vd60tLQJEybEx8dLkpSYmDhp0qSffvrp\nwgsvlAt07drVH6nx8fEHDx4MnD8mSZLP53M6nXFxcfL7KOF0On0+X9B3C8rj8bjd7oSEBKtV\n6YOeHQ6H1WpNSEhQWN7lcnm93sTExLoePBC0SfHx8XFxccqbZLFYEhMTFZZ3u90ej0d5k7xe\nr8vlUvVBqG2S2g+C2FDeJKPFhnxMENOxUZPFYgkxfKmKB3njK2+GgB1TbTwI2Phyk9TumKqa\nJO+YascK5Tum5tgw1KCtdvgyYGxoaJJpYiOK3yPK91yYg6BExWKxZGVl1cyn5b+bNGkSWLhJ\nkyaNGjXy7/nnnXeeJEmnTp3yJyojR44cOXKk/33uu+++oHezeDwep9OZkJCQnp6usJ2lpaVu\nt1v5vTHV1dVutzs5OVnhuOPz+RwOR3x8vPIqysvLnU5nenq6wp3T4XBUVFQkJSWlpKQorEL+\nGlbepMrKSo/Hk5aWpnCccrlcZWVliYmJaWlpCqtwuVySJClvks1mc7vdqampCkdnYkNhFQaM\nDfkybEzHRk0WiyXoij6f7+zZs6o2fkVFhbzxFcaD0+l0uVxJSUmpqakKq5CPgZQ3qaqqqrq6\nOjU1VeGRnNvtdjqdquKhpKTE6/WqigebzZaSkqLwsMnr9ardMcvKylQ1yW63V1ZWJicnJycn\nKymvOTaUjxUCYqOystJut8d0bMhjRYONDeXfIxpiw+Px1BUbyhMkmIO4xDQ3N3fv3r3+/+7d\nuzc5OTk7OzuwZNeuXf/44w//3MTjx49LktSiRQsx7QQAAAAQdeISleuvv76oqGjRokXHjh3b\nvn37unXrCgoK5JPNu3btevzxx/1TMIcNG1ZVVbVgwYJjx47t379/4cKFHTt2DLznHgAAAIBZ\nibtHpVOnTpMmTVq+fPmmTZsyMzOHDx9+8803yy+dPXu2sLDQf9tJmzZtZs6cuXjx4kceeSQ9\nPT0vL+/2229XOHsSAAAAgAkIvZm+Z8+ePXv2DFxeUFBQUFBQc0nnzp3nzJkjql0AAAAAjIWH\nJwAAAAAwHBIVAAAAAIZDogIAAADAcEhUAAAAABgOiQoAAAAAwyFRAQAAAGA4JCoAAAAADIdE\nBQAAAIDhkKgAMJuiNm1r/tdx8SXRagkAANCMRAWACcm5SlGbtiUdOtVcAgAAYgWJCgBTCZqQ\nnDo/u66XAACAMZGoADCPmqkIaQkAADGNRAVAA0L2AgBArCBRAWASJCEAAJgJiQqAhoV8BgCA\nmBAf7QYAQGS0KTpeawk5CQAAsYtEBYBptSk6brPZbDZbZmZmQkJCtJsDAABUYOoXAAAAAMMh\nUQEAAABgOCQqABCWqgu7SdwPAwBApHGPCgBoVCs58f838LZ+AACgFldUACBcjosviXYTAAAw\nGxIVANAixFwvpoEBABA+EhUAUK3eVIRcBQCAMJGoAAAAADAcEhUAUEfh1RIuqgANyuXTNkW7\nCYDZkKgAAAAocvm0TXJC0uvprdct+OavL/y31qtRahdgTjyeGADUqfX04dLSUrfb3bRp02i1\nB4BgNROSy6dt+nLGNaQogB64ogIAAFC/urKRWnmLqOYA5keiAgAAUA8yEEA8EhUAAICIIaUB\nIoVEBQAAIBRyDyAquJkeAAAglC9nXFNricfjKSkpSUpKysjIiEqTgIaAKyoAAAAADIdEBQAA\nAIDhxPzUL5/PJ19+rauA0+kM8WotHo9HkiTl5b1eryRJVVVVNptN4SqSJLlcLrVVlJaWWiwW\nJeV9Pp8kSdXV1Xa7XXmTQm/DoE0qLy9XWF5ukt1udzqdqqpQ3iS5ioqKCoVbSUZsKEFsRLxJ\ntdYNuqLcbLfbrbYZZWVlCsv748HhcChfRVU8+De+wvIyh8OhPB607ZiVlZXGiQd5K9lsturq\nauVNivXY8I8Vqj4IQ8WGvJUabGwo/x6JbGy43W6F7wNziPlExWKxxMXFNW7cOPAlecdITExM\nT09X+G7yD7cFfbegqqurq6qq0tLSkpKSlJT3+Xxnz55NSEho1KiRwirKy8udTmdWVpbVqujy\nl8PhqKioSElJSUlJUVjFmTNn4uLisrKyFJavrKy02+2NGjWKi4tTUt7lcpWVlSUnJ6elpSms\nori4WJIk5R+EzWaz2WwZGRkJCQlKyhMbCqsgNpRQGxs1Wa3WoCvK8RAfH5+ZmanwrSoqKhwO\nR2ZmpsJ4cDqd5eXlKSkpqampCqs4e/ZsXQ0Oqqqqqrq6OiMjIz5e0XeN2+0uLS1NSkpSHg8l\nJSVer1dtPKSnpycmJiop7/V6i4uLExMTld+HUFZW5nK5lDfJbrdXVlampqYmJycrKW+O2PCP\nFbEbG/6xomHGhvLvkcjGhsKAgWkw9QsAAACA4ZCoAAAAADAcEhUAAAAAhkOiAgAAAMBwSFQA\nAAAAGA6JCgAAAADDIVEBAAAAYDgkKgAAAAAMh0QFAAAAgOGQqAAAAAAwHBIVAAAAAIZDogIA\nAADAcEhUAAAAABgOiQoAAAAAwyFRAQAAAGA4JCoAAAAADIdEBQAAAIDhkKgAAAAAMBwSFQAA\nAACGQ6ICAAAAwHBIVAAAAAAYDokKAAAAAMMhUQEAAABgOCQqAAAAAAyHRAUAAACA4ZCoAAAA\nADAcEhUAAAAAhkOiAgAAAMBwSFQAAAAAGA6JCgAAAADDIVEBAAAAYDgkKgAAAAAMh0QFAAAA\ngOGQqAAAAAAwHBIVAAAAAIYTL7KyPXv2vPXWW7///ntmZubAgQNHjRplsVhClP/555+ffPJJ\nn8/3/vvvC2skAAAAgKgTd0XlwIEDM2fO7NKly7x582699da1a9euWLEiRPny8vLnn3/+kksu\nEdZCAAAAAAYh7orK2rVr27Rpc88990iS1K5du5MnT65fv/6GG25ISkoKLOzz+ebOnTtw4MDk\n5OS9e/cKayQAAAAAIxB3RaWwsDAvL8//37y8PLvdfvjw4aCFV69e7Xa7R44cKap1AAAAAAxE\n0BUVn89XWlrauHFj/xL57+Li4sDC+/bt27hx4/z58+u6g2Xz5s0HDhzw/9fr9VZVVQWtVJIk\nt9sd9NWgvF6vJEnKy7vdbkmSHA6H/IdCHo9HeRUej0eSJJvNFvp+nlrlnU6n3BeF6tqGQcmd\nra6uVtgkuSUul0t5FfJnp7ZJdrvd6XQqf39iQwlio15qY6NWdSGGL1XxIPdUQzzIdSlsrap4\ncLlckiRVV1dbrYpOimmIB6/XW9c2DNEku90u/1EvDfEgb1gNY4W8osImERtKVtE1NuQmNdjY\nUP49EtnYULgpYBpCb6ZXoqSkZO7cuQ899FDNrKaWnTt3bty4Uf47MzOzadOm1dXVdRV2u92q\njhQlSQrxbkEpPADy83g8aquw2+2qyrtcLoVDrczr9erdJAEfhMPhUFWe2FCC2FBIbZNkPp8v\nxIoG3PihGxyUATe+gB1TbXkT7JjEhkImiA21TYpgbKg60QYTEJSoWCyWrKyskpIS/xL57yZN\nmtQqeeTIkdLS0qefflr+r8/n8/l8w4YNu/HGG2+++WZ54ZgxYwoKCuS/q6urFy1alJmZGVip\n1+utqKhITExMSUlR2M7KykqPxxP03YJyOBx2uz01NTUhIUFJeZ/PV15enpCQkJqaqrAKm83m\ncrkyMjIUnnZyuVw2my05OTnozT9BlZWVxcXFpaenKyxfXV3tdDqVN0k+4ZSUlJScnKywivLy\nckmSGjVqpLC8/EGkpaXFxysKaWJDYRXEhhJqY6Mmi8USdEU5HuLj49PS0hS+lRwPjRo1Unhm\nVNvGt1gsGRkZCsvb7XaHw5Genh4XF6ekvMfjqaysVNWkiooKn8+nPB7kJum6Y1ZVVbndbuXx\n4HQ6q6urU1JSEhMTlTcp1mNDHitiOjbksaJhxoaq75HIxobCkRymIe7zzs3N3bt375133in/\nd+/evcnJydnZ2bWKdenSZcGCBf7/btu2bcOGDS+++GJWVpZ/Yfv27du3by//XVJSYrFYgg4r\n8vVBq9WqcNCRJEneUZWXl0/txMXFKf/Ok2vR0CRV18eVN8lfi/Ly8nmO+Ph4hV8wMl0/CPnU\nTnx8vMJViA2FVahtErGhVl2bV0M8yGEQHx+vMB7kKnSNB/nkdHx8vMJjC3lLqt34Pp9Pv3iQ\n9xpd40EOOV3HCgPGhn+siN3YEDBWEBtB30p5vTABcTfTX3/99UVFRYsWLTp27Nj27dvXrVtX\nUFAgZ+S7du16/PHHbTabJEnJycntapAngLVr107b2UoAAAAAsUjcFZVOnTpNmjRp+fLlmzZt\nyszMHD58uH8q19mzZwsLC9VOPAUAAABgVkKn+vXs2bNnz56BywsKCvz3nNQyfPjw4cOH69wu\nAAAAAMYibuoXAAAAAChEogIAAADAcEhUAAAAABgOiQoAAAAAwyFRAQAAAGA4JCoAAAAADIdE\nBQAANFCXT9sU7SYAqBOJCgAAaIjkLEX+d8Ccz6LdHAC1kagAAIAGJ/BaynULvolKSwDUhUQF\nAAA0aP6kpe+s7dFtCYCaSFQAAEDDwq0pQEwgUQEAAPh/yGEA4yBRAQAADUi9qQi5CmAQJCoA\nAKAB+XLGNV/OuCbarQBQPxIVAADQsHBRBYgJ8dFuAAAAgFCBV1RsNpvNZmvUqFFiYmJUmgQg\nEFdUAAAAABgOiQoAAAAAwyFRAQAAAGA4JCoAAAAADIdEBQAAAIDhkKgAAAAAMBwSFQAAAACG\nQ6ICAAAAwHDM8IOPxcXFS5cuDVzu9Xqrq6sTEhKU/3hTdXW11+tNS0tTWN7lcjmdzqSkpPh4\nRVvS5/PZbLb4+PikpCSFVTgcDrfbnZqaarFYlJR3u90OhyMxMTEhIUFhFVVVVVarNSUlRWF5\np9PpcrlSUlKsVkWJrsfjsdvtqj4Im80mSVJqaqrC8vIHkZycHBcXp6Q8saGwCmJDidCx4fV6\nQ6zrdDqDDl9yPMTFxSUnJytshtp4kDe+qniw2WwWi0W/eNC28X0+n37xoGHHtNvtHo9H+Vgh\n75hqxwpio156x4bcJGKjXpGNjVOnTkmS9MEHHyiMHFUOHDgQ8fdEmMyQqJw+fXrBggXRbgUA\nBBfiUMnhcDB8AYByVqt1zZo1+r2/8uQWAlh8Pl+02xAWp9O5c+fOoC+dPn167ty5PXr0uOGG\nGxS+20svvVRUVPTss88qLL9r164PPvhg5MiR3bt3V1K+urp6xowZnTp1GjNmjMIqli5dWlhY\nOGXKFIXnYPbt27dq1arrrruud+/eCquYNGlSy5Yt77//foXl33vvva+//nrChAktWrRQUv7I\nkSOLFi3q16/fkCFDFFbxz3/+0+v1PvXUUwrLb9q0afv27XfddVdOTo6S8sSGwir0jo3Dhw+/\n9tpr/fv3Hzx4sMIq5I/gySefVFhejo2xY8e2b99eSflTp07Nmzfv0ksvHTFihMIqXnrppRMn\nTsyePTvoq1artVu3bs2aNQv66vbt2z0eT+Byt9s9efLkCy644J577lHYjJUrV37//fdPPPFE\nVlaWkvKFhYVLly695pprrrrqKoVVzJgxIz09/ZFHHlFYfsOGDf/973/vu+++c889V0n548eP\nv/zyy7169crPz1dYxdy5cysrK6dNm6aw/CeffLJ58+bbbrstNzdXSfmSkpI5c+ZcfPHFo0aN\nUljFokWLjhw5MmvWLIUn5nfv3r127dq///3vPXv2VFJejo3s7Oy7775bYZNWrFixf//+J598\nMjMzU0l5DbExffr0Ro0aPfzwwwrLr1+//osvvtA1Nl544YWqqirlsbFt27YtW7bcfvvtnTt3\nVlJeQGx89dVX69atGzFixKWXXqqkvMvlmjJlSvv27ceOHauwSWpj46efflq2bJmq2Jg2bVpW\nVtaECRMUlpdj4/7772/Tpk3QAmVlZQpbq0FmZqbCPRFixPwVlcTExIEDBwZ96ejRo5IktW7d\nuq4CgZYtW3bixAnl5c+cOfPBBx907dpV4Srl5eWSJJ1zzjnKq/jwww8lSerXr5/Cgw+v17tq\n1aqOHTsqr2LKlCkZGRnKy3/55Zdff/315ZdfrvDIb+/evZIknX/++cqrmD9/vsfjUV7+l19+\n2b59e15e3mWXXaakPLGhsAq1sfHFF19IknTFFVdkZ2crKf/NN99IKmPj//yf/+Pz+TTEhsLv\nniNHjkjqY+PkyZPKy9dU15e90+mUJKlx48bK33bbtm2SJPXu3btly5ZKystTaNq3b6+8ilmz\nZqWlpSkv/+2330qSdNlll3Xp0kVJ+R9//PHll19u27at8ioWLlzocDiUlz927JgkSd27d+/T\np4+S8idPnpwzZ06LFi2UV/H2228fOXJkwIABCufGVFRUSJLUpUsXhVVoiI2tW7fu37+/d+/e\nCs8gaIiNmTNnqoqNvXv3fvHFF8pj44cffpAk6bzzzlNexSuvvOJ0OpWXP3r06JYtW7p3767w\nVM6JEyckSVIVG/J1gKuvvlrhVK7y8vJ169Ypjw2HwzFlyhRVsbFlyxZJkvr06dO8eXMl5eWo\nzsnJUV7FM888oy02FJ5NgLlxMz0AAAAAwyFRAQAAAGA4MX+PCgAAAADz4YoKAAAAAMMhUQEA\nAABgOCQqAAAAAAyHRCVcNptt3bp1ZWVlNReWlZWtW7fObrdHZBUBVUiS5HA4fvzxx++++05+\nVma91JbXu9ditpI56P1ZCyCgCybYSkoI2NEEYPjSowqpwewFNQkYKwQw2ghpjnEGURHzv6NS\nrxA/nxcXF9ekSZMePXoMHz5cfmy8hvIbN2785ptvhg8fXrNkZmbmnj174uLiCgoKAt9H7SoC\nqigqKpo2bdqpU6ckSUpLS3viiScuvvjiuraDhvICei1gK+kdS2Kq0PuzFtBrAeEqoAolBMSD\n3juaOeLBBMOXhipMMFboHUsaVjHBIK9hFQHhCrMyf6Jy5ZVX1vWS1+stLi5+5513SktL/T//\nrLb8zp07a+1LskGDBm3YsCHo7qR2FQFVLFu2LCEhYfLkycnJyatWrXr11VcXLlwYuLrm8hqa\nZMCtpHcsialC789aQK8FhKuAKpQQEA9672jmiAcTDF8aqjDBWKF3LGlYxQSDvIZVBIQrTMvX\n4G3ZsiU/P19z+ZtuuunQoUOBxQ4dOjRy5Mig76B2FQFVjB49evfu3fLff/zxR35+fnl5edB3\n1lZeQ5MMuJXqFWYsialCwGettklqVxHQhahvJYXCjwcBO5raJqldheFLpyqivheIHyEFjBVq\nm6ShvAFHyKiPM4hd3KMi5ebmhlPe7XbbbLbAYlVVVW63O+g7qF1FQBWlpaUtW7aU/27RooXV\nai0tLQ36ztrKa2iSAbdSvcKMJTFVCPis1TZJ7SoCuhD1raRQ+PEgYEdT2yS1qzB86VRF1PcC\n8SOkgLFCbZM0lDfgCBn1cQaxi0RFatOmTTjlW7du/csvvwQWO3DgQOvWrYO+g9pVBFTh8/ks\nFkvNJV6vN+g7ayuvoUkG3Er1CjOWxFQh4LNW2yS1qwjoQtS3kkLhx4OAHU1tk9SuwvClUxVR\n3wvEj5ACxgq1TdJQ3oAjZNTHGcQu89+jordevXq98847V155pf/sgiRJRUVF77777vXXXx+R\nVQRUIUnSU089FRcXJ//t9XqnTJni/+/ixYvDL693r8VsJXPQ+7MWQEAXTLCVlBCwownA8KVH\nFVKD2QtqEjBWCGC0EdIc4wyigkQlXEOHDv3ss8/uu+++q6++ul27dpIkHTt2bNu2ba1btx46\ndGhEVhFQRX5+vqpeqy2voUkG3ErmIOCz1puALphgKykkYEfTG8OXTlU0nL3AT8BYIYABR0gT\njDOIFovP54t2G6KvoKBgw4YNmstXVFQsWbLks88+kx/vnZyc3Ldv3zFjxqSlpdX1DmpXEVBF\nvdasWXPTTTeFU17vXhthK4UZSwapIvzPOuJNUruK3l0QU4US4ceDgB0tsl3QsArDl7Yq6mWC\nsULvWNKwigkG+cBVjBCuiEmi7943JLXPFQla3uVynTx58uTJk263u9ZLq1evDvo+alcRUEUI\nEdlKGprUMLeSuaugSREUKzumhiZFcJVY2UrG/B4JoQHumDQpnFWiG66IRdxMHzHx8fEtW7Zs\n2bKlf5qm34oVKyKyioAqBNC71+bYSoBgAnY0EzDB8NUwPzgYBOEKtRpoouL1er/66qvp06fL\n/120aJH/pZ9++km+zlhLRUXF5s2bA8ujgRMQSyYI1xBdkGKnFwZBPASuAtOIbGwUFBQcPnw4\ndI1GiCUT7NSAThrczfTFxcWbN2/evHnz2bNnO3fuLC9s1aqVv8ATTzyRnZ09derUJk2a1Fzx\n9OnTL7300qBBg2qVR4MlIJZMEK71dkGKhV4YBPFgkF5AD9GKDYPvEewOaOAaSqLi8/n27dv3\n8ccf79692+Px3HDDDUOGDGnatGnQwiUlJY8++ui0adPkZ00ANQmIJROEq6ouSEbthUEQDzCx\nhhkbJtipATHMP/WroqJi3bp148aN++c//5mZmTlnzhyr1dq3b98Q4+Djjz/erl27xx9//Pvv\nvxfZVBicgFgyQbhq6IJkvF4YBPFgkF5AD2Ji4/jx4wfrEKF+qGOCnRoQyfxXVMaMGZObmztq\n1Kgrr7wyMTFRySrJyclTpkxZuHDhtGnT7r///gEDBujdSMQEAbFkgnDV0AXJeL0wCOLBIL2A\nHsTExty5c+t6Se0jfSPCBDs1IJL5r6jExcW5XC632+31epWvZbVa//GPf9x8880vvvjimjVr\n9GuekXF7Xy0CYila4RrBz1pbF6Swe2HKpxqYYPgycTw0TDE3Vtx3332z6qCwusje32+CQV6K\nnacUwATMn6gsWbKkX79+69evHz169Isvvvjjjz8qX/eGG26YMGHCmjVrFixYoGpMEfBMG12r\nKC4uXr169V133TV79uzq6mp5Ya3b+5544oni4uJaK8q39wWW19ALA24lAbEkPlwj/lmH0wVt\nvRAQrsL2iFqiMnxJEd0xTRkPsghupUgd9uk6osboWJGTk9OtDvVWUW+XJbG9Nsggr1C9q3A2\nAUqYf+pXSkrKkCFDhgwZUlhY+PHHH0+dOtXr9W7dunXw4MFt2rSpd/X+/fufc845s2fP/vnn\nn5VUJ+C5JfpVIfL2Pr0fdaLHVhIQS8LCVb/POswuKO9FQ3iqgeDhS9JhxzRTPPhF5UlN0XpC\noAnGCrV0vb/fBIN8+HjWGZQz/xUVv9zc3Icffnjx4sW33377V199de+99z700ENKVuzWrdtz\nzz3ncDhClPH5fN99992zzz575513rly58qqrrnrzzTfnzJlTV3l5UDh27Jjy9utahbDb+1T1\nwmhbyU/XWNK7CmGfteYu1NuLBvhUA71DTu8dM5wu1NsL0wxfGujaJBOMFWqJfPZDrA/yGp5S\nYMA9CDFA3x++Nyqv1/vNN9/MnDkz8KWjR486HI7A5cXFxTt37gxcXl5evnbt2rvvvvumm256\n+eWXDxw4MHTo0KNHj4aoPT8//8cff5w+ffpNN920b98+//JDhw7l5+dHpYq///3vkydP3r59\nu7/voavIz88/dOiQx+N56aWXhg0btm3bttDvr6EXBtxKQUUwlsRUIeCzVtUFDb0Q0IWobCWF\nIhsPeu+YarugoRcmGL7y8/N37Njxax2i0iSfKcaK6upqr9ersGqf+i779O+1MQf5/JACy0dl\nnIE5mH/qV1AWiyUvLy8vLy/wpbque6akpBQVFQUuF/DcEgFVhHN7X/PmzV988cXTp0/fdNNN\nke2F0bZSUBGMJTFVCPisA4XogqS+FwK6EJWtpFBk4yEqzyCKuXgQsJXUPpxKQJNMMFYkJydL\nkvTbb7/t2LFDLtCmTZurrrqqbdu2Qd8nzPv79ei1YQf5++67T/nkK551Bs3Mn6gcOHAgxKud\nOnUKXFhZWXnw4MH4+PgLL7zQYrF4PJ6NGzeuXr3a4XCMHDmyVmEB45qAKpYsWbJjx47169e/\n9tprvXr1GjhwoPJabrjhhmbNmv3rX/86derUkCFDItsLQ20lvWNJTBV6f9YauqC2FwLCVUAV\nSgiIB713THPEg4AjP1WHfWKaZIKxQpKktWvXLl261GKxyBOfvvzyy/fee++22267/vrrAwuH\n02VJt14bbZCX5eTkZGdnK3xbI5/6gcGZP1GZOHFiiFcDz1T9+uuv06dPr6iokCSpa9euDz30\n0OzZs8+ePXvddddde+21ge8gYFwTUIWA2/v0HjoFbCW9Y0lMFXp/1mq7oKEXZnqqQWgC4kHv\nHdMc8SDgyE/VYZ+YJplgrNizZ8/SpUuHDx9+4403pqamSpJks9lWr169dOnSdu3a9ejRI7Jd\n1qPXBhzkNTDIqR/EIvMnKhaLpVmzZn/961979Ohhtdb/8IAVK1acf/75N99885YtWz755JPJ\nkycPGjQoPz8/KSkpaHkB45rIR6Pk5ubm5ubeddddW7du3bhx4/r167Ozs+fPn19vFfLtfTNm\nzKirgN5Dp4CtpHcsianCT6fPWm0XwumFfuEqsooQBMSD3jumOeLBgEd+IpsUu2PF+++//7e/\n/e3222/3L0lNTb3jjjscDsf7778fmKj4ae6yFOleG3CQ18CAexBiRrRvktHdiRMnFi9efOut\nt44ZM2bVqlVnzpwJXf7WW2/9/vvvfT5faWlpfn7+hx9+qKq6srKy9957b+zYsfn5+Q8++GDQ\nMvKNa7UW/vbbb3feeaeSu8QEVCHT9TbxenthwK0kIJYEh8mGA64AABwvSURBVKtfBD9rtV3w\nRagXMfdUAyXEx0PEd0xTxkPEt1LQ8qroPaL6xdZYcdNNNxUWFgYuLywsvOmmm+qtThbZ+/tN\nMMj71D+loBZh4QoTMH+iInO5XDt37nzqqaeGDRv2zDPPfP3113XtYwUFBb/99pv899ChQ7V9\neUR2XItWFRpUV1evWrVKeXm9j/z02EoCYklwuGoT+rNW3gVf9HqhNlyjVYX4eIj4jmnKeIjg\nVgrzsE+PJkVQFMeK4cOH+8vXdOzYseuvv15Z8zWKVK8NO8j7fL5jx44tXbp09uzZs2fPXrp0\nadBNHYIxwxVGY/6pX7L4+Pg+ffr06dOnqKjo1Vdfffrpp5cvX96oUaPAkj6fz2Kx+P8bFxen\nobrIPrdEQBUCbu8LSu9HZunxQQiIJV2rEPNZK++Chl6Y46kGygkeviQddsxYj4egIriV1D6c\nSkCTJFOMFc2bN//1118DN+Mvv/zSvHnzwPJi7u+XTDHIq3pKQVACnpkJE7D4fL5ot0EQu93+\n6aefbtq06bfffuvdu/f48eODPiOvoKAgKytLHgvOnj3r/1u2ePHiWuUjPq69/fbb4qsoKCgI\nUYXa2/vS09MD3ySyQ2dUtpKfTrEkpgoBn7WqLmjohYAuCNtKCukXD3rvmGq7oKEXJhi+pIDD\nvtOnT0uSFOKwT0CTTDBWLFu2bOfOnbNnz66Zlvz5559PPvlk//79R48eHWaXBfTamIP8nj17\nnnnmmcCnFKxfv37q1KmBN/8IG2dgPg3iisrhw4c3bty4Y8eOZs2aDR48eMCAAWlpaXUVzs/P\nV/XmAp5bIqAKAbf36f2oEwFbSdI5lsRUIeCzVtUFDb0w2VMNQtM7HgQ8g8gE8aD3VlL7cCoB\nTZJMMVaMGDHiyy+/HD9+/NVXX33++ef7fL6jR49+8sknzZs3HzFiRGB5Mc9+MMEgr/YpBQLC\nFWZl/isqDz/88LFjx3r16nXNNddceOGFEXnPNWvW+J/nPXTo0BAjQtDHTU6fPt3lcvkHhZYt\nW4YeFARUcfLkyU2bNm3bti0hIWHQoEF//etfzznnnBBb4H/+538ee+yxbt26lZWV/c///M+4\nceP+9re/hSivoRcG3Ep6x5KYKvT+rPXoQq1eCAhXAVUoISAe9N4xzREPem+lyZMnt23b9p57\n7qm1fOHChSdOnHjmmWfEN0kyxVghSVJFRcXixYs/++wzh8MhSVJSUlKfPn3GjBmTkZERuK7a\nLkvG6LXgQV6SpJEjR06fPr1z5861lv/888/Tp09fvXp1reUCwhVmZf4rKgcPHszKyvr1119/\n/fXXwFcXLlyo4T1XrFjhHxReffXVTZs2/ec//9m0aZPCce3QoUOPPfbYhRdeeO65537yySfD\nhg0LPSgIqKJVq1a33377rbfe+sUXX2zcuHHNmjU9evQYPHhwjx49as6O9SsvL8/KypIkKTMz\n02q1Bo5W4ffCgFtJ71gSU4Xen7UeXajVCwHhKqAKJQTEg947pjniQcBWuvXWWwOXX3XVVdOn\nT49KkyRTjBWSJGVkZDzwwAPjx48/c+aMJElNmzaNj6/zyEdtlyVj9FrwIC9JktPpDHoVKDU1\n1eVyBS4XEK4wK/MnKtqm3ygnYFwTUIVM19v79B46BWwlvWNJTBUy/T5rE3RBZBWhCdiYeu+Y\n5ogHvbeS2sM+AU3yi+mxoqCgYP78+dnZ2fHx8S1btlS4lq7395tjj1D7lAKDnPpBLDJ/ojJ2\n7Nh6y9S6bKqBruOasCqk/31734ABA+Rn0QT11FNPyW/r9XqnTJmi8DZxvY/8dN1KAmJJTLjK\ndPqsTdAFwVWEIGxj6rdjmike9NtKag/7BDSpJhOMFWop77Jk4F7rt0dceeWVK1eu7Nq1a62n\nFKxcubJ///511RL1Uz+IReZPVJSoddlUG/3GNTFVCLhNXG0vDLiV6hWRWNK7CmGfdV1iogtR\n30oKRSrkopiSxUQ8yHTaStoO+3Rtkizqe4GAEbUWve/vV8L4e4TapxT4RffUD2IRiUoECBjX\n9K7Cf3vftGnTlNzep+2ckN5DpxG+YIxPzGetKwFdMMFWUi7qB6NhMsHwpe2wT+8Pzhx7wfHj\nx71eb9CXcnJyai1R22XJkL0W8MGlpqbOmTNn8eLFn3zyif8pBX379h0zZoz82LpAsT7OIFpI\nVMIlYFwTUIWA2/v0HjrN8QUjgIDPWm/meKqBQZjgYNQEw5eGwz4BH5w59oK5c+fW9VLgU3HF\n3N+vNzEfnKqnFJhgnEG0kKiES8C4JqAKAWcv9B46zfEFI4AJzlSZ6akGUWeCg1ETDF+SysM+\nMU0yx15w3333tWrVSmFhc3TZgE8pMME4g2ghUalfZWWl2+2WH0AhW7Rokf9vcxwzCTh7oXcv\nYuILJnQsRcTKlSuvvfbazMzMuqow7Jkqh8Nx+PDh4uJiSZKaNGmSnZ1d85H5NXthsqcaCFYr\nHmJixwkkOB703koaHk5lju+F8NU7qObk5AT9Ha2gDN5lr9dbWFh46tSpFi1a5Obm+m83N/4g\nH6PjDIyARKU2l8v12muv7d+//+KLL77nnnveeuuttWvX+ny+Sy+99PHHH5ePnGqenmk4x0xh\nnr3QuxcG2Uo1qY2liHj77bd79epVM1HRUIXgM1U+n2/FihUbNmyw2+3+hcnJyQUFBbfccov8\nZay2FzHxVANhjhw5MmHChPfff18K2JIG3HHqEqIX9TL48KWBQZokeC+IyqBai+Aur1mzpk2b\nNr179y4rK5sxY8bBgwfl5R07dpw6dar8yCzjD/IGCVfEIhKV2latWrVz585+/fp9++23r7zy\nyhdffDF+/HiXy7Vs2bIPPvgg9OMs6sIxk0J690LwVtIjlmoZNmxYrSVer/fBBx+U/5YP6Yxv\n5cqV77///vDhw/Py8ho3bixJUklJyd69e9etW2e1Wm+++eZoNzDm+Xy+uu4nVsIgw0uYvdCb\nQbZSTQZsUpj0GFQNfny8cePG+++/X5KkZcuWVVdXz5o167zzzjt+/PjChQuXLFnywAMPRKth\nqp5SoIT5whUR0RATldBXij///PPbb799yJAhhw8ffuihh8aPH3/NNddIkuRwOHbs2BGRg0uY\nhoBYCj2Vy2KxXHLJJd26dfMvWbJkSUFBgXy4H0XK53FJkrR169Z//OMfV111lX9Jy5Ytc3Nz\nW7VqtXz5chKV0GpuzAULFgQtU1lZKao5WtSKhxjtRZgiftgXi+qdx6V2UH377bdrjjxBRfH4\nWMlUrtLS0vT0dEmS9u/fP27cOHm0z8zMHDdu3Lx586LSbJmqpxQAmpk/UVF7pfjs2bPt27eX\nJOn888+3WCz+b4hOnTq98847UekCDCIqsRR6Ktfs2bNfeOGFDh06jBw5Uv6SW7p06dVXX92u\nXbuwu6uRhnlcZWVlQSeRt2/fvqysTO8Gx6K6JkFt2bKlVatWgT9N4HQ6hbZPgRDzuGKoFxHU\nAA/7NMzjUjuohv4drahQO5UrKyvr5MmTHTt2dDgcNX8bsVGjRhUVFYIbX5OqpxQAmpk/UVF7\npTgxMVH+OrRarRaLJSEhQV5utVqNPOsgihTe3mcCAmJJ7VSu3NzcefPmzZ07d/LkyY8++qh+\nF1JcLpfcfp/P9/PPP3u93g4dOiQmJsqv1vysNczjatu27caNG++5555ayzdu3Hjuuefq0R23\n213rkUphhmt1dXVKSkroMhHcI+qaBNW8efNbbrmlb9++tZbLp58jVXtEhJjHZYReiB++THDY\np3Yv0DCPKya+oEMPL2qncl155ZXvvvtuXl7e5Zdfvn79+gcffDA+Pt7j8axbt07O2fRQ70NZ\nJJVPKQA0M3+iovZKcZs2bYqKirp27SpJ0jvvvOMfbv78888WLVro1Eglg0KYIntkptPtfWoJ\nOJgIZyqXhljSMJUrMzNzxowZq1evfuihh/wpTQSdOnVq1qxZR44cycvLe+KJJ/75z3/u3btX\nkqSWLVs+/fTT8hOKan7WGuZx3XrrrbNmzfr+++9r5TZFRUWTJ08Ovwv79u3r1KmTfG51w4YN\n7733XklJSVZW1vXXX+/PDMMM15EjR/bo0eNvf/tbjx49/Ll6LRqqUDsJKjs7+/Dhw4GH+BGn\nfGqfhnlcAnrx8ccf79q1Kysra9iwYf6z8sePH3/mmWdee+01KRrDl8jDPp3OLqndCzRMjo3K\nF3RoaocXtVO5brnllh9//PHee+/t1q3bV199tW/fvlatWv3xxx9VVVUzZ87UqVMReShL+Lxe\nb1FRUXFxscViadWqVbNmzWq+ar6ToQjK/ImK2ivFQ4cO9Y99/rM1kiT98ssvl112mU6NjPig\noPeRWRRv7wvnyT+BVB2vCIglbVO5LBbLqFGjunTpMnfu3IifVly6dKnb7R43btznn3/+7LPP\nlpaWPv/88xaL5ZVXXnnrrbcmTpxYq7yGeVw9e/acM2fO2rVrP/3009LSUkmSsrKycnNzH3jg\ngU6dOoXfhSlTpsjPfv3888/feOON3r17d+7cubCw8N///nezZs169eoVfhU+n6+oqOjpp59u\n0aLF4MGDBw4cWHN31kztJKgRI0bUnHHnd+65586fPz/89kjqp/ZpmMeldy82b968cOHCbt26\n/fHHH4899thDDz0kJ0Uul+uPP/4I//1lRsiFahJwdkntXqBhcmxUvqBDUzu8qJ3KlZqa+txz\nz23YsOG///2vfEGpvLz8sssuGzZsWJs2bSLSBZ0eyhLmUwo++OCDd955R/5GkOXk5Nx7770d\nOnSQ/xvrVyChkPkTFbVXivv06RP0fQLnpWgm4ElN4RyZGfz2vgg++Uft8YqAWApnKtfFF1/8\n4osvHjlyRMmZReVTufbv3z9x4sRu3bpdccUVt9122/Tp0+Xk4Y477gj6WWubx9WpU6cnn3xS\nbo8kSXWdjq2LwguG69evHzx48Pjx4yVJKigoWLBgwfr164PuDhqmcj3++ONer/ejjz5atWrV\nypUre/XqNWTIkNzcXFUdqUXtJKiOHTsGfZ/ExMRIna1XO7VPwzwuPXpR88P68MMPhw0bdscd\nd0iStHnz5n/9619JSUl/+ctftL1zUHrkQmEe9mk4u6T3XqBhHpeAL+halE9GUDi8aJjKlZiY\nOGLEiHCe5RPxh7Lo/ZSCDz74YMWKFfn5+UlJSR999FHv3r1btWr10UcfPfXUU3PmzGHKWYNi\n/kRF/JXieudxhf+kpogPnQa5vU/v5xfV2kpqj1fExFI4U7kaN25cbxSpncpVVVUlX3DPysqK\ni4s755xz5OVNmzYN+lmEOY9LTlECd6KaNF8wLCoqGj16tP+/ffr0ef7554NWoW0qV05OzgMP\nPHDHHXds3br1448/3rFjx/nnnz9kyJAhQ4bU0+06GHAql9qpfWK6oOryxcmTJ8eNGyf/PWjQ\noJSUlOeff37KlCkZGRnhtCGcXCjMwz6dzi7pvReYYB5XTQqHl/CncgU+G61eEX8oi7anFCif\nyvXBBx/ce++9/fr1kyTpkksumT59+tKlSwcNGjR16tTly5dPnTpVQ+2IUeZPVCJ1pbjmjKPQ\n6p3HpXZQEDB0RvH2vgg+v0jtXAu1xysaYqneJgWlaiqX2irUTuVq2rTpDz/80LJlywMHDkiS\n9PPPP8uB+vPPP/uTlpoiMo8rcCeqSfMFw7i4uJqHgwkJCQ6HI2jJcKZypaenDxs2bOjQod9+\n++1HH320aNEizYmKAadyqZ3aF8Eu1DUIa7g0arPZ/P/t06dPZWXlrFmz5LyiLrrmQhoO+wSc\nXdJ7L4jKPK7QT0AOZzKCwuFF7VQuJc9Gq8WYD2VRNZXrzJkz/uXZ2dkVFRUlJSXnnHPOdddd\n9+KLL+rRPBiW+ROVSF0prmvGkYZ5XGoHBQFDZxRv74vU84s0zLVQe7yiNpbCnP6hZCqXhirU\nTuUaMGDAK6+8smPHjoMHD95yyy1Lly49fvy41WrduHFjfn5+0CrUzuPSPBlS+VSuKVOmxMXF\nVVZWHjt2zD+z6OTJk0FzLVmYU7ksFkteXl5eXt7p06cVrhLIgFO51E7ti2AX6hor1F6+OP/8\n83/55ZcePXr4lwwZMqSsrCzEvbliciFVxJxd0nUvEDCPS/Mv2SsfWyT1w4uqqVwano1mwIey\nqJ3K1axZs0OHDrVu3VqSpKNHj8otlCQpKyvL4/FEvHkwMvMnKmqpnXGkbR6XtkFBv6FTwO19\nej+/SMO8cw3HK6qEPxW+3qlcGqpQO5XrxhtvjIuLKywsHDly5LBhw1q1avXmm286HI6+ffve\neOONoduvZB6XFMZkSIUXDGse99TM+goLCy+99NIQ7698EktOTk5dU3dqTW8wGrVTufR+RJuk\nfqxQe/mif//+27dvr7Vw5MiRFRUVO3bsCLqKgFxILWFnl2J6L9D8S/bKp4lqHl78Qk/l0vBs\nNAM+lEXtVK7+/fsvXLjwxIkTSUlJ//nPf6644gr54tvhw4fl7AUNR8NNVOqaRaB2xpHmX9zT\nMCjoN3QKuL1P7+cXaZh3ruF4RdU8K21T4fWuQu1ULovFUvNT7tWrl9rHZIWexyWFsRMpvGB4\n7bXXBl1dPiFdLyWTWKL7E9HhUDuVK1KPaAsxmVbtWKH28sXAgQMHDhwYuHzs2LFjx44NuoqA\nXEgtwQ+PitG9QMNRvkz5NFG1w4vaqVwano0m7KEsyqmdyjVixIjS0tJ3333X7Xbn5eX59762\nbdvWtZPCrBpuohKpGUdhTu5UNSjoN3QKeFK73s8v0jDXQu3xioDpHwKq0DCVq5bQ5/8ETIaU\nNE3lqqneizyB1E7l0lBFVGh4SluYj2iTRfAHHwVcvhCQC6kVlYdHRWRCo0gajvLDHFuk+kZI\nMT9CrfdDWdRSO5UrISHh3nvvHTdunNfrjYuL8y+/6KKLItswGJ/5ExUBv5gW5uROJYNC+ENn\naJF6UnuIs6R6P/xHwMGKgOkfAqpQO5VL7fk/AZMhw59rUe9FnvAnsdRbhUGEM5VLSYoi4Acf\nI3X5IsTwJWB4UUvA2SUNe4G2x4foR+1RvoaxRe0IKexHqHWdyhUo9PNOtU3lslgsNbMUNEzm\nT1TE/GJaREaEur4mwz8sq7cKKRIn26SQZ0k1bFhV33naDlZ0nWeloUkCqlA7lUvt+T8BkyHV\nXjDUcJFH7SQWAT+OpBO9p3IJ+MHHSF2+CDF8CZjKVa9aSZGGs0tqswi1e4GYX9JURe1RvoZp\nompHSME/Qq3TVK5AoZ93ylQuaGb+REXkL6aFOSLU9TUZ5gx7JVWopeEsqdoNq/Y7T8PBit7z\nrDQ0KSozTCJ7K6fIyZB+oedZhf/LRWKqiBZdp3IZ5Acfa9IwfAmYyqXhl+xVnV0SkEUI+CVN\ntcJ/AnK9P1qidoQU/yPUekzlUntqhqlc0Mz8iYqwX0yTKRkR9PgpQ52qiOBZUrUEfOcZ8Ek+\nAqoQcCungMmQtYSeZ6X5Io/gKqJOj6lcgkfgmqI4fKll2CxCwONDdKX2KF/Dj5aoHSEN+DOX\nGmg7NcNULmhg/kRFwC+mBRXBZ9pEsYoIniWV9P/OUzuxwYBP8hFQhZhbOXWdHi3g58yM+Ytp\nIkXqKD9aI7AU6eFLV8bMIgz46zF60/A4Y7UjZFR+5jLizHFqBjHB/ImKgF9MCyqCz7QRUIWA\ns6R6f+cJ+MFHAdM/BFQh7FZOSbfp0QJ+zsyAv5gmWKSO8gWMwDF0kacuxswiDHjNWW8aHmes\ndoQU8DOXApjv1AwMy/yJit4EPNNGQBUCzpLq/Z1nwB98NCbBt3LqMT1awM+ZGfAX03RigqP8\nGLrIUxdjZhEGvOasNw0zXc1xhUQDk52agWGRqIRLwDNtBFQh4Cyp3t95Yn7w0QTE38oZcQJ+\nzsyAv5imExMc5RvwIo9axswiDHjNWW8aZroacIQUJhZPzSDmkKiES8AzbQRUIeAsqd7feQJ+\n8NEczHErp4CfMzPaL6bpxARH+Qa8yKOWMbOIBnjN2RzDo2CxdWoGMYdEJVwCviMFVCHgLKne\n33kN8DtVG9NMVBBwMq8hnC80wVG+AS/yqGXMLKIBXnM2zfAoWAydmkHMscgPzodmv/zyi91u\nD3wWuNPp/P333yNyilFAFQJs3bp1+/bts2bNqrX89ddf37Fjx4oVKwz+/jCskpKSI0eOdOnS\nJXD+UgxVES3mGF4aIEY8AA0BiQoAAAAAw7FGuwEAAAAAUBuJCgAAAADDIVEBAAAAYDgkKgAA\nAAAMh0QFAAAAgOGQqABAjHn33XctFsv7778fzpts3brVYrEsWbIkQo0CACDCSFQAQLQ9e/ZY\nLJa77ror2g0BAMC4SFQAAAAAGA6JCgAAAADDIVEBAGMpKyubPHnyX/7yl6ZNmyYlJWVnZz/6\n6KOVlZW1inm93ueffz4nJycpKalDhw7z58+vVcDtds+bN6979+4pKSkZGRn9+/ffvHmzqE4A\nABCu+Gg3AADwvxw/fvy1114bMWLEqFGjEhMTd+7cOW/evN27d3/66acWi8VfbObMmcXFxXff\nfXdGRsaqVasmTJjw559/Pvvss/KrHo+noKBg06ZNN9xww1133WW325cvXz548OAVK1aMGjUq\nSj0DAEAFEhUAMJYOHToUFRUlJCTI/x0/fvxFF100adKkbdu2DRw40F/s2LFjhYWFzZs3lyRp\n3LhxAwYMeO655+68886cnBxJkhYtWvTxxx//+9//HjNmjFz+wQcfvPzyyydMmHDDDTfExzP4\nAwCMjqlfAGAsSUlJ/izF5XLZ7fbhw4dLkvTll1/WLHbXXXfJWYokSQkJCRMnTvR6vf5nFi9b\ntqx58+ajRo2y/388Hs+oUaP+/PPPffv2CewNAAAacVINAAxnyZIlr7322r59+2w2m39hcXFx\nzTJdunQJ/O+hQ4fk/xYWFpaXl6ekpAS++alTpyLfYgAAIo1EBQCMZd68eY888kh+fv4bb7zR\nunXrpKSks2fPXnfddV6vt951/TexeL3eDh06LFu2LLBM586dI9xiAAB0QKICAMby5ptvXnDB\nBevXr/dnHZ999llgsZ9++qnmfwsLCyVJys7Olv/bsWPHH374oWvXrunp6Tq3FwAAXXCPCgAY\ni9Vq9fl8Ho9H/q/H45k9e3ZgsTfffPP06dPy3263+4UXXrBYLEOHDpWXjB492ul0Pvrooz6f\nr+ZaJ06c0LPtAABEDFdUACA6vvvuu5kzZ9Za+OCDD44YMWL69OlDhgy58cYbKyoqVq9eXSvZ\nkJ133nk9e/YcN25cenr66tWrd+3aNXHixA4dOsiv/uMf/9i6deuiRYu+/fbboUOHNmvW7Pjx\n41988cW+ffu4RwUAEBNIVAAgOr755ptvvvmm1sLbb7990qRJ8fHxixcvvu+++1q0aDFixIgH\nHnjgggsuqFVy8uTJhw4devXVV3///fe2bdvOnTt3woQJ/lfj4+PXr1//+uuvL1my5Nlnn3W7\n3S1btuzevfu8efN07xgAAJFgCXqiDgAAAACiiHtUAAAAABgOiQoAAAAAwyFRAQAAAGA4JCoA\nAAAADIdEBQAAAIDhkKgAAAAAMBwSFQAAAACGQ6ICAAAAwHBIVAAAAAAYDokKAAAAAMMhUQEA\nAABgOCQqAAAAAAyHRAUAAACA4fxfui9mRc6aj8AAAAAASUVORK5CYII=", "text/plain": [ "plot without title" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "options(repr.plot.width = 9, repr.plot.height = 6)\n", "\n", "p2 <- ggplot(annomapres, \n", " aes(x = Label, \n", " y = prop.gene, \n", " shape = Strain, \n", " color = Media)) +\n", " myfacet +\n", " mygeom +\n", " mytheme + \n", " mypal\n", " \n", "print(p2)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Show the fraction of reads categorized as \"no feature\" (prop.nofeat)" ] }, { "cell_type": "code", "execution_count": 21, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAABDgAAALQCAIAAAD6tVcNAAAACXBIWXMAABJ0AAASdAHeZh94\nAAAgAElEQVR4nOzde3wU5b348Wfvm3uIFJEIQgikqFwVRHssHuWitSIgKDelaFVUKkitqFQB\nX0A9lYNUEcXLUY+g8FNA1Kooitai1CoitkUE4jWClNz3NjuzM78/5tU9abJZngm7m0nyef+R\n12TmmZnvzn732fnu3ByGYQgAAAAAsBNnawcAAAAAAI1RqAAAAACwHQoVAAAAALZDoQIAAADA\ndihUAAAAANgOhQoAAAAA26FQAQAAAGA7FCoAAAAAbMfd2gEcr7q6uilTprR2FADQrLKyshUr\nViScNH78+Gg0muF4AKDtcrvdmzdvdjr5qb1DaPOFSiwWy8rKWrZsWWsHAgAJXHnllUVFRc1N\nDQaDq1atymQ8ANB2LV68eN++fYZhtHYgyBDqUQAAAAC2Q6ECAAAAwHYoVAAAAADYDoUKAAAA\nANuhUAEAAABgOxQqAAAAAGyHQgUAAACA7VCoAAAAALAdChUAAAAAttPmn0wPtEA4HP7Zz37W\n3NTt27dHIpEXXnjhnXfeqaiocLvdxcXFw4cPnzhxYm5ubibjBIAUWrRoUXl5+aOPPur3+80x\nwWDw2muvHThw4Pz581etWrVx40YhhMPh6NSpU//+/a+55pru3bsLIeKTnE5nVlZWcXHx4MGD\nx48ff+KJJ7biywHQ7lGooCPy+XyPPfaYObxv377ly5cvWLCgZ8+e5phAIDBnzpwjR45Mmzat\nX79+OTk5X3311R//+MesrKwrrrii1YIGgONz6623XnPNNatWrbr11lvNMStXrnQ6nTfffLP5\nb1FR0f33328YRkVFxcMPP3zbbbc9+eSTZlUTnxQOhw8cOPDiiy9u2bJl2bJlgwcPbrXXA6C9\no1BBR+R0OktLS83hYDAohOjevXt8zPLlyysqKp544oni4mJzTGlp6ciRI2tqalolWgBIidzc\n3AULFsybN2/o0KEjRozYtm3b9u3bV69enZWVZTZwOp09evQQQpxyyilCiAULFnzxxRcDBgxo\nOEkI8eMf//jCCy+cO3fusmXLnn32WY/H00ovCEA7xzUqwL+JxWJvvfXWmDFj4lVKXGFhYauE\nBACpMmDAgGnTpi1fvvzTTz9duXLltdde27dv34QtzeolGo0mnOp2u6dOnXr06NHPPvssjeEC\n6NgoVIB/88MPP0QikZKSktYOBADS4qqrrurZs+e8efP69et3+eWXJ2xz+PDhp59+Oicnp6ys\nrLnlmP1kRUVFugIF0OFx6hcAAB2Iy+WaMWPGb37zm1/84hcOh6PhpKNHj44cOVIIEYvFTj75\n5HvuuScvL6+55RiGIYRotAQASCEKFeDfdOnSxe/3l5eXt3YgAJAu5lUlbnfjfYCioqLly5c7\nHI6ioqL8/PzkCzH7yaZnyQJAqnDqF/Bv3G73+eef//rrrzc9n4GL6QG0b06ns1evXj179jxm\nlaJp2nPPPfejH/2of//+GQkNQEfEERWgsVmzZu3du3fWrFnTpk378Y9/nJuba96eePjw4dye\nGEDHpOv6N998I4QIhUIHDx7cvHlzRUXFsmXLmh6WAYBUoX8BGsvLy1u9evXzzz//5ptvPvXU\nUx6P5+STT77gggsuvvji1g4NAFpHVVXVjBkzzAc+nnTSSWecccbSpUt54COAtKJQQUc3cODA\n7du3Nxrp9/uvvPLKK6+8slVCAoC0StjvzZ49e/bs2QnbJ5kEAOnDNSoAAAAAbIdCBQAAAIDt\nUKgAAAAAsB0KFQAAAAC2Q6ECAAAAwHYoVAAAAADYDoUKAAAAANuhUAEAAABgO+3hgY+1tbUv\nv/xya0cBAAkYhpFkqqqqdF8AIKmqqqq1Q0BGOZJ/idrf999/P3bs2NaOAgCa1a1bt5deeinh\npOHDh2ualuF4AKDtOvXUU3v06OFwONKx8KysrMsvv7y0tDQdC0cLtPkjKi6Xq1OnTj/72c+a\nTtJ1XVEUl8vl9XollxaJRAzDyMrKkmyvaZqqqh6Px+2W2pKGYUQiEUshRaPRWCzm9/slP5NW\nQxJChMNhh8Ph9/stheTz+ZxOqVMHzTfC7XZ7PB7JVUQiESGEfEiqqmqaZjUkcuOYyA3JkJLk\nxnPPPZeTk9PcvH6//9JLL2063swHp9Pp8/kkw7CaD7FYLBqNWtr4VvOhZRvfaj5Y+mCaIXm9\nXpfLJdO+BR9MRVF0XU93X9HWcyMzfUVac6MFfUW7yY1W/B554403fvjhhwsuuEAycyz58MMP\nX3vttZ/+9KcUKvbR5gsVr9fbpUuXW265pemkWCxWXV3t9/tzc3Mll1ZTU6NpWufOnSXbh8Ph\nYDCYl5cn2SkYhlFZWen1evPz8yVXUVdXF41Gi4qKJD+TiqLU19fn5OTId4VHjx51u92FhYWS\n7QOBQCQS6dSpk2RvrqpqbW1tVlZWkt21Rsxju0VFRZLtQ6FQKBQqKCiQ/A4jNyRXQW7ISJ4b\nGzZsSPKNnp2dnbD7MvPB4/EUFBRIhlFfX68oinw+RKPRurq67Ozs7OxsyVVUVlY6nc5OnTpJ\ntg8Gg+FwuLCwUHKfRtO0mpoaS/lQXV2t6/oJJ5wg2d7Mh/z8fMmdS13Xq6qqfD5fXl6e5Cpq\na2tVVZXvKyKRSCAQyM3NldyTax+5YfYVbTo3zL6iY+aGpe+R1ObG3//+92+//fass85KR6Hy\n/fffp3yZOE5cTA8AAADAdihUAAAAANgOhQoAAAAA26FQAQAAAGA7FCoAAAAAbIdCBQAAAIDt\nUKgAAAAAsJ02/xwVAOmjDBzs/vtnFcXd42OKK75txXgAAEDHwREVAAlUFHc365Pgaf0bjW+l\niAAAQMdCoQKgseTVCLUKAADIAAoVAAAAALZDoQIAAADAdtr8xfSGYei6HggEEk4SQqiqmnBq\nQrquCyHk22uaJoSIRCKqqkrOIoSIxWJWVxEMBh0Oh+TChRCKopgDkprbhgmZLzYUCkmGZG7V\naDRqviMyzJZWt1I4HFYURX755EbLFOzb21yQ5IZVhmEk6b7Smg/xjW8OSEZrqa8wQwqFQk6n\n1I9iLdv4zW3DJCFFIpFoNCofkqZp8qswP19W2yuKYsYmGVJbz414X0FuHLO9PXND/nsktblx\nnN9faHPafKHicDgcDofP52s6Sdd1RVFcLlfCqQmZHw/59kIITdM8Ho/H45FpbBhGJBJxOp3y\nq4jFYrque71eyd5cVVVVVd1ut/wqIpFIc9swIV3XY7GYfEiapkWjUUshmfuULXgj3G6plCY3\nkrfs8lW5EOJIz5LmJjWH3GiBhDMahqEoitV8iMViPp9PcofD3PiWXqmiKJb6CsMwNE3zer0u\nl0umfSwWs7rxzX1KqyG53W75D6bVN0LTNF3XLb0E84Pp9XrTFJINcyPeV7Td3DD7CnLjmFKb\nG5JfLmg32nyhIoRwOBwJuxWz7HY6nZKdjrkoIYR8e/OnCJfLJf+dlyTg5CFJfjjNXzvkQ4qv\nRb69uafodrslv2BMaX0jzD1F+S8YckOmfXHFt0ePHnW73YWFhZIhkRtWNfeOtyAfzDRwu92W\nfqJOa19h7im63W7JKtHcklY3vmEY6csH81OT1nwwUy6tfYUNcyPeV7Td3MhAX0FuJFyU/HrR\nDlCYAgAAALAdChUAAAAAtkOhAgAAAMB2KFQAAAAA2A6FCgAAAADboVABAAAAYDsUKgAAAABs\nh0IFAAAAgO1QqAAAAACwHQoVAAAAALZDoQIAAADAdihUAAAAANgOhQoAAAAA26FQAQAAAGA7\nFCoAAAAAbIdCBQAAAIDtUKgAAAAAsB0KFQAAAAC2Q6ECAAAAwHYoVAAAAADYDoUKAAAAANuh\nUAEAAABgOxQqAAAAAGyHQgUAAACA7VCoAAAAALAdChUAAAAAtkOhAgAAAMB2KFQAAAAA2A6F\nCgAAAADboVABAAAAYDvuTK7so48+euaZZ7777ruCgoKRI0dOmTLF4XA0bfbee++99NJLFRUV\niqKccMIJ55577uTJkz0eTyZDBQAAANCKMleo7Nu3b8mSJRdddNG8efMOHjy4evVqXdenT5/e\ntKXL5Ro5cmS3bt28Xu+BAweefvrpurq6m266KWOhAgAAAGhdmStUNm3aVFxcfP311wshTjnl\nlEOHDm3ZsmXSpEk+n69Ry3POOSc+XFZW9vXXX+/ZsydjcQIAAABodZkrVPbu3TtixIj4v0OG\nDNmwYUN5eXm/fv2am0XX9a+++mr37t2DBw9uOD4cDquqag4HAgEhhGEYTWePj0w4NQn59mZL\nwzAkZzmekCytQr5909jSFFLLVtF2QyI3LC25A4aUfEbyIU0hZfKDacOQyI1jtuywIbXd3ED7\nlqFCxTCMmpqaTp06xceYw1VVVQnbq6o6adIkM01Hjx593XXXNZy6dOnS119/3RwuKCjo3Llz\nZWVlc6uORCKRSMRStEmWllAgEDDrJUnRaNTqKqqrqy21D4VCoVBIvr2maVZDqqmpsdQ+HA6H\nw2FLs1gNqa6uzlJ7ckMGuSHJakgmXdeTzKiqarrzwerGj8ViVkOqra1Na0jC+savr6+31F5R\nFEVRLM1iNaRgMBgMBuXbkxuSyA0Z6f4eSWFuxH+nRgeR0Yvp5bnd7j/84Q+qqu7fv3/t2rX5\n+flXXXVVfGrv3r2HDRtmDnu93sOHDye81N4wDE3TnE6ny+WSXK+maYZhyF+4H4vFdF13uVxO\np+z901RVtRSSuQq3253wxgNN6boei8WshuRwONxu2WQwQ5LfSi14I8yeSH4V5quW30rkhnxI\n5MYxWc2NRpJ0Xzbc+JZCatnGt5SiNvxgWg3J6gezfeSG1e7Lhp12BkKybaedgZCayw3JhEG7\nkaFCxeFwFBYWNizZzeGioqLm2p9yyilCiNLSUqfTuXr16gkTJuTm5ppTZ86cOXPmzPhyZs+e\nXVBQ0HQhsVisurra6/XGZzymmpoaTdMSLi2hcDgcDAazs7ObXmmTkGEYlZWVbrc7Pz9fchV1\ndXXRaDQ/P1+yU1AUpb6+3u/3Z2VlSa7i6NGjLpdL/lUHAoFIJJKbmyvZO6uqWltb6/P5cnJy\nJFdhHmqTD8n8dScnJ0eytyU3JFdBbsiwmhsNOZ3OhDPG80F+sfX19Yqi5OXlSeZDNBqtq6vz\n+/3Z2dmSq6isrGwu4ISCwWA4HM7NzZXcR9E0raamxuv1yudDdXW1rustyAev1yvTXtf1qqoq\nj8eTl5cnuYra2lpVVeVDikQigUAgKyvL7/fLtG8fuRHvKyzlhqW+It25YfYVHTY35L9HUpsb\n8gUP2ofMPUelX79+u3btiv+7a9cuv99fUlJyzBnNXyA0TUtndAAAAABsJHOFyoQJEyoqKtas\nWfP1119v37598+bNY8eONX9s3rFjx/z58+PnOz766KPvvPPO3r17//73v2/evPl///d/zzzz\nzMLCwoyFCgAAAKB1Ze4IWllZ2YIFC9auXbt169aCgoLx48dPnTrVnFRZWbl37974MRO/3//8\n888fOXLE6XR26dJl0qRJl1xyScbiBAAAANDqMnqq39ChQ4cOHdp0/NixY8eOHRv/96qrrmp4\n6TwAAACAjiZzp34BAAAAgCQKFQAAAAC2Q6ECAAAAwHYoVAAAAADYDoUKAAAAANuhUAEAAABg\nOxQqAAAAAGyHQgUAAACA7VCoAAAAALAdChUAAAAAtkOhAgAAAMB2KFQAAAAA2A6FCgAAAADb\noVABAAAAYDsUKgAAAABsh0IFAAAAgO1QqAAAAACwHQoVAAAAALZDoQIAAADAdihUAAAAANgO\nhQoAAAAA26FQAQAAAGA7FCoAAAAAbIdCBQAAAIDtUKgAAAAAsB0KFQAAAAC2Q6ECAAAAwHYo\nVAAAAADYDoUKAAAAANuhUAEAAABgO+7WDuB4GYah63ogEEg4SQihqmrCqQnpui6EkG+vaZoQ\nIhKJqKoqOYsQIhaLWV1FMBh0OBySCxdCKIpiDkhqbhsmZL7YUCgkGZK5VaPRqPmOyDBbWt1K\n4XBYURT55ZMbMsiNY7KaG41Wl6T7Sms+xDe+OSAZraV8MEMKhUJOp9SPYi3b+M1twyQhRSKR\naDQqH5KmafKrMD9fVtsrimLGJhlSW8+NeF9BbhyzvT1zQ/57JLW5Yen7C+1Amy9UHA6Hw+Hw\n+XxNJ+m6riiKy+VKODUh8+Mh314IoWmax+PxeDwyjQ3DiEQiTqdTfhWxWEzXda/XK9mbq6qq\nqqrb7ZZfRSQSaW4bJqTreiwWkw9J07RoNGopJHOfsgVvhNstldLkhuQqyA0ZLciNhhLOaBiG\noihW8yEWi/l8PskdDnPjW3qliqJYygfDMDRN83q9LpdLpn0sFrO68c19Sqshud1u+Q+m1TdC\n0zRd1y29BPOD6fV60xSSDXMj3le03dww+wpy45hSmxuSXy5oN9p8oSKEcDgcCbsVs+x2Op2S\nnY65KCGEfHvzpwiXyyX/nZck4OQhSX44zV875EOKr0W+vbmn6Ha7Jb9gTGl9I8w9RfkvGHJD\nchVWQyI3rGpu87YgH8w0cLvdln6iTms+mHuKbrdbsko0t6TVjW8YRvrywfzUpDUfzJRLa19h\nw9yI9xVtNzcy0FeQGwkXJb9etAMUpgAAAABsh0IFAAAAgO1QqAAAAACwHQoVAAAAALZDoQIA\nAADAdihUAAAAANgOhQoAAAAA26FQAQAAAGA7FCoAAAAAbIdCBQAAAIDtuFs7AAAAkEajlr/f\ndOTOxWMyHwkAWMIRFQAA2q3hC7daGg8A9kGhAgBAR0StAsDmKFQAAAAA2A6FCgAAAADboVAB\nAKAj4np6ADbHXb8AZFRFcff4cJevylsxEqAj2Ll4TH19fdMbf1GlALA/ChUAmdOwShFCHOlZ\n4vv0k9YKBug4XvnVGUVFRU4np1EAaEvoswC0JmXg4NYOAQAA2BFHVACgPWh0bg8n9gAA2jqO\nqABAm9f0gRg8IgMA0NZRqABA20ZNAgBolyhUAGROccW3jcZwMT0AAEiIa1QAZFTDWkVV1dra\n2lYMpn3YuXgMB1UAAO0PR1QAoB3iYnoAQFtHoQIAbd7OxWPevPWchv+2YjAAAKQEp34BQDvB\nQ/2QScMXbqUkBpBWFCoAAMCC+DVRSS6OooYBcPz44Q0AAMiSvHMDN3gAcPwoVAAAAADYTkZP\n/froo4+eeeaZ7777rqCgYOTIkVOmTHE4HE2bbdu27d133/3qq68URenWrdvFF188atSoTMaJ\npiqKu5sD5r1llYGDDzf4FwAAAEitzBUq+/btW7JkyUUXXTRv3ryDBw+uXr1a1/Xp06c3bfn2\n22+fdtppl156aXZ29vvvv//ggw9qmnbRRRdlLFQ0Eq9SGg3H/6VcAYAOguf2AMiYzBUqmzZt\nKi4uvv7664UQp5xyyqFDh7Zs2TJp0iSfz9eo5bJly+LDp5566pdffrljxw4KldbSqDJprg21\nCgB0EDK1ChfTAzh+mStU9u7dO2LEiPi/Q4YM2bBhQ3l5eb9+/ZLPGI1Gu3Tp0nBMOBxWVdUc\nDgQCQgjDMJrOGB+ZcGoS8u3NloZhSM5yPCFZWoV8+6axtUyS2TPwRsTbZ+CNsNSyY+aGrd4I\n24aUfEbyIU0hZfKDacOQUpgbHywa3fDfqqoqp9NZWFjYNM4UhiS52IQzSrbssCG13X4D7VuG\nChXDMGpqajp16hQfYw5XVVUln3Hbtm0HDhy47rrrGo5cunTp66+/bg4XFBR07ty5srKyuSVE\nIpFIJGIp2iRLSygQCJj1kqRoNGp1FdXV1Zbah0KhUCgk317TNKshNXLM2cPhcDgcTu0yG6mr\nq7PUntyQ0YLcqKmpsdS+Y+aGSdf1JDOqqprufLC68WOxmNWQamtr0xqSsL7x6+vrLbVXFEVR\nFEuzWA0pGAwGg0H59uSGJHJDRrq/R1KYG/HfqdFB2Po5Ku+9994jjzxyyy239OnTp+H43r17\nDxs2zBz2er2HDx/2eDxNZzcMQ9M0p9Ppcrkk16hpmmEYCZeWUCwW03Xd5XLJP2FNVVVLIZmr\ncLvdCW880JSu67FYzGpIDofD7U6cDJ5//C1w6unHXEiSjdaCN8LsieTfCPNVy28lckM+pCS5\n0VxI8lupY+ZGI0m6LxtufEshtWzjW0pRG34wrYZk9YPZPnLDavdlw047AyHZttPOQEjN5YZk\nwqDdyFCh4nA4CgsLG5bs5nBRUVFzs7z22mtPPPHErbfeOnz48EaTZs6cOXPmzPhyZs+eXVBQ\n0HQJsVisurra6/Xm5uZKxllTU6NpWsKlJRQOh4PBYHZ2dtMrbRIyDKOystLtdufn50uuoq6u\nLhqN5ufnS3YKiqLU19f7/f6srCzJVRw9etTlciV51QUV3za861cgEKgt+7cT9pJfoKKqam1t\nrc/ny8nJkQzJPNQm/0aYv+7k5ORI9rbkhuQqjpkbjQQCgUgkkpubK/nN3TFzoyGn05lwxng+\nyC+2vr5eUZS8vDzJfIhGo3V1dX6/Pzs7W3IVlZWVzQWcUDAYDIfDubm5kvsomqbV1NR4vV75\nfKiurtZ1vQX54PV6Zdrrul5VVeXxePLy8iRXUVtbq6qqfEiRSCQQCGRlZfn9fpn27SM34n2F\npdyw1FekOzfMvqLD5ob890hqc0MmYVatWpVk6uzZsyUjgR1k7ohKv379du3adc0115j/7tq1\ny+/3l5SUJGy8fv36TZs23XXXXQMHDsxYhEiiUSni+/STTp06yf+MBAAAkAHvvvtufNisJzt3\n7hwfQ6HStmSuUJkwYcL8+fPXrFlz4YUXlpeXb968edy4ceaPzTt27HjppZcWLlxo/njz2GOP\nvfrqq9ddd11eXl55ebkQwuPxdO9+7HtPAQAAoCN7/vnn48MHDhy49tprG45B25K5QqWsrGzB\nggVr167dunVrQUHB+PHjp06dak6qrKzcu3evpmnmv++8804sFnv44Yfj83bt2vXRRx/NWKgA\nAAAAWldGL6YfOnTo0KFDm44fO3bs2LFj4/+uW7cuM/E0ekJI/JnrFU1GAgAAAMgk2Zs2tD8J\nn2MYPK2/TDMAAAAAadVxC5WmmqtJqFUAAACADLP1c1QAAAAAedOmTYsPm9c/NxyTsesLkBIU\nKv+nuMHTQgAAANDmnHHGGa0dAlKm4xYqjcoS86L5nL9/1vQyFa6nBwAAaBPmzZvX2iEgZTpu\noSKaqUB8n36iDBycpAEAAADailgs5nA4nE4uzG57OnSh0hzqEwAAgLZo9+7dhmEMHjxYCFFV\nVbV8+fK//vWvbrf7wgsvvOmmm9xudn3bEorLTODSFwAAgAx44IEHvvnmG3N45cqV5eXl1157\n7eTJk998883nnnuudWODVZSV6RUvURrWKooQ9f8a5ugNAABAqlRUVPTu3VsIoWnajh07Hnvs\nsZKSEiFE9+7d/+d//ufKK69s7QBhAUdUWhkHWwAAAFLF7XZXV1cLIaqrqx0OR69evczxZWVl\nR44cadXQYBmFShpRhAAAAGRS//79N2/eHIvFioqK8vLyysvLzfGff/55ly5dWjc2WMWpXwAA\nAGgnrr766ptvvvm666679NJLx4wZs2DBgksvvTQSiWzcuHHmzJmtHR2soVBJI54gCQAAkEl9\n+/ZdsWLFH/7wh/vvv98c8+ijjxYWFv7iF7+47LLLWjc2WEWhkl4ZqFUaLb9z+QFl4GDl32NI\nawAAAAD2ceqpp65Zs+bw4cMVFRWGYZxwwgk9evRwuVytHRcso1BJu4Z1gmEY35/cQ6SueGha\nBR0tKW3ahloFANJk+MKt5sDOxWOGL9y6dd7wnz/4sflvq8YFdHRdu3bt2rWr+NcDH1s7HLQE\nhUqm+T79xOv1tnYUAIAUiFcp8eExK3Y2nSSoW4BM4YGP7Ql3/QIAoCUalSIpbAygxXjgY3tC\nWQkAAIB2ggc+ticcUWnbZC4+4QIVAADQQfDAx/aEIyptXqM6RFGU+vr6nJycrKys1goJADoC\n8+p5+cZpDQaAyXzg4znnnBN/4KN5gIUHPrZFHFEBAKCFdi4eY1YgyesQqhQgY66++up//OMf\n11133R//+EfzgY/PPffck08+ef/9948fP761o4M1HFEBAOC4NKxVamtrVVXt3LlzawfVHiQ/\nYEX5h4R44GN7QqECAADanuELt1KrICEe+NhuUKgAAADbkbn+h1oFScQf+Ii2i2tUAAAAANgO\nhQoAALAdDpUAoFABAAB21LBWeeVXZ7RiJABaBdeoAAAAmzJrFU3Tampq3rrtP3JycsS/Ll/h\nkAvQ7lGoAACAtoQSBeggOPULAAAAgO20+SMqhmHouh4IBBJOEkKoqppwakK6rgsh5NtrmiaE\niEQiqqpKziKEiMViVlcRDAYdDofkwoUQiqKYA5Ka24YJmS82FApJhmRu1Wg0ar4jMsyWVrdS\nOBxWFEV++eSGDHLjmKzmRqPVJem+0poP8Y1vDkhGaykfzJBCoZDTKfWjWMs2fnPbMElIkUgk\nGo3Kh6RpmvwqzM+X1faKopixSYbU1nMj3leQG8dsb8/ckP8eSW1uWPr+QjvQ5gsVh8PhcDh8\nPl/TSbquK4ricrkSTk3I/HjItxdCaJrm8Xg8Ho9MY8MwIpGI0+mUX0UsFtN13ev1Svbmqqqq\nqup2u+VXEYlEmtuGCem6HovF5EPSNC0ajVoKydynbMEb4XZLpTS5IbkKckNGC3KjoYQzGoah\nKIrVfIjFYj6fT3KHw9z4ll6poiiW8sEwDE3TvF6v5HPWYrGY1Y1v7lNaDcntdst/MK2+EZqm\n6bpu6SWYH0yv15umkGyYG/G+ou3mhtlXkBvHlNrckPxyQbvR5gsVIYTD4UjYrZhlt9PplOx0\nzEUJIeTbmz9FuFwu+e+8JAEnD0nyw2n+2iEfUnwt8u3NPUW3223pIa9pfSPMPUX5LxhyQ3IV\nVkMiN6xqbvO2IB/MNHC73ZZ+ok5rPph7im63W7JKNLek1Y1vGEb68sH81KQ1H8TfHMwAACAA\nSURBVMyUS2tfYcPciPcVbTc3MtBXkBsJFyW/XrQDFKYAAAAAbIdCBQAAAIDtUKgAAAAAsB0K\nFQAAAAC2Q6ECAAAAwHYoVAAAAADYDoUKAAAAANuhUAEAAABgOxQqAAAAAGyHQgUAAACA7VCo\nAAAAALAdChUAAAAAtkOhAgAAAMB2KFQAAAAA2A6FCgAAAADboVABAAAAYDsUKgAAAABsh0IF\nAAAAgO1QqAAAAACwHQoVAAAAoP3Ytm2bw+F46qmnWjuQ40WhAgAAAKTRoUOHbr311tNPPz0v\nL6+goKBv375XXHHFunXr4g2++OKLRYsW7dmzpxWDtCF3awcAAAAAtFsHDhw4++yzq6urL774\n4smTJ7tcroMHD7711lv79u2bNm2a2eaLL75YvHhxaWnpgAEDjn+N559/fjgc9ng8x7+o1kWh\nAgAAAKTLsmXLjh49+vjjj19zzTUNx+/bt8/qokKhUHZ29jGbOZ1Ov99vdeE2xKlfAAAAQLrs\n379fCHHppZc2Gl9WVmYOLFq06JJLLhFCXHnllQ6Hw+FwnHfeeUKIF154weFw/L//9/8WL17c\np08fr9d7zz33CCFqa2t/+9vfnnXWWZ07d/b5fCUlJbfeemsgEIgvudE1KuZyNm7c+F//9V99\n+/b1+Xw9evRYunSpYRjpfu3HiSMqAAAAQLqUlpb++c9/Xrt27dy5cxM2+MUvfuHz+e688847\n77xz1KhRQojCwsL41Pnz5xcXFy9btqxr167m2Vzffvvto48+OnHixClTpni93j/96U8rVqz4\n8MMP3333XYfD0VwYt912W9++fR944IHCwsLHH3/8t7/97QknnDBr1qxUv9xUolABAAAA0uXO\nO+/cvHnzLbfcsnr16v/8z/8cMmTIT37yk9NPPz3eoGfPnv379xdC9OvXzzyW0pDX633nnXfc\n7v/bae/Tp09FRUX8EpQbb7xxwIABCxYseOutt0aOHNlcGEVFRa+++qpZyQwbNuxPf/rTAw88\nYPNChVO/AAAAgHTp06fPnj175s2b53A4Hn300VmzZvXv33/AgAE7duyQmX3mzJkNqxQhhM/n\ni1cpqqpGIpHx48cLIXbu3JlkOeZ5Zeaw0+k888wzDx48qOt6S15SplCoAAAAAGnUo0eP//7v\n/963b19NTc0bb7xx9dVX//3vf7/44ou//fbbY87bq1evpiOfeuqpc845Jycnx+v1ZmVlnXrq\nqUKIqqqqJMvp3r17w3/z8/Oj0Wh9fb3Fl5JRFCoAAABAJhQUFIwaNeqJJ5649dZba2trn3vu\nuWPO4vP5Go1ZsWLFzJkzO3fu/Pjjj7/zzjsffPDBK6+8IoRIfngk4eUrNr+enmtUAAAAgIw6\n44wzhBDxIypJLoJv6oknnujVq9eWLVvic7333nspj9AOMlqofPTRR88888x3331XUFAwcuTI\nKVOmJHxXvvjii40bNx48ePDIkSOjRo361a9+lckgAQAAgFR55ZVXzj333IKCgvgYwzDMYynm\nKVtCiLy8PHGsc7finE6nYRixWMy8diUWiy1btiz1cdtA5gqVffv2LVmy5KKLLpo3b97BgwdX\nr16t6/r06dObtoxEIieddNI555zz7LPPZiw8AAAAIOVWrlx5+eWXjxw5csiQIQUFBf/85z9f\nfvnlv/3tbwMGDJgxY4bZZuDAgX6//8EHH/R6vYWFhV26dDn//PObW+DEiRMXLVp00UUXXX75\n5fX19evXr7f5GVwtlrlCZdOmTcXFxddff70Q4pRTTjl06NCWLVsmTZrU9MS7AQMGDBgwwJwl\nY+EBAAAAKXfvvfdu2rRp+/bta9asOXr0aHZ2dt++fZcsWTJnzpz4Y+YLCgqeffbZxYsXz507\nV1GUESNGJClUFixY4Ha7n3zyydmzZ5944okTJ068+eabE15z39ZlrlDZu3fviBEj4v8OGTJk\nw4YN5eXl/fr1s7qocDisqqo5bD6GM2EdGR9ptcqUb2+2NAxDcpbjCcnSKuTbN40tTSG1bBVt\nNyRyw9KSO2BIyWckH9IUUiY/mDYMidw4ZssOG1LbzY024cwzzzzzzDOP2Wz8+PHmXYbjJk6c\nmHA7uN3uBQsWLFiwoOHIhi1HjhzZ8N+Ey3nkkUceeeQRmfhbUYYKFcMwampqOnXqFB9jDkue\nitfI0qVLX3/9dXO4oKCgc+fOlZWVzTWORCKRSMTS8pMsLaFAIGDWS5Ki0ajVVVRXV1tqHwqF\nQqGQfHtN06yGVFNTY6l9OBwOh8OWZrEaUl1dnaX25IYMckOS1ZBMuq4nmVFV1XTng9WNH4vF\nrIZUW1ub1pCE9Y1v9XaciqIoimJpFqshBYPBYDAo357ckERuyEj390gKcyP+OzU6iDZ516/e\nvXsPGzbMHPZ6vYcPH44/9aYhwzA0TXM6nS6XS3LJmqYZhpFwaQnFYjFd110ul9Mpe6NnVVUt\nhWSuwu12S94OQtf1WCxmNSSHw9HoWULHDEl+K7XgjTB7IvlVmK9afiuRG/IhkRvHZDU3GknS\nfdlw41sKqWUb31KK2vCDaTUkqx/M9pEbVrsvG3baGQjJtp12BkJqLjcs3RoL7UCGChWHw1FY\nWNiwZDeHi4qKWrC0mTNnzpw5M76c2bNnN7yRQlwsFquurvZ6vbm5uZJLrqmp0TQt4dISCofD\nwWAwOzu76ZU2CRmGUVlZ6Xa78/PzJVdRV1cXjUbz8/MlOwVFUerr6/1+f1ZWluQqjh496nK5\n5F91IBCIRCK5ubmSvbOqqrW1tT6fLycnR3IV5qE2+ZDMX3dycnIke1tyQ3IV5IYMq7nRkNPp\nTDhjPB/kF1tfX68oSl5enmQ+RKPRuro6v98fP0P6mCorK5sLOKFgMBgOh3NzcyX3UTRNq6mp\n8Xq98vlQXV2t63oL8sHr9cq013W9qqrK4/GYN+SRUVtbq6qqfEiRSCQQCGRlZfn9fpn27SM3\n4n2Fpdyw1FekOzfMvqLD5ob890hqc0O+4EH7kLkHPvbr12/Xrl3xf3ft2uX3+0tKSjIWAAAA\nAIC2InOFyoQJEyoqKtasWfP1119v37598+bNY8eONX9s3rFjx/z58+PnO0aj0fLy8vLy8mg0\nGggEysvLv/zyy4zFCQAAAKDVZe4IWllZ2YIFC9auXbt169aCgoLx48dPnTrVnFRZWbl3715N\n08x/v/vuu7lz55rDFRUVH3zwgdPpfPHFFzMWKgAAAIDWldFT/YYOHTp06NCm48eOHTt27Nj4\nvyUlJS+99FIG4wIAAABgL5k79QsAAAAAJFGoAAAAALAdChUAAAAAtkOhAgAAAMB2KFQAAAAA\n2A6FCgAAAADboVABAAAAYDsUKgAAAABsh0IFAAAAgO1QqAAAAACwHQoVAAAAALZDoQIAAADA\ndihUAAAAANgOhQoAAADQfsydO/fkk09uNLK0tHTWrFnmsKIo99xzT9++ff1+f58+fR544IF4\nsySTMs/diusGAAAAkGG33HLL+vXrH3744SFDhvz1r3+94YYbHA7Hr371q+STMo9CBQAAAGhN\nDofDHDAMI93r0nX96aefvv3226+44gohRJ8+ffbu3bt06dIbb7zR4XA0N8nlcqU7sKY49QsA\nAABoNfEqpdFwmsRiMVVVs7Oz42Nyc3N/+OGHffv2JZmU7qgSolABAAAAWkeaKpOKigrHvzt4\n8KA5yePxjB49+qGHHvrss88Mw9i9e/dDDz1kzpJkUjqCPCYKFQAAAKBd6dKlyyf/rnv37vGp\nTzzxxKBBgwYNGuTxeMaMGXP55ZcLIcyTu5JMyjyuUQEAAADaFY/HM2jQoIZjvF5vfPjEE0/c\ntGlTNBo9cuTISSed9NhjjwkhSktLk0/KPI6oAAAAAK0jA1fPN8fr9Zp3MV69evWZZ57Zo0cP\nmUmZxBEVAAAAoNUYhmFeqZKxouXtt9/+/PPPBw4ceOTIkQcffPDgwYPvvPPOMSdlHoUKAAAA\n0JoyfFzF5XI9/PDD+/fv9/l8//Ef//HnP/958ODBx5yUeRQqAAAAQPuxcuXKlStXNhp54MCB\n+PCIESM+++yzhPMmmZR5XKMCAAAAwHYoVAAAAADYjlShct555+3evbvp+Lfffvu8885LcUQA\nAAAAOjypQuXdd9+tqalpOv7IkSPvvvtuqkMCAAAA0NEd16lfNTU1fr8/VaEAAAAAgCnZXb/2\n7NmzZ88ec/jNN9/87rvvGk6tqqp68MEH+/Xrl8boAAAAAHRIyQqVTZs2LV682BxetmxZ0wZZ\nWVnr169PS1zSDMPQdT0QCCScJIRQVTXh1IR0XRdCyLfXNE0IEYlEVFWVnEUIEYvFrK4iGAya\nTwKSWbgQQlEUc0BSc9swIfPFhkIhyZDMrRqNRuXvEW62tLqVwuGwoijyyyc3ZJAbx2Q1Nxqt\nLkn3ldZ8iG98c0AyWkv5YIYUCoWcTqmj9y3b+M1twyQhRSKRaDQqH5KmafKrMD9fVtsrimLG\nJhlSW8+NeF9BbhyzvT1zQ/57JLW5Yen7C+1AskJl6tSpZ555phDikksuWbZsWf/+/eOTHA5H\nXl7eoEGD8vPz0x5jUg6Hw+Fw+Hy+ppN0XVcUxeVyJZyakPnxkG8vhNA0zePxeDwemcaGYUQi\nEafTKb+KWCym67rX65XszVVVVVXV7XbLryISiTS3DRPSdT0Wi8mHpGlaNBq1FJK5T9mCN8Lt\nlno0ELkhuQpyQ0YLcqOhhDMahqEoitV8iMViPp9PcofD3PiWXqmiKJbywTAMTdO8Xq/L5ZJp\nH4vFrG58c5/Sakhut1v+g2n1jdA0Tdd1Sy/B/GB6vd40hWTD3Ij3FW03N8y+gtw4ptTmhuSX\nC9qNZN/cffv27du3rxBi4cKFU6ZM6dmzZ4aCssjhcCTsVsyy2+l0SnY65qKEEPLtzZ8iXC6X\n/HdekoCThyT54TR/7ZAPKb4W+fbmnqLb7Zb8gjGl9Y0w9xTlv2DIDclVWA2J3LCquc3bgnww\n08Dtdlv6iTqt+WDuKbrdbskq0dySVje+YRjpywfzU5PWfDBTLq19hQ1zI95XtN3cyEBfkabc\nGL5wa8LxOxePkVxFK+aGZEGFdkOqz1q0aJFtqxQAAADIaK5KST4JaC1Sv2QIIQzD2LZt21/+\n8peqqqpGJ62uXLkyDYEBAAAA6LikCpX6+vqLLrpox44dCadSqAAAAABILalTvxYuXPjBBx8s\nW7bsH//4hxDilVdeeffdd0ePHj106NCvvvoqvQECAAAA6HikCpXNmzdffvnld9xxR69evYQQ\nJ5xwwk9/+tNXX33VMIxVq1alOUIAAACkQJIr5mUupgcyTOrUr4qKinPPPVf8684h5p0xXC7X\n5MmTH3zwwfvuuy+tIQIAACAlGhYk9fX1iqIUFRVx21/Yk1Re5uTkmMWJ1+v1+/3ff/+9OT4/\nP//w4cNpjA4AAABAhyRVqJSUlOzbt88cHjhw4Pr1683nIm3YsOHkk09OZ3gAAAAAOiKpQmX0\n6NEbN240D6r88pe/fPHFF0tLS/v06fPWW2/NnDkzzRECAAAAaDPWr18v+TjX5KQKldtvv/2t\nt94yH5/yy1/+cvny5X6/Pzc3d9GiRbfffvvxBwEAAADAzv7yl79MmDChV69eDofjl7/8ZQbW\nKFXrFBQUFBQUxP/99a9//etf/zptIQEAALREwsercz8r2J/D4RBCGIbR2oEkpqqqx+MJBoOl\npaUTJ05cuHBhZtZr4SYPmqZ9/PHHr732Wk1NTfoCAgAAaIGEVUqS8bDqp0u3//zBj1s7ivbM\nLFeO38SJEydPnnzfffcVFxfn5uZOnTo1FApt2rTp1FNPzcnJGTVqVEVFhdly69at5513XufO\nnfPy8oYNG/baa681XMikSZPmz59fXFyclZUViUTOP//83//+91OnTs3JyWm0xlgsNn/+/B/9\n6Ee5ubmTJk06evRoSl6I7Nljzz333C233PLDDz8IIT744IPhw4d///33gwYNWrFixfTp01MS\nCgAAHUGj/eZXfnVG05EcBLCKaiRNmm7Y/7z3T/FhEjUlUlWfNLR161av1/vyyy8fOnRo+vTp\nl112WTgcfuyxx1wu1zXXXHPzzTdv3LhRCFFbWztr1qyBAwc6nc7169ePHTt29+7dp512mrmQ\nLVu2/PrXvzZvqeXz+ZKsbtmyZQ8//PCaNWvOOuusjRs33nXXXSl5FVJHVLZu3Tpt2rSTTz65\n4SNTunXrNmDAAPNFAgAAGU13+37+4Mfn/e7dYzYDbIhETblUFS2dOnV68sknhwwZcvHFF0+b\nNu2NN97YsGHDT37yk+HDh8+bN+/NN980m11++eWTJ0/u169fWVnZwoULzznnnA0bNsQX0r17\n96VLl+bm5ubm5iYJTNf15cuXz58/f8qUKSUlJb/5zW9GjRqVklchVagsW7Zs0KBBO3funD17\ndsPxZ5999qeffpqSOAAAAGAr1CEZkI7DKUKIQYMGuVwuc7i4uLi4uPjEE080/+3WrVt9fX0o\nFBJCHDp0aM6cOUOGDDn55JO7du364YcffvXVV/GFnH766TIPA/3uu+/q6urMp8ObRowYkZJX\nIVWofPzxx9OnT296l7EePXocOnQoJXEAAAC0GOcgod1ISeni9XobLrDRv0II83a+P//5z/fs\n2bNixYr33ntv9+7dI0aMiEaj8ZZZWVky6zLvAdDw3LDk54nJkypUYrFYwvUdOXLE4/GkJA4A\nAIDjkbBW2bl4DDVMi7Hp0i1Nh1MkVVVV7dq16+677z7vvPN69erVpUuXL774ogXL6d69e35+\n/u7du+NjPvnkk5REKHUxfd++ff/85z/fdNNNDUcahvHSSy+dfvrpKYkDAADgOMV3rKurq3Vd\nP+GEE1o3nnZg5+IxSU4Ao5I5Tq17P+LCwsIf/ehHr7322nnnnReLxe68885vv/122LBhzbUP\nh8PmhfXhcLiqqmr37t0Oh8O8EH/evHn33nvvBRdcUFpa+qc//Wnt2rUpiVCqUJkxY8ZvfvOb\n0aNHT5kyxRwTCARuvfXWDz/8cM2aNSmJA3EVxd2bjmx0gl1xxbeZCQYAkFrmjl18z++dO0YE\nAoHc3Fzzenpzp5CdP9hKPCGj0WhdXV1OTo7kGUGwOafTuXHjxjlz5px00kk5OTmTJk0aN25c\nkvb79u0bPHiwOfzFF19s3rzZ5XJpmiaEWLBgQSAQGD58uN/vP/XUU2+//faU3PhLqlC5+eab\nt23bdvXVV5vPob/qqqu+/vrraDR6ySWXZOaxlB1HwiolYTNqFQBou+J7fpFIpNEYqhQAx+mF\nF15o+O/tt99u7sObLrzwwviRnHPPPXfXrl0yCxFCDBo0qLlDQG63+7777mt4f+A77rijBZE3\nInWNitvtfvnllx966KFevXrl5+cfOnTo9NNPX7ly5ebNm2VuBYB0kCxpAAAAgLao2TLjzDPP\nfPvtt83htWvXHj169MYbb9y5c2dtbW19ff3HH388Z86c+F3PAAAAACCFmj316+OPP66qqjKH\nr7zyyu3bt8fvvgygzYkfglP+NYazBwEAgJ01W6h07dr1wIEDmQylrWh6zpXSYPg4d/6KK76V\nPKfrOFfUcC2+Tz8RTV4Xe7HtSVpPFGy68MNCCFIIbV/COx1xAQkAZEyzhcqoUaPuvvvu7du3\nd+rUSQhxzz33PPLIIwlbrl+/Pl3RWdR0h8ncBW809Xj2n465w2c2OJ5VNJq3rq4uGo0WFRWl\n8HKgRq9CGThYSdSGHc32LSVvcZJPBCmENo0HcgNAq2u2UFmxYoXD4XjzzTcPHz4shNi+fXtz\nLW1SqCTcYVIGDvbv29toaov3n9rH9evyr4IdTQBopBXvHZyxZ1n8dOn/feNzu2QArajZQqVz\n585PP/20OexwOLZv337eeedlKKhUa7przi44kNbDKbCq4T7ozsVjzl70RnMt2WXsmJIf4UlV\nLdF0LeYY82+aVtEQ6d0yDbfq1nnDG45hk6JNkzqb6KabbiouLk53KMgMKrQOqOmbnpI0IJdS\npdGuGycd2Zltd/uOP20ykHjkdjo02qpjVuxsOIZtjjZNqlBZtWpVnz59hBB1dXV79uzZs2dP\nXV1dmgOzI8ndsnaz99ZuXgiEEMUV33YuP+D79JOiA19k5p0lf9Cm2bYgaUVUMjYks8XYqmi7\npJ5ML4T4/PPP58yZs23bNl3XhRBOp3PUqFF/+MMfysrK0hmeBUnul9V0Uot3ocwZ42eOhcPh\nYDCYl5d3tKT0OJecSY2CPHr0qNvtLiwsbK140HY1+kSk5JYVgE3sXDxG1/Wqqiqfz5eXl9fa\n4bQ+ijcAGSZVqBw4cOCcc86prq4+++yz+/fvL4T429/+tnXr1rPPPvvDDz8sLS2VXNlHH330\nzDPPfPfddwUFBSNHjpwyZYrD4TjOlg012jeKxWLV1dUNJ6Xq0pQ0nUgDtFHx/C/YtzcSiZi3\nCgSQSe2jimgfrwJAqkgVKnfffXcoFNq6devo0aPjI994442xY8cuXLhw3bp1MgvZt2/fkiVL\nLrroonnz5h08eHD16tW6rk+fPv14WlpFOQHAhswbKzX3b6OWmQoK9hJ/6w3DqKys9Hg8BQUF\n6VhFWnMvSW6nahUdTfJNGm+TmWCAlJMqVLZt23bjjTc2rFKEEKNHj77hhhueffZZyTVt2rSp\nuLj4+uuvF0Kccsophw4d2rJly6RJk3w+X4tbAkD70GhP4oNFo9O0Mwokt3PxmGg0WldXl52d\nnZ2dnY7lCyECgUAkEiksLHS7ZU9BR3Ma1Spb5w0vKCjgrl9oH6Q6iJqaGvNi+kb69OlTU1Mj\nuaa9e/eOGDEi/u+QIUM2bNhQXl7er18/qy3D4bCqquZwIBAQQhiG0XSN8ZEJpyYh395saRiG\n5CzHE5KlVci3bxpbmkJq2SrabkjkhqUld8CQks9IPqQppEx+MG0YErlxzJZtNKQPFo02W1ZV\nVZkD5hjJ1bXp3ED7JlWodOvW7f3337/hhhsajX///fe7desmswTDMGpqahqeuW4Om58oqy2X\nLl36+uuvm8MFBQWdO3eurKxsbtWRSCQSicgEGZdkaQkFAgGzXpIUjUatriJ+sY2kUCgUCoXk\n22uaZjUk+RrVFA6Hw+GwpVmshmT1ZnTkhgxyQ5LVkEy6rieZUVXVdOeD1Y0fi8WshlRbW5vW\nkIT1jV9fX2+pvaIoiqJYmsVqSMFgMBgMyrcnNySRGzLS/T2SwtyI/06NDkKqUJkwYcL9999/\n2mmnzZ071+/3CyEikciKFSvWrVs3b968NEeYQO/evYcNG2YOe73ew4cPezyeps0Mw9A0zel0\nulwuySVrmmYYRsKlJRSLxXRdd7lcTqfUjZ6FEKqqWgrJXIXb7Za5nYAQQtf1WCxmNSSHwyF/\n/N0MSX4rteCNMHsi+VWYr1p+K5Eb8iGRG8dkNTcaSdJ92XDjWwqpZRvfUora8INpNSSrH8z2\nkRtWuy8bdtoZCMm2nXYGQmouNyQTBu2G7MX0b7755h133LF06dLS0lLDMA4ePBgIBPr373/X\nXXfJLMHhcBQWFjYs2c3hoqKiFrScOXPmzJkz41Nnz56d8DRu865fXq83NzdXJkghRE1NjaZp\n8ieFm7cnzs7Olrx+xjCMyspKt9udn58vuYq6urpoNJqfny/ZKSiKUl9f7/f7s7KyJFdx9OhR\nl8sl/6rNc4tzc3Mle2dVVWtra30+X05OjuQqzANo8iGZv+7k5ORI9rbkhuQqyA0ZVnOjIafT\nmXDGeD7IL7a+vl5RlLy8PMl8MK9D8Pv98tchVFZWNhdwQsFgMBwO5+bmSu6jaJpWU1Pj9Xrl\n86G6ulrX9Rbkg9frlWlv3p7Y4/HI3564trZWVVX5kCKRSCAQyMrKMn8HPKb2kRvxvsJSbljq\nK9KdG2Zf0WFzQ/57JLW5wUVNHY1UXhYWFu7cuXPRokUlJSX79+8/ePBgSUnJ4sWLP/jgA/mH\nb/Tr12/Xrl3xf3ft2uX3+0tKSo6nJQAAAIB2SfbIXU5OzsKFCz/99NNAIFBfX//pp5/efffd\n8j9sCCEmTJhQUVGxZs2ar7/+evv27Zs3bx47dqz5Y/OOHTvmz58fP98xSUsAAAAAHUHmjqCV\nlZUtWLBg7dq1W7duLSgoGD9+/NSpU81JlZWVe/fu1TTtmC0BAAAAdATWChVd1+vr6xvdME7+\n7K+hQ4cOHTq06fixY8eOHTtWpiUAAACAjkCqUNF1fc2aNQ888EB5eXk0Gm00tdVvdP3Pf/7z\nwQcfbDreMIxIJOJyuSQvjBNCKIqi67r8JWKapqmq6vV65W/6EQ6HnU6n/JlsZkh+v1/yThex\nWCwajXo8HvkLzqyGFI1GY7GYfEi6riuK4na75e8rYt4ZVvLyQSGEqqqapvl8Pvm7tZAb6QiJ\n3GhK1/Xk8ybsvkT6N76ZD5Y2fjgcdjgc6dv4LcsHwzDkP5hmSPIfzIz1Fbb6YGYgN8yQyI3k\nbJsbVkNKYW58//33QogNGzZILs2S/fv3p2OxOB5SebZkyZKFCxf26dNnwoQJNnxMclVV1dNP\nP93aUQBAYkluChSNRum+AECe0+l8+eWX07d8+XtvIgMcMsdDunfvPmbMmEcffVT+ttkZo6rq\nJ5980tpRAEBiDoejrKysuW++jz76KPkhFwBAQ4FAQP728VYVFBSUlZWlaeFoAalCxev1vvfe\ne2eddVYGAgIAAAAAqSMkPXr0qK2tTXcoAAAAAGCSKlSuvvrqBx54oNUvmgcAAADQQUhdTN+3\nb98nnnhi+PDh06ZN6969e6NbQ4wbNy49sQEAAADooKSuUUl+0zqOtAAAAABILakjKs8//3y6\n4wAAAACAOKkjKgAAAACQSbIPFrWtcDj8+OOPJ5xkGIamaU6nU/7R4JqmGYYh/+BbXddjsZjL\n5ZJ/woyqqg6HQ/6RrjYMKRaL6brudrslH2SbgTfChiGRGzLtO0hudOnSpZdz3wAAIABJREFU\n5Yorrkg46ZFHHlFVNeGklm18+S1jvtKOlg/mp0A+JCGEqqptva8gN2SQGzLskBsVFRWdOnWS\nf5ssycrKuuSSS3r27JmOhaMF2nyhEolEXn/99WuuuabpJF3XQ6GQx+Px+XySSwuFQrquyz9I\nSFVVRVH8fr/kJ9AwjGAw6Ha7/X6/5CoikYimaTk5OZKfSU3TIpGIz+eT73cCgYDT6czOzpZs\nryiKqqrZ2dmS/VQsFguHw5beiGAwKITIycmRbB+NRqPRaFZWluQXBrkhuQpyQ0by3Lj33nvL\nysqaK1Q2btx4ww03NB1v5oPL5crKypIMo2X54PV6vV6v5CqCwaDD4UhfPrRs4xuGYTUf0vrB\nDIfDsVjMal8h/8EkNyRXke7cMEPqmLlh6XsktbnxzDPPhEKhSy+9NB2FyieffLJr167BgwdT\nqNhHywuVTz/91Pzq/fzzz1MXT0sUFhZOmDCh6fhYLFZdXe33++U7hZqaGk3TOnfuLNk+HA4H\ng8G8vDzJrtMwjMrKSq/X29xjqpuqq6uLRqNFRUWSvbmiKPX19Tk5OfL91NGjR91ud2FhoWT7\nQCAQiUQ6deokueenqmptbW1WVpb8F0ZVVZUQoqioSLJ9KBQKhUIFBQWSXSe5IbkKckNG8tz4\n/e9/n2Rej8eTsPsy88Hj8RQUFEiGUV9fryiKfD5Eo9G6urrs7Gz5HYjKykqn09mpUyfJ9sFg\nMBwOFxYWSu75aZpWU1NjKR+qq6t1XT/hhBMk25v5kJ+fL7kLrut6VVWVz+fLy8uTXEVtba2q\nqvJ9RSQSMZ+0Lbm/2z5yw+wr2nRumH1Fx8wNS98jqc2NV199NRQKnX/++fKHdOTV1dXt2rUr\n5YvF8Wh5oRIOh/ft25fCUAAAAADA1PJCZdiwYfX19SkMBQAAAABMLS9UnE6n/KkRAAAAACAv\n9Wf4AQAAAMBxsnBEZf/+/Vu2bCkvLzcMo3fv3uPGjSstLU1fZAAAAAA6LNn7M86fP3/58uUN\nnw45f/7822677Xe/+13aYgMAAADQQUmd+nX//fffd999kydPfuutt7788svPP//8hRdeGDZs\n2L333rty5cp0hwgAAACgo5E6orJ69eo5c+Y0rEnKysrGjRt3wQUXPPTQQ3Pnzk1beAAAAAA6\nIqkjKt98882MGTMajXS5XNOnT//mm2/SEBUAAACADk2qUOnatWsgEGg6PhAIdO/ePdUhAQAA\nAOjopAqVKVOmLFmyRNO0hiOPHDmyatWqWbNmpScwAAAAAB2X1DUqgwcPXrduXVlZ2YwZM3r3\n7q0oymefffbkk0+WlpaWlJS8+OKL8Zbjxo1LW6gAAAAAOgqpQmXKlCnmwMKFCxuO//jjjy+7\n7LKGYxrevzgzDMPQdT0YDCacJITQNC3h1IR0XRdCyLc3jzIpitLocFNysVhMfhWxWEwIEQqF\nHA6HfPtoNGq+FknNbcOEzBcbDoclQzIjUVVVfhXme2c1pEgkEo1G5ZdPbsggN47Jam40Wl2S\n7stSPpivtAX5IN9vJ+lvE1JVVQgRDoedTqmj9y3IB13Xm9uGSUKKRCLmwDG1IB/MDduCvsKc\nUTIkckNmlrTmhhlSh80N+e+R1OaG5KZAuyFVqDz//PPpjuN4OBwOtzvBCzE/Rc1NTcjclZFv\nb67C6XRKzmJ2IpZCMj+xbrdbshMxVyEfkslSSGa/5nK5JL9gzG7FakjC+hvhcrlcLpd8e3JD\nBrlxTFZzo5GEM7YgHzRNi8Vi8vlgsrTxHQ6HpZDM91d+47cgH8wX24KQLH0wLYVkNR8Mw1BV\n1WpIbT03zJAsfTAVRbFVbrQgJHJDPqTmcsNSnGgHpPJm4sSJ6Y6jxcwPgM/nazrJ/FHB5XIl\nnJpQOBwWQsi3N/spj8cjOYthGIFAwOl0yq9CURQhhNfrldzzE0JEIhG32y2/ivr6+ua2YUKq\nqqqq6vV6Jb9gzP1pS2+E+dOLfHvzC8bj8Xg8Hsn25IYMckOG1dxoqLnN24J8MPeB5PPB4XCE\nw2FL+RAIBCzlg1m4er1eyX0UTdNCoZCljR8KhQzDsJQP0WjU4/F4vV6Z9vFfHORXEYlEYrGY\nfHtz51L+jWgfuRHvK+RzQ1jsK9KdG2ZfQW4cU2pzQ/77Du2DtZ8A6+rqvvrqKyFEz5498/Pz\n0xIRAAAAgA5PtjD9/PPPx4wZ06lTp4EDBw4cOLBTp04XXnjhvn370hocAAAAgI5J6ojKgQMH\nzjnnnOrq6rPPPrt///5CiL/97W9bt249++yzP/zww9LS0jQHCQAAAKBjkSpU7r777lAotHXr\n1tGjR8dHvvHGG2PHjl24cOG6devSFh4AAACAjkjq1K9t27bdeOONDasUIcTo0aNvuOGGbdu2\npScwAAAAAB2XVKFSU1PTp0+fpuP79OlTU1OT6pAAAAAAdHRShUq3bt3ef//9puPff//9bt26\npTokAAAAAB2dVKEyYcKEtWvX3nvvvZFIxBwTiUSWLVu2bt26CRMmpDM8AAAAAB2R7MX0b775\n5h133LF06dLS0lLDMA4ePBgIBPr373/XXXelO0QAAAAAHY3UEZXCwsKdO3cuWrSopKRk//79\nBw8eLCkpWbx48QcffFBYWJjuEAEAAAB0NLJPps/JyVm4cOHChQvTGg0AAAAACJkjKqFQ6Pbb\nb//www8zEA0AAAAACJlCJSsra8WKFaqqZiAaAAAAABAyhYrD4ejRo8ehQ4cyEA0AAAAACMmL\n6a+88sqVK1dqmpbuaAAAAABASF5M369fv6eeeuq0006bOXNmr169fD5fw6njxo1LT2wAAAAA\nOiipQuWKK64wB+64446mUw3DSGVEAAAAADo8qULl+eefT3ccAAAAABAnVahMnDgx3XEAAAAA\nQJzUxfQAAAAAkEmyT6YXQuzfv3/Lli3l5eWGYfTu3XvcuHGlpaXpiwwAAABAhyVVqBiGMX/+\n/OXLlze8bn7+/Pm33Xbb7373u7TFBgAAAKCDkjr16/7777/vvvsmT5781ltvffnll59//vkL\nL7wwbNiwe++9d+XKlekOEQDsqaK4e0Vx9+Bp/c3h+MhWDQoAgHZC6ojK6tWr58yZ07AmKSsr\nGzdu3AUXXPDQQw/NnTs3beEBQBugDBwsKFEAAEgpqSMq33zzzYwZMxqNdLlc06dP/+abb9IQ\nFQDYXZKyhIoFAIDjJ1WodO3aNRAINB0fCAS6d+f7GIC9NDwLq7pPWToOd1CKAACQblKFypQp\nU5YsWaJpWsORR44cWbVq1axZs9ITGAC0hFlCNCokjvQsaToyA2EAAIAWk7pGZfDgwevWrSsr\nK5sxY0bv3r0VRfnss8+efPLJ0tLSkpKSF198Md5y3LhxaQsVACxIX6lAEQIAQAZIFSpTpkwx\nBxYuXNhw/Mcff3zZZZc1HNPw/sUAkGHHLCEqirsXV3ybsWAyti4AANofqULl+eefT3ccANBW\nNCo/ampqNE3r/P/Zu/MwKYr7f+A1585ezHIfK0GX5VgUwUWUyI2IEN3lEMIhQVE53KCC0aDI\nGQGDRoJBQTSJoJweIBiBBQRECUoAFTQr1wLiisLeMzv39Pz+6Oc338lcW9UzXdPT+349Pj7D\nbHVXVc+na/rTXd3TrFmi2gMAAKBKVInK6NGj41LZsWPH3nnnnR9//NFsNg8ePHj8+PEajSa0\n2GeffbZjx46ysjKn09m0adO+ffuOGzfOYDDEpQ0AoFaUM7JwoQMAACApUCUqcXH69OnFixcP\nGzbsySefPH/+/KpVqwRBmDhxYmhJnU43ePDgNm3aGI3Gc+fOrVu3rra29ve//z23pgJA0sF9\nIwDAR68FxV8supv+fQCQjF+isnXr1uzs7GnTphFC2rVrd+XKle3bt48ZMyYlJSWo5B133OF/\n3alTp0uXLp08eZJbOwEgGUW6SGKz2Ww2m9lsxlVZAIhdrwXF4ovef9onvkByAiAfqscTx0VJ\nSUl+fr7/n/n5+Q6Ho7S0NMoigiCUlpZ+/fXX3bp1k7+BAAAAAPXzpytB74S+D8CZ1WrVREYI\nsdlsS5Ys6d69e3p6euPGjXv27Llw4cLq6upENzw8TldUfD5fdXV148aN/e+IrysrK8OWd7vd\nY8aM8fl8Pp9vyJAhU6dODfzr3Llzd+/eLb42m83NmjUrLy+PVLXD4XA4HEytjbK2sCwWi8Vi\noS/vcrlYq4i0oSKpq6urq6ujL+/xeFibVFVVxVTebrfb7XamRVibVFNTw1QesUEDsUGJtUki\nQRCiLOh2u+WOB/GKE315r9fL2iTW7z8O8VBbW8tU3ul0Op1OpkVYm2S1WsP+sHIkiA1K8Y2N\ne1ceD32z14Lifz3Wg75GFcQG6/dIHGPD7XYzrSc5CIJty7v2fft8NbWGrjdlPPqorkVzyStL\nS0v76quvxNfHjh2bMmXKhg0bunTpIr5TXV3dv3//H3744dlnn73tttuysrL++9///v3vf8/I\nyHjqqafi0Jd44zf1i4ler3/llVfcbvfZs2fXr1/fqFGjSZMm+f/apk2bvLw88bXJZLJYLHp9\n+I54PB6tVqvV0l448nq9Pp8v0tpCCYIgCIJOpwv7VIBITdJoNDqdjqlJ9FWITWLqNWuTxCro\nt5LP5/N6vaxNIoTI/UEgNuLeJGmxwVSFCmIjSNgFJWwZFeyYEprEZ8fk0CT6KtQRG6zDlxJi\nY+hfv4y0bGACc+/K47tn3R7HJilw0Gbdg0j8YoO+3iRSOb3I/vHH4mvnkSO2Le8237VT3+5X\n0tam1Wq7d+8uvhbzvY4dO/rfmTJlytmzZ0+ePJmbmyu+07179wkTJly7di2mPsiGU6Ki0Wiy\nsrICz7OKr5s0aRKpfLt27Qghubm5Wq121apVo0aNysjIEP9aVFRUVFTkX8+MGTOysrJCV+L1\nequqqoxGo3/BeomPGQ27trDsdntdXV1aWlronTZh+Xy+iooKg8HQqFEjyipqa2tdLpfZbKYc\np5xOp8ViSU1NTU1NpayivLxcp9PR99pqtTocjszMTMqh0O1219TUpKSkpKenU1Yhnt2hb5J4\n5i8jI4PyPgTEBmUVfGLDZDI1qNgIpNVqwy4oxoNerzebzZSrslgsTqezUaNGlPHgcrlqa2tN\nJlNaWhplFRUVFZEaHFZdXZ3dbs/MzKQ8RvF4PNXV1UxjRVVVlSAIrPGQnp5uNBppyguCUFlZ\naTAYMjMzKauoqalxu930TXI4HFarNS0tzWQy0ZRXR2z4x4rkjY0oIlWqptig/x6Jb2xIPiWk\nWPaPd/qzFJFQU1P97LPNNm6Ie11ut3vTpk0PPPCAP0vxa95c+jUcWfG7RyUvL+/EiRP+f544\nccJkMuXk5NS7oMfj8fl8YkYOAAAAwBnTzSe4UwXoOT/7PMybh/9NvN6413X58uW6urquXbvG\nfc3y4ZeYjho1avbs2WvWrBk6dGhpaem2bdtGjBghnmw+fPjwjh07FixYIJ68eeONNzp27Niy\nZUtBEM6cObN58+Zbb71V2tlKAAAAgBgFPtqLJg/Bo4qBlk8I96aP+Hzxr0qGdcqNX6LSqVOn\n5557bv369cXFxWazeeTIkRMmTBD/VFFRUVJS4r9mYjKZ3nvvvatXr2q12hYtWowZM6agoIBb\nOwEAAAAiETMQcZpoSkoK/bRAgFDG226rWx88y8t4aw8iwyS3tm3bpqennzp1Ku5rlg/XqX49\ne/bs2bNn6PuFhYWFhYX+f06aNCnw1nkAAAAAAPVJGznC9v77zkOf+d/RpKZmLV0qR11Go3Hc\nuHFr1679wx/+EHSbyrVr15R5mwq/e1QAAAAAAOD/aLVN1601PzfH2LOnoVPHtNGjW+wtNnTu\nJFNtL774Yvv27Xv27Pniiy9++umnX3/99caNGwcNGrRu3TqZaoyR2h6eAAAAAACQLDRGY0bR\noxlFj3Koq0mTJl9++eXy5cs3bNiwcOHClJSUDh06jB8/fsqUKRxqlwCJCgAAAACA2gwYMCD0\nBvr09PR58+bNmzcvIU1ihalfAAAAAACgOEhUAAAAAABAcZCoAAAAAACA4iBRAQAAAAAAxUGi\nAgAAAAAAioNEBQAAAAAAFAeJCgAAAAAAKA4SFQAAAAAAUBwkKgAAAAAAoDhIVAAAAAAAQHGQ\nqAAAAAAAgOIgUQEAAAAAAMVBogIAAAAAAIqDRAUAAAAAABQHiQoAAAAAACgOEhUAAAAAAFAc\nJCoAAAAAAKA4SFQAAAAAAEBxkKgAAAAAKEWvBcWJbgIkt9GjR3fu3Nlms/nfqa2tzcnJmTx5\nMiFk5syZGo1Go9Fotdo2bdqMHj369OnTYjH/n3Q6XVZWVo8ePZ5++ulLly4lphuEECQqAAAA\nAAohZini/we88GnQ+6BKNTb3i//67/Dlnw5a+smjb/3n60tVMa7wzTfftNlsTzzxhP+doqIi\nvV6/cuVK8Z8tW7YsKSn57rvv1qxZc+rUqaFDh/qzGvFP33777Z49e6ZPn753794bb7xx//79\nMTZJMn2iKgYAAACAsAIzE2QpKub2Co+/fez0lVrxn19drJz+z6NrHr6t268aS15n48aNN2zY\nMHDgwKFDh953330bNmx49913jxw5kpGRIRbQ6/WdO3cmhOTl5RFCCgsLjx8/3rdv38A/EUJu\nu+22Bx54YODAgZMmTTp//nxKSkosPZUGV1QAAAAAEi80Ibl35XH/dRWkK6r00Ykyf5bi9/LH\nJTGutm/fvs8999yUKVMOHTpUVFS0dOnSHj16hC2Znp5OCHE4HGH/ajQan3nmmbKyss8//zzG\nJkmDRAUAAAAgCSBXUZ/vfwrOUgghZ3+xeLy+GNc8f/78Ll26DBw48Pbbb//DH/4QtszFixcX\nLVpkNpsjpTGEkK5duxJCzp8/H2N7pEGiAgAAAJBgSEIaphRDmENxg06r02piXLNOp1uwYIEg\nCIsWLdJo/mdtZWVler1er9ffcMMNP//88wcffNCkSZNI6/H5fISQoDVwg0QFAAAAIDkgn1GZ\nfp1bhL7Zt1OLuOQFBoPB//9ALVu2/Prrr0+ePFleXn769Ok777wzykpOnjxJCGnfvn0cGsQO\nN9MDAAAAJBLSjwarZ07Tcb9ut/nI/z0CuE3j1KfuyZO1Ur1ef9NNN9GUdLlcy5Ytu+666/r0\n6SNrkyJBogIAAACQSF8sujv0TYfDYbVaMzIyTCYT/yYBNzOHdu7dsflnp69ZHe7OrRsV9rjO\nZNAlqjEej+f7778nhFgslm+++ebVV189d+7cjh07jEZjQtqT9ImKz+cTBKGuri7snwghHo8n\n7F/DEgSBEEJf3uPxEEKcTqf4gpLX66Wvwuv1EkJsNhvl7ECxvMvlEvtCKdI2DEvsrN1up2yS\n2BK3201fhfjZsTbJ4XC4XC769SM2aCA26sUaG0HVRRm+mOJB7KmEeBDromwtUzy43W5CiN1u\n12qpphlLiAdBECJtwyhNcjgc4ot6SYgHccNKGCvEBSmbhNigWUTW2BCb1GBjg/57JL6xQbkp\nkk7PnKY9c5omuhWEEPLLL7/k5eVptdqMjIycnJzBgwdv3769Xbt2iWpP0icqhBCNRqPXh+mI\nuBdF+mtY4qEMfXmxCq1WS7mI/4Yk+irEPVav11MOImIV9E0SMTVJHNd0Oh3lF4w4rLA2ibB/\nEDqdTqejOgmB2KCsgrVJiA0Jwi4oIR48Ho/X66WPBxHTxhd/sZi+vPj50m98CfEgdlZCk5h2\nTKYmscaDz+dzu92sTUr22BCbxLRjOp1ORcWGhCYhNuibFCk2EnVLd5IaMGBA6OmGFStWrFix\nImz5KH9KlKRPVMQdIOxv0IgnFXQ6Hf0v1NjtdkIIfXlxnDIYDJSL+Hw+q9Wq1Wrpq3A6nYQQ\no9FIeeRHCHE4HHq9nr4Ki8USaRuG5Xa73W630Wik/IIRj6eZPgjx1At9efELxmAwhN4xFqk8\nYoMGYoMGa2wEirR5JcSDeAxEHw8ajcZutzPFg9VqZYoHMXE1Go2Uxygej8dmszFtfJvN5vP5\nmOLB5XIZDAbKaQz+Mw70VTgcDq/XS19ePIyg/yDUERv+sYI+NgjjWCF3bIhjBWKjXvGNDfrv\nO1AHfN4AAAAAAKA4SFQAAAAAAEBxkKgAAAAAAIDiIFEBAAAAAADFQaICAAAAAACKg0QFAAAA\nAAAUB4kKAAAAAAAoDhIVAAAAAABQHCQqAAAAAACgOEhUAAAAAABAcZCoAAAAAACA4iBRAQAA\nAAAAxUGiApCsLHk3OrvdcqVtO/GfZdltE9seAAAAgDjSJ7oBABArpCgAAACgPriiApCUwiYn\nyFgAAABANZCoACSfKAkJchUAAABQByQqAAAAAACgOEhUAJJMvddMcFEFAAAAVACJCgAAAAAA\nKA6e+gWQTKJcLckuu8yzJQAAAACyQqICwElZdtvYc4nANdTW1rpcriZNmmi1uDQKAAAAaoNE\nBSDOxIseTc6dCXoHAAAAAOjhRCwAP8hYAAAAACghUQGIJ38qUpnbMegdAAAAAKCHRAVALs5u\nt5Tn5Aa9ibwFAAAAgAYSFVCWpD6OT+rGAwAAACgKEhVQnLLstvau3cQXqjz0V2WnAAAAAOIL\nT/0CBQl7BB+Xp/pywJR+JEunAAAAksvChQuZ3gclQ6ICCiVeVIkvWdODoDXb7fa6urrMzMyU\nlBSZagQAAIAggb8t5vF4zp07Z7FYevbsmcAmgWRIVEApolyRiEuC4V+/+CLlm69qOuXV/P+/\n4voGQHS9FhR//PitQe98sejuRLUHACCs+fPnB/7T6/W++OKLOTk5iWoPxIJronLs2LF33nnn\nxx9/NJvNgwcPHj9+vEajCS22b9++Tz/99OLFi06ns02bNvfcc89dd93Fs53AH7fbNvwVObvd\nEvQ+chUAer0WFBPkKgCgeDqd7r777pszZ87YsWMT3RZgxi9ROX369OLFi4cNG/bkk0+eP39+\n1apVgiBMnDgxtOT+/ftvvPHG4cOHp6Wl/fvf/165cqXH4xk2bBi3poICxZhI4P51gFiIack9\nfzu2a+Zt/n8CACSFqqqqurq6RLcCpOCXqGzdujU7O3vatGmEkHbt2l25cmX79u1jxowJncG/\ndOlS/+suXbpcuHDh8OHDSFRUjDKLkPuiBy6qAIQVlJaE/hMXVQBAOTZu3Oh/7fP5Kioq9u3b\nd8cddySwSSAZv0SlpKSkf//+/n/m5+dv2bKltLQ0Ly8v+oIul6tFixYytw4SKTQ9qKysJIQ0\nadIkLuvH5RSAeBm24mjc1xk21UH+AwDSfPzxx/7XHo+nvLy8R48eTz/9dAKbBJJxSlR8Pl91\ndXXjxo3974ivxePRKPbt23fu3LmpU6cGvjl37tzdu3eLr81mc7NmzcrLyyOtweFwOBwOptZG\nWVtYFovFYrHQl3e5XKxV1LuhgtTV1TFd5RT3ZKYqqqqqmMrb7Xa73c60CGuTampq6i8UVVl2\n25RvvopSALFBQwWxwWHcEAmCEGVBt9stdzzYbDabzRalwL0rj9e7kl4Liv/1WI9If62urq53\nDf5uBlYXfbVhF6dUW1vLVN7pdDqdTqZFWJtktVqtVit9eSXERhCv18vaJJrYCMRhrEBs0GD9\nHoljbLjd7nqX3bBhQ+A/Kysrn3/++aNHj/br14+pDaAEin7q12efffb666/PmjWrQ4cOge+3\nadPGfx3GZDJZLBa9PnxHPB6PVqsNfFBddF6v1+fzRVpbKEEQBEHQ6XRhnwoQqUkajUan0zE1\nib4KsUlMvWZtklgF/Vby+Xxer5e1SYSQuHwQdTd2pVyJyNntlvTvToW+j9igr4I1NpiqiGNs\nRKlC1nEjSNgFJWwZDjtmFPeuPL571u1hmxR94w/965f+xX0+H81qA/HZMTl8j9BXoczYYN0x\nWYcvCU2SOzYkfBByxwbhNWiz7kEkfrFBX69fkyZNHn744b/85S9IVJIRp0RFo9FkZWUFnmcV\nX0eZ27Nr165//OMfTz31VK9evYL+VFRUVFRU5F/PjBkzsrKyQtfg9XqrqqqMRmNGRgZlO6ur\nqz0eT9i1hSX+VkZaWhrlb2WIcyUNBkOjRo0oq6itrXW5XGazmXKccjqdFoslNTU1NTWVsory\n8nKdTkffa6vV6nA4MjMzKYdCt9tdU1OTkpKSnp5OWYV4doe+SeKZv4yMDIPBEPSnrHC3nYix\nYTKZEBvR8YkNk8mUkNgIi8O4EUir1YZdUIwHvV5vNpspV2WxWJxOZ6NGjSjjweVy1dbWmkym\ntLS0SGWYbpoP7UhdXZ3dbs/MzKQ5RsnKygpbXfQNW1VVJQgCazykp6cbjUaa8oIgVFZWGgyG\nzMxMyipqamrcbjd9kxwOh9VqTUtLM5lMNOUVEhtBKioqIgVzWP6xgvL41ePxVFdXM32PyB0b\n/rGiYcYG/fdIfGND2ikhrVb7yy+/SFgQEo7fFZW8vLwTJ048/PDD4j9PnDhhMpkiPdZ68+bN\nW7dunTdvXrdu8f/VPwAAoBF0l4h4wBE4iTdGgZlJpKQIN6sANBy9FhTve7p3jCs5evT/bqUT\nk7f33nvvxhtvjHG1kBD8EpVRo0bNnj17zZo1Q4cOLS0t3bZt24gRI8STzYcPH96xY8eCBQvE\nkzdvvvnmzp07p06dmpmZWVpaSggxGAxt2+J+aAAAAAB1Cj1bIb7Deqpi9uzZgf9MTU3Nz89/\n4oknYmweJAS/RKVTp07PPffc+vXri4uLzWbzyJEjJ0yYIP6poqKipKREnMVICDl48KDX6129\nerV/2VatWr3xxhvcmgoAAHKjn1eGiyoAqucfEAa/dJjyKRqR7Ny50/9ao9FQTpwDZeJ6M33P\nnj179uwZ+n5hYWFhYaH/n0GPawAAAJXBT0YCQCT3rjz++bw7/aME66mK1NRUQRDq6urobx8C\nxVL0U78AAECVwh52iDdMp6am0t8wDQAqEHrmos/znwQVoM9Vvv1TdfiiAAAgAElEQVT22/nz\n51dVVXXs2PGFF15o0qTJwYMH09PTw54rB4WLw1MpAQAAAACUYOXKlXfdddfy5ctTU1PFX6n3\ner2YrZOkkKgAAAAAQGJQTgSlny9aXl4+ffr0W2655cEHHzx58iQhJDc398KFC9KbCImDqV8A\nAAAAkBhBc7qsVuvglw7HskKTyST+dmfLli3FX+3TarU0P2kPCoREBQAAAACU4l+P9cjKypL2\n246EkP79+//zn/98+OGHU1JSBEEghBw8eLBdu3ZxbSNwgkQFAAAAAFSirKzs8OHDBw8evO66\n66xW66xZs06dOrVkyZJEtwukQKICAAAAACqh0+n69esnvh4wYEDLli0ff/zxG264IbGtAmmQ\nqAAAAACASsyfPz/RTYC4wVO/AAAAAABAcXBFBQAAAABUYuHChUzvg5LhigoAAAAAqIQ2gNvt\nPn369Oeff+7z+RLdLpACV1QAAAAAQCWC7lERBOHNN9/UaDSJag/EAldUAAAAAECdtFrtpEmT\n9u7dm+iGgBRIVAAAAABAzaqqqrxeb6JbAcyQqAAAAACAaplMpp07d+p0ukQ3BJghUQEAAAAA\nlTh37pzT6Qx8R6PRGI3Gr776qqSkJFGtAmmQqAAAAACASkyZMuXy5cuh7x89enTTpk382wOx\nQKICAAAAACrXvn37s2fPJroVwAaPJwYAAAAA9Vi0aFFKSkrQmw6H4+eff05Ie0AyJCoAAAAA\noB433HBDZmZm6PvdunXj3xiIBRIVAAAAAFCPSZMm5ebmJroVEAe4RwUAAAAAVEKn0+F36FUD\nV1QAAAAAQCX27duX6CZA3CBRAQAAAABV8fl8165dI4Q0b94cF1iSFxIVAAAAAFAJr9e7adOm\nzZs319XVEULS09PHjx8/fvx4rRb3OyQfJCoAAAAAoBJ///vfDxw4MHXq1NzcXJfLderUqY0b\nN9bV1U2dOjXRTQNmSFQAAAAAQCV27dr12muvZWdni//s3r17mzZtVq5ciUQlGeEqGAAAAACo\nhMFg8Gcpory8PKfTmaj2QCyQqAAAAACASrRr1+7kyZOB73z++ee33357otoDscDULwAAAABQ\nie7du8+ZM2fIkCG5ublut/vkyZNHjx596KGH9u/fLxYYNGhQYlsI9JI+UfH5fIIgiA92CP0T\nIcTj8YT9a1iCIBBC6Mt7PB5CiNPpFF9Q8nq99FV4vV5CiM1mo3y4nlje5XKJfaEUaRuGJXbW\nbrdTNklsidvtpq9C/OxYm+RwOFwuF/36ERs0EBv1Yo2NoOqiDF9M8SD2VEI8iHVRtpYpHtxu\nNyHEbrdTPmxHQjwIghBpG0ZpksPhEF/US0I8iBtWwlghLkjZJMQGzSKyxobYpAYbG/TfI/GN\nDZpNsXbtWkLIjh07At987bXX/K+RqCSRpE9UCCEajUavD9MRcS+K9NewxEMZ+vJiFVqtlnIR\ncRBhapK4x+r1espBRKyCvkkipiaJ45pOp6P8ghGHFdYmEfYPQqfT6XQ6+vKIDRqIjXqxxkaQ\nsAtKiAePx+P1eunjQcS08TUaDVOTxM+XfuNLiAexs9HL9196UHzx6ZwB/ibp9Xrx/U/nDIiy\nrIS9hjUefD6f2+0Wm0RZniR/bIhNYtoxnU5n3GMjUGBsyNQkxAZ9kyLFBk078YOPapL0iYq4\nA6SkpIT+STypoNPpwv41LLvdTgihLy+OUwaDgXIRn89ntVq1Wi19FeLtX0ajkf753w6HQ6/X\n01dhsVgibcOw3G632+02Go2UXzDi8TTTByGeeqEvL37BGAwGg8FAWR6xQQOxQYM1NgJF2rwS\n4kE8BqKPB41GY7fbmeLBarUyxYOYuBqNRspjFI/HY7PZmDa+zWbz+XxRyvdaUOx/nZKS4vV6\nXS6XwWAwGo3im/2XHvxi0d2RFvefcaBvksPh8Hq99OXFg0v6D0IdseEfK+hjgzCOFfXGRpDQ\n2Ki3fF1dHWKjXvGNDfwWSkODzxsAABqEwKQl8DUAACgTEhUAAFCnSNlIvyUHaIoBAEBiIVEB\nAICGYtCyzxLdBAAAoIVEBQAAVCjSdZJ7Vx6nLwwAAAmERAUAAAC5CgCA4iT9U78AAABChX2W\nl81ms9lsjRo1onyyEwAAJBCuqAAAAAAAgOIgUQEAAAAAAMVBogIAAAAAAIqDRAUAAAAAABQH\niQoAAAAAACgOEhUAAAAAAFAcJCoAAAAAAKA4SFQAAAAAAEBxkKgAAAAAAIDiIFEBAAAAAADF\nQaICAAAAAACKg0QFAAAAAAAUB4kKAAAAAAAoDhIVAAAAAABQHCQqAAAAAACgOEhUAAAAAABA\ncZCoAAAAAACA4iBRAQAAAAAAxUGiAgAAAAAAioNEBQAAAAAAFAeJCgAAAAAAKA4SFQAAAAAA\nUBwkKgAAAAAAoDhIVAAAAAAAQHH0PCs7duzYO++88+OPP5rN5sGDB48fP16j0YQWO3PmzAcf\nfHD+/PmrV6/eddddjz32GM9GAgAAAABAwvG7onL69OnFixd36dJl+fLlEydO3Lp164YNG8KW\ndDgcrVu3/t3vfte6dWtuzQMAAAAAAOXgd0Vl69at2dnZ06ZNI4S0a9fuypUr27dvHzNmTEpK\nSlDJm2+++eabbxYX4dY8AAAAAABQDn5XVEpKSvLz8/3/zM/PdzgcpaWl3BoAAAAAAADJgtMV\nFZ/PV11d3bhxY/874uvKykoJa5s7d+7u3bvF12azuVmzZuXl5ZEKOxwOh8PBtP4oawvLYrFY\nLBb68i6Xi7UK1g1VV1dXV1dHX97j8bA2qaqqiqm83W632+1Mi7A2qaamhqk8YoMGYoMSa5NE\ngiBEWdDtdssdDzabzWaz0Zf3er2sTaqurmYqzyEeamtrmco7nU6n08m0CGuTrFar1WqlL4/Y\noITYoCH390gcY8PtdjOtB5Id15vp46VNmzZ5eXnia5PJZLFY9PrwHfF4PFqtVqulvXDk9Xp9\nPl+ktYUSBEEQBJ1OF/apAJGapNFodDodU5PoqxCbxNRr1iaJVdBvJZ/P5/V6WZtECJH7g0Bs\nxL1J0mKDqQoVxEaQsAtK2DIq2DElNInPjsmhSfRVqCM2WIcvBcaGhA9C7tggvAZt1j2IxC82\n6OsFdeCUqGg0mqysrMDzrOLrJk2aSFhbUVFRUVGRfz0zZszIysoKLeb1equqqoxGY0ZGBuWa\nq6urPR5P2LWFZbfb6+rq0tLSQu+0Ccvn81VUVBgMhkaNGlFWUVtb63K5zGYz5TjldDotFktq\nampqaiplFeXl5Tqdjr7XVqvV4XBkZmZSDoVut7umpiYlJSU9PZ2yCvHsDn2TxDN/GRkZBoOB\npjxig7IKPrFhMpkaVGwE0mq1YRcU40Gv15vNZspVWSwWp9PZqFEjynhwuVy1tbUmkyktLY2y\nioqKikgNDquurs5ut2dmZlIeo3g8nurqaqaxoqqqShAE1nhIT083Go005QVBqKysNBgMmZmZ\nlFXU1NS43W76JjkcDqvVmpaWZjKZaMqrIzb8Y0XyxoZ/rGiYsUH/PRLf2JB8SgiSFL97VPLy\n8k6cOOH/54kTJ0wmU05ODrcGAAAAAABAsuCXqIwaNaqsrGzNmjWXLl06cODAtm3bCgsLxZPN\nhw8fnj17tn8urMvlKi0tLS0tdblcVqu1tLT0woUL3NoJAAAAAAAJx+8KWqdOnZ577rn169cX\nFxebzeaRI0dOmDBB/FNFRUVJSYk4i5EQ8uOPP86cOVN8XVZWduTIEa1W++GHH3JrKgAAAAAA\nJBbXqX49e/bs2bNn6PuFhYWFhYX+f+bk5OzYsYNjuwAAAAAAQFn4Tf0CAAAAAACghEQFAAAA\nAAAUB4kKAAAAAAAoDhIVAAAAAABQHCQqAAAAAACgOEhUAAAAAABAcZCoAAAAAACA4iBRAQAA\nAAAAxUGiAgAAAAAAioNEBQAAAAAAFAeJCgAAAAAAKA4SFQAAAAAAUBwkKgAAAAAAoDhIVAAA\nAAAAQHGQqAAAAAAAgOIgUQEAAAAg9648nugmAMD/QKICAAAADVevBcX+1/2WHEhgSwAgCBIV\nAAAAaKD8WcqgZZ8ltiUAEAqJCgAAADRE/iwl8KJK4GsASCwkKgAAAAAAoDhIVAAAAKDBiXLl\nBBdVABQCiQoAAAA0LEhFAJICEhUAAACA//PForsT3QQAIASJCgAAADQouJwCkCyQqAAAAEAD\n8sWiu8X/IhVAJgOgEPpENwAAAAAgAQJzFZvNZrPZGjVqZDQaE9gkAAiEKyoAAAAAAKA4SFQA\nAAAAAEBxkKgAAAAAAIDiIFEBAAAAAADFSfqb6X0+nyAIdXV1Yf9ECPF4PGH/GpYgCIQQ+vIe\nj4cQ4nQ6xReUvF4vfRVer5cQYrPZNBoNfXmXyyX2hVKkbRiW2Fm73U7ZJLElbrebvgrxs2Nt\nksPhcLlc9OtHbNBAbNSLNTaCqosyfDHFg9hTCfEg1kXZWqZ4cLvdhBC73a7VUp0UkxAPgiBE\n2oZRmuRwOMQX9ZIQD+KGlTBWiAtSNgmxQbOIrLEhNqnBxgb990h8Y4NyU4BqJH2iQgjRaDR6\nfZiOiHtRpL+GJR7K0JcXq9BqtZSLiIMIU5PEPVav11MOImIV9E0SMTVJHNd0Oh3lF4w4rLA2\nibB/EDqdTqfT0ZdHbNBAbNSLNTaChF1QQjx4PB6v10sfDyKmja/RaJiaJH6+9BtfQjyInZXQ\nJKYdk6lJrPHg8/ncbjdrk5I9NsQmMe2YTqdTUbEhoUmIDfomRYoNpnaCCiR9oiLuACkpKaF/\nEk8q6HS6sH8Ny263E0Loy4vjlMFgoFzE5/NZrVatVktfhdPpJIQYjUbKIz9CiMPh0Ov19FVY\nLJZI2zAst9vtdruNRiPlF4x4PM30QYinXujLi18wBoPBYDBQlkds0EBs0GCNjUCRNq+EeBCP\ngejjQaPR2O12pniwWq1M8SAmrkajkfIYxePx2Gw2po1vs9l8Ph9TPLhcLoPBQPkIWv8ZB/oq\nHA6H1+ulLy8eXNJ/EOqIDf9YQR8bhHGskDs2xLECsVGv+MYG/fcdqAM+bwAAAAAAUBwkKgAA\nAAAAoDhIVAAAAAAAQHGQqAAAAAAAgOIgUQEAAAAAAMVBogIAAAAAAIqDRAUAAAAAABQHiQoA\nAAAAACgOEhUAAAAAAFAcJCoAAAAAAKA4SFQAAAAAAEBxkKgAAAAAAIDiIFEBAAAAAADFQaIC\nAAAAAACKg0QFAAAAAAAUB4kKAAAAAAAoDhIVAAAAAABQHCQqAAAAAACgOEhUAAAAAABAcZCo\nAAAAAACA4iBRAYDkUJbdtiy7LSHE3rWb/52EtggAAABkhEQFAJKJP0sRyZqrIBECAABIICQq\nIK+y7LZXr89xdruFBJwRj3sVVR06Bf4zjrWIqxL/L/YivoLWb8m7Me5VqEPQZypTLPnVdMpD\nlgIAAJBYSFRAJfy5UBzXGZhF1N3YNY5rDl3/T9f9Ku7rbyDinlEEZqTqS1d6LSgWX/RbciDs\n+8oX2lTxnV4LipOoF9BANOSY9Pd92IqjJGA/TWSbINkgUQEZBR7kVXfsHPpmfKu4en1O2Pdl\nqk4m6jsyjl1it4n6PhH/gcK9K48HvRPfWu588fN7Vx7v8/wn8V0t+d8G3/O3YwRHP5Ak7l15\nvEHl1b0WFAfuoQ2hyxBfSFRALlEO7+J15JfU9yeo7/A3geK4MX/+1fXxWpUC+Y8Swh4uyHcM\nwfPoBEdCoBwN+eg8Sq8b5gYBaZCogGrFcvAqd5YVfSXIYQJRbo2kzloTaNCyzwIPGuJ1ABFp\ndlYcVyu+FqeUyFEXQNzdvfwL8UX0UwYA4IdEBWRR74Fd7Ed+NGtI3glg4Jdddjnwv9RT36Se\n+iboTfG/2OtS9yfL7ZBIfRUBSEB5CkCVYVxvp1TZa5ADEhWAYEqY9KXuI2ZlUvdlLvrDAsVO\nAGNaHIdBkFgyXVRUE2wQoKFPdANAnQJPb7vd7pqamtTU1PT0dJmqsNlsNpvNbDYbDIb4rtmv\nurra4/E0a9ZMpvX7fL6Kigqj0dioUaPYqwAJxM/F6/VWVVWZTKaMjIxEtygpyXTwgWMaULFe\nC4q/WHR3olsRN9hbIY64JirHjh175513fvzxR7PZPHjw4PHjx2s0mhhLAgBAvUIPg1wuV21t\nbVpaWlpaGrdmSD4gi7RUVVWVIAhNmzaNrV0A8dTAj9SD9taKigqtVtu4ceNEtQeSGr9E5fTp\n04sXLx42bNiTTz55/vz5VatWCYIwceLEWEoCAICiBB6j1NXV2e32rKwsvR5X76EBiZRX19TU\nuN3uuFyZB2gg+H15bN26NTs7e9q0aYSQdu3aXblyZfv27WPGjElJSZFcEgAAAAAAVInfzfQl\nJSX5+fn+f+bn5zscjtLS0lhKAgAAAACAKnG6ouLz+aqrqwNnKIqvKysrJZScO3fu7t27xddm\ns7lZs2bl5eWRqnY4HA6Hg6m1UdYWlsVisVgs9OVdLhdrFaEbKrq6urq6ujr68h6Ph7VJVVVV\nTOXtdrvdbmdahLVJNTU1TOURGzQQG5RYmyQSBCHKgm63W+54EB9EQV/e6/WyNqm6upqpPId4\nqK2tZSrvdDqdTifTIqxNslqtVquVvjxigxJig4bc3yNxjA232820Hkh2STlvuE2bNnl5eeJr\nk8lksVgiTYD2eDxarVarpb1w5PV6fT4f/XRqQRAEQdDpdPT3+ns8Ho1Go9PpmJpEX4XYJKZe\nszZJrIJ+K/l8Pq/Xy9okQojcHwRiI+5NkhYbTFWoIDaChF1QwpZRwY4poUl8dkwOTaKvQh2x\nwTp8KTA2JHwQcscG4TVos+5BJH6xgUcrNTScEhWNRpOVlRV4nlV83aRJEwkli4qKioqK/H+d\nMWNGVlZWaKXiY0aNRiP9Y0bFR9CGXVtYdru9rq4uLS2N8v4Z8RG0BoOB/hG0tbW1LpfLbDZT\njlNOp9NisaSmpqamplJWUV5ertPp6HtttVodDkdmZiblUCg+njglJYX+8cTi2R36Joln/jIy\nMigfT4zYoKyCT2yYTKYGFRuBtFpt2AXFeNDr9WazmXJVFovF6XQ2atSIMh7Ep36ZTCb6p36J\nT++h76l4M31mZiblMYrH46murmYaK8SnfrHGQ3p6utFopCkvCEJlZaXBYMjMzKSsQrxhmr5J\nDofDarWmpaWZTCaa8uqIDf9Ykbyx4R8rGmZs0H+PxDc28GSOhobfPSp5eXknTpzw//PEiRMm\nkyknJyeWkgAAAAAAoEr8EpVRo0aVlZWtWbPm0qVLBw4c2LZtW2FhoXiy+fDhw7Nnz/bPhY1S\nEgAAAAAAGgJ+V9A6der03HPPrV+/vri42Gw2jxw5csKECeKfKioqSkpKxFmM0UsCAAAAAEBD\nwHWqX8+ePXv27Bn6fmFhYWFhIU1JAAAAAABoCNRwT1JlZeW6detC3xcEwW63GwwGyhvjCCF2\nu10QBPp79dxut8vlSklJoby7y+fz2Ww2vV5PP5PN6XR6PJ60tDTKJ114PB6n02k0GilvHSaE\n1NXVabVa+hvjXC6X2+1OTU2lvPfO6/U6HA6mD0KcB0h/H6f4QZhMJsp7uBEblFUgNmhEjw1B\nEKIs63K5wg5fYjzodDrKm2gJezyIG58pHmw2m0ajkS8epG18n88nXzxI2DEdDofX66UfK8Qd\nk3WsQGzUS+7YEJuE2KhXfGPj6tWrhJCPPvqI/klo9E6fPh33dUKM1JCoXLt2beXKlYluBQBA\neFEOlZxOJ4YvAAB6Wq12y5Yt8q2fPrkFDjQ+ny/RbYiJy+U6dOhQ2D9du3bt5Zdf7tGjx5gx\nYyjX9uqrr5aVlb3wwguU5Q8fPvzRRx+NGzeue/fuNOXtdvuiRYs6deo0efJkyirWrVtXUlIy\nb948ynMw33zzzaZNm+69994+ffpQVvHcc8+1atXqscceoyz/wQcf/Oc//5k1a1bLli1pyl+4\ncGHNmjX9+/cfNmwYZRV//vOfBUGYM2cOZfni4uIDBw488sgjubm5NOURG5RVyB0bpaWlb7zx\nxoABA4YOHUpZhfgRPPvss5TlxdiYMmVK+/btacpfvXp1+fLlt9566+jRoymrePXVV3/66ael\nS5eG/atWq+3atWvz5s3D/vXAgQNerzf0fY/HM3fu3BtuuGHatGmUzdi4cePJkyefeeYZyseA\nlpSUrFu37u677x44cCBlFYsWLcrIyPjDH/5AWX7Hjh3//ve/Z8yYcd1119GUv3z58muvvda7\nd++CggLKKl5++WWr1bpgwQLK8vv379+zZ88DDzzg/zGu6KqqqpYtW9atW7fx48dTVrFmzZoL\nFy4sWbKE8sT80aNHt27det9991FOeBZjIycnZ+rUqZRN2rBhw6lTp5599lnKp9ZKiI2FCxc2\natToySefpCy/ffv2I0eOyBobf/nLX+rq6uhj45NPPtm7d++DDz7YuXNnmvIcYuPLL7/ctm3b\n6NGjb731Vprybrd73rx57du3nzJlCmWTWGPjv//979tvv80UGwsWLMjKypo1axZleTE2Hnvs\nsezs7LAFampq6J+/zMpsNuPWA0VJ+isqRqNx8ODBYf908eJFQkibNm0iFQj19ttv//TTT/Tl\ny8vLP/roo5tuuolyEfEnb5s2bUpfxccff0wI6d+/P+XBhyAImzZt6tixI30V8+bNy8zMpC//\nxRdf/Oc//+nVqxflkZ/4sOnrr7+evooVK1Z4vV768mfOnDlw4EB+fv5tt91GUx6xQVkFa2wc\nOXKEEPLrX/+a8nnix48fJ4yx8de//tXn80mIDcrvngsXLhD22Lhy5Qp9+UCRvuxdLhchpHHj\nxvSr/eSTTwghffr0adWqFU15cQpN+/bt6atYsmRJeno6ffmvvvqKEHLbbbd16dKFpvx33333\n2muvtW3blr6K1atXO51O+vKXLl0ihHTv3r1v37405a9cubJs2bKWLVvSV/Huu+9euHBh0KBB\nlHNjLBYLIaRLly6UVUiIjX379p06dapPnz6UZxAkxMbixYuZYuPEiRNHjhyhj41vv/2WEPKr\nX/2KvopVq1a5XC768hcvXty7d2/37t0pT+X89NNPhBCm2BCvA9x5552UU7lqa2u3bdtGHxtO\np3PevHlMsbF3715CSN++fVu0aEFTXozq3Nxc+iqef/55abFBeTYB1I3f44kBAAAAAAAoIVEB\nAAAAAADFSfp7VAAAAAAAQH1wRQUAAAAAABQHiQoAAAAAACgOEhUAAAAAAFAcJCqxstls27Zt\nq6mpCXyzpqZm27ZtDocjLotwqIIQ4nQ6v/vuu6+//lp8Vma9WMvL3Ws+W0kd5P6sOeDQBRVs\nJRocdjQOMHzJUQVpMHtBIA5jBQdKGyHVMc5AQiT976jUK8rP5+l0uiZNmvTo0WPkyJHiY+Ml\nlN+9e/fx48dHjhwZWNJsNh87dkyn0xUWFoauh3URDlWUlZUtWLDg6tWrhJD09PRnnnmmW7du\nkbaDhPIces1hK8kdS3yqkPuz5tBrDuHKoQoaHOJB7h1NHfGgguFLQhUqGCvkjiUJi6hgkJew\nCIdwBbVSf6Jyxx13RPqTIAiVlZXvvfdedXW1/+efWcsfOnQoaF8SDRkyZMeOHWF3J9ZFOFTx\n9ttvGwyGuXPnmkymTZs2vf7666tXrw5dXHJ5CU1S4FaSO5b4VCH3Z82h1xzClUMVNDjEg9w7\nmjriQQXDl4QqVDBWyB1LEhZRwSAvYREO4Qqq5Wvw9u7dW1BQILn82LFjz58/H1rs/Pnz48aN\nC7sG1kU4VDFp0qSjR4+Kr3/++eeCgoLa2tqwa5ZWXkKTFLiV6hVjLPGpgsNnzdok1kU4dCHh\nW4lS7PHAYUdjbRLrIhi+ZKoi4XsB/xGSw1jB2iQJ5RU4QiZ8nIHkhXtUSF5eXizlPR6PzWYL\nLVZXV+fxeMKugXURDlVUV1e3atVKfN2yZUutVltdXR12zdLKS2iSArdSvWKMJT5VcPisWZvE\nugiHLiR8K1GKPR447GisTWJdBMOXTFUkfC/gP0JyGCtYmyShvAJHyISPM5C8kKiQ7OzsWMq3\nadPmzJkzocVOnz7dpk2bsGtgXYRDFT6fT6PRBL4jCELYNUsrL6FJCtxK9YoxlvhUweGzZm0S\n6yIcupDwrUQp9njgsKOxNol1EQxfMlWR8L2A/wjJYaxgbZKE8gocIRM+zkDyUv89KnLr3bv3\ne++9d8cdd/jPLhBCysrK3n///VGjRsVlEQ5VEELmzJmj0+nE14IgzJs3z//Pt956K/bycvea\nz1ZSB7k/aw44dEEFW4kGhx2NAwxfclRBGsxeEIjDWMGB0kZIdYwzkBBIVGI1fPjwzz77bMaM\nGXfeeWe7du0IIZcuXfrkk0/atGkzfPjwuCzCoYqCggKmXrOWl9AkBW4ldeDwWcuNQxdUsJUo\ncdjR5IbhS6YqGs5e4MdhrOBAgSOkCsYZSBSNz+dLdBsSr7CwcMeOHZLLWyyWtWvXfvbZZ+Lj\nvU0mU79+/SZPnpyenh5pDayLcKiiXlu2bBk7dmws5eXutRK2UoyxpJAqYv+s494k1kXk7gKf\nKmjEHg8cdrT4dkHCIhi+pFVRLxWMFXLHkoRFVDDIhy6ihHCFpMT77n1FYn2uSNjybrf7ypUr\nV65c8Xg8QX/avHlz2PWwLsKhiijispUkNKlhbiV1V4EmxVGy7JgSmhTHRZJlKynzeySKBrhj\nokmxLJLYcIVkhJvp40av17dq1apVq1b+aZp+GzZsiMsiHKrgQO5eq2MrAXDGYUdTARUMXw3z\ngwOFQLgCqwaaqAiC8OWXXy5cuFD855o1a/x/+u9//yteZwxisVj27NkTWh4aOA6xpIJwjdIF\nkjy9UAjEQ+gioBrxjY3CwsLS0tLoNSohllSwUwPIpMHdTF9ZWblnz549e/ZUVFR07txZfLN1\n69b+As8880xOTs78+fObNGkSuOC1a9deffXVIUOGBJWHBkJPF18AACAASURBVItDLKkgXOvt\nAkmGXigE4kEhvQA5JCo2FL5HYHeABq6hJCo+n++bb77ZtWvX0aNHvV7vmDFjhg0b1qxZs7CF\nq6qqnnrqqQULFojPmgAIxCGWVBCuTF0gSu2FQiAeQMUaZmyoYKcG4EP9U78sFsu2bdumT5/+\n5z//2Ww2L1u2TKvV9uvXL8o4OHv27Hbt2s2ePfvkyZM8mwoKxyGWVBCuErpAlNcLhUA8KKQX\nIAc+sXH58uVzEcSpH2xUsFMD8KT+KyqTJ0/Oy8sbP378HXfcYTQaaRYxmUzz5s1bvXr1ggUL\nHnvssUGDBsndSEgKHGJJBeEqoQtEeb1QCMSDQnoBcuATGy+//HKkP7E+0jcuVLBTA/Ck/isq\nOp3O7XZ7PB5BEOiX0mq1v//97ydMmPDKK69s2bJFvuYpGW7vC8IhlhIVrnH8rKV1gcTcC1U+\n1UAFw5eK46FhSrqxYsaMGUsioKwuvvf3q2CQJ8nzlAJQAfUnKmvXru3fv//27dsnTZr0yiuv\nfPfdd/TLjhkzZtasWVu2bFm5ciXTmMLhmTayVlFZWbl58+ZHHnlk6dKldrtdfDPo9r5nnnmm\nsrIyaEHx9r7Q8hJ6ocCtxCGW+Idr3D/rWLogrRccwpXbHhEkIcMXieuOqcp4EMVxK8XrsE/W\nETVJx4rc3NyuEdRbRb1dJnx7rZBBnlK9i+BsAtBQ/9Sv1NTUYcOGDRs2rKSkZNeuXfPnzxcE\nYd++fUOHDs3Ozq538QEDBjRt2nTp0qXff/89TXUcnlsiXxU8b++T+1EncmwlDrHELVzl+6xj\n7AJ9LxrCUw04D19Ehh1TTfHgl5AnNSXqCYEqGCtYyXp/vwoG+djhWWdAT/1XVPzy8vKefPLJ\nt95668EHH/zyyy8fffTRmTNn0izYtWvXF1980el0Rinj8/m+/vrrF1544eGHH964cePAgQP/\n8Y9/LFu2LFJ5cVC4dOkSfftlrYLb7X1MvVDaVvKTNZbkroLbZy25C/X2ogE+1UDukJN7x4yl\nC/X2QjXDlwSyNkkFYwUrns9+SPZBXsJTChS4B0ESkPeH75VKEITjx48vXrw49E8XL150Op2h\n71dWVh46dCj0/dra2q1bt06dOnXs2LGvvfba6dOnhw8ffvHixSi1FxQUfPfddwsXLhw7duw3\n33zjf//8+fMFBQUJqeK+++6bO3fugQMH/H2PXkVBQcH58+e9Xu+rr746YsSITz75JPr6JfRC\ngVsprDjGEp8qOHzWTF2Q0AsOXUjIVqIU33iQe8dk7YKEXqhg+CooKDh48ODZCBLSJJ8qxgq7\n3S4IAmXVPvYu++TvtTIH+YKoQssnZJwBdVD/1K+wNBpNfn5+fn5+6J8iXfdMTU0tKysLfZ/D\nc0s4VBHL7X0tWrR45ZVXrl27Nnbs2Pj2QmlbKaw4xhKfKjh81qGidIGw94JDFxKylSjFNx4S\n8gyipIsHDluJ9eFUHJqkgrHCZDIRQn744YeDBw+KBbKzswcOHNi2bduw64nx/n45eq3YQX7G\njBn0k6/wrDOQTP2JyunTp6P8tVOnTqFvWq3Wc+fO6fX6G2+8UaPReL3e3bt3b9682el0jhs3\nLqgwh3GNQxVr1649ePDg9u3b33jjjd69ew8ePJi+ljFjxjRv3vxvf/vb1atXhw0bFt9eKGor\nyR1LfKqQ+7OW0AXWXnAIVw5V0OAQD3LvmOqIBw5HfkyHfXyapIKxghCydevWdevWaTQaceLT\nF1988cEHHzzwwAOjRo0KLRxLl4lsvVbaIC/Kzc3NycmhXK2ST/2Awqk/UXn66aej/DX0TNXZ\ns2cXLlxosVgIITfddNPMmTOXLl1aUVFx77333nPPPaFr4DCucaiCw+19cg+dHLaS3LHEpwq5\nP2vWLkjohZqeahAdh3iQe8dURzxwOPJjOuzj0yQVjBXHjh1bt27dyJEjf/vb36alpRFCbDbb\n5s2b161b165dux49esS3y3L0WoGDvAQKOfUDyUj9iYpGo2nevPldd93Vo0cPrbb+hwds2LDh\n+uuvnzBhwt69e/fv3z937twhQ4YUFBSkpKSELc9hXOP5aJS8vLy8vLxHHnlk3759u3fv3r59\ne05OzooVK+qtQry9b9GiRZEKyD10cthKcscSnyr8ZPqsWbsQSy/kC1eeVUTBIR7k3jHVEQ8K\nPPLj2aTkHSs+/PDD3/zmNw8++KD/nbS0tIceesjpdH744YehiYqf5C6TePdagYO8BArcgyBp\nJPomGdn99NNPb7311sSJEydPnrxp06by8vLo5SdOnHjy5Emfz1ddXV1QUPDxxx8zVVdTU/PB\nBx9MmTKloKDgiSeeCFtGvHEt6M0ffvjh4YcfprlLjEMVIllvE6+3FwrcShxiiXO4+sXxs2bt\ngi9OvUi6pxrQ4B8Pcd8xVRkPcd9KYcszkXtE9UuusWLs2LElJSWh75eUlIwdO7be6kTxvb9f\nBYO8j/0pBUG4hSuogPoTFZHb7T506NCcOXNGjBjx/PPP/+c//4m0jxUWFv7www/i6+HDh0v7\n8ojvuJaoKiSw2+2bNm2iLy/3kZ8cW4lDLHEOV2mif9b0XfAlrhes4ZqoKvjHQ9x3TFXGQxy3\nUoyHfXI0KY4SOFaMHDnSXz7QpUuXRo0aRdd8ieLVa8UO8j6f79KlS+vWrVu6dOnSpUvXrVsX\ndlNHocxwBaVR/9QvkV6v79u3b9++fcvKyl5//fU//elP69evb9SoUWhJn8+n0Wj8/9TpdBKq\ni+9zSzhUweH2vrDkfmSWHB8Eh1iStQo+nzV9FyT0Qh1PNaDHefgiMuyYyR4PYcVxK7E+nIpD\nk4gqxooWLVqcPXs2dDOeOXOmRYsWoeX53N9PVDHIMz2lICwOz8wEFdD4fL5Et4ETh8Px6aef\nFhcX//DDD3369CkqKgr7jLzCwsKsrCxxLKioqPC/Fr311ltB5eM+rr377rv8qygsLIxSBevt\nfRkZGaErie/QmZCt5CdTLPGpgsNnzdQFCb3g0AVuW4mSfPEg947J2gUJvVDB8EVCDvuuXbtG\nCIly2MehSSoYK95+++1Dhw4tXbo0MC355Zdfnn322QEDBkyaNCnGLnPotTIH+WPHjj3//POh\nTynYvn37/PnzQ2/+4TbOgPo0iCsqpaWlu3fvPnjwYPPmzYcOHTpo0KD09PRIhQsKCphWzuG5\nJRyq4HB7n9yPOuGwlYjMscSnCg6fNVMXJPRCZU81iE7ueODwDCIVxIPcW4n14VQcmkRUMVaM\nHj36iy++KCoquvPOO6+//nqfz3fx4sX9+/e3aNFi9OjRoeX5PPtBBYM861MKOIQrqJX6r6g8\n+eSTly5d6t279913333jjTfGZZ1btmzxP897+PDhUUaEsI+bXLhwodvt9g8KrVq1ij4ocKji\nypUrxcXFn3zyicFgGDJkyF133dW0adMoW+B3v/vdH//4x65du9bU1Pzud7+bPn36b37zmyjl\nJfRCgVtJ7ljiU4Xcn7UcXQjqBYdw5VAFDQ7xIPeOqY54kHsrzZ07t23bttOmTQt6f/Xq1T/9\n9NPzzz/Pv0lEFWMFIcRisbz11lufffaZ0+kkhKSkpPTt23fy5MmZmZmhy7J2mSij15wHeULI\nuHHjFi5c2Llz56D3v//++4ULF27evDnofQ7hCmql/isq586dy8rKOnv27NmzZ0P/unr1agnr\n3LBhg39QeP3114uLi//1r38VFxdTjmvnz5//4x//eOONN1533XX79+8fMWJE9EGBQxWtW7d+\n8MEHJ06ceOTIkd27d2/ZsqVHjx5Dhw7t0aNH4OxYv9ra2qysLEKI2WzWarWho1XsvVDgVpI7\nlvhUIfdnLUcXgnrBIVw5VEGDQzzIvWOqIx44bKWJEyeGvj9w4MCFCxcmpElEFWMFISQzM/Px\nxx8vKioqLy8nhDRr1kyvj3jkw9plooxecx7kCSEulyvsVaC0tDS32x36PodwBbVSf6IibfoN\nPQ7jGocqRLLe3if30MlhK8kdS3yqEMn3WaugCzyriI7DxpR7x1RHPMi9lVgP+zg0yS+px4rC\nwsIVK1bk5OTo9fpWrVpRLiXr/f3q2CNYn1KgkFM/kIzUn6hMmTKl3jJBl00lkHVc41YF+d/b\n+wYNGiQ+iyasOXPmiKsVBGHevHmUt4nLfeQn61biEEt8wlUk02etgi5wriIKbhtTvh1TTfEg\n31ZiPezj0KRAKhgrWNF3mSi41/LtEXfcccfGjRtvuummoKcUbNy4ccCAAZFqSfipH0hG6k9U\naARdNpVGvnGNTxUcbhNn7YUCt1K94hJLclfB7bOOJCm6kPCtRCleIZfAlCwp4kEk01aSdtgn\na5NECd8LOIyoQeS+v5+G8vcI1qcU+CX21A8kIyQqccBhXJO7Cv/tfQsWLKC5vU/aOSG5h04l\nfMEoH5/PWlYcuqCCrUQv4QejMVLB8CXtsE/uD04de8Hly5cFQQj7p9zc3KB3WLtMFNlrDh9c\nWlrasmXL3nrrrf379/ufUtCvX7/JkyeLj60LlezjDCQKEpVYcRjXOFTB4fY+uYdOdXzBcMDh\ns5abOp5qoBAqOBhVwfAl4bCPwwenjr3g5ZdfjvSn0Kfi8rm/X258PjimpxSoYJyBREGiEisO\n4xqHKjicvZB76FTHFwwHKjhTpaanGiScCg5GVTB8EcbDPj5NUsdeMGPGjNatW1MWVkeXFfiU\nAhWMM5AoSFTqZ7VaPR6P+AAK0Zo1a/yv1XHMxOHshdy9SIovmOixFBcbN2685557zGZzpCoU\ne6bK6XSWlpZWVlYSQpo0aZKTkxP4yPzAXqjsqQacBcVDUuw4oTjHg9xbScLDqdTxvRC7egfV\n3NzcsL+jFZbCuywIQklJydWrV1u2bJmXl+e/3Vz5g3ySjjOgBEhUgrnd7jfeeOPUqVPdunWb\nNm3aO++8s3XrVp/Pd+utt86ePVs8cgo8PdNwjpliPHshdy8UspUCscZSXLz77ru9e/cOTFQk\nVMH5TJXP59uwYcOOHTscDof/TZPJVFhYeP/994tfxqy9SIqnGnBz4cKFWbNmffjhhyRkSypw\nx4kkSi/qpfDhSwKFNInzXpCQQTUI5y5v2bIlOzu7T58+NTU1ixYtOnfunPh+x44d58+fLz4y\nS/mDvELCFZIREpVgmzZtOnToUP/+/b/66qtVq1YdOXKkqKjI7Xa//fbbH330UfTHWUSCYyZK\ncveC81aSI5aCjBgxIugdQRCeeOIJ8bV4SKd8Gzdu/PDDD0eOHJmfn9+4cWNCSFVV1YkTJ7Zt\n26bVaidMmJDoBiY9n88X6X5iGgoZXmLshdwUspUCKbBJMZJjUFX48fHu3bsfe+wxQsjbb79t\nt9uXLFnyq1/96vLly6tXr167du3jjz+eqIYxPaWAhvrCFeKiISYq0a8Uf/755w8++OCwYcNK\nS0tnzpxZVFR09913E0KcTufBgwfjcnAJqsEhlqJP5dJoNLfcckvXrl3976xdu7awsFA83E8g\n+nlchJB9+/b9/ve/HzhwoP+dVq1a5eXltW7dev369UhUogvcmCtXrgxbxmq18mqOFEHxkKS9\niFHcD/uSUb3zuFgH1XfffTdw5AkrgcfHNFO5qqurMzIyCCGnTp2aPn26ONqbzebp06cvX748\nIc0WMT2lAEAy9ScqrFeKKyoq2rdvTwi5/vrrNRqN/xuiU6dO7733XkK6AAqRkFiKPpVr6dKl\nf/nLXzp06DBu3DjxS27dunV33nlnu3btYu6uRBLmcdXU1ISdRN6+ffuamhq5G5yMIk2C2rt3\nb+vWrUN/msDlcnFtH4Uo87iSqBdx1AAP+yTM42IdVKP/jlZCsE7lysrKunLlSseOHZ1OZ+Bv\nIzZq1MhisXBufCCmpxQASKb+RIX1SrHRaBS/DrVarUajMRgM4vtarVbJsw4SiPL2PhXgEEus\nU7ny8vKWL1/+8ssvz50796mnnpLvQorb7Rbb7/P5vv/+e0EQOnToYDQaxb8GftYS5nG1bdt2\n9+7d06ZNC3p/9+7d1113nRzd8Xg8QY9UijFc7XZ7ampq9DJx3CMiTYJq0aLF/fff369fv6D3\nxdPP8ao9LqLM41JCL/gPXyo47GPdCyTM40qKL+jowwvrVK477rjj/fffz8/P79Wr1/bt2594\n4gm9Xu/1erdt2ybmbHKo96EshPEpBQCSqT9RYb1SnJ2dXVZWdtNNNxFC3nvvPf9w88svv7Rs\n2VKmRtIMCjGK75GZTLf3seJwMBHLVC4JsSRhKpfZbF60aNHmzZtnzpzpT2ni6OrVq0uWLLlw\n4UJ+fv4zzzzz5z//+cSJE4SQVq1a/elPfxKfUBT4WUuYxzVx4sQlS5acPHkyKLcpKyubO3du\n7F345ptvOnXqJJ5b3bFjxwcffFBVVZWVlTVq1Ch/ZhhjuI4bN65Hjx6/+c1vevTo4c/Vg0io\ngnUSVE5OTmlpaeghftzRT+2TMI+LQy927dp1+PDhrKysESNG+M/KX758+fnnn3/jjTdIIoYv\nnod9Mp1dYt0LJEyOTcgXdHSswwvrVK7777//u+++e/TRR7t27frll19+8803rVu3/vnnn+vq\n6hYvXixTp+LyUJbYCYJQVlZWWVmp0What27dvHnzwL+q72QohKX+RIX1SvHw4cP9Y5//bA0h\n5MyZM7fddptMjYz7oCD3kVkCb++L5ck/oZiOVzjEkrSpXBqNZvz48V26dHn55Zfjflpx3bp1\nHo9n+vTpn3/++QsvvFBdXf3SSy9pNJpVq1a98847Tz/9dFB5CfO4evbsuWzZsq1bt3766afV\n1dWEkKysrLy8vMcff7xTp06xd2HevHnis18///zzv//973369OncuXNJSck///nP5s2b9+7d\nO/YqfD5fWVnZn/70p5YtWw4dOnTw4MGBu7NkrJOgRo8eHTjjzu+6665bsWJF7O0h7FP7JMzj\nkrsXe/bsWb16ddeuXX/++ec//vGPM2fOFJMit9v9888/x75+kRJyoUAczi6x7gUSJscm5As6\nOtbhhXUqV1pa2osvvrhjx45///vf4gWl2tra2267bcSIEdnZ2XHpgkwPZYnxKQUfffTRe++9\nJ34jiHJzcx999NEOHTqI/0z2K5BASf2JCuuV4r59+4ZdT+i8FMk4PKkpliMzhd/eF8cn/7Ae\nr3CIpVimcnXr1u2VV165cOECzZlF+qlcp06devrpp7t27frrX//6gQceWLhwoZg8PPTQQ2E/\na2nzuDp16vTss8+K7SGERDodGwnlBcPt27cPHTq0qKiIEFJYWLhy5crt27eH3R0kTOWaPXu2\nIAg7d+7ctGnTxo0be/fuPWzYsLy8PKaOBGGdBNWxY8ew6zEajfE6W886tU/CPC45ehH4YX38\n8ccjRox46KGHCCF79uz529/+lpKScvvtt0tbc1hy5EIxHvZJOLsk914gYR4Xhy/oIPSTESiH\nFwlTuYxG4+jRo2N5lk/cH8oi91MKPvroow0bNhQUFKSkpOzcubNPnz6tW7feuXPnnDlzli1b\nhilnDYr6ExX+V4rrnccV+5Oa4j50KuT2PrmfXxS0lViPV/jEUixTuRo3blxvFLFO5aqrqxMv\nuGdlZel0uqZNm4rvN2vWLOxnEeM8LjFFCd2JAkm+YFhWVjZp0iT/P/v27fvSSy+FrULaVK7c\n3NzHH3/8oYce2rdv365duw4ePHj99dcPGzZs2LBh9XQ7AgVO5WKd2senC0yXL65cuTJ9+nTx\n9ZAhQ1JTU1966aV58+ZlZmbG0oZYcqEYD/tkOrsk916ggnlcgSiHl9incoU+G61ecX8oi7Sn\nFNBP5froo48effTR/v37E0JuueWWhQsXrlu3bsiQIfPnz1+/fv38+fMl1A5JSv2JSryuFAfO\nOIqu3nlcrIMCh6Ezgbf3xfH5RaxzLViPVyTEUr1NCotpKhdrFaxTuZo1a/btt9+2atXq9OnT\nhJDvv/9eDNTvv//en7QEiss8rtCdKJDkC4Y6nS7wcNBgMDidzrAlY5nKlZGRMWLEiOHDh3/1\n1Vc7d+5cs2aN5ERFgVO5WKf2xbELkQZhCZdGbTab/599+/a1Wq1LliwR84pIZM2FJBz2cTi7\nJPdekJB5XNGfgBzLZATK4YV1KhfNs9GCKPOhLExTucrLy/3v5+TkWCyWqqqqpk2b3nvvva+8\n8ooczQPFUn+iEq8rxZFmHEmYx8U6KHAYOhN4e1+8nl8kYa4F6/EKayzFOP2DZiqXhCpYp3IN\nGjRo1apVBw8ePHfu3P33379u3brLly9rtdrdu3cXFBSErYJ1HpfkyZD0U7nmzZun0+msVuul\nS5f8M4uuXLkSNtcSxTiVS6PR5Ofn5+fnX7t2jXKRUAqcysU6tS+OXYg0VrBevrj++uvPnDnT\no0cP/zvDhg2rqamJcm8un1yICZ+zS7LuBRzmcUn+JXv6sYWwDy9MU7kkPBtNgQ9lYZ3K1bx5\n8/Pnz7dp04YQcvHiRbGFhJCsrCyv1xv35oGSqT9RYcU640jaPC5pg4J8QyeH2/vkfn6RhHnn\nEo5XmMQ+Fb7eqVwSqmCdyvXb3/5Wp9OVlJSMGzduxIgRrVu3/sc//uF0Ovv16/fb3/42evtp\n5nGRGCZDUl4wDDzuCcz6SkpKbr311ijrp5/EkpubG2nqTtD0BqVhncol9yPaCPtYwXr5YsCA\nAQcOHAh6c9y4cRaL5eDBg2EX4ZALseJ2dimp9wLJv2RPP01U8vDiF30ql4RnoynwoSysU7kG\nDBiwevXqn376KSUl5V//+tevf/1r8eJbaWmpmL1Aw9FwE5VIswhYZxxJ/sU9CYOCfEMnh9v7\n5H5+kYR55xKOV5jmWUmbCi93FaxTuTQaTeCn3Lt3b9bHZEWfx0Vi2IkoLxjec889YRcXT0jX\ni2YSS2J/IjoWrFO54vWItiiTaVnHCtbLF4MHDx48eHDo+1OmTJkyZUrYRTjkQqw4PzwqSfcC\nCUf5IvppoqzDC+tULgnPRuP2UBZ6rFO5Ro8eXV1d/f7773s8nvz8fP/e17Zt20g7KahVw01U\n4jXjKMbJnUyDgnxDJ4cntcv9/CIJcy1Yj1c4TP/gUIWEqVxBop//4zAZkkiayhWo3os8oVin\nckmoIiEkPKUtxke0ieL4g48cLl9wyIVYJeThUXGZ0MiThKP8GMcWUt8IyedHqOV+KAsr1qlc\nBoPh0UcfnT59uiAIOp3O//7NN98c34aB8qk/UeHwi2kxTu6kGRRiHzqji9eT2qOcJZX74T8c\nDlY4TP/gUAXrVC7W838cJkPGPtei3os8sU9iqbcKhYhlKhdNisLhBx/jdfkiyvDFYXhhxeHs\nkoS9QNrjQ+TDepQvYWxhHSG5/Qi1rFO5QkV/3qm0qVwajSYwS4GGSf2JCp9fTIvLiBDpazL2\nw7J6qyDxONlGop4llbBhmb7zpB2syDrPSkKTOFTBOpWL9fwfh8mQrBcMJVzkYZ3EwuHHkWQi\n91QuDj/4GK/LF1GGLw5TueoVlBRJOLvEmkWw7gV8fkmTCetRvoRpoqwjJOcfoZZpKleo6M87\nxVQukEz9iQrPX0yLcUSI9DUZ4wx7mipYSThLyrphWb/zJBysyD3PSkKTEjLDJL63cvKcDOkX\nfZ5V7L9cxKeKRJF1KpdCfvAxkIThi8NULgm/ZM90dolDFsHhlzRZxf4E5Hp/tIR1hOT/I9Ry\nTOViPTWDqVwgmfoTFW6/mCaiGRHk+ClDmaqI41lSVhy+8xT4JB8OVXC4lZPDZMgg0edZSb7I\nw7mKhJNjKhfnEThQAocvVorNIjg8PkRWrEf5En60hHWEVODPXEog7dQMpnKBBOpPVDj8YlpY\ncXymTQKriONZUiL/dx7rxAYFPsmHQxV8buWUdXo0h58zU+YvpvEUr6P8RI3AJN7Dl6yUmUUo\n8Ndj5CbhccasI2RCfuYy7tRxagaSgvoTFQ6/mBZWHJ9pw6EKDmdJ5f7O4/CDjxymf3Cogtut\nnES26dEcfs5Mgb+Yxlm8jvI5jMBJdJEnEmVmEQq85iw3CY8zZh0hOfzMJQfqOzUDiqX+REVu\nHJ5pw6EKDmdJ5f7OU+APPioT51s55ZgezeHnzBT4i2kyUcFRfhJd5IlEmVmEAq85y03CTFd1\nXCGRQGWnZkCxkKjEisMzbThUweEsqdzfeXx+8FEF+N/KGXccfs5Mgb+YJhMVHOUr8CIPK2Vm\nEQq85iw3CTNdFThCcpOMp2Yg6SBRiRWHZ9pwqILDWVK5v/M4/OCjOqjjVk4OP2emtF9Mk4kK\njvIVeJGHlTKziAZ4zVkdwyNnyXVqBpIOEpVYcfiO5FAFh7Okcn/nNcDvVGlUM1GBw8m8hnC+\nUAVH+Qq8yMNKmVlEA7zmrJrhkbMkOjUDSUcjPjgfJDtz5ozD4Qh9FrjL5frxxx/jcoqRQxUc\n7Nu378CBA0uWLAl6/8033zx48OCGDRsUvn5QrKqqqgsXLnTp0iV0/lISVZEo6hheGiCMeADQ\nECBRAQAAAAAAxdEmugEAAAAAAADBkKgAAAAAAIDiIFEBAAAAAADFQaICAAAAAACKg0QFAAAA\nAAAUB4kKAECSef/99zUazYcffhjLSvbt26fRaNauXRunRgEAAMQZEhUAAN6OHTum0WgeeeSR\nRDcEAABAuZCoAAAAAACA4iBRAQAAAAAAxUGiAgCgLDU1NXPnzr399tubNWuWkpKSk5Pz1FNP\nWa3WoGKCILz00ku5ubkpKSkdOnRYsWJFUAGPx7N8+fLu3bunpqZmZmYOGDBgz549vDoBAAAQ\nK32iGwAAAP/j8uXLb7zxxujRo8ePH280Gg8dOrR8+fKjR49++umnGo3GX2zx4sWVlZVTp07N\nzMzctGnTrFmzfvnllxdeeEH8q9frLSwsLC4uHjNmzCOPPOJwONavXz906NANGzaMHz8+QT0D\nAABggEQFAEBZOnToUFZWZjAYxH8WFRXdfPPNzz33LCpncwAAAvBJREFU3CeffDJ48GB/sUuX\nLpWUlLRo0YIQMn369EGDBr344osPP/xwbm4uIWTNmjW7du365z//OXny5P/Xzv27pBPHcRw/\n40ICVyuEAoOTiAaXwH8hUCSwwEUaGgIlkXLSwUFqKed+SeJ0q3tbRC5HHUROTkqQokNBSHln\nw/EV0S984Yt+/Xzh+Zju/bn3HZ9bDl539zmrPx6P+3y+RCKxvb0ty9z8AQCi49MvABCL3W7v\np5Tv7+9Op7O1tSVJUrlcHmzb29uzUookSbOzs8lk0jTN/j+Li8Xi/Px8OBzu/GIYRjgcfnt7\n03X9H14NAAB/iYdqACCcQqFweXmp6/rn52d/sN1uD/asra2NltVq1Sorlcr7+/vc3NzoyRuN\nxvhnDADAuBFUAEAsuVzu8PAwEAhcX1+7XC673d5qtfx+v2mafzy2v4jFNE1FUYrF4mjP6urq\nmGcMAMAEEFQAQCz5fN7tdpdKpX7quLu7G217eXkZLCuViiRJKysrVunxeJ6fn9fX1x0Ox4Tn\nCwDARLBGBQDEMjMz0+v1DMOwSsMwjo+PR9vy+Xyz2bS2u93u6empzWYLBoPWSCQS+fr6Ojo6\n6vV6g0e9vr5Ocu4AAIwNb1QAYDqenp6y2ezQYDweD4VCmUxmc3NzZ2fn4+NDVdWhsGFZXl7e\n2NjY3993OByqqt7f3yeTSUVRrL3RaPT29vbi4uLx8TEYDDqdzlqt9vDwoOs6a1QAAP8FggoA\nTIemaZqmDQ3u7u6mUilZlm9ubmKx2MLCQigUOjg4cLvdQ53pdLparZ6fn9fr9aWlpbOzs0Qi\n0d8ry3KpVLq6uioUCicnJ91ud3Fx0ev15nK5iV8YAADjYPvtgzoAAAAAmCLWqAAAAAAQDkEF\nAAAAgHAIKgAAAACEQ1ABAAAAIByCCgAAAADhEFQAAAAACIegAgAAAEA4BBUAAAAAwiGoAAAA\nABAOQQUAAACAcAgqAAAAAIRDUAEAAAAgHIIKAAAAAOH8ACmM16bGV738AAAAAElFTkSuQmCC\n", "text/plain": [ "plot without title" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "options(repr.plot.width = 9, repr.plot.height = 6)\n", "\n", "p3 <- ggplot(annomapres, \n", " aes(x = Label, \n", " y = prop.nofeat, \n", " shape = Strain, \n", " color = Media))+\n", " myfacet +\n", " mygeom + \n", " mytheme + \n", " mypal\n", "\n", "print(p3)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Show the number of all the reads in each sample \n", "(Note: depth = ngenemap + namb + nmulti + nnofeat + nunmap)" ] }, { "cell_type": "code", "execution_count": 22, "metadata": { "scrolled": false }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAABDgAAALQCAIAAAD6tVcNAAAACXBIWXMAABJ0AAASdAHeZh94\nAAAgAElEQVR4nOzde3wU9b34/89esru5bhIopERAEUEQQeINe0rlCN4qKlilggi0ar0clItW\nqLE/wIOcWrwgKSCiYo8oWisX0aNUwUut4gUEUREVKmKgoEmWbDZ7nZnfH/PtGrObzWeW3exk\n9/V88OAxmXnv7GffO/OZee/cLJqmCQAAAAAwE2umGwAAAAAArVGoAAAAADAdChUAAAAApkOh\nAgAAAMB0KFQAAAAAmA6FCgAAAADToVABAAAAYDoUKgAAAABMx57pBphIY2Pj+PHjM90KADnK\nbrc/++yzDocjdtLtt9/+ySefdHyTAMBs7Hb7mjVrbDZbphuCjkCh8j1FUfLz8xcsWJDphgDI\nOf/93/+9a9eutqbW19ffeuutxxxzTEc2CQDM5q677vrss880Tct0Q9BBOPULAAAAgOlQqAAA\nAAAwHQoVAAAAAKZDoQIAAADAdChUAAAAAJgOhQoAAAAA06FQAQAAAGA6FCoAAAAATIdCBQAA\nAIDp8GR6wAC/3//zn/+8ramvvfZaIBD461//+vrrr9fW1trt9srKymHDhl1++eVFRUUd2U4A\nkDR37ty9e/c+/PDDLpdLH+Pz+a677rohQ4bMmjXrT3/603PPPSeEsFgsZWVlJ5988jXXXNOz\nZ08hRHSS1WrNz8+vrKwcOnTo2LFju3fvnsGPAyCbUKgABjidzhUrVujDu3fvvvfee6urq489\n9lh9TFNT07Rp0w4fPnzVVVcNGDCgsLDwq6++evHFF/Pz83/5y19mrNEA0Lbbbrvtmmuu+dOf\n/nTbbbfpYxYtWmS1Wm+55Rb9z/Ly8gceeEDTtNra2mXLlt1+++0rV67Uq5roJL/f/+WXX65b\nt279+vULFiwYOnRoxj4PgCxCoQIYYLVa+/btqw/7fD4hRM+ePaNj7r333tra2kcffbSyslIf\n07dv31GjRnk8noy0FgDaVVRUVF1dPXPmzNNPP/3ss89+9dVXX3vttaVLl+bn5+sBVqu1V69e\nQojevXsLIaqrqz///PPBgwe3nCSEOPHEEy+44ILp06cvWLDgqaeeysvLy9AHApA9uEYFSA1F\nUTZt2nT++edHq5So0tLSjDQJAGQMHjz4qquuuvfee3fs2LFo0aLrrruuX79+cSP16iUUCsWd\narfbJ0yY8N133+3cuTONzQWQMyhUgNQ4dOhQIBDo06dPphsCAIZNmjTp2GOPnTlz5oABA8aN\nGxc35l//+tef//znwsLC/v37tzUfvQ+sra1NV0MB5BJO/QIAINfZbLbJkyf/9re/nTJlisVi\naTnpu+++GzVqlBBCUZRjjjnmrrvuKi4ubms+mqYJIVrNAQCSQ6ECpEa3bt1cLtfevXsz3RAA\nSIZ+VYnd3nrHoLy8/N5777VYLOXl5SUlJYlnoveBsWfAAkASOPULSA273X7OOee8/PLLsec8\ncDE9gM7LarUed9xxxx57bLtVSiQSWb169Y9+9KOTTz65Q5oGIMtxRAVImRtuuGHXrl033HDD\nVVdddeKJJxYVFem3Jx42bBi3JwaQfVRV/frrr4UQzc3Ne/bsWbt2bW1t7YIFC2IPywBAEuhK\ngJQpLi5eunTps88++8orrzz++ON5eXnHHHPMyJEjL7rookw3DQBSr76+fvLkyfoDH3/84x+f\neuqpd999Nw98BJAqFCpAkoYMGfLaa6+1Gulyua6++uqrr746I00CgKTF7dOmTp06derUuPEJ\nJgFASnCNCgAAAADToVABAAAAYDoUKgAAAABMh0IFAAAAgOlQqAAAAAAwHQoVAAAAAKZDoQIA\nAADAdChUAAAAAJgOD3z8gSNHjmzYsCHTrQCQc+rq6hIHvP766263u2MaAwDm1G5XiSxDofI9\nv9/f0NCwevXqTDcEQC6y2WyapsWd5PF4tm/f3sHtAQATGjhw4Ny5cy0WSzpmnp+fP27cuL59\n+6Zj5kgChcr3bDZbWVnZz3/+89hJkUgkHA7n5eXZ7VIZC4fDkUjE6XRarVIn14VCIUVRXC6X\n5IoXCAQ0TcvPz5cJFkL4/X6LxeJyuWSCNU0LBAI2m83hcMjEq6oaDAbl4xVFCYVC8sns7MkP\nBAJCCEPJt1qtTqdTJj655Nvt9ry8PJl4kp9AapP/6quvHjp0qK08FBQUjB49OvaISnJra/oW\nAD3e4XDYbDaZeH0BMM8CQ1eZQA4mn64yrsx2la+88sqhQ4dGjhwpmTpD3nvvvZdeeulnP/sZ\nhYp5UKh8z+FwdOvWbcaMGbGT/H6/z+crLi6WXC19Pp/f7y8tLZXssxobG0OhUHl5ueSK5/F4\nFEXp0qWLTLAQoq6uzmq1lpWVyQRrmlZXV+dwOEpKSmTiI5GIx+NxuVxFRUUy8aFQqLGxsbCw\nULIPTS75brdbcgPj9XqDwaCh5Ecika5du8oECyHq6+stFouh5Ofl5Ume5KMoSkNDg9HkFxQU\nFBQUyMQHAoGmpiaSH5eefKfTWVxcLBOfOPmfffbZoUOH2nptSUnJpEmT+vTp02q8qqr19fVG\n19b8/PzCwkKZ+GAw6PV6ja6tJSUlknskTU1NgUDAaFfZpUsXyd21hoYGVVXpKuNiO5WA0a6S\n7VQCqd1Offrpp19//fWZZ56ZjkLlwIEDKZ8njhIX0wMAAAAwHQoVAAAAAKZDoQIAAADAdChU\nAAAAAJgOhQoAAAAA06FQAQAAAGA6FCoAAAAATIfnqAAAgCw3umarPrBl3vmZbQkAeRxRAQAA\n2eyn/70pOjxszsZhczZmsDEA5FGoAACArEVZAnReFCoAAAAATIdrVAAAQBbiWArQ2XFEBQAA\nZJsEVQrX0wOdBYUKAADIFVQpQCfCqV8AACD7vfrb/ygqKsp0KwAYwBEVAACQ/UYt/EemmwDA\nGAoVAACQbeKe4sXl9UDnQqECAAAAwHQoVAAAAACYDoUKAADIQrFnf3HLL6Bz4a5fAAAgO+mV\nybA5G1+4+VSXy5Xp5gAwhiMqAAAgm731+5GZbgKAZFCoAAAAADAdChUAAAAApsM1Kt/TNE1V\n1UAgEDspEokIIcLhsKZpMrNSFEUIEQqF9Be2S1VVIUQwGLRYLJJNFULEbWpb8ZqmScbrM28r\nFbH0D6soimS8npNIJCIZHw6HhZHk6/MPhUJ6w9qlh8knX/+yDCVfPt5o8vXGkPy2dKLk63NL\n8F7BYDD2hWZbYKJdZeKPE5V0VykTLIx3lfpLDMWnL/l6cpJIvkm2U0msrWyn2kJX2WpuyB0U\nKq3F7WX0kXo3Kj+TJOINNVI+vuWr5INzLV4+OH3x0bBc+3Llg9MXbzT5HfNltXxV7As7rGsy\nW7xMcBLxhhpjNN60yUxT8lu+Kk3xJuzK6CpT1R6jyUG2olD5nsVisVqt+fn5caeGQiGHw+F0\nOmVmpapqOBx2Op12u1SGw+Gwoigul8tqlToZLxgMKorSVlNjNTc3WywWyXhN03w+n81mk4yP\nRCJ+v99ut0vGh0KhQCCQl5cn3/7kkp+XlycTH4lEIpGIoeSrqirfeL/fbyj5zc3NCZbDVhRF\naW5ulv+yjCY/EAgEg0GSH5eiKH6/32jy21pTEmfAarW6XK7YF6qqamgBMLq2BoPBYDCYxNrq\ncDhkghVFiUQiSXSVkr8rBwIBQwuMoQUga7pKtlOx2E4lkNntlGQGkDX4vgEAAACYDoUKAAAA\nANOhUAEAAABgOhQqAAAAAEyHQgUAAACA6VCoAAAAADAdChUAAAAApkOhAgAAAMB0KFQAAAAA\nmA6FCgAAAADToVABAAAAYDoUKgAAAABMh0IFAAAAgOlQqAAAAAAwHQoVAAAAAKZDoQIAAADA\ndChUAAAAAJgOhQoAAAAA06FQAQAAAGA6FCoAAAAATIdCBQAAAIDpUKgAAAAAMB0KFQAAAACm\nQ6ECAAAAwHQoVAAAAACYDoUKAAAAANOhUAEAAABgOhQqAAAAAEyHQgUAAACA6dg78s2am5uf\nfPLJd955x+PxlJeXn3feeePGjUvJnD/44IMnnnjim2++cbvdo0aNGj9+vMViSfebAgAAAEiT\njitUQqHQHXfcoSjKpEmTevTo4fV6/X6/oTls2LBh69atc+fObTV+9+7d8+fPv/DCC2fOnLln\nz56lS5eqqjpx4sSUvCkAAACAjtdxhcrzzz//7bffPvTQQ8XFxbFTN2/evHbt2gMHDpSVlZ15\n5pkTJ07Mz89vFROJREKhUOxr16xZU1lZef311wshevfuffDgwfXr119xxRVOpzPxmwIAAAAw\np44rVN5+++3BgwevWrVqy5YtLpdr8ODBkyZN0uuHF198cfXq1ddee+2JJ57Y0NCwYsWKBx98\ncPbs2ZJz3rVr19lnnx39s6qq6plnntm7d++AAQMSvCkAAAAA0+q4QuXgwYNfffXVWWeddeed\ndzY2Nq5YsWLevHkLFy7UNO2pp56aMmXKiBEjhBAVFRVTp06dPn26x+MpLS1td7aapnk8nrKy\nsugYfbi+vj7Bm0avYFm5cuX777+vDzscDkVRjhw5EvsuqqoKIZqbmwOBgMyH1eObmpqib5RY\nJBIRQjQ2NkrGK4qiaVrcpsalaZqqqvLxepMk4zVNE0KEQiFD8YFAIO7xsViKoggjydfjm5qa\nrFape0Xo8V6vVyY4Gm8o+Ya+LGEk+Tr55OtLZiAQCIfD8vF+v99Q8n0+n/ySLEyTfH3JTN+S\nryczGAzGTb7eCbRFURSv1xv7RnobwuGwoTYHg8HEb9eqzfJra7SrlDzJNrq2GlpgGhsbZYJF\nUgtMW1uBtpinqzS6nTKa/CS2U8Jg8k24nZLsKtlOtStV2ynJvgtZo+MKFVVVCwsLZ8yYYbfb\nhRAOh6O6uvrTTz8tLy/3er01NTU1NTUt4w8ePFhaWrpu3brHH39cH6OvSGPGjNH/HDJkyLx5\n85J705NOOkkP2LNnz3vvvacPu93url27JuiVFEXRV35JRlcno/GSHahO0zRD8aqq6p1FmuKN\nJjPd8YaSk+54s31ZplqS0x1vNPlG49taMvUdowTvEolE2nqjdC8wnbrrS3d8Z+8qTfVlma3r\nM9uXZaolP1NfVuKuEtmn4wqV8vLykpISvWAQQvTq1UsIcfjwYf2wydy5c6uqqmJfNXLkyKFD\nh+rDmzZt+vjjj6dNm6b/qV/EYrFYSktLGxoaoi/Rh8vLyxO8abRQmT9//vz586MvnDp1ateu\nXWOb4ff7fT5fcXGx0+mU+bA+n8/v95eWlkbfOrHGxsZQKFReXi7544rH41EUpUuXLjLBQoi6\nujqr1dryuFMCmqbV1dU5HI6SkhKZ+Egk4vF4XC5XUVGRTHwoFGpsbCwsLIy9DCmu5JLvdrvz\n8vJk4r1ebzAYNJT8SCQSdzmJq76+3mKxGEp+Xl6e2+2WiVcUpaGhwWjyCwoKCgoKZOIDgUBT\nUxPJj0tPvtPplDybNHHyE2fMbreXlZXFfnBVVevr642urfn5+YWFhTLxwWDQ6/UaXVtLSkoc\nDodMfFNTUyAQMNpVdunSRfJH/YaGBlVV6SrjYjuVgNGuku1UAqndTklmDFmj456jMmjQoH/9\n61/RHw/2798vhOjevXtFRUVRUdGWLVvivqq4uLj3v5WVlblcruif3bp102MGDBiwbdu26Eu2\nbdvmcrn69OmT4E3T9ikBAAAApEDHFSpjxozx+Xw1NTX79u3buXPnsmXL+vXrN2DAAJvNNmHC\nhI0bN65atWrfvn21tbXvvvvuAw88ID/nyy67rLa2dvny5fv27XvttdfWrl17ySWX6L9qtPWm\nafuUAAAAAFKg4079qqysnD9//sqVK2+99daioqKqqqopU6boh+9Hjx7tdrvXrVu3bt06m81W\nUVExbNgw+Tn379+/urp61apVGzdudLvdY8eOnTBhQrtvCgAAAMC0OvTJ9CeeeOI999wTd9Lw\n4cOHDx+e+OVjx44dO3Zs3Emnn3766aefbvRNAQAAAJhTx536BQAAAACSKFQAAAAAmA6FCgAA\nAADToVABAAAAYDoUKgAAAABMh0IFAAAAgOlQqAAAAAAwHQoVAAAAAKZDoQIAAADAdChUAAAA\nAJgOhQoAAAAA06FQAQAAAGA6FCoAAAAATIdCBQAAAIDpUKgAAAAAMB0KFQAAAACmQ6ECAAAA\nwHQoVAAAAACYDoUKAAAAANOhUAEAAABgOhQqAAAAAEyHQgUAAACA6VCoAAAAADAdChUAAAAA\npkOhAgAAAMB0KFQAAAAAmA6FCgAAAADToVABAAAAYDoUKgAAAABMx57pBpiLpmnhcDh2vKIo\n+v9xp8ZSVVUIEYlENE2Tjw+Hw1arVOmoz1ayMdGXSMbrM5eP15OjqqqhePlkJp18meCW8RaL\nRSbeVMnXGy+ffD0tJD/BzNOd/LbiE/cVmqZFIpHYFxptg2nXVsmuMroAdMYFprMnn+1UCuPp\nKhNIvJ2SXFyRNShUvqdpmqqqgUAgdpLeB4VCIX2gXfpqFgqFJPsUfTUOBoOG+qC4TU1JvBBC\nURTJeL3xRuPlt456zsPhsNHkS24D9PYEAgFDX1Zak9/WctjWzJNIvmR8xyQ/GAzKBIs0J18P\n7oDkx13y9akJXhsMBmPfKLk2G10AjK6t8gtANF5y7dPj5RcYTdM0TTNJV5naBSZuSwTbqTYk\nvZ0yVVfJdkq011Ui+1CofM9isdhstuLi4thJfr8/Eonk5+c7nU6ZWfl8Pr/fX1BQYLdLZbix\nsTEUChUVFUn+UuXxeBRFidvUuEKhkNVqlYzXNC0YDNrtdsn4SCTi8Xjy8vKKiookGxMOh51O\nZ35+vky8nnyXy2U0+Xl5eTLxXq9XURRDyY9EIvLJr6+vt1gshpLf1nIYS1GUUCiURPILCgpk\n4gOBQFNTU7qTX1hYaJLk19XVJZF8yXg9+Q6HI27ybTZbgtfabLbCwsLYN1JVtb6+3tDaGgqF\nHA5HYWGhTHwwGPR6vUbX1vz8fIfDIRPf1NSkKEoSXaXk7lpDQ4OqqubpKpNbW40mn+1UrKS3\nU5JdJdupBFK7nUrcVSL7cI0KAAAAANOhUAEAAABgOhQqAAAAAEyHQgUAAACA6VCoAAAAADAd\nChUAAAAApkOhAgAAAMB0KFQAAAAAmA6FCgAAAADToVABAAAAYDoUKgAAAABMh0IFAAAAgOlQ\nqAAAAAAwHXumGwAAAICONmzOxpZ/bpl3fqZaArSFIyoAAAC5bticja1KFyDjKFQAAAAgRMxh\nFiCzKFQAAAByCwUJOgUKFQAAAACmQ6ECAAAAwHQoVAAAAHJIgvO+uPcXTIXbEwMAAOQ6ShSY\nEEdUAAAActpL08/IdBOAOChUAAAAAJgOhQoAAEDu+r9pp2e6CUB8XKMCAACQQ/TLUYbN2agP\n1NfXS76w5VX4XNOCDsARFQAAgJxjqNIYNmdjq3uF8chIdACOqAAAAKBNnasm+dOf/pRg6tSp\nUzusJTh6FCoAAAAwLHrymKm88cYb0WFFURoaGrp27RodQ6HSuVCoAAAAIBkmrFWeffbZ6PCX\nX3553XXXtRyDziUDhcpnn332u9/9TtO0devWpWqeH3zwwRNPPPHNN9+43e5Ro0aNHz/eYrHo\nk5qbm5988sl33nnH4/GUl5efd95548aNS9X7AgAA5DIT1irIGh1dqDQ2Ni5cuHDo0KHbtm0z\n+toNGzZs3bp17ty5rcbv3r17/vz5F1544cyZM/fs2bN06VJVVSdOnCiECIVCd9xxh6IokyZN\n6tGjh9fr9fv9KfkgAAAAANKnQwsVTdPuu+++UaNGuVyuVoXK5s2b165de+DAgbKysjPPPHPi\nxIn5+fmtXh6JREKhUOxs16xZU1lZef311wshevfuffDgwfXr119xxRVOp/P555//9ttvH3ro\noeLi4vR9LgAAgGzV8oCJpmlnzf1bBhuDnNKhtyd++umnI5HIlVde2Wr8iy+++Nhjj/3iF79Y\nsmTJrbfeumvXrgcffFB+trt27aqqqor+WVVVFQgE9u7dK4R4++23Bw8evGrVqsmTJ19//fVL\nlizxer0p+SwAAAAA0qfjjqjs2LHj5ZdfXrRoUfTqEZ2qqk899dSUKVNGjBghhKioqJg6der0\n6dM9Hk9paWm7s9U0zePxlJWVRcfow/rTiw4ePPjVV1+dddZZd955Z2Nj44oVK+bNm7dw4cJo\nG9avX//JJ5/ow1arVVXVpqam2HeJRCJCiEAgEA6HZT6sHu/3+1t92MTxPp9PMl5VVSFE3KbG\npWlaWx+tLYqiSMbrjQmHw4biQ6GQoigy8UknPxgMysenNfmapqUp+ZqmiaSSrw/ItEQYSb4e\nlr7k6+1JU/L1ZBpNfiQSkYzXG99W8hOvDqqqNjc3x76R0TYYXWD0VgWDQcm1NbrAxD36HUtf\nYJqbm61WqV/NoguMTLAQQlVVQ2tfEl2lfPJN21WynWorXr6rzLXt1As3nzq6ZmvLMQlem1y3\nk1xXqbvqqquiw3rqWo558sknZZoBk+igQqWhoeG+++6bPn16y4pCd+jQIa/XW1NTU1NT03L8\nwYMHS0tL161b9/jjj+tj9BVpzJgx+p9DhgyZN29e4vdVVbWwsHDGjBl2u10I4XA4qqurP/30\n05NOOkkPeP/9919++WV92O12d+3aNRAItDW3cDgs2QfpJDugpOMTNDWWpmmG4hVFkdw6Jhdv\nNJlG4yX3k6LSmnyj8aqqpvXLikQiet8tieQnkKrkJ94fUlU1GAy21TCjbTa6ABiNN7oAGI1P\n6wJgtKtM9wKT7q6S7VQCdJUJvHDzqUKI0TVb9YF2X9sxXaXu1FNPlX8jmFwHFSr//Oc/PR7P\nXXfdpf8ZLTnGjRt39tlnCyHmzp3b8vStqJEjRw4dOlQf3rRp08cffzxt2jT9T/0iFovFUlpa\n2tDQEH2JPlxeXq7/X1JSolcpQohevXoJIQ4fPhwtVGbOnHnjjTfqw16v96677ootpYQQgUDA\n7/cXFhY6HA6Zz+v3+wOBQElJic1mk4lvamoKh8Nut1vyZ8XGxkZVVWWOOOk8Ho/Vai0pKZEJ\n1g9S5eXlFRUVycQritLY2Oh0OgsKCmTi9Z9V8vPzXS6XTHxyyS8uLo5+74n5fL5QKGQo+Yqi\nxF1O4jpy5IjFYjGUfLvdLnlVlaqqR44cMZp8l8sVew1YXMFgsLm5meTHpS/5DoejsLBQJj7x\nkp84YzabraSkJPaD6wuA0bVVfgEIhUI+n8/o2lpUVJSXlycT39zcHAwGjXaVpaWlkr8rHzly\nRNM0Q12lxWJxu90ywdnRVbKdistoV5mz26l//H+j2o1P7XZKJmMzZ86UeSN0Ch1UqAwcOLDl\nAZNNmzY9//zzDz74YGlpaVFRUVFR0ZYtW+IWKsXFxdGdhrKyMpfL1bt371YxAwYM2LZt2zXX\nXKP/uW3bNpfL1adPHyHEoEGD3nvvPUVR9I54//79Qoju3btHX6vXM7qGhgaLxRK3y9a7BqvV\nKtmh6xtRo/E2m02yD4rGywRHScbrR2nbSsXRx+u/qcgnh+TLNInkJ2Cq5LcVn3jPW39V7Av1\nV6VvbTW6AHTYAiNZqFgsFk3T0vSF0lVKxssER5H8BPGdNPnRJqUk+ZLrfuw8LRaLZPZgKh30\nnekFRpRe5ffu3dvtdttstgkTJmzcuHHVqlX79u2rra199913H3jgAfmZX3bZZbW1tcuXL9+3\nb99rr722du3aSy65xOl0CiHGjBnj8/lqamr27du3c+fOZcuW9evXb8CAAen6nAAAAMic7du3\nf/jhh/pwfX39HXfcccEFF1x00UUPPvigoXP5YAameDL96NGj3W73unXr1q1bZ7PZKioqhg0b\nJv/y/v37V1dXr1q1auPGjW63e+zYsRMmTNAnVVZWzp8/f+XKlbfeemtRUVFVVdWUKVOSK8cB\nAABgcosXL7700kv1CwcWLVq0d+/e6667zu/3P/vss+Xl5VdffXWmGwgDMlOojB07duzYsS3H\nDB8+fPjw4UZfFXX66aeffvrpcSedeOKJ99xzT3LtBAAAQCdSW1t7/PHHCyEikcg//vGPFStW\n6JcD9OzZ87HHHqNQ6Vw4XQ8AAABZwm636/dV0q89Pu644/Tx/fv3P3z4cEabBsMoVAAAAJAl\nTj755LVr1yqKUl5eXlxcrD8BXAjx2WefdevWLbNtg1GmuEYFAAB0MP2ZfVvmnZ/phgCp9Otf\n//qWW275zW9+c+mll55//vnV1dWXXnppIBB47rnnfvWrX2W6dTCGQgUAgNwybM7GlsPUKsgm\n/fr1u//++x988MHoLWQffvjh0tLSKVOm/OIXv8hs22AUhQoAADktWrdQsSA7DBw4cPny5f/6\n179qa2s1TevSpUuvXr2MPlgGZkChAgAAhODoCrJLRUVFRUWF+PcDHzPdHCSDi+kBILeM/ONb\nw+ZsbHnyDxDFgtGp8fUJHviYXShUACCH6NdP69inAbJG9NeHYXM2XvDAu5luTiYtXrz466+/\n1oejD3y88sorX3nlldWrV2e2bTCKU78AIFf89L83tRrDqT65acu8830+38g/vpXphiBdRtds\n3TLv/Ny8+ogHPmYTjqgAQE7g+AlaeeHmU2NH5tQebdaIu3a3urdbBzYnw3jgYzahUAGA3MVe\naTYZXbP17AWv66cAyeyYtjwPEJ2azIqcO7UKD3zMJhQqAAB0bu3+oB5X3CMqQGf361//+tNP\nP/3Nb37z4osv6g98XL169cqVKx944IGxY8dmunUwhmtUACBHcTils2hZcrT61qKT/vMPbx79\nG7FIdF4tr0jJcTzwMZtQqAAAYAotdzTfrP7P2JHih/c/OPod07d+P9Jut3NPhexArRLFAx+z\nBoUKAACZ12oX82d3v/bCzaem5DhJu6hSsob+VXo8ntg7FOfgtxx94CM6L65RAYCc0Go3JQf3\nWjodLnZH0rgACdmBQgUAcsVbvx/5ws2nbrr9p1Qp2aHd75ETgXJZy8WDVR6dFMx7J00AACAA\nSURBVKd+Za3ayp7RYddH2zPYEgBAqsQeGaMaQVuoT9DZUahkp5ZVihAiMPiUgo8/ajWpsnZ/\nRzcLANAGmZIj7n6nPtLv9/t8Ps4WA5BNKFRyRfOgwc0/HFNb2ZNaBQA6C34dB5BrKFQAADCF\nuAdVDNUnb9wx4uwFryf3WgAwGwoVAABM6rXZPzP6EooTAFmDQiULtbpABQDQWUTLjFAo1NjY\nmNnGAEBmcXtiAAAAAKbDEZUcxWX0AAAAMDMKlZzg+mi71WotKyvLdEMAAAAAKRQqmdHyMpKU\nH9yorN3fav51dXWpfQsAAAAgrShUMqDVxe61lT2Ld33SatJRVi+c2QUAAIBOjULFLIJDhh5s\n8SdPY0QuaDxxoHPHh5luBZCMs+b+TR/gdsAAkCYUKq1pmtbWSE3T4k5NMCvJeO+Ak2JH1lb2\n7PHN14nnL98Y+fhoWFrj5ZOT7uQnHS8fLB+fO8k/cEwvfUAv0RMv6nFblfJ4syU/9uWxLzRb\nmztsbZUPTlN8tEoRQkQf0fjO3PNkZtvZk2+GLytnl3ySj1xDofI9TdMURTly5EjsJFVVhRDN\nzc2BQEBmVnp8U1OTxWI5mibFbYwQQlEUTdPamhorwUdrSzgclozXu5JQKBSJROTjg8FgKBSS\nideT6ff7DSXf5/NJJl+P93q9MsFCCEVRRNtfTSy9tzWU/EgkYig+ieSHw2H5+JQn33fSya3G\nHDimV+EnOxPHF36y02jyVVW1WCyGlmT55EeXfMl4PTltJT/xN6goSlNTU+wb6W0wurbKLwB6\nmwOBgKG1tbm52e/3y8TrX6h8V6nHyz9dJIm1VaarvOCBd+OOT/zCaPINra1JJD9N26lo8uXj\n072dSmJtTVNXyXaqXalKvuRMkDUoVL5nsVhsNltpaWnsJL/f7/P5CgsLnU6nzKx8Pp/f7y8u\nLrbb42S49IcXuycQtzFCCI/HoyhKW1Nj1dXVWa1WyXhN0+rq6vLy8kpKSmTiI5GIx+NxOBxF\nRUUy8fpTzFwuV35+vky8nvyCggJDyS8qKsrLy5OJ93q9wWCwpKTEapV6rJDH44lEIvLJr6+v\nt1gshpJvt9vdbrdMvKIoDQ0NSSS/oKBAJj4QCDQ1NaU8+b64I086OfZ0x5Zriu+kkws/2WnC\n5BcXF8vEJ05+3L4iymazFRcXx34QVVXr6+uNrq1Op7OwsFAmPhgMer3e/Px8Q2trYWGhw+GQ\niW9qagoEAm11lbEaGxtDoZDb7ZbcvWtoaFBVNU1dZawLHng3wWlg0eQbWluTSH5KtlOxosmX\n7yrTvZ2y2+3p3k5JdpVspxJI7XZKcnFF1uCBj5lRWbu/3UtQuEYFaCX2UAwAAMhWFKZmRImC\nbCV5LDGJYCDjuKoeAFKLIyqZFFuQyBxpAXJZcMjQTDcBAAB0BAqVDGtZlvx4/74MtgTILEp0\ndGocTgGAlKNQSbt2T1+prN1fvOsTniaB3OTc8eGP9++Tr1JYU5BxsTUJVQoApAOFShod6n2c\nXqXUVvbMvrPt9Q+VfZ8LANrVsjKhSgGANOFi+tSI7q9HfxiOPZM+mx4237I+OdT7OOeOD4/0\nHxC9oXrWfEykXOUP781d8tmnwWAwg+0BkvbO3PPq6uokb8QMAEgChUoKtNzx0qsRT78TM9ie\ndIs9itKqKsumkgwp13LZSPz8ssqYJw7pz1FJV8uAVIs+tD7q1d/+R0ZaAgCdEYVK6nE2lKBW\nQYq0rFUqa/d7PJ7MtgeQFFui6EYt/Id+qlg0gDPHAKAtXKNytOTLklzbcadgQ0ro9+zOtdUH\n2a1lGdNWSQMAoFA5Wjm4/5SDHxkAUoXKBAAkUaikXi7sx0t+Rg6qAAAAdLBXX33VYrE8/vjj\nmW7I0eIalRSI3Wsv/fyz7L6eXvzw4gHnjg9dLteR/gNiYzq8Xci8w8f2EXz7HWV0zVZ9gEsd\nAMC0Dh48eN9997388sv79u2zWq3du3cfOnToJZdcctVVV+kBn3/++VNPPXXZZZcNHjw4s001\nFQqVDpKVO236h4pEIvolzrH3aEKuaVmfx96zG6nV6gwi/U/KFZNoecV8q6vnAeSaL7/88qyz\nzmpoaLjooouuvPJKm822Z8+eTZs27d69u2WhMm/evL59+6akUDnnnHP8fn9eXt7RzyqzKFTS\nxbnjw9LSUrs9tzLMLmkua6tM5RZwKdTuzu6wORupVcyj3e+CLwvIBQsWLPjuu+8eeeSRa665\npuX43bt3G51Vc3NzQUFBu2FWq9XlchmduQlxjQqAFOBgWgeQ/EmeX+7N6a3fj2z555Z551Ol\nADniiy++EEJceumlrcb3799fH5g7d+7FF18shLj66qstFovFYhkxYoQQ4q9//avFYvnLX/4y\nb968E044weFw3HXXXUKII0eO3HnnnWeeeWbXrl2dTmefPn1uu+22pqam6JxbXaOiz+e55567\n5557+vXr53Q6e/Xqdffdd2ualu7PfpRy6/d+AOlAlWI2HFcxpxduPtXlchUVFWW6IQA6VN++\nfd96661Vq1ZNnz49bsCUKVOcTucdd9xxxx13nHvuuUKI0tLS6NRZs2ZVVlYuWLCgoqJCP5tr\n//79Dz/88OWXXz5+/HiHw/Hmm2/ef//977333htvvGGxWNpqxu23396vX7/FixeXlpY+8sgj\nd955Z5cuXW644YZUf9xUolABAAAA0uWOO+5Yu3btjBkzli5d+p//+Z9VVVX/8R//MWjQoGjA\nsccee/LJJwshBgwYoB9LacnhcLz++ustryY44YQTamtro5eg3HTTTYMHD66urt60adOoUaPa\nakZ5efn//d//6ZXMGWec8eabby5evNjkhQqnfgE4WlyCkilvzzk3000A4rvggXcvWvxBplsB\nmMIJJ5zw0UcfzZw502KxPPzwwzfccMPJJ588ePDgf/zjHzIv/9WvftXqmmen0xmtUsLhcCAQ\nGDt2rBBiy5YtCeajn1emD1ut1tNOO23Pnj2qqibzkToKhQoAdA6tzubS/3zh5lP/dutZGWoR\n8L1hczbq/0SLC6WiY4Ac16tXr/vuu2/37t0ej+dvf/vbr3/9608++eSiiy7av7/9X/qOO+64\n2JGPP/74T37yk8LCQofDkZ+fP3DgQCFEfX19gvn07PmD87RLSkpCoZDX6zX4UToUp34BSAH9\noIrP5/P7/cEhQ2MnISXauvJky7zzW+4OcoEKOljLxS+2MuHe2UCU2+0+99xzzz333K5du/7x\nj39cvXr17bffnvglTqez1Zj777//1ltvvfjiix955JEePXo4nc66urrRo0cnPjwS9/IVk19P\nT6ECIMW6fbVXf+ajoErpQOwFwuS4xwPQ0qmnniqEiB5RSXARfKxHH330uOOOW79+ffRVf//7\n31PeQjOgUMH/E71xU49vvs5sS5AFqE+A3MHJXUBiL7zwwvDhw91ud3SMpmmrV68WQuinbAkh\niouLRXvnbkVZrVZN0xRF0a9dURRlwYIFqW+3CVCoQIgf3l72wDG9nDs+9A44qeVJi+x3AgDi\nanXmIYBWFi1aNG7cuFGjRlVVVbnd7m+//XbDhg0ff/zx4MGDJ0+erMcMGTLE5XLV1NQ4HI7S\n0tJu3bqdc845bc3w8ssvnzt37oUXXjhu3Div1/v000+b/AyupFGoIM5DMFpdYwAAAIDk/OEP\nf1izZs1rr722fPny7777rqCgoF+/fvPnz582bVr0MfNut/upp56aN2/e9OnTg8Hg2WefnaBQ\nqa6uttvtK1eunDp1avfu3S+//PJbbrkl7jX3nR2FSq7jUX0AgKMkc1CFC1SQs0477bTTTjut\n3bCxY8fqdxmOuvzyy+MeKrHb7dXV1dXV1S1HtowcNWpUyz/jzuehhx566KGHZNqfQRQqAADg\naMXWKi/eclqXLl0y1R4AWYDnqLSptrJn3KMN+vi2pgJZJjhk6Hd9+rK0A2hXy2MmL884M4Mt\nAZAdOKISR8t9suiwc8eHIuZEqdrKnp39KvPK2v3t7oN29s+I5GTf0g4g3aK1isfjyWxLAGSB\njitUXn311TfeeOOrr74KBoM9evS46KKLzj333FTN/IMPPnjiiSe++eYbt9s9atSo8ePHR28s\n3dzc/OSTT77zzjsej6e8vPy8884bN25cEm8RHDK0eO+XqWqwqURrFX03NB2/nbec54/+uSc4\nZGjw32+d8vdCSnAIBYAJtTy77G+3nsWzWYDs1nGFyubNm0866aRLL720oKDg7bffrqmpiUQi\nF154ofwcNmzYsHXr1rlz57Yav3v37vnz51944YUzZ87cs2fP0qVLVVWdOHGiECIUCt1xxx2K\nokyaNKlHjx5er9fv96fwQ2WNlgVDj2++PnBMr9jxSWu1y/vtcce3nEStAgCQ0eoamPPue6fl\nSCoWIPt0XKHS8kk0AwcO/Oc///mPf/wjWqhs3rx57dq1Bw4cKCsrO/PMMydOnJifn99qDpFI\nJBQKxc55zZo1lZWV119/vRCid+/eBw8eXL9+/RVXXOF0Op9//vlvv/32oYce0h+jkwV+sNOf\ntl18544PHQ5HSUlJmubfErUKAODocXQFyD4Zu5g+FApFn9D54osvPvbYY7/4xS+WLFly6623\n7tq168EHH5Sf1a5du6qqqqJ/VlVVBQKBvXv3CiHefvvtwYMHr1q1avLkyddff/2SJUu8Xm/b\nczKvuJfvZ801/VnwEQAAGcdzJ4Esk5mL6V999dUvv/zyN7/5jRBCVdWnnnpqypQpI0aMEEJU\nVFRMnTp1+vTpHo+ntLS03VlpmubxeMrKyqJj9OH6+nohxMGDB7/66quzzjrrzjvvbGxsXLFi\nxbx58xYuXBi9guXNN9/85z//qQ+rqqqqqt/vL//y8/q+/Vq9kXPHh3GP58Q9lywSiQghgsFg\nOBxu9yMIIRRFEUIEAoFow1qKbUwrtZU9y7/8PEGApmmaphk67U1RFMl4VVWFEJFI5GhOq0vw\nWj2HoVBIf6N2RZOvD7QrcfJj6c2Q/7D6ncsl4/VgfTmUj5f/svQPGw6H242Puxa0+6qcSr7e\nGKPJb2tNSbx4q6oaCARiX2h0ATC6turfo2Q/JlqsrfqHlZx/El2lZHuMLjDCyAIQbVKakh9d\nWyVbknRXmZLtVKwk1laj26m4EqxfSSRfMp7tVLvxqdpOSWYYWSMDhcrf//73hx56aMaMGSec\ncIIQ4tChQ16vt6ampqampmXYwYMHS0tL161b9/jjj+tj9F5szJgx+p9DhgyZN29e4vdSVbWw\nsHDGjBl2u10I4XA4qqurP/3005NOOkkP+Nvf/vbyyy/rw263u2vXrj6fT/z7Hl+tBINB544P\nWz613bnjQz0+LqMdbnNzs6H4lur79ovb5ihVVRM0NZaiKIbiI5FIWx1uq6TF1e57BYPBYDAo\n3x75XRmd0eQbSo6maWlNfjgclt+bSSI+SrJVOZX8BEt+XKFQKO5PHon37PV9grYalu4Fpq02\nt8XoAmC0qzT0YdMdn6kFpi1Gu8p0b6cMJafd7dQLN586umZr0u9oNPlG1xS2Uwmkajsl+SMI\nskZHFyovvfTSo48+ettttw0bNkwfoxfHc+fObXn6VtTIkSOHDv1/+7ibNm36+OOPp02bpv+p\nX8RisVhKS0sbGhqiL9GHy8vL9f9LSkr0KkUI0atXLyHE4cOHo4XKlVdeqR/JEUKEQqFVq1bF\nvZolFAoFg0GXy5WXlydz769gMBgKhQoKCmw2W7vBQgi/3x+JRIqKiuL+WCLZ7SW4Dqepqcli\nsRQWFsrMR9O0pqYmu90ee5lQXIqiNDc35+XluVyuNtvWImnf9ekbJ6DtxrdMvkx7jCY/EAiE\nw+G2kh+rublZURT5q56SSL7NZisoKJCJ17friZPfkv6DosPhcDqd7QYX7/2y5ZfVNQ1LvtHk\n+3w+VVVNlXz5NUVPvtPpdDgcsVMTZ8xmsxUWFsZ+cKNrq95myQVACBEOhwOBQFttjqWvrfn5\n+dFeNzF9ATDaVcovAD6fT9O0oqIiyXhDC4wQwuv1prarbCnxAhMrua6ysLDQapU6CTzxdipW\nc3OzqqopT/4bd4wQ/17y4xYtcReP5JIvv6awnUogtdspyYwha3RoofL000+vWbPm97///ZAh\nQ6IjKyoqioqKtmzZErdQKS4ujq5pZWVlLperd+/erWIGDBiwbdu2a665Rv9z27ZtLperT58+\nQohBgwa99957iqLoS/b+/fuFEN27d4++dtCgQYMGDdKHGxoannzyybgrhqqqwWAwLy9Pss/S\nf7NxOBySW2v9NxiHwyG5wYiV+Hp0vQ+SbLzeB1mtVvkP29zcbLPZJON/9M89LW/8pUvw2uSS\nn5eXJ7nB0H+tlE++/gOkZGOEED6fL33J13/Tkk++xWLx+/12u10yvsueL5qamoqLi82TfFVV\nO3Xy24pPnAGLxRJ3s63/0GNobRVCyLdZCBEIBOQXmOjaKrlvrf9omkRXKb+7pmma/Ic12lUK\ng8k31FUaXVuT7irTtJ0y2lUmsZ36261n6Tf+imrrYnrTJp/tVKzEyU96NwmdVMd93ytWrHjm\nmWd+9atfFRcX7927d+/evXrZYLPZJkyYsHHjxlWrVu3bt6+2tvbdd9994IEH5Od82WWX1dbW\nLl++fN++fa+99tratWsvueQSffkeM2aMz+erqanZt2/fzp07ly1b1q9fvwEDBqTrQ6ZH9t0U\ny7njw+hFNZW1+7PvAwIAOsCWeedHixNu+QVkn447ovL6668rirJs2bLomIqKiocfflgIMXr0\naLfbvW7dunXr1tlstoqKiuiJYTL69+9fXV29atWqjRs3ut3usWPHTpgwQZ9UWVk5f/78lStX\n3nrrrUVFRVVVVVOmTJH8Kc5UWu7Kt7pHVufdy++8LQcAmAclCpCtOq5QefLJJxNMHT58+PDh\nwxPPYezYsWPHjo076fTTTz/99NPjTjrxxBPvueceyUZ2Cq0eJA8AAABkn8zcnhhHqfCTndz4\nAgCQTS5c9N6WeefzpHkAURQqAAAgk6LFScsnNurDlCtALuPmCQAAIGN4nDyAtnBEBQAAtK/l\nc0tSdaCDKgVAAhQqAAAgkdhygvOyAHQATv0CAABtSnDQI93HQyiEgBxHoQIAAOLr+FOzeIAj\ncPSmT59+zDHHtBrZt2/fG264QR8OBoN33XVXv379XC7XCSecsHjx4mhYgkkdj1O/AABAZrS8\nH7H4d3FCiQKk24wZM55++ully5ZVVVW9//77N954o8ViufnmmxNP6ngUKgAAIGP0sqSurs5q\n5SwP5C6LxaIPaJqW7vdSVfXPf/7z7Nmzf/nLXwohTjjhhF27dt1999033XSTxWJpa5LNZkt3\nw2LRKQAAgGRw6ANIiWiV0mo4TRRFCYfDBQUF0TFFRUWHDh3avXt3gknpblVcHFEBAADxtTo1\n6+0553LcA0itNFUmtbW1sXMeNWqUECIvL++8885bsmTJeeedN2jQoB07dixZskR/ycCBAxNM\nSkc7E6NQAQAAbdIPmzQ2NoZCoUy3BYCsbt26bdz4g5thXHLJJdHhRx999MYbbzzllFMsFkuX\nLl2uvvrq++67Tz+5K8GkjkehAgAAAGSVvLy8U045peUYh8MRHe7evfuaNWtCodDhw4d//OMf\nr1ixQgjRt2/fxJM6HgdwAQAAgMzogKvn2+JwOPS7GC9duvS0007r1auXzKSOxBEVAAAAIGM0\nTdOvJ+mwomXz5s2fffbZkCFDDh8+XFNTs2fPntdff73dSR2PQgUAAADIpA4+rmKz2ZYtW/bF\nF184nc6f/vSnb7311tChQ9ud1PEoVAAAAIDssWjRokWLFrUa+eWXX0aHzz777J07d8Z9bYJJ\nHY9rVAAAAACYDoUKAAAAANOhUAEAAABgOhQqAAAAAEyHQgUAAACA6VCoAAAAADAdChUAAAAA\npkOhAgAAAMB0KFQAAAAAmA6FCgAAAADToVABAAAAYDoUKgAAAABMh0IFAAAAgOnYM90AE9E0\nTVGUhoaGuJOEED6fr7m5WXJWQgiv1yv51qqqCiGOHDkiH69pWtymttWetj5aW8LhsGS8/mGD\nwWA4HJaP9/v9gUBAJl5Pjnzy9Xiv12uxWOTjDSVfCGEo+Ya+LGEk+bokkh8MBuXjzZN8RVGE\nkeSrqmqxWAwlMxKJGIoPhUKG1pRAIBA3+ZFIJHGrGhsb23qjJBaYUCgkE2l0bdXjm5qaDC0A\njY2NhuI9Ho9MsDC+wHTqrpLtVOKZi3R2lTm4nTLaVaYq+Ym7SmQfCpXvWSwWm81WVlYWO8nv\n9/t8vsLCQqfTKTMrn8/n9/uLi4vtdqkMNzY2hkIht9tttUod4/J4PIqixG1qXHV1dVarVTJe\n07S6urq8vLySkhKZ+Egk4vF4nE5nUVGRTHwoFGpsbMzPz8/Pz5eJTzr5eXl5MvFerzcYDBpK\nfiQSkU9+fX29xWIxmny32y0Tr2/Xk0h+QUGBTHwgEGhqasqp5NvtdkPJdzgcxcXFMvF68l0u\nV9zkJ+4r7HZ7SUlJ7AdRVbW+vj6JtbWwsFAmPhgMer1eo2trUVGRw+GQiW9qagoEAiUlJYa6\nytLSUsndu4aGBlVV6SrjYjuVgNGuMge3U0a7ylQlX3JxRdbg1C8AAAAApkOhAgAAAMB0KFQA\nAAAApMzTTz+dkvP0KFQAAAAAtOPdd9+97LLLjjvuOIvFcu2113bAO1KoAAAAAJlksVgkbxOS\nEfpN23w+X9++fe++++6+fft2zPtSqAAAAACZl6pa5fLLL7/yyisXLlxYWVlZVFQ0YcKE5ubm\nNWvWDBw4sLCw8Nxzz62trdUjN27cOGLEiK5duxYXF59xxhkvvfRSy5lcccUVs2bNqqyszM/P\nDwQC55xzzh//+McJEybE3jpSUZRZs2b96Ec/KioquuKKK7777ruUfBAKFQAAACBj0nEsZePG\njTt37tywYcMzzzzz0ksv/eIXv1i8ePGKFSs2bdp04MCBW265RQ87cuTIDTfc8Pe///2DDz64\n6KKLLrnkkk8++SQ6k/Xr11ut1t27d+s3+E7wdgsWLFi2bNnixYs/+uijM8444/e//31KPgW3\nowYAAABMwWKx6E+9PEplZWUrV6602WxCiKuuumrZsmUHDhzo3r27EGLmzJkzZszQw8aNGxd9\nyZw5czZv3vzMM8/cdddd+piePXvefffd7T7AR1XVe++9d9asWePHjxdC/Pa3v33//ffXrFlz\n9J+CIyoAAABAZqTp0pRTTjlFr1KEEJWVlZWVlXqVIoTo0aOH1+ttbm4WQhw8eHDatGlVVVXH\nHHNMRUXFe++999VXX0VnMmjQIJnHjH7zzTeNjY3Dhw+Pjjn77LNT8ik4ogIAAACYRUoOqjgc\njpYzbPWnEEJVVSHE6NGjS0pK7r///t69e+fn50+ZMiUUCkUj8/PzZd5Lb23Lc8MSnycmj0IF\nAAAAyIDM3umrvr5+27ZtmzdvHjFihBBCVdXPP//8jDPOMDqfnj17lpSUbN++/cwzz9THfPjh\nhylpIad+AQAAABmgtaFj3r20tPRHP/rRSy+9pGlaJBKZPXv2/v37E8T7/f7t27dv377d7/fX\n19dv3759x44dQgir1Tpz5sw//OEPX375pRDizTffXLVqVUpayBEVAAAAIOdYrdbnnntu2rRp\nP/7xjwsLC6+44ooxY8YkiN+9e/fQoUP14c8//3zt2rU2my0SiQghqqurm5qahg0b5nK5Bg4c\nOHv27JTc+ItCBQAAAMgef/3rX1v+OXv27NmzZ0f/vOCCC6IHbYYPH75t2zaZmQghTjnllLaO\n9tjt9oULFy5cuDA65ne/+10SLW+FU78AAAAAmI6xIyqqqnq93la1VGlpaUqbBAAAACDXSRUq\nqqouX7588eLFe/fubXnPMl2HXfEDAAAAIEdIFSrz58+fM2dOt27dLr744q5du6a7TQAAAABy\nnFShsmLFiqqqqr///e8FBQXpbhAAAAAASF1Mf+jQoQkTJlClAAAAAOgYUoVK3759jxw5ku6m\nAAAAAIBOqlCZPn36//7v/zY2Nqa7NQAAAAAgElyjsm7duuhwt27devbsOXjw4BtvvPH444+3\n23/wqsTPsAQAAAAAo9osVMaOHRs7suVTLaO4PTEAAACA1GqzUHn22Wc7sh0AAAAAENVmoXL5\n5Zd3ZDsAAAAAIErqYvoRI0Zs3749dvzmzZtHjBiR4hYBAAAAyHlShcobb7zh8Xhixx8+fPiN\nN95IdZMAAAAA5DqpQqUtHo/H5XKlqikAAAAAoGvzGhUhxEcfffTRRx/pw6+88so333zTcmp9\nfX1NTc2AAQPS2DoAAAAAOSlRobJmzZp58+bpwwsWLIgNyM/Pf/rpp+Xf7IMPPnjiiSe++eYb\nt9s9atSo8ePHWywWQ81NYs7pe1MAAAAAaZKoUJkwYcJpp50mhLj44osXLFhw8sknRydZLJbi\n4uJTTjmlpKRE8p127949f/78Cy+8cObMmXv27Fm6dKmqqhMnTpRv64YNG7Zu3Tp37lz5OR/9\nmwIAAADoeIkKlX79+vXr108IMWfOnPHjxx977LFH805r1qyprKy8/vrrhRC9e/c+ePDg+vXr\nr7jiCqfTKYTYvHnz2rVrDxw4UFZWduaZZ06cODE/P7/VHCKRSCgUMjTnxG8KAAAAwJwSFSpR\nsQcxkrBr166zzz47+mdVVdUzzzyzd+/eAQMGvPjii6tXr7722mtPPPHEhoaGFStWPPjgg7Nn\nzz76OSeYpI/5+OOP//Wvf+nDoVBI07RgMBj7FpFIRAgRDoclm6Qoij5DfaBdqqrq8ZKnpWma\nJoSI29QEL5GM12euqqpkvP4ZFUWRjNeTGYlEDMUbTX44HNaz2q50J99QvNHk641Pd/L1/2Wk\nO/l6fKdOflvxiTOmaVooFIp9YbrbrK93SaytesPalXRXKRMs0txVRpvUmTmDyAAAIABJREFU\n2btKtlOx2E61G5yp7ZRkxpA1pAoV3RdffLF+/fq9e/dqmnb88cePGTOmb9++kq/VNM3j8ZSV\nlUXH6MP19fWqqj711FNTpkzRH8lSUVExderU6dOnezye0tLSo5lzgknRMU8//fTLL7+sD7vd\n7q5du3q93rbeKxAIBAIByY8shGhubpYPFkI0NTUZik/Q1FiaphmKj0QihuLD4bB8Hy2ECAaD\nhjZgOZV8RVHSmvxQKCS/qyeE8Pv98sEix5JvdE1pa8lPvLOoKIrP52vrjYy2wegCYHRtTfcC\nY+jDGo3Pta7S5/PJBwuTra3pTr7RNYXtVAKpSr5kXY2sIVWoaJo2a9ase++9t+WPZLNmzbr9\n9tv/53/+5yhbcOjQIa/XW1NTU1NT03L8wYMHS0tL161b9/jjj0eboWnamDFj9D+HDBkSvdY/\naeedd94JJ5ygD+sl0xNPPBEbpiiKqqo2m81qlbqhsx5vt9slf/yIRCKaphmNz8vLkwkWQoTD\nYYvFYrfL1qWG4jVNi0QiVqvVZrPJxKuqqiiKfHxyyU/3l5Wm5OvJNE/y9XiSnyA+Vck/dOhQ\ngtdardYNGza43W5TtTmWCRcAIURa43Mt+SZZW43GmzP5plpTOldX+cwzz8jMyqgvvvgiHbPF\n0ZBayB544IGFCxeOHz/+2muv7dOnTzAY/Pjjj++9994//OEP3bt3nz59ertzsFgspaWlDQ0N\n0TH6cHl5uX4Ub+7cuVVVVbEvHDly5NChQ/XhTZs2ffzxx9OmTdP/1C9iSTDnBJOiY372s5/9\n7Gc/i05dsmTJk08+KZMTAEitgoKCtjb8Vqv1hRde6OD2AIAJ6T/cpG/+8reJQgeQKlSWLl06\nbdq0RYsWRcf0799/zJgxI0eOXLJkiUyhIoQYMGDAtm3brrnmGv3Pbdu2uVyuPn362O32oqKi\nLVu2xC1UiouLi4uL9eGysjKXy9W7d2/JOSeeFKuoqGjp0qUynwUAUq5nz55t/bx68803T5o0\nqYPbAwAm1NTUVFRUlKaZu93u/v37p2nmSIJUofL1119Pnjy51UibzTZx4sT/+q//knynyy67\nbNasWcuXL7/gggv27t27du3aMWPG6HffmjBhwooVK0pKSoYPH26327/55pu33357xowZRz/n\nBJNi5eXlnXHGGZJvCgAdhg0nACAHSRUqFRUVcS/hampq6tmzp+Q79e/fv7q6etWqVRs3bnS7\n3WPHjp0wYYI+afTo0W63e926devWrbPZbBUVFcOGDZOcbeI5J5gEAAAAwLQsMjeRnDVr1vbt\n21988cWW508fPnz4Jz/5yQ033HDbbbels4UAAAAAco7UEZWhQ4c++eST/fv3nzx58vHHHx8M\nBnfu3Lly5cq+ffv26dNn3bp10cjoLbkAAAAAIGlSR1Qkb4cn/v0YIAAAAAA4GlJHVJ599tl0\ntwMAAAAAoqSOqAAAAABAR5J9BKwQIhKJ7Nix4/Dhw2eddVZpaWn62pQpfr//kUceiTspuedz\nyz9EVo+Xf4hsp37irx4vn0ySnwDJT6zTJf+mm26KO7f169d//fXXbbXZaBuMPiLa6AJjdAFI\n3/O2s36BaYm1NQGSn1jnSn5tbW1ZWZn8VQmG5OfnX3zxxccee2w6Zo4kyC6Uq1evnjFjxqFD\nh4QQ77zzzrBhww4cOHDKKafcf//9EydOTGcLO04gEHj55ZejT4dsKRwOB4NBl8sluVoGg8Fw\nOFxQUCDZZwUCgUgkUlhYKLniNTc3a5pWWFgoEyyE8Pl8FouloKBAJljTNJ/PZ7fbXS6XTLyq\nqs3NzXl5eW09oKaVSCQSCAScTqdkH5pc8vPz8yX7xCSSr6qq/NOmkki+zWbLz8+XiU8u+Q6H\nw+FwyMST/AT05MuvKYmTv2rVqq+//vr666+Pm7pXXnll8ODBXbt2jdvmzr620lXGRfIT6Jjk\n01XGldnt1BNPPNHc3HzppZemo1D58MMPt23bNnToUAoV85BaozZu3HjVVVdVVVXddtttv/3t\nb/WRPXr0GDx48HPPPZc1hYoQorS09LLLLosd7/f7fT5fcXGx5Grm8/n8fn9paalkn9XY2BgK\nhcrLyyU3GB6PR1GULl26yAQLIerq6qxWa1lZmUywpml1dXUOh6OkpEQmPhKJeDwel8sl2SeG\nQqHGxsbCwkLJPi655Lvdbsmtu9frDQaDhpIfiURidxnbUl9fb7FYDCU/Ly/P7XbLxCuK0tDQ\nYDT5BQUFkhukQCDQ1NRE8uPSk+90OouLi2XiEyd/48aNbR0z0Y0aNapPnz6tRqqqWl9fb3Rt\nzc/Pl9x9DAaDXq/X6NpaUlIiuXvX1NQUCASMdpVdunSR3EdpaGhQVZWuMi62UwkY7SrZTiWQ\n2u3USy+99PXXX59zzjmSqTCksbFx27ZtKZ8tjobU17xgwYJTTjlly5YtU6dObTn+rLPO2rFj\nR3oaBgAAACB3SRUqW7dunThxYuyPLr169Tp48GAaWgUAAAAgp8le9RX3aObhw4flL9UCAAAA\nAElShUq/fv3eeuutViM1TXv++ecHDRqUhlYBAAAAyGlShcrkyZP/8pe/rFy5Mjqmqanpxhtv\nfO+996ZMmZKupgEAAADIVVKFyi233HL++ef/+te/7t27txBi0qRJXbp0Wb58+cUXX3zttdem\nuYUAAAAAco5UoWK32zds2LBkyZLjjjuupKTk4MGDgwYNWrRo0dq1a9NxezgAAAAAOU72gY82\nm+2mm2666aab0toaAAAAABCSR1QAAAAAoCNRqAAAAAAwnTZP/XK5XJKzCAQCKWoMAAAAAAiR\noFAZPXp0yz8//fTTXbt2VVZW9u/f32KxfPbZZ7W1tQMGDBg4cGD6GwkAAAAgt7RZqPz1r3+N\nDr/99tvnn3/+Y489NnnyZP02X6qqPvbYY9OnT3/kkUc6opkAAAAAconUNSqzZ8+ePHnyr371\nq+jNiK1W67XXXjtp0qTf/e536WweAAAAgFwkVahs3bp1yJAhseOHDh36wQcfpLpJAAAAAHKd\nVKHicDg+/PDD2PFbt251Op2pbhIAAACAXCdVqIwePXr58uUPP/xwJBLRx0QikYceemjFihUX\nX3xxOpsHAAAAIBdJPZl+4cKF77777vXXX19dXX3CCSdomvbFF1/U1dX179//j3/8Y7qbCAAA\nACDXSB1Rqaio2Lp169y5c3v06PHRRx/t3LmzsrJy3rx5H3zwQffu3dPdRAAAAAC5RuqIihCi\nuLh4zpw5c+bMSWtrAAAAAEBIHlEBAAAAgI5EoQIAAADAdChUAAAAAJgOhQoAAAAA05G9mD4X\naJqmaVowGIydpD9AJhwOS85KURQhRCgU0gfapaqqHm+xWCSbKoSI29QEL5GM12euqqpkvP4Z\nFUWRjNeTGYlEDMUbTX44HNaz2q50J99QvNHk641Pd/KjD1BqV7qTr8d36uS3FZ84Y5qmhUKh\n2Bemu836epfE2qo3rF1Jd5UywSLNXWW0SZ29q2Q7FYvtVLvBmdpOSWYMWYNC5Qc0TYu7T6av\nGKqqSu6xRVdLya21HhaJRAz1QfK7j0bjRdupiKV/WPl4vYM2mkyj8ZFIRDL50fg0JV8YSY7R\neL0x6U6+5H6MML7kG02+zlAy5eONJjO1yU+cMU3TFEWJfaHRNiS3NqU7PomuUiZY/PvnJ1N1\nlWZLfiQSsVqlzq1gO9Xu/NO35JtqO2XmrhLZh0LlexaLxWq1FhYWxk7y+/3hcNjp/P/Zu/fw\nJqr8f+AnlzbpNW0BKVTsWhCogEjZCl7KRRBFuRVFkGURFhFkUcDLgoLQykVZv6hsRUB2BbTl\noittQRZQQAQVZAFFkIICglAqYNu0ae7JzO+P+W2221x6Js1MzqTv18PDk04+OXPmzJkz88lc\notPpdDRFmc1ml8sVExOj1VK1sNvtdrvdsbGxlDsM4Tswn1X1yWaz+Vs0bzzPW61WjUZDGS98\n7aHVainjHQ6Hw+GIjo6OiYmhiQ+68aOiomjiOY4T2/gcx9E3vt1uV6lUEjW+2+222WxBNH5s\nbCxNvM1mczgcYhtfr9crtPFtNpvUjR8VFeWz8TUaTYDPqtXqmJgY7xlxHCeqzsLWGhUVRRlv\nt9uD21qjo6Np4oUELIihkvJwzeFwiOowMgyV9I0vnEOTYajEfsqb2KEyuMbHUOlT4MYPPFRC\n5ME9KgAAAAAAwBwkKgAAAAAAwBwkKgAAAAAAwBwkKgAAAAAAwBwkKgAAAAAAwBwkKgAAAAAA\nwBwkKgAAAAAAwBwkKgAAAAAAwBwkKgAAAAAAwBwkKgAAAAAAwBwkKgAAAAAAwBwkKgAAAAAA\nwBwkKgAAAAAAwBwkKgAAAAAAwBwkKgAAAAAAwBwkKgAAAAAAwBwkKgAAAAAAwBwkKgAAAAAA\nwBwkKgAAAAAAwBwkKgAAAAAAwBwkKgAAAAAAwBwkKgAAAAAAkaCurk7lHyHEYrEsXrz49ttv\nj4uLS05Ozs7OzsvLMxqN4a64b9pwVwAAAAAAoLniOMvmD627d/M1tVHdusY/9ZTmhlZBFxYb\nG/vtt98Kr48cOTJ58uSioqJbb71VmGI0Gvv27fvLL7+8+OKLd9xxR1JS0qlTp/7+97/Hx8c/\n//zzIViWUEOiAgAAAAAQHlVTp1m3bxde2w8etGz+sNWOf2nTbwquNLVaffvttwuvhfMkHTt2\n9EyZPHnyTz/99P3333fo0EGYcvvtt48dO/b69etNWgbJ4NIvAAAAAIAwsG7/lydLEXA1NcYX\nX5RiXk6nc+PGjY8//rgnS/Fo1Sr4cziSQqICAAAAABAG9gNf+pj41dfE7Q75vC5dumQ2m7t1\n6xbykqWDRAUAAAAAIBx4ztdEnvB86GclQZlSQ6ICAAAAABAG0Xfc4WPi73sSbehvI2/Xrl1c\nXNyJEydCXrJ0kKgAAAAAAIRBbO4IXZ+c+lNUMTFJS5ZIMa/o6OgxY8asW7fu7NmzDd5i9mZ6\nWZ/6ZbFYioqKDh48aDQaU1JSBg0a9Oijj4ak5CNHjnzwwQeXL182GAwDBw587LHHhGdFSzpT\nAAAAAIDgqdUt1q8z//0f1k8/42trorrdljDzGe3NN0s0t7/+9a+HDh3Kzs5+8cUXe/XqZTAY\nhMcTP/jgg8398cQOh+Oll15yu93jx49v27atyWSyWq2iSti2bdvRo0fz8vIaTD9z5syiRYsG\nDx787LPPnjt37p133uE4bty4cSGZKQAAAACARFTR0fHTnoqf9pQM80pJSfnmm2/eeOONoqKi\nvLw8nU53yy23PPbYY5MnT5Zh7kGQL1HZunXr9evXV61alZCQ4P3u3r17i4uLr1y5kpyc3KtX\nr3HjxsXExDSIcblcDofD+7NbtmxJS0ubMmUKISQ9Pb2ioqK0tHTUqFE6nS7wTAEAAAAAIlK/\nfv28b6CPi4t7+eWXX3755bBUSSz5EpWvv/76tttuKywsPHTokF6vv+2228aPHy/kD9u3b9+4\nceMTTzzRuXPn6urqNWvWLF++fM6cOZQll5WV9e3b1/NnVlbW5s2bz58/n5mZGWCmAAAAAADA\nLPkSlYqKigsXLtx5553z5s2rra1ds2ZNfn7+66+/zvP8hg0bJkyY0K9fP0JIamrq9OnTZ86c\naTQak5KSGi2W53mj0ZicnOyZIryuqqoKMFPPHSybNm367rvvhNdardbtdptMJu+5uN1uQojV\navV5Sseby+UihFgsFs+MaOLr6uoo4zmOI4T4rKpPPM9zHEcfL1SJMl6ojNPpFBVvt9uFpW6U\n0Pg2m01s46vVVM+KENv4Qn1ENT7P86Ia318/9Fk4Carx3XQPaJen8c1mM00wkbjxhcaUuvEd\nDofPxg+8Rtxut9ls9p6RUAf6rVWIdzgcQmUaJdRK7NZqtVrtdjtNfNBDJU0wIYTjOFFbn6RD\nZdBbq9jGx37KX2WUPlRiP0UaGyoh8siXqHAcFxcXN2vWLK1WSwiJjo6eO3fuqVOnUlJSTCZT\nQUFBQUFB/fiKioqkpKSSkpJ169YJU4QNacSIEcKf3bt3z8/PD26mXbp0EQJOnjy5e/du4bXB\nYGjZsmWA/avL5aLcYQgoB6yg4ykPBQQ8z4uK5zhOVLzb7RY1fIhtTKfTSR8cRLykjS82XurG\nFxsvdeNL2phi48U2vth4fz0/cObA87zD4fA3I6VvrUxtfUofKrGfCkDpQyVTW0q4Gp/ySxaI\nGPIlKikpKYmJidr/PBb6pptuIoRcu3ZNOG2Sl5eXlZXl/akBAwb06NFDeL1nz56TJ0/OmDFD\n+FO4iUWlUiUlJVVXV3s+IrxOSUkJMFNPojJ37ty//OUvwuuampo5c+a0aNHCuxpWq9ViscTH\nx+t0OpqFtVgsVqvVYDBo6R6DbTKZHA5HcnIy5ZcrNTU1brdbWEYaVVVVarWa5gwVIYTn+aqq\nqujoaMpr5FwuV01NjV6vj4uLo4l3OBwmkyk2Ntb7NiSfgmv8xMTEqKgomvi6ujq73S6q8V0u\nl89+4lN1dbXQS2mChcaPiopKTEykiXe73UajUWzjx8TExMbG0sTbbDaz2YzG90lofJ1OFx8f\nTxMfuPEDt5hWq01KSvJecI7jqqurxW6t9B3AbrfX1dWJ3VoTEhKio6Np4s1ms81mEztUpqSk\nUH6vbDQaOY7DUOkT9lMBiB0qsZ8KILT7KcoWg4ghX6LStWvXw4cPu91ujUZDCLl06RIhpHXr\n1qmpqfHx8YcOHfKZqCQkJHiGoeTkZL1en56e3iAmMzPz2LFjkyZNEv48duyYXq/PyMgIMFPP\nZ2NiYjz7ACF397n/EyaqVCrKvaPnU1LH0wdLF+8JExVPv7BofJowNL788VI3vvfHvT8YXB3E\nxqPDhCQejR/GeDR+GONlHiohwsj3g48jRowwm80FBQUXL148ceLEypUrO3bsmJmZqdFoxo4d\nu2vXrsLCwosXL5aXl3/zzTdvvvkmfckjR44sLy9fvXr1xYsXP//88+Li4mHDhgnfavibqWRL\nCQAAAAAAISDfGZW0tLRFixatXbv2ueeei4+Pz8rKmjBhgpAuDxkyxGAwlJSUlJSUaDSa1NTU\n3r1705fcqVOnuXPnFhYW7tq1y2Aw5Obmjh07ttGZAgAAAAAAs2T9ZfrOnTsvXbrU51s5OTk5\nOTmBP56bm5ubm+vzrezs7OzsbLEzBQAAAAAANsl36RcAAAAAAAAlJCoAAAAAAMAcJCoAAAAA\nAMAcJCoAAAAAAMAcJCoAAAAAAMAcJCoAAAAAAMAcJCoAAAAAAMAcJCoAAAAAAMAcJCoAAAAA\nAMAcJCoAAAAAAMAcJCoAAAAAABHikUce6dy5s8Vi8Uypra3NyMiYOHEiIWTmzJkqlUqlUqnV\n6rZt2z7yyCNnzpwRwjxvaTSapKSknj17vvDCCxcvXgzPYhBCkKgAAAAAAIRLjcX5109ODX/j\ni3uX7Hlq7b+/u1jdxALXrFljsVhmzJjhmTJt2jStVltQUCD82bp167Kysh9++GH16tUnTpx4\n4IEHPFmN8NbJkyc//fTTqVOnfvbZZ126dNm7d28TqxQ0bbhmDAAAAADQnDnd3DPvHzlTUSv8\n+e2FqqnvHV496Y7uNyUHXWZycnJRUVH//v0feOCBhx9+uKio6MMPPzx48GB8fLwQoNVqO3fu\nTAjJzMwkhAwbNuzo0aM5OTn13yKE3HHHHY8//nj//v3Hjx9/7tw5nU7XlCUNDs6oAAAAAACE\nwbZj5Z4sxWPZ9rImFpuTkzN37tzJkyfv379/2rRpS5Ys6dmzp8/IuLg4QojNZvP5bnR09Jw5\nc8rLy7/88ssmVik4SFQAAAAAAMLg9JWGWQoh5KerJpebb2LJ8+fPv/XWW/v379+rV6/nnnvO\nZ8yFCxfy8/MNBoO/NIYQ0q1bN0LIuXPnmlif4CBRAQAAAAAIA12Uj0PxKI1ao1Y1sWSNRrNg\nwQKO4/Lz81Wq/ymtvLxcq9Vqtdqbb775119//fjjj1NSUvyVw/M8IaRBCbLBPSoAAAAAAGHQ\np/MNH33zS4OJOZ1uCEleEBUV5fm/vtatW+/evVutVrdu3bpFixaBC/n+++8JIe3btw9BhcRD\nogIAAAAAEAbZGS3G3Jm+6eB/HwHcNjnm+YcyJZ2pVqvt2rUrTaTD4Vi6dOmNN954zz33SFol\nf5CoAAAAAACEx8wHOt/dsdWBM9frbM7ObRKH9bxRH6UJV2VcLtfp06cJISaT6fjx42+//fbZ\ns2e3bt0aHR0dlvogUQEAAAAACJvsjBbZGY1cgiWPq1evZmZmqtXq+Pj4jIyMgQMHlpaWpqen\nh6s+SFQAAAAAACJNv379hFvh63vrrbfeeustn/EB3goXPPULAAAAAACYg0QFAAAAAACYg0QF\nAAAAAACYg0QFAAAAAACYg0QFAAAAAACYg0QFAAAAAACYg0QFAAAAAACYg0QFAAAAAACYgx98\n/B88z7tcLu/pHMcRQtxut893A8TTz5cQ4nK51Gqq1NETT1k+8b9o/gqnjxcWk+M4ieKDbnyV\nSkUTr+jGFxYWjR/4I5I2fqi2FO/f5Grwrs+1ENo6ND1etqFSbAejLJ80y6GSJpgofGtltvGb\nz1AZqsYPPFRC5EGi8l88z3McZzabvd8SNjO73e50OmmKEuKtVivlGCRsjRaLhTKe4zie531W\n1Sdhw6aPJ4S43W7KeM+AKCre4XCIGrPoG1+It1qtlAO6J54mmPxn5TLS+AL6xhcq73A4KI9O\nPPGiGt9ms1H2ZKYaXwgW2/OdTqeoxnc6nT4bP/Aa4TjOYrF4zyi4rc/pdAqVoawz/dbqGSod\nDgdNvKcDiOowFouFJpgE1WFEDa2EpaFS7H5KbOMHsZ8izAyVQTc+5VCJ/VSjQrWfok+tITIg\nUfkvlUql0WgMBoP3W1ar1Ww2x8bG6nQ6mqLMZrPVao2Pj9dqqVq4trbW4XAkJiZSjllGo9Ht\ndvusqk+VlZVqtZoynuf5yspKrVabmJhIE+9yuYxGY3R0dHx8PE28w+Gora3V6/UxMTE08UE3\nflRUFE28yWSy2+0JCQn0je9yuegbv6qqSqVSiW18yni3211dXR1E48fGxtLE22y2urq6mJgY\nUY0fFxfXrBo/ISGBJl5ofJ1O57PxA48VGo0mISHBu2Icx1VVVUVFRYnaWnU6XVxcHE283W43\nmUxBbK3R0dE08XV1dTabLYihkvJYubq6muM4DJU+YT8VgNihEvupAEK7n6LsrhAxcI8KAAAA\nAAAwB4kKAAAAAAAwB4kKAAAAAAAwB4kKAAAAAAAwB4kKAAAAAAAwB4kKAAAAAAAwB4kKAAAA\nAAAwB4kKAAAAAAAwB4kKAAAAAAAwB4kKAAAAAAAwB4kKAAAAAAAwB4kKAAAAAAAwB4kKAAAA\nAAAwB4kKAAAAAAAwB4kKAAAAAAAwB4kKAAAAAAAwB4kKAAAAAAAwRxvuCgAAAAAAhEZeXp6o\n6cAynFEBAAAAgAihrofjuB9//PHo0aNqNY54FQlnVAAAAAAgQsyfP7/+n263+69//WtGRka4\n6gNNgfwSAAAAACKTRqN5+OGHP/roo3BXBIKBRAUAAAAAIlZ1dbXZbA53LSAYuPQLAAAAACLE\nhg0bPK95nq+srNy9e/ddd90VxipB0JCoAAAAAECE2L59u+e1y+X67bffevbs+cILL4SxShA0\nJCoAAAAAECGKiorq/1lVVbVw4cLDhw/36dMnXFWCoOEeFQAAAACITCkpKZMmTXrvvffCXREI\nBhIVAAAAAIhYarX66tWr4a4FBAOXfgEAAABAhDh8+LDntXAz/UcffdSlS5cwVgmChkQFAAAA\nACLE7Nmz6/8ZExOTlZU1Y8aMcNUHmiIMicrp06dffPFFnudLSkpCVeaRI0c++OCDy5cvGwyG\ngQMHPvbYYyqVSnjLYrEUFRUdPHjQaDSmpKQMGjTo0UcfDdV8AQAAAIAd//rXvzyvVSqVXq8P\nY2WgieROVGpra19//fUePXocO3ZM7Ge3bdt29OjRvLy8BtPPnDmzaNGiwYMHP/vss+fOnXvn\nnXc4jhs3bhwhxOFwvPTSS263e/z48W3btjWZTFarNSQLAgAAAACsiYmJ4TjObDYnJCSEuy7Q\nVLImKjzPL1u2bODAgXq9vkGisnfv3uLi4itXriQnJ/fq1WvcuHExMTENPu5yuRwOh3exW7Zs\nSUtLmzJlCiEkPT29oqKitLR01KhROp1u69at169fX7VqFTorAAAAQMQ7efLk/Pnzq6urO3bs\n+Oqrr6akpOzbty8uLi47OzvcVQPRZH3q16ZNm1wu15gxYxpM3759+3vvvffwww+vWLHiueee\nKysrW758OX2xZWVlWVlZnj+zsrJsNtv58+cJIV9//fVtt91WWFj4+OOPT5kyZcWKFSaTKSTL\nAgAAAACsKSgouO+++954442YmBjhV+rdbneDH1cBpZDvjMrx48d37tz51ltvee4eEXAct2HD\nhgkTJvTr148QkpqaOn369JkzZxqNxqSkpEaL5XneaDQmJyd7pgivq6qqCCEVFRUXLly48847\n582bV1tbu2bNmvz8/Ndff91Th08//fTMmTP1K2M2m73n4nK5CCF2u1140Sin00kIsVqtajVV\nKuh2uwkhFoulQeP4w3EcIcRnVX3ied7fogWoEmW8UBmXy0UZLyysw+EQPtiooBvf5/k3f+VL\n2vg8z0vU+DzPk6AaX/ggZbzYxrfZbOw0Pn28ECx14zudTp/xwrv+cBxntVq9Pyi2zkID+quD\nv1oFsbUKPaFRQQ+VNMGEEI7jRG19MgyV9I0vxMswVGI/5bNkImaoDK7xmRoq6bcUeYZKf40f\neKgU/Pbbb1OnTlWpVCqV6p133iGEdOjQ4eeff6aZO7BGpkSlurp62bJlM2fOrJ9RCK5evWoy\nmQoKCgoKCupPr6ioSEpKKikpWbdunTBF2JBGjBgh/Nm9e/f8/PxWp61GAAAgAElEQVTA8+U4\nLi4ubtasWVqtlhASHR09d+7cU6dOeZ5St3///p07dwqvDQZDy5YtA9zEQjmgeNjtdlHxNptN\nVLyo+214nhcV73a7RcW7XC7KAVrgdDopD2UEYhtfbLykjS82XjgqpY8X2/hi45tVzxfb+GK3\nFH89P/DBKMdxNpvN34xY21rFdgCx8ZJufVIPlaHqMP40q61V6p7frIZKsfHh2k/R5O16vZ7j\nOI1G07p16+rqakKIWq0WtR0BO2RKVH7++Wej0fjKK68If3pSjkcffbRv376EkLy8vPqXb3kM\nGDCgR48ewus9e/acPHnS84A54SYWlUqVlJQkdESB8DolJUX4PzExUchSCCE33XQTIeTatWue\nRGXixInDhg0TXlut1tWrVxsMBu9q2O12m80WGxsbFRVFs7w2m81ut8fHx2s0Gpp4s9nscrkS\nEhIov9mqq6vjOC4xMZEmmBBSW1urUqkob9Theb62tjYqKio2NpYm3u1219XVRUdHe99W5JPw\ntYper9fpdDTxwTV+XFycZ70HZrFYnE5nYmIi5TdVdXV1brfbZz/xSbjaUFTja7XauLg4mniO\n40wmE33jO51Oi8Wi0+kon4LicDisVisa3yeh8em3FKHx/fX8wC2m0WgSEhK8F1yoA32dha2V\nvgMErrM3YWul7wDCmU/6oVJshzGZTDzPY6j0CfupAITGp99SsJ8KILT7KZoW69u373vvvTdp\n0iSdTickNvv27UtPT6eZO7BGpkTl1ltvrX/CZM+ePVu3bl2+fHlSUlJ8fHx8fPyhQ4d8JioJ\nCQmeLSc5OVmv13t3tczMzGPHjk2aNEn489ixY3q9PiMjgxDStWvXw4cPu91uYSC+dOkSIaR1\n69aez7Zv3759+/bC6+rqapVK5XOUEdJ6jUZDOQYJX6totVrKMUgY96Oioih3AMJQRVkZz0co\n44WTrfTxQmXUarWo8ukbM+jGp4wX2lyr1Sqx8YWT4NI1vlA+Gt+n4BrfX3zg4w+VSuWzVYV9\nMH0dxG6tQvnSba3CN8r0Q6WnA1AerqlUKp7nGekwzA6V2E/5Kx/7KZ/Cu5+i2fbLy8u/+uqr\nffv23XjjjXV1dbNmzTpx4sTixYtp5g6skSlRaZBgCBeAeaaMHTt2zZo1iYmJOTk5Wq328uXL\nX3/99axZsygLHzly5OzZs1evXv3AAw+cP3++uLh4xIgRwldQI0aM+PzzzwsKCnJzc2tra1et\nWtWxY8fMzMxQLx8AAAAAhJ9Go+nTp4/wul+/fq1bt37mmWduvvnm8NYKgsPEL9MPGTLEYDCU\nlJSUlJRoNJrU1NTevXvTf7xTp05z584tLCzctWuXwWDIzc0dO3as8FZaWtqiRYvWrl373HPP\nxcfHZ2VlTZgwgfKrOAAAAABQlvnz54e7ChAy4UlUcnNzc3Nz60/JycnJyckR+ymP7Oxsf4/H\n7ty589KlS4OrJwAAAAAAhAUTZ1QAAAAAAJouLy9P1HRgmaw/+AgAAAAAIB11PU6n88yZM19+\n+SXlT+IAa3BGBQAAAAAiRIN7VDiOW7NmDe5PViicUQEAAACAyKRWq8ePH//ZZ5+FuyIQDCQq\nAAAAABDJqqurhV90AWVBogIAAAAAEUuv1//rX/8SfvsblAWJCgAAAABEiLNnz9rt9vpTVCpV\ndHT0t99+W1ZWFq5aQXCQqAAAAABAhJg8efKlS5e8px8+fHjjxo3y1weaAokKAAAAAES49u3b\n//TTT+GuBYiDxxMDAAAAQOTIz8/X6XQNJtpstl9//TUs9YGgIVEBAAAAgMhx8803JyQkeE/v\n3r27/JWBpkCiAgAQBuVp7dLKfVxFDQAATTR+/PgOHTqEuxYQArhHBQBAcuVp7cJdBQCAZkGj\n0eB36CMGzqgAAMhNyFtwUgUAIOR2794d7ipAyOCMCgCAtIS05PrN7e3de4S7LuL0XbIv3FUA\nAAgGz/PXrl27du0az/PhrgsED4kKgAi4gCeCXbnxJnlmVL8Xsd+jhhQcFV70XrCr94Jd4a0M\nAECj3G53YWHh0KFDR48ePXr06KFDhxYVFXEcF+56QTBw6Rc0d7Wdb9Ud/zZwjL+jSVy6EwGE\nlSisYnv3HlGnToa8/Pp/Vt/SKbTlSwdpCQAo0d///vfPP//8ySef7NChg8PhOHHixIYNG8xm\n85NPPhnuqoFoSFSgWfMcnpJLFwPHeJi7dGs0sQGl8Nwr0mCinPknm+lu/Syl/2v7608/lH9/\nOGoEAEBlx44dK1asSEtLE/68/fbb27ZtW1BQgERFiXDpF4Bo9u49ytPa+TzGBQXxue7qbu3q\n761QzSLoMNkEPpcSeWdaIm+JAJqzqKgoT5YiyMzMtNvt4aoPNAUSFWi+6h8dVrRL9+Qe/mKg\nWWn6qg9cQlr5pfr/mjgvCC3ckAOgXOnp6d9//339KV9++WWvXr3CVR9oCiQq0EyFMANBMqNE\nMqy1wBkIs92G5gA9kg7ihWXxuUSRtJgAzcftt9/+0ksv/e1vf/vXv/5VWlq6cOHCDz74oHv3\n7nv/I9wVBBFwjwrA/6h/wwCzh5Igj5DcPaKs7tTcDs2RnwBEnnXr1hFCtm7dWn/iihUrPK/v\nvfdemasEQUOiAs1R4EPGIA5P2bwfGvyRP2fwOUfFdZvIvo2+94Jd25/5/eC3DjeYGNlLDSwT\ncmb0QLHwg4+RBIkKgF/eB5EBDnAVd9DZnNGv2Wa1Wn2eSfjk6Z5xcXExMTHy10dq3sv70N+O\nhKUmAN5wZg+AIFGB5qn+oSf9V93+jmWbz4FspJJhzaaVX3I4HLW1tbGxsbGxsaEqVgZDCo5+\nPqdPuGsRTjipAuHVe8Guz56/y/Oa4BwLNCdIVABoCYetRqPR5XK1bNky3NWBkBHWLM/zlZWV\nUVFRBoMh3DUKD++jH7vdbjKZwlIZqQX4uvpQ/v34MhvCCz0QQICnfkFzl3j6lM/pirj1GRiB\n3qIs/o4Ctz/z+x0z78AxIrDmvv/7mhByV/5nwp/ootB8IFEBxfD5OychoTv+bZtLFxv8rgUu\n6AJK+OnPiOHvHhUcF4KcfPa3IQVH5a8JQNjh0i9gmufgL+H82fDWBMCn2s63hrsK0AjhJpP6\nF/f7u8S/srKywVO/ANiEW6egmUCiAsrwW0YH4UWzegoTMM7evUf9P9E5GSScJPF8Rd3o4d2O\nmXckJyfLUTMAX+hP3ykiV+m9YNdX8weGuxagYEhU/ovnebfbXV1d7fMtQojZbLZYLJRFEULo\nb0LlOI4QUlNTQx/P87zPqvqrj79F88fpdFLGCwtrt9udTid9vNVqtdlsgSMtXW/zOT1wxYTG\nNJlMKpWKpj5BNH6jdaiP53lRK4uIaXxBEI1vt9vp4+l7vtSN73a7iZjG5zhOpVKJakyXyyUq\nvoEAnxUa02az+Wx8l8sVuFa1tbX+Cg+iwzgcDppI+q21fnxdXZ2oDlBbWysq3mg0BogZ/Nbh\nHTPv8Lz2Dgi8jpQ4VNaPx37KX+FEyqFSaJyQDJWe3kv8dOD6/C2+DPsp+qHy7ld2f/J0T0/j\nCwtVfzG9K0P8N37goRIiDxKV/1KpVBqNxud3aVar1Ww2x8XF6XQ6mqLMZrPVak1ISNBqqVq4\ntrbW4XAYDAa1muquIaPR6Ha76b/2q6ysVKvVlPGeZx8lJibSxLtcLqPRqNPp4uPjaeKFh7TG\nxMQ0+ssM/sZ7S9fbAnxv7Wn8qKgomvqYTCa73S6q8V0uF33jV1VVqVQqsY1P+eApYb8eRONT\nPiHXZrPV1dUF0fOV2/harZay8X3elBKgcwqNr9frfTZ+4LFCq9UmJiZ6LwjHcVVVVUFsrXFx\ncTTxwlO/aLZWgTBUxsfHR0dH08TX1dXZbLbExERRQ2VSUpK/xEb4NnrwW4cDfNMc4F2FDpUC\n7KcCCLrxKYfKoBs/wFDp79QKzVkURobK+oug0+kGvv6V588A8wrc+JTdFSIG1jcwCrcmA0BT\n4A54ULT6CYnwnU5KSgpllsiC+hug95MAFHHdGrBAMT0empVGsxSkMRBePnsgHhYXXvUPjAJn\nKchhAAAUAYkKKAyeHQzMQv6sFPgqF0BSNN8F+IzBlwjQABIVYJG/PCSy8xMc5ipIWvml1F8u\nhLsW8F8+j28C3LALAADswz0qoCQR//jXKzfepDv+bf0pEb/IyvXrTb/znoj1FRb+voUd/Nbh\n7c/8vkWLFjLXB5qb/q/t/+TpnuGuBUM8Jy0bvQiz/ulNIbjP4s/RmOCBRAUY5TnaE56mkpCQ\nQPk0FYXyeTrF85PnOPYFCMDfpVzV1dXCc1oBpDak4OgXL/ULdy2UhPIKTNx238whUQEIv/pZ\nir17j6hTJwmuBGNe6i8XhGdDJyQkhLsuEQ5HKsAm3FARmKgnLDd4Stje2TkBSoDmA4kKgALg\npAo0Ww2OVIYUHD2YNwipC4Sd9zF03yX7hG4pvIUuKrSA8Htfer2e8kdsvGF7b85wMz1AmHmf\nOam7tStOpwDUV/+g8M68Twm+agXmoYvS826re5ceoH/gOEQwJCoAyoDUpYnQgErU4Ohk0LKD\nAd4FkI2/vtd7wS50S7HQYhAALv0CCLP613TxPF9ZWWnv3iOM9YkMQloSc+J4/T9xBZ2yNDh8\nwdEMKA6uWaLRoIkcDkdtbS1+zB4EOKMCwBZ/WQqOsINj6XpbuKsAEkL2AvJDr5Oad5YCzRbO\nqABApPFc5WXt1p3870VfOKmiFDgWBGY1+F5f1E+FAIAoSFQAAIA59MeCOBCEMPLZM9EhJdJ7\nwa5u4a4DyAyJCgBbdMe/jYqKMhgM4a6IUjV60zxOqigOzq6AsiB5bqJPnu4ZGxsbGxvr/dbk\nyf+Uvz4QRkhUAKDZQa6iLJ5jvtra2gYP/gIIL6FzWq1Ws9mckJCg0+nCXSOAiIJEBQAiR4DT\nKchMIsMnT/ds0aKFSqUKd0UAAEByeOoXAESOtPJLwj/vt/A7KgAAAMqCRAUAIo2/nAS5CgAA\ngILg0i8AiDSeMypVVVUqlSo5OTm89QEAAIAg4IwKAAAAAAAwB4kKAAAAgLR6L9jl70HbeAA3\ngD9IVAAAAADklrNoL0GWAhAQEhUACeHubQAA8GQjnhdDCo76DACA+nAzPUDo1c9PrN26E0KS\n8SMeAADNUoAkBPkJQGA4owIAAAAgk94Ldg3465c+p8tfGQDGIVEBCDGfl3vhGjAAbwNf/yrc\nVQCQlqj0A7kKQANIVABCCQkJgCgNrtQHAADwwD0qADIpT2uXhjtVAP7D8+XxPQv3HMq/P7yV\nAZBIg74d+JwJNgSABuRLVHbv3v3FF19cuHDBbre3bdv2oYceuu+++0JV+JEjRz744IPLly8b\nDIaBAwc+9thjKpVKeMtisRQVFR08eNBoNKakpAwaNOjRRx8N1XwB6mv0dApyFQABLnGB5klI\nRcxms7/bVJCrANQnX6Kyd+/eLl26DB8+PDY29uuvvy4oKHC5XIMHD6YvYdu2bUePHs3Ly2sw\n/cyZM4sWLRo8ePCzzz577ty5d955h+O4cePGEUIcDsdLL73kdrvHjx/ftm1bk8lktVpDuFAA\nSlR9S6dY5EvAEhyfQXPzydM9DQZDVFRUuCsCwDT5EpUlS5Z4Xt96660///zzV1995UlU9u7d\nW1xcfOXKleTk5F69eo0bNy4mJqZBCS6Xy+FweJe8ZcuWtLS0KVOmEELS09MrKipKS0tHjRql\n0+m2bt16/fr1VatWJSQkSLZkAP+f52yJz1MrEp1LsXfvoT9TFtxncYYHwgKnUwAAgEbYbqZ3\nOBwGg0F4vX379vfee+/hhx9esWLFc889V1ZWtnz5cvqiysrKsrKyPH9mZWXZbLbz588TQr7+\n+uvbbrutsLDw8ccfnzJlyooVK0wmU2gXBJhSntbO2LGz53W4qpFWfsnzL+bE8diT34c2H2iw\naDWdMuk/a+/eo34JuPsfGIHsBQAAGgjPzfS7d+8+e/bsk08+SQjhOG7Dhg0TJkzo168fISQ1\nNXX69OkzZ840Go1JSUmNFsXzvNFoTE5O9kwRXldVVRFCKioqLly4cOedd86bN6+2tnbNmjX5\n+fmvv/665w6Wf//735cu/f8jSJfLxXGczWbznovL5SKEOJ1OnudpFtDtdhNCHA6H8MFGcRxH\nCLHb7Z6KBSZUw2dV/cXzPE8ZLxTurym8CQvrdrsp44U2cblclPFOp5PQNX5l+1uEF/buPa4R\nQuiaSKg/feMLK0tU49PH0zS+sJgNEozytHYtzv3UaPmeJqpfQoB50Te+QFi5DodDaNVGKa7x\nvSsTqp4vlBZgXna73fuD4a2zv3in0xlgcfq9+oW/t3ov2LXvxb4ByvcMlTSVIeKHSuEjouKl\na3xh6wii8RnZTwWxtTaH/VT98jFU+tSUoRIiTxgSlQMHDqxatWrWrFm33HILIeTq1asmk6mg\noKCgoKB+WEVFRVJSUklJybp164Qpwig2YsQI4c/u3bvn5+cHnhfHcXFxcbNmzdJqtYSQ6Ojo\nuXPnnjp1qkuXLkJAaWnpzp07hdcGg6Fly5Z1dXX+ShO19yKEWCwWUfFms1lUfICqeuM4TlS8\ny+USFe90OoWRmpLdbqc/2iDiG19Q2f4W3fFvaSIlbXye50XFu91uf/HC+ZCmV6m+RltJbOOL\nvRNMKY3vk9gtxeFw+LyENfDxCsdxFovF34xCVQd/xG6tTbkVkGZBxHZ1STuM0odK7KcCELul\nYKgMIFSNT5naQcSQO1HZsWPHP/7xj+eff753797CFCE5zsvLq3/5lseAAQN69Pj/R2Z79uw5\nefLkjBkzhD+Fm1hUKlVSUlJ1dbXnI8LrlJQU4f/ExEQhSyGE3HTTTYSQa9eueRKV4cOHe+br\ncrmKi4vj4+O9q+F0Ou12u16v9xQVmLCBxcbGqtVUF9fZbDaXyxUXF0f5ZYnVahVyMJpgQkhd\nXZ1arY6NjaUJ5nnebDZrtVq9Xk8T73a7rVZrVFSUTqejiRe+JtHpdJQ3EQqN2Wjj1z9XUJ/P\nFVqf2Ma3WCwcxzVarIfZbFapVKIaX6PReN+jJQhwwGLv3iPwSRV/TUT8t5LYnm+3251OZ0xM\njEajoYlXVuM3ICQP9FuK0POjo6Ojo6O93w3cYsL2673gYrdWoc7+6uCvzvRbq9BhAncAzzkT\nn6dWhhQcDXBSRegw9B3AYrHwPE8/VIrqMISQuro6sY1PP1QKQ6vYxmdnPyW28RncT9FvKZT7\nKY9mOFSGqvEpWwwihqyJyqZNm7Zs2fLyyy93797dMzE1NTU+Pv7QoUM+E5WEhATPffDJycl6\nvT49Pb1BTGZm5rFjxyZNmiT8eezYMb1en5GRQQjp2rXr4cOH3W630LOFq7xat27t+Wx2dnZ2\ndrbwurq6urS01Oeox/O83W4XtYMhhERHR9PvMAghOp2OfodBCKEcoMl/xiDKeGEMUqvV9Idf\nVqtVo9FQxjscDpvNRr+D4Xne4XAEbvwAN1pUtr8l8P0hTqfT5XKJanyO4+gb32KxhKrxG72f\nhL5WDQRoJbE93+l0RkdH0x9aKaXxvbndbovFEqqeH7gF1Gq1Tqfz/iDHcWK3VlF1Fq43E7W1\nCh2G5vDuUP79dXV1NpstKSlJ7FBJ/50Oz/PSDZXCsbVEje9wOKxWaxCNz85+yu12Yz/lE4bK\nAJoyVELkkW99r1mzZvPmzRMnTkxISDh//vz58+eFtEGj0YwdO3bXrl2FhYUXL14sLy//5ptv\n3nzzTfqSR44cWV5evnr16osXL37++efFxcXDhg0TBosRI0aYzeaCgoKLFy+eOHFi5cqVHTt2\nzMwUcecxRIDmc794gCVtPo0AAAAAkUG+Myr79u1zu90rV670TElNTX333XcJIUOGDDEYDCUl\nJSUlJRqNJjU11XNhGI1OnTrNnTu3sLBw165dBoMhNzd37NixwltpaWmLFi1au3btc889Fx8f\nn5WVNWHCBMqv4kApmskheODFDHzWqCmfBQgOfhoFAACaSL5EpaioKMC7OTk5OTk5gUvIzc3N\nzc31+Vb9K7ga6Ny589KlSykrCcCswD/SEtwvoiBFgRDqvWDX53P6NJhC/vNT3AAAAGKF5/HE\nACHU4Gg7hMfxbKq/IG63u7q6Wq/XB75p0vMRh8NRW1sbGxtLf7swAL3+r+3/5OmeBD+KAgAA\noYBEBSJN0o+nrVarwWCgvEkRAJouQGaCa8AAACA4eHgCAAA0Sf0sZUjB0T6LPw8QAAAAQAmJ\nCgAAAAAAMAeJCgAABI/ybAlOqgAAgFhIVAAAAAAAgDm4mR4AAEIPN9ADAEATIVEBAIDg1U9I\nrFar2WxOTEyMjo4OY5UAACAy4NIvAAAAAABgDhIVAAAAAABgDhIVAAAAAABgDhIVAAAAAABg\nDhIVAAAAAABgDhIVAAAAAABgDhIVAAAAAABgDhIVAAAAAABgDhIVAAAAAABgDhIVAAAAAABg\nDhIVAAAAAABgDhIVAAAAAABgDhIVAAAAAABgDhIVAAAAAABgDhIVAAAAAABgDhIVAAAAAABg\nDhIVAAAAAABgDhIVAAAAAABgDhIVAAAAAABgDhIVAAAAAABgDhIVAAAAAABgDhIVAAAAAABg\njjbcFWAIz/Nut7u6utrnW4QQs9lssVgoiyKEmEwmyllzHEcIqampoY/ned5nVf3Vx9+i+eN0\nOinjhYW12+1Op5M+3mq12mw2mnihcegbX4g3mUwqlYo+XlTjE0JENb6olUXENL4giMa32+30\n8ew0vtvtJmIan+M4lUolqjFdLpeoeIfDIWpLsdlsPhvf5XIFrlVtba2/GQXRYRwOB02k2K1V\niK+rqxPVAWpra0XFG41GmmAivsMoeqjEfipw4UTKobIZ7qfEDpWhavzAQyVEHiQq/6VSqTQa\nTXJysvdbVqvVbDbHxcXpdDqaosxms9VqTUhI0GqpWri2ttbhcBgMBrWa6hyX0Wh0u90+q+pT\nZWWlWq2mjOd5vrKyMioqKjExkSbe5XIZjUadThcfH08T73A4amtrY2JiYmJiaOKDbvyoqCia\neJPJZLfbRTW+y+Wib/yqqiqVSiW28Q0GA028sF8PovFjY2Np4m02W11dXbNqfK1WK6rxo6Oj\nExISaOKFxtfr9T4bP/BYodVqExMTvReE47iqqqogtta4uDiaeLvdbjKZxG6t8fHx0dHRNPF1\ndXU2my0xMVHUUJmUlER5eFddXc1xHIZKn7CfCkDsUNkM91Nih8pQNT5ld4WIgUu/AAAAAACA\nOUhUAAAAAACAOUhUAAAAAACAOUhUAAAAAACAOUhUAAAAAACAOUhUAAAAAACAOUhUAAAAAACA\nOUhUAAAAAACAOUhUAAAAAACAOUhUAAAAAACAOUhUAAAAAACAOUhUAAAAAACAOUhUAAAAAACA\nOUhUAAAAAACAOUhUAAAAAACAOUhUAAAAAACAOUhUAAAAAACAOUhUAAAAAACAOUhUAAAAAEjv\nBbvCXQUA+B9IVAAAAAAI+U+u0mfx50MKjt679EC4qwPQ3CFRAQAAgObOczoF51UA2IFEBQAA\nAJo1f8kJkhaA8EKiAgAAAAAAzEGiAgAAAM1X4NMmOKkCEEZIVAAAAAAAgDlIVAAAAKCZojlh\ngpMqAOGiDXcFAAAAAMLjUP793hMdDkdtbW1sbGxsbKz8VQIAD5xRAQAAAAAA5iBRAQAAAAAA\n5iBRAQAAAAAA5sh6j8qRI0c++OCDy5cvGwyGgQMHPvbYYyqVSuqSpZspAAAAAABIRL4zKmfO\nnFm0aNGtt976xhtvjBs3bsuWLUVFRaJK2LZtW15enqiSmz5TAAAAAACQn3xnVLZs2ZKWljZl\nyhRCSHp6ekVFRWlp6ahRo3Q6HSFk7969xcXFV65cSU5O7tWr17hx42JiYhqU4HK5HA6HqJID\nzxQAAAAAANgkX6JSVlbWt29fz59ZWVmbN28+f/58Zmbm9u3bN27c+MQTT3Tu3Lm6unrNmjXL\nly+fM2dO00sO8JYw5dy5c5WVlcJrq9XK87zT6fSehdvtFv73+a43juMIIS6Xi+d5+nin06lW\nU53jEoqlrIznI5TxQuH08ULjcBwnKp6+MYNufJrg+vGU1wQy1fhC5ekbX2gWNH6AwqVufH/x\ngccKnuddLpf3B8XWgdmtlXKo9HQAJXYYpTc+9lMhjMdQGUDg/RRld4WIIVOiwvO80WhMTk72\nTBFeV1VVcRy3YcOGCRMm9OvXjxCSmpo6ffr0mTNnGo3GpKSkppQc4C3PlLVr1+7cuVN4bTAY\nWrZsWVNT429eFouFdoEJIYTU1dWJijeZTKLiA1TVG8/zouKdTqeoeIfD4fN8lz82m81ms9HH\ni218s9ksKr62tlZUvKjGERvvcrkkbXy73W632+nj0fgBiN1S/PX8wIcsbrfbZDL5m5HYOovt\nAGK3VrEdQOxQKWmHaW5DJfZTAWCoDCBc+yn67A4iQ/h/8PHq1asmk6mgoKCgoKD+9IqKiqSk\npJKSknXr1glTeJ7neX7EiBHCn927d8/Pz2/i3Pv06dO6dWvPn9u3by8uLvYO4zjO7XZrtVrK\nLzPcbjfHcWLjo6KiKKstbKhaLe3qE76AFBWvVqs1Gg1NsPBdr9h4jUZD+bUcg43P83yzWllo\n/ADxoer5v/32W4DPqtXqPXv21P/apSl1wNbqD4Nbn6IbnzC29UkXz2DjK32o9BcvXAWzbds2\nyu1ClDNnzoS8TGgimRIVlUqVlJRUXV3tmSK8TklJEc4J5uXlZWVleX9wwIABPXr0EF7v2bPn\n5MmTM2bMEP4UbmIJUHKAtzxTBg0aNGjQIM+769evX716dUgWGQBAFJ1O529HrlarP/zwQ5nr\nAwDAIJVKtXnzZunKj42Nla5wEEu+MyqZmZnHjh2bNGmS8OexY8f0en1GRoZWq42Pjz906JDP\nRCUhISEhIUF4nZycrNfr09PTKUsO/Ja3uLi41157zedbB/SyrF4AACAASURBVA4c2L59+9ix\nY2+77Taahd22bdtXX3315z//uV27djTx77///qlTp+bNmxcfH08Tv3z58t9++23hwoU0wYSQ\n/Pz8+Pj45557jibYarXm5+d36tRp4sSJNPEVFRXLly/v1atXbm4uTfypU6fef//9+++/v3//\n/jTxX3311bZt28aMGXP77bfTxG/fvv3AgQNPPfWUd1fxqbCw8OTJky+++KLBYKCJLygo+PXX\nXxcvXkwTTAhZuHChXq9/4YUXaILtdvuCBQs6dOjwxBNP0MRfvXr1zTffzM7Ofvjhh2niT58+\nvW7duvvuu2/AgAE08QcPHiwtLX300Ud9bp7eduzY8cUXX0yZMuXmm2+mid+4cePx48dnz57t\n81yBtxUrVly+fPnVV1+lCSaELF68WKvVzp49mybY5XLNmzcvIyPjySefpIm/fv36smXLevbs\nOWrUKJr4H3/88b333hs4cODAgQN9Btx8883+EpU//elPnpPJ9dXV1QkPNhw/fjxNHS5durRi\nxYq777576NChNPHff//9hg0bHnrooZycHJr4L774YseOHePGjevatStNfGlp6cGDB59++um0\ntDSa+HXr1p0+fXr+/PmURxJvvvmm0WikP/e+YMGCpKSkWbNm0QRbLJZXXnmlc+fOEyZMoIkv\nLy8vKCi48847hw8fThN/8uTJwsLCwYMH17/TMgAG91PXr19ftGgRTTARuZ+y2Wx5eXkdO3b8\n05/+RBMvdj9VVla2fv165e6n3n777StXrixZsoQmmIjcTzkcjvnz50u3nzpz5szatWsD7Kdq\namoo2yEIBoOBcn8H8pAvURk5cuTs2bNXr179wAMPnD9/vri4eMSIEcLTt8aOHbtmzZrExMSc\nnBytVnv58uWvv/6aclcRuOQAb3mLjo72dwBx9erV7du3d+vWzV9AA9999x0h5I477ujSpQtN\n/I4dOwghffr0qX+2J4D33nuvqqqKsjKEkMWLF8fFxVHGm0ym/Pz8Fi1aUMb/+OOPhJC0tDTK\neOFkdIcOHSjjf/vtt23btnXt2pUy/sSJE4SQ7Oxsyr31p59+SgjJycm54YYbaOLXr19/9epV\n+sZ/7bXXYmNjKeMtFsuCBQtSUlIo48+fP//mm2+2bduWMl6v1xNC2rdvTxlfXV1dWlrapUsX\nyvhTp04RQnr27Ek50O/du5cQcs8997Rp04YmvrCw8PLly/SN//rrr+t0Osp44frp5ORkyviL\nFy8uW7asTZs2lPFxcXGEkIyMDPr6e/hrT+GOu1atWlGWefLkSULITTfdRBkv3LfasWNHyvgr\nV67s2LHjtttuu/fee2nijx07dvDgwTvuuMPzgJPAPvnkE0JI3759KQ9T1qxZYzKZ6Bv8lVde\niY+Pp4wXLtBv2bIlZXxZWRkhpF27dpTxwpUtt9xyC2W82P3U8ePHv/rqq+zsbMqsMoj9VGVl\npUT7KeHWGun2U9HR0UTMUCl2P3Xy5MkDBw78/ve/7969O0282P3U+++/X1FRIdF+ymq1EkKk\n208J18sEN1RC5JEvUenUqdPcuXMLCwt37dplMBhyc3PHjh0rvDVkyBCDwVBSUlJSUqLRaFJT\nU3v37h2SkgO8BQAAAAAAzJL1Zvrs7Ozs7Gyfb+Xk5DR6aUFubq6/k7YBSg7wFgAAAAAAsEmF\nJ1IDAAAAAABrQv9wNwAAAAAAgCZCogIAAAAAAMxBogIAAAAAAMxBosIKi8VSXFwsPO/So6am\npri42GazsR9PCLHb7T/88MN3331nMpn8LGWQ8awtbBCNo2jSrVl5SF1/pbdPo0R1eAa3DklX\nEFOjjaLHeTaJqj9rC8vUUIb9LARH1qd+KVqAXz/UaDQpKSk9e/bMzc0VHr4eRPzOnTuPHj3a\n4LFmBoPhyJEjGo1m2LBhDQphLb68vHzBggXXrl0jhMTFxc2ZMyfw4+FFxbO2sGLjpe48ksZL\numZlWFip6y91PA2mRifWtg6pVxBTo42ix3nC2NAntv6sLSxrQ5nUnRMiFRIVWnfddZe/tziO\nq6qq+uijj4xG45QpU4KL379/v8+HLw8aNGjr1q3e2yRr8e+//35UVNS8efP0ev3GjRtXrVq1\ncuVK748HF8/awoqNl7rzSBov6ZqVYWGlrr/U8TSYGp1Y2zqkXkFMjTaKHucJY0Of2PqztrCs\nDWVSd06IWDyEyGeffTZ06NCg40ePHn3u3DnvsHPnzo0ZM8Z7Omvx48ePP3z4sPD6119/HTp0\naG1trXdYcPGsLazY+EY1sfNIGi/pmhVbmSDipa5/2NuHhpyjE2tbh9QriKnRRtHjPA2Zh0pR\n9WdtYVkbysK+nwWFwj0qIZOZmdmUeJfLZbFYvMPMZrPL5fKezlq80WhMTU0VXrdu3VqtVhuN\nRu+w4OJZW1ix8Y1qYueRNF7SNSu2MkHES13/sLcPDTlHJ9a2DqlXEFOjjaLHeRoyD5Wi6s/a\nwrI2lIV9PwsKhUQlZNLS0poS37Zt2x9//NE77MyZM23btvWezlo8z/Mqlar+FI7jvMOCi2dt\nYcXGN6qJnUfSeEnXrNjKBBEvdf3D3j405BydWNs6pF5BTI02ih7nacg8VIqqP2sLy9pQFvb9\nLCgU7lFhxd133/3RRx/dddddnq8oCCHl5eX//Oc/R44cyX48IeSll17SaDTCa47jXn75Zc+f\na9eubUo8awsbROMomnRrVh5S11/p7dMoUR2ewa1D0hXE1Gij6HGeTaLqz9rCMjWUYT8LwUGi\nworhw4cfOHBg+vTpAwYMSE9PJ4RcvHhxz549bdu2HT58OPvxQ4cOFbW8ouJZW1ix8Yom6ZqV\ngdT1V3r70BDV4VnbOqReQUyNNooe5xkkqv6sLSxrQxn2sxAcFc/z4a5D5Bg2bNjWrVuDjjeZ\nTOvWrTtw4IDwjHC9Xt+nT5+JEyfGxcX5/Dhr8Y3avHnz6NGjg4tnbWFD3jhN7DzhjW/Kmg15\nZYKIl7r+UsfTkHN0UtzW0cQVxNRoE/ahTOmjgaSdh7WFlXkoC3vnBEWS++79iCbqAR3+4p1O\nZ0VFRUVFhcvlavDWpk2b2I8PoOntw9rCMtU4YYxnqjLNMF62Oojq8M1t62BqtMFQxmY8U5UJ\nV3wYOycoEW6mZ45Wq01NTU1NTfVc6+lRVFTEfrykWFtYphoHQGqiOnxz2zqYGm0wlAGz0DlB\nFCQqTcJx3DfffJOXlyf8uXr1as9bp06dEk5WNmAymT799FPveGhupO48iu6ciq48IxTdhoqu\nPIRWCDvDsGHDzp8/H3h26PkATMHN9EGqqqr69NNPP/3008rKys6dOwsT27Rp4wmYM2dORkbG\n/PnzU1JS6n/w+vXrb7/99qBBgxrEQ/MhdedRdOdUdOUZoeg2VHTlIbTC0hnQ8wGYgkRFHJ7n\njx8/vmPHjsOHD7vd7lGjRg0ePLhly5Y+g6urq59//vkFCxYID6yAZk7qzqPozqnoyjNC0W2o\n6MpDaDWrztCsFhYgCLj0i5bJZCouLp46deprr71mMBiWLl2qVqv79Onjb0AhhMyePTs9PX32\n7Nnff/+9nFUF1kjdeRTdORVdeUYoug0VXXkILRk6w6VLl876EbrloIKeD0ADZ1RoTZw4MTMz\n87HHHrvrrruio6NpPqLX619++eWVK1cuWLDg6aefvvfee6WuJLBJ6s6j6M6p6MozQtFtqOjK\nQ2jJ0BmWLVvm7y1RD/ZtOvR8ABo4o0JLo9E4nU6Xy8VxHP2n1Gr1n//857Fjxy5fvnzz5s3S\nVY9NuC9QIHXnkb9zhnDNhmXLirAnGSh6dIrIDtCsKGs0mD59+mI/KGfnb3kZXFj6ygdRf/af\nTACRAYkKrXXr1vXt27e0tHT8+PHLly//4Ycf6D87atSoWbNmbd68uaCgQNSQpNzDqaqqqk2b\nNj3xxBNLliyxWq3CxAb3Bc6ZM6eqqqrBB4X7Ar3j5ax8yMuXuvPI2TlDvmZl3rKk7pky9Hxv\nTI1OrG0dDcizgpg6HFTQOC9DZ+jQoUM3PxqdReDlZXBh6SsfRP1pyLmlQKTCpV+0YmJiBg8e\nPHjw4LKysh07dsyfP5/juN27dz/wwANpaWmNfrxfv34tWrRYsmTJ6dOnaWan0AdDyXNfoOIa\nR+rOI0PnlG7NyrNlRfaTDJganVjbOgSyrSCmHlSluHFe5p5MiX55GVxYZm/Wx1POgBLOqIiW\nmZn57LPPrl27dsKECd98881TTz01c+ZMmg9269btr3/9q91uDxDD8/x333336quvTpo0acOG\nDf379//HP/6xdOlSn8HCmHLx4kX6yktXvgz3BSq3cTwk7TwSlS/bHZ8SNU6zepIBI6MTU1uH\nPCtIhtGDnqLHeYHUQyUlscvL1MKy+WQCprYUUAZpf/g+0nEcd/To0UWLFnm/deHCBbvd7j29\nqqpq//793tNra2u3bNny5JNPjh49esWKFWfOnBk+fPiFCxf8zXro0KE//PBDXl7e6NGjjx8/\n7pl+7ty5oUOHyl/+ww8/PG/evM8//9yz1I2Wf+7cObfb/fbbb48YMWLPnj0Byld64/gUws4j\nafmSrlmpKy9D/cPSPjTCNTqxtnVIvYKkHj2GDh26b9++n/yQuTJKHw2sVivHcZTz5UUuL2sL\nK/XKGhqQd3xY9rMQAXDpV5OoVKqsrKysrCzvt/ydOY2JiSkvL/eervQHQzXlvsAbbrhh+fLl\n169fHz16dFgqH5anr4Sw80havqRr1p8QNo7U9Q9L+9AI4+jE1NYh9Qpi6kFVih7n/QlhZ9Dr\n9YSQX375Zd++fUJAWlpa//7927Vr57OcIJaXnYWVYWVNnz6d/uIrPOUMgoNEhdaZM2cCvNup\nUyfviXV1dWfPntVqtV26dFGpVG63e+fOnZs2bbLb7WPGjGkQrPTDqXXr1u3bt6+0tPTdd9+9\n++67Bw4cSD+XUaNGtWrV6m9/+9u1a9cGDx4sf+WlLl/qziNp+ZKuWakrL0P9pS6fBoOjEztb\nh9QriKnDQUWP80T6zkAI2bJly/r161UqlXAF1KFDhz7++OPHH3985MiR3sFBLy8LCyvD0NSh\nQ4eMjAzKMpn9TgcYh0SF1gsvvBDgXe/nr//00095eXkmk4kQ0rVr15kzZy5ZsqSysnLIkCEP\nPfSQdwlKP5yS9L5ApTeO1J1H0vKlvuNT6saJgCcZNIrZ0YmFrUPqFcTU4aCix3kifWc4cuTI\n+vXrc3NzH3300djYWEKIxWLZtGnT+vXr09PTe/bsGcLlDfvCsjA01cfCdzqgREhUaKlUqlat\nWt133309e/ZUqxt/CEFRUdHvfve7sWPHfvbZZ3v37p03b96gQYOGDh2q0+l8xkfM4VRmZmZm\nZuYTTzyxe/funTt3lpaWZmRkvPXWW43OQrgvMD8/X/7KS12+1J1H6vIFUqxZ2SovXf1lKz8A\nlkensG8dHhKtIKYOBxU9zhPpO0NJScmDDz44YcIEz5TY2Ng//elPdru9pKTEO1HxCG55m8nQ\nR4mpLQWUJNw3ySjGlStX1q5dO27cuIkTJ27cuPG3334LHD9u3Ljvv/+e53mj0Th06NDt27eL\nml1NTc3HH388efLkoUOHzpgxwztAuO+twcRffvll0qRJNPeZSV2+QKL7xRXXOFJ3Hpk7Jx/S\nNSt/5UNb/7CU3wBToxNrW4dP0q2gkI8ePuMpKW6cl7ozjB49uqyszHt6WVnZ6NGjA3/Ww9/y\nsrawoiofRP3FPpmgAXk6J0QAJCriOJ3O/fv3v/TSSyNGjFi4cOG///1vfxvqsGHDfvnlF+H1\n8OHDg9vTRNjhFA2r1bpx40aaSMU1jtSdR+bOKVbgNct45XkxPTNc5TMyOrG5dTSdqBXEzuFg\naCsTKuEaDXJzcz3x9V28eHHkyJHU1Rcnsoe+ixcvrl+/fsmSJUuWLFm/fr3P5g2Awc4JrMGl\nX+JotdqcnJycnJzy8vJVq1a98sorhYWFiYmJ3pE8z6tUKs+fGo0miNkp5cFQRJabIKWrvDzl\nS915JCpfnjUrXeMo+kkGojAyOrG2dYRlBYXxQVWSVkbpo8ENN9zw008/eTfdjz/+eMMNN3jH\ni11ephaWtScT+CT1fhwigIrn+XDXQWFsNtsXX3yxa9euX3755Z577pk2bZrPB+0NGzYsKSlJ\nGEoqKys9rwVr165tEB/aMeXDDz+Uufxhw4YFKF/sfYHx8fFyVl7q8j0k6jySli/pmpW68jLU\nX7b2ocHI6MTU1iH1CpJh9GhwOHj9+nVCiM/DQUWP8/VJ1Bnef//9/fv3L1mypH5acvXq1Rdf\nfLFfv37jx49vyvKytrBSr6wjR44sXLjQ+8kEpaWl8+fP977hR7b9LEQYnFER4fz58zt37ty3\nb1+rVq0eeOCBe++9Ny4uzl/w0KFDRRWu6AdDEYnvC1R64xCJO4+k5ctwx6ekjRMZTzJoFDuj\nE2tbh9QriKkHVSl6nBdI2hkeeeSRQ4cOTZs2bcCAAb/73e94nr9w4cLevXtvuOGGRx55xDte\n1PKytrCsPZlAhv0sRCScUaH17LPPXrx48e67777//vu7dOkSkjI3b97seSj48OHDA4wp3s+m\nzMvLczqdnjElNTU18JgidfkVFRW7du3as2dPVFTUoEGD7rvvvhYtWgRY9j/+8Y9/+ctfunXr\nVlNT88c//nHq1KkPPvigv2ClN47UnUfS8iVds1JXXob6S10+DaZGJ9a2DqlXkNSjx7x589q1\nazdlypQG01euXHnlypWFCxfKWRmljwaEEJPJtHbt2gMHDtjtdkKITqfLycmZOHFiQkKC92dF\nLS9rCyv1yhozZkxeXl7nzp0bTD99+nReXt6mTZsaTJe6c0KkwhkVWmfPnk1KSvrpp59++ukn\n73dXrlwZRJlFRUWeMWXVqlW7du365JNPdu3aRTOmnDt37i9/+UuXLl1uvPHGvXv3jhgxIvCY\nInX5bdq0mTBhwrhx4w4ePLhz587Nmzf37NnzgQce6NmzZ/3Laj1qa2uTkpIIIQaDQa1Wew92\nclZe6vKl7jySli/pmpW68jLUX+ryaTA1OrG2dUi9gmQYPcaNG+c9vX///nl5eTJXRumjASEk\nISHhmWeemTZt2m+//UYIadmypVbr90BI1PKytrBSryyHw+Hz/E9sbKzT6fSeLnXnhEiFRIVW\nEFfjiBIZh1MS3Reo9MaRuvNIXT6R8o5PGSpPFPskA0pMjU6sbR0C6VYQU4eDih7nifSdYdiw\nYW+99VZGRoZWq01NTaX8FOXysrawAnaeTMDCdzqgREhUaE2ePLnRmAanmIMQAYdT9e8LvPfe\ne4VH1vj00ksvCcVyHPfyyy83er+4chtH6s4jT+eUaM3KU3kiZc+Up/wAmBqdWNs6PCRdQewc\nDkpaGQ+ljwZiUS4vmwsr0cq66667NmzY0LVr1wZPJtiwYUO/fv38zSK83+mAEiFRCaUGp5iD\no9zDKanvF5e08vKUH0BIOo9E5cuwZgNrYuMo90kGISTn6MTa1iHPCmLqcFDR43xgUg+VDdAv\nL4MLy9STCTzCuJ8FJUKiwhBFH0557gtcsGABzX2BYr9MUnTjKJrUa1ZqUtdf6e1DKbyHa00h\nwwpi6nBQ0eO8DC5dusRxnM+3OnTo0GCKqOVlbWGlXlmxsbFLly5du3bt3r17PU8m6NOnz8SJ\nE4XH03nDfhaCgESFFUo/nJL0vkClN46iyXB7q6QU/SQDRij6cE3qFcTU4aCix3l5LFu2zN9b\n3k/IDfnyRtLQR0Q+mQD7WQgOEhVWKP1wStIvP5TeOIqm9K+1IuBJBmGn6MM1qVcQU4eDih7n\n5TF9+vQ2bdpQBit6eVl7MgH2sxAcJCryqaurc7lcwlMsBKtXr/a8VvrhlKRffii9cZoucOdp\nug0bNjz00EMGg8G7fDa/1rLb7efPn6+qqiKEpKSkZGRk1H+4fv3GiYwnGchPztEp5OTsAEwd\nDip6nA+JRofKDh06eP9khz/MLi/HcWVlZdeuXWvdunVmZqbnpnM5e75YihtGgBFIVKTidDrf\nfffdEydOdO/efcqUKR988MGWLVt4nv/9738/e/Zs4aCq/vc6zeFwKugvP5pD49QntvM03Ycf\nfnj33XfXT1RElS/n11o8zxcVFW3dutVms3km6vX6YcOG/eEPfxB22GIbh+UnGcjp559/njVr\nVklJCZF3dAoJf5Wn0ZQVxFTjsFAZOXu7/EOlN9mWd/PmzWlpaffcc09NTU1+fv7Zs2eF6R07\ndpw/f77w4CzWhr76WOicoERIVKSycePG/fv39+3b99tvv33nnXcOHjw4bdo0p9P5/vvvb9u2\nLfAzMfzB4VQAkdQ4UnSe+kaMGNFgCsdxM2bMEF4Lh3rM2rBhQ0lJSW5ublZWVnJyMiGkurr6\n2LFjxcXFarV67Nix4a6ggvE87+8+40aFffRoSuWlFvbGqY+pyjSRFEMls8fKO3fufPrppwkh\n77//vtVqXbx48U033XTp0qWVK1euW7fumWeekb9Kop5MQCOSOieEChKV4AU+xfzll19OmDBh\n8ODB58+fnzlz5rRp0+6//35CiN1u37dvX9OPNUHRpO48AS7lIoSoVKoePXp069bNM2XdunXD\nhg0TjvvDgv5Srt27d//5z3/u37+/Z0pqampmZmabNm0KCwuRqPhTvw0LCgp8xtTV1clVHXEU\nXfmmC/nhoIKEdqj88MMP6w8sPoXlWJnmUi6j0RgfH08IOXHixNSpU4UB3GAwTJ069Y033pC5\nwgJRTyYACA4SFVpiTzFXVla2b9+eEPK73/1OpVJ5diedOnX66KOPwrIIEC7yd57Al3ItWbLk\n//7v/2655ZYxY8YIe8T169cPGDAgPT09FIsrjthLuWpqanxeYt6+ffuamhoZKqwg/q6G+uyz\nz9q0aeP98wUOh0PW+gWk6MqHVvM5HJR6qAzwkx3yE3spV1JSUkVFRceOHe12e/1fSExMTDSZ\nTDJXXiDqyQQAwUGiQkvsKebo6Ghhx6lWq1UqVVRUlDBdrVYze31CuNB8maRoUncesZdyZWZm\nvvHGG8uWLZs3b97zzz8vxYkUp9MpVJvn+dOnT3Mcd8stt0RHRwvv1l+zYi/lateu3c6dO6dM\nmdJg+s6dO2+88caQLwghxOVyNXjIUlN6ptVqjYmJCRwTqp7v72qoG2644Q9/+EOfPn0aTBe+\nlg7JrJuO5crLPDQp93BQbG+PsP1s4KFD7KVcd9111z//+c+srKzevXuXlpbOmDFDq9W63e7i\n4mIhWwu5wGfmicgnEwAEB4kKLbGnmNPS0srLy7t27UoI+eijjzyj1dWrV1u3bi1FDRsdU5oo\ntIdrUtwXKIrUhxpNuT5BbOcJ4lIug8GQn5+/adOmmTNnelKakLh27drixYt//vnnrKysOXPm\nvPbaa8eOHSOEpKamvvLKK8Jji+qvWbGXco0bN27x4sXff/99g8SmvLx83rx5Ta//8ePHO3Xq\nJHzzunXr1o8//ri6ujopKWnkyJGehLApPXPMmDE9e/Z88MEHe/bs6cnJGxBbvtiroTIyMs6f\nP+99rB9C9NfyMVj5HTt2fPXVV0lJSSNGjPB8SX/p0qWFCxe+++67RPr7s8NyOCjFF0Ziezv7\n+9kAxA4dYi/l+sMf/vDDDz889dRT3bp1++abb44fP96mTZtff/3VbDYvWrRIiiVq4kNWQoLj\nuPLy8qqqKpVK1aZNm1atWtV/N2K+zYQAkKjQEnuKefjw4Z5B0/M1DyHkxx9/vOOOO6SoYWjH\nFKkP18JyX2BTngvUgKhDGak7T3CXcqlUqscee+zWW29dtmxZCL99XL9+vcvlmjp16pdffvnq\nq68ajcbXX39dpVK98847H3zwwQsvvNAgXuylXNnZ2UuXLt2yZcsXX3xhNBoJIUlJSZmZmc88\n80ynTp2aXv+XX35ZeBrsl19++fe///2ee+7p3LlzWVnZe++916pVq7vvvruJ5fP/r717jY2i\nauMAfqbbdlPTJhjKXQw0u4hEEIuCBAoNaUg3UlqTpaExQa3FtGiARqpRLmkISKDYgCZiwUIh\nFEjgA6VatKmharzESLCBsEisSEq5iILQSgp0t36Y991s9sY8M/PMnin/3ye7bI9TmD47zzn/\nOTMw0N3dvX79+hEjRuTn5+fl5YX+zupDTUN5vd7QoF3QY489tm3bNoMHQ83ySXXwQojW1tYd\nO3ZMnjz56tWrb7/99sqVK9Wm6P79+1evXjU+vpCgEQrinjCinu3yf87GQS0d1CjXI488smXL\nlmPHjn3//ffqUtLt27enT59eVFQ0ZswY48fPscmKwZ0JmpubDx8+rNZ5lcvlqqiocLvd6pc2\nXWkEEjQqWlGXmHNycqKOExlZ0Yd74yYjl2vS3hdo1r5A1EsZ7pPHSJTr6aef3r59+4ULF+JP\nQGqPcp0+fbqqqmry5MkzZ858+eWXq6ur1f6htLQ06r+sjijXE0888e6776oHI4SINVMbi8a1\nwaampvz8/GXLlgkhFi5c+NFHHzU1NUWe+TqiXO+8804gEGhpaTl48OCBAwdmzZrl8XiefPJJ\n0k8RipqGmjBhQtRxUlNTjc/cU7N8Mhx86D/Q559/XlRUVFpaKoRobW398MMPnU7njBkz9I0c\niaMR0n05SJ0w4j7bZfucjaSlemgsHTqiXKmpqV6vV/dmPOZussK9M0Fzc3NjY2NBQYHT6Wxp\naZk9e/aoUaNaWlree++9zZs3I3L28ECjopVsUS7jGzeZe7mW8PsCufcFMnIpY8HJYyTK9eij\nj8Y5bahRrn///VddnR8yZIjD4Rg6dKj6emZmZtS/fyNRLrVFifxNCaV7bbC7u3vJkiXBL3Ny\ncmpqaiLfpi/K5XK5li9fXlpa2tbWdvz48fb29nHjxnk8Ho/HE/9HjsqCNJTQnOaiZvlki3Jd\nuXKlvLxc/e/58+enpaXV1NSsXbs2IyND9wEYqR660EnQwwAAC7pJREFULwc5Joy4z3apolxC\nb/XQWDqMR7kit0SLz9xNVvTtTKA9ytXc3FxRUTF37lwhxDPPPFNdXb1379758+evW7du//79\n69at0/F/BztCo6KVWUvMoemj+MytKdyXawm5L9DEfYFYL2V0nDwPPJ5IpCiX9vGpUa7MzMwz\nZ86MHDny119/FUKcO3dOPSfPnTsXbFpCGY9yRf6mhNK9NuhwOEIvEFNSUu7evRv5NiNRrvT0\n9KKiosLCwlOnTrW0tNTV1elrVLjTUKQ0FzXLZ9bBxyqtOtY/79y5E/wyJyent7d348aNamsR\nFWv1IF0Ock8YcZ/t1ke54m9/rK96aCwd1CiXli3RQkm4yQopyvXXX38FX8/Kyurp6bl58+bQ\noUMXLFiwfft2048NpIVGRSuzlphjpY+4awr35VpC7gs0a18g7ksZ6sljJByiJcpFGp8a5Zo3\nb97HH3/c3t7+22+/vfTSS3v37u3q6kpKSvriiy8KCgqiHg8pyqU79KhxbVAIsXbtWofD0dvb\ne/HixWDQ6MqVK1EbLWE4yqUoSnZ2dnZ29vXr1zV+SxjWKJcgprmoWT6zDj5WNaCuYIwbN+78\n+fPTpk0LvuLxeG7duhXrtl0LGiHtLJgwYj3buaNcup9kr7F6UEsHKcpF3RJNqk1WBD3KNWzY\nsM7OztGjRwsh/vjjD/XwhBBDhgzx+/3mHhvIDI0KF2r6yLKawnS5xnpfIPe+QNyXMlQGU/Lx\no1zU8alRruLiYofD4fP5Fi9eXFRUNGrUqPr6+rt3786ZM6e4uDj+kWuJcukOPWpcGwy9JApt\n9nw+37PPPhtrcO3hFpfLFSvJE5aCkAcpzcW9LRu1GlBXMHJzc0+cOBH24uLFi3t6etrb2yPf\nL1X1sGbCyL5nu+4n2WupHvpKR6j4US7qlmhSbbIi6FGu3NzcHTt2XL582el0fvbZZzNnzlRX\n237//Xe1e4GHBBoVo2LlDajpI8tqCtPlGut9gdz7AnFfyghilEtHSp5vfGqUS1GU0H/TWbNm\nUXfKih/l0v20So1rgy+88ELUb1cnquPTEm5J1DOkjSCluczals2s0kpdwcjLy8vLy4t8fenS\npUuXLo183YLqoZ2VG0nZ8WynXusHaake1NJBjXJRt0SzYJMVEmqUy+v1/vPPP0eOHOnv78/O\nzg7+lo0dOzbqbyIMVmhUjDIrfWRZTWG6XGPd4p17XyDuSxnucAjr+DqiXGHiTxNaEKSm5jHC\nxF/hiUSNclHHtx41zWVwWzaVWaWVe/2Tu3qQWL+RlPHgopWo1/rCWPWIX/oseLol3yYrOlCj\nXCkpKRUVFeXl5YFAwOFwBF+fMmWKiUcF8kOjopUFTyXjrikGL9fiM2uL96jTqNz7AskW5aIe\nD+v41CgXdZqQO/RoPI8Rf4XHeLgl/vgy0J3m0tKicJdWs1YwYq3wcFcPEu5nAuo423XsC8KH\neq1Pqh7U0mfN0y35olyR4m9Vqi/KpShKaJcCDyE0KlpZ81Qy4zUl1qep8cu1+OMLwzNzqqjT\nqDr+MkmfjrJFuajHwzo+NcpFnSbkDj1S1wapKzzUcAv3E5A4mJLmMivKRa0GZq1gxFrhYY1y\naRS8HNQxYUQqZdSz3YKnZ5JQr/VJ1YNa+qx8uiVHlCtS/K1KEeUCfdCoaGXlU8mM1JRYn6ZG\nkvdaxqciTaNS/zKpn46yRbmox2Nx+MTcOz6tD1Iz3axv2fgJYTzNZVaUi3uLM+oKD2uUS0Xa\n/pg0YcTdSHA/PZPK+PbHcaoftfRZ/HRL06Nc1DkXRLlAHzQqWlnzSLWgB9YUjmcacoxv1jQq\nCfeno1T7/HCPz33Hp7A8SM10s75l4yfWA1sUC1KypkhIadKBtZfQUSq59wVhRb3WJ1U/aumT\n7emWVPrmXBDlAio0KlpxP1ItFu5PU+7xzZpGte+uWYI/HMI6vgV3fArOIDX3zfoSPlXNMlGr\nhzUpWePMKk3cqL0EaymT6qExFiBVP2rps/7pluay+5wL2AUaFa248waxcH+amjU+6zSqrXfN\nEvzhENbxrbnjU8URpOa+WV+2p6pZKWr1sHuUK1ErPLGQegnuUibbYjI3UvWjlj7up1tyG0xz\nLiAzNCqy4P405R6fdRrV1rtm2Z2Vd3wKhiA19836sj1VjQOpesh2oW+XFZ5YSL0EdymTbTGZ\nG6n62X2FRIdBM+cCMkOjIgvuT1Pu8VmnUW29a5bdWXzHp+m4b9aX7alqHEjVQ7YLfdlWeKhI\nvQR3KZNtMZkbqfrJVvqsYa85F7AjNCqy4P405R6fdRp1kO2aZS92v+NT8N+sL9VT1TiQqods\nF/qyrfBQkXoJ7lL2UC0mi0FR/axhlzkXsCM0KrLg/jTlHp91GtXWu2bZ3eDIM3BP+w3uaUVb\nX+vLtsJDReoluEvZQ7WYLAZL9bOGLeZcwI4UdVN8SLjz58/39fVFbih+7969S5cuGZ+J5B6f\nVVtb24kTJzZu3Bj2+q5du9rb2xsbGyUfH+Rx8+bNCxcuTJo0KTLIZIvxE8LW1eOhglIGAIMM\nGhUAAAAAAJBOUqIPAAAAAAAAIBwaFQAAAAAAkA4aFQAAAAAAkA4aFQAAAAAAkA4aFQAAAAAA\nkA4aFQCAQejIkSOKohw9etTIIG1tbYqiNDQ0mHRQAAAABGhUAABk9PPPPyuKUlZWlugDAQAA\nSAw0KgAAAAAAIB00KgAAAAAAIB00KgAA9nPr1q01a9bMmDEjMzPT6XRmZWWtWrWqt7c37G2B\nQKCmpsblcjmdTrfbvW3btrA39Pf319bWTp06NS0tLSMjIzc3t7W11aofAgAAIJ7kRB8AAACQ\ndXV17dy50+v1lpSUpKamfvPNN7W1tT/99NPXX3+tKErwbRs2bLhx48brr7+ekZFx8ODBysrK\na9eubdq0Sf1Tv9+/cOHCL7/8ctGiRWVlZX19ffv378/Pz29sbCwpKUnQTwYAAPA/aFQAAOzH\n7XZ3d3enpKSoXy5btmzKlCmrV6/+6quv8vLygm+7ePGiz+cbPny4EKK8vHzevHlbtmx57bXX\nXC6XEKKuru748eO7d+9+9dVX1fevWLHi+eefr6ysXLRoUXIyPiAAACCREP0CALAfp9MZ7FLu\n37/f19f34osvCiF+/PHH0LeVlZWpXYoQIiUlpaqqKhAIBPcs3rdv3/Dhw0tKSvr+z+/3l5SU\nXLt2raOjw8KfBgAAIApMmAEA2FJDQ8POnTs7Ojru3LkTfPHGjRuh75k0aVLkl52dneqXPp/v\n9u3baWlpkYP/+eef5h8xAAAABRoVAAD7qa2tfeuttwoKCj799NPRo0c7nc6///57wYIFgUDg\ngd8bvIklEAi43e59+/ZFvmfixIkmHzEAAAARGhUAAPupr68fP358U1NTsOv49ttvI9929uzZ\n0C99Pp8QIisrS/1ywoQJZ86ceeqpp9LT05mPFwAAgAz3qAAA2E9SUtLAwIDf71e/9Pv977//\nfuTb6uvrr1+/rv53f3//1q1bFUUpLCxUX1myZMm9e/dWrVo1MDAQ+l2XL1/mPHYAAABNsKIC\nACCvX375ZcOGDWEvrlixwuv1VldXezye4uLinp6eQ4cOhTUbqscff/y5554rLy9PT08/dOjQ\nd999V1VV5Xa71T9944032tra6urqTp06VVhYOGzYsK6urh9++KGjowP3qAAAQMKhUQEAkNfJ\nkydPnjwZ9uIrr7yyevXq5OTkPXv2vPnmmyNGjPB6vcuXLx8/fnzYO9esWdPZ2fnJJ59cunRp\n7NixH3zwQWVlZfBPk5OTm5qadu3a1dDQsGnTpv7+/pEjR06dOrW2tpb9BwMAAHgQJeokHAAA\nAAAAQALhHhUAAAAAAJAOGhUAAAAAAJAOGhUAAAAAAJAOGhUAAAAAAJAOGhUAAAAAAJAOGhUA\nAAAAAJAOGhUAAAAAAJAOGhUAAAAAAJAOGhUAAAAAAJAOGhUAAAAAAJAOGhUAAAAAAJAOGhUA\nAAAAAJAOGhUAAAAAAJDOf85a7/kZx6SAAAAAAElFTkSuQmCC", "text/plain": [ "plot without title" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "options(repr.plot.width = 9, repr.plot.height = 6)\n", "\n", "p4 <- ggplot(annomapres, \n", " aes(x = Label, \n", " y = depth, \n", " shape = Strain, \n", " color = Media))+\n", " myfacet +\n", " mygeom +\n", " mytheme +\n", " mypal\n", "\n", "print(p4)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Store the plots" ] }, { "cell_type": "code", "execution_count": 23, "metadata": {}, "outputs": [], "source": [ "png(file.path(IMGDIR, \"p1.png\"), height = 480 * 2, width = 480 * 2)\n", "plot(p1)\n", "graphics.off()\n", "\n", "png(file.path(IMGDIR, \"p2.png\"), height = 480 * 2, width = 480 * 2)\n", "plot(p2)\n", "graphics.off()\n", "\n", "png(file.path(IMGDIR, \"p3.png\"), height = 480 * 2, width = 480 * 2)\n", "plot(p3)\n", "graphics.off()\n", "\n", "png(file.path(IMGDIR, \"p4.png\"), height = 480 * 2, width = 480 * 2)\n", "plot(p4)\n", "graphics.off()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# The End" ] }, { "cell_type": "code", "execution_count": 24, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "R version 3.4.1 (2017-06-30)\n", "Platform: x86_64-pc-linux-gnu (64-bit)\n", "Running under: Debian GNU/Linux 8 (jessie)\n", "\n", "Matrix products: default\n", "BLAS: /opt/conda/lib/R/lib/libRblas.so\n", "LAPACK: /opt/conda/lib/R/lib/libRlapack.so\n", "\n", "locale:\n", " [1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C \n", " [3] LC_TIME=en_US.UTF-8 LC_COLLATE=en_US.UTF-8 \n", " [5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8 \n", " [7] LC_PAPER=en_US.UTF-8 LC_NAME=C \n", " [9] LC_ADDRESS=C LC_TELEPHONE=C \n", "[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C \n", "\n", "attached base packages:\n", " [1] tools parallel stats4 stats graphics grDevices utils \n", " [8] datasets methods base \n", "\n", "other attached packages:\n", " [1] bindrcpp_0.2 plotly_4.8.0 \n", " [3] dendextend_1.8.0 gridExtra_2.3 \n", " [5] RColorBrewer_1.1-2 qvalue_2.10.0 \n", " [7] limma_3.34.9 DESeq2_1.18.1 \n", " [9] SummarizedExperiment_1.8.0 DelayedArray_0.4.1 \n", "[11] matrixStats_0.53.1 Biobase_2.38.0 \n", "[13] GenomicRanges_1.30.3 GenomeInfoDb_1.14.0 \n", "[15] IRanges_2.12.0 S4Vectors_0.16.0 \n", "[17] BiocGenerics_0.24.0 haven_1.1.1 \n", "[19] stringr_1.3.0 foreach_1.4.4 \n", "[21] dplyr_0.7.4 purrr_0.2.4 \n", "[23] readr_1.1.1 tidyr_0.8.1 \n", "[25] tibble_1.4.2 ggplot2_3.0.0 \n", "[27] tidyverse_1.1.1 \n", "\n", "loaded via a namespace (and not attached):\n", " [1] colorspace_1.3-2 class_7.3-14 modeltools_0.2-22 \n", " [4] mclust_5.4.1 IRdisplay_0.4.4 htmlTable_1.9 \n", " [7] XVector_0.18.0 base64enc_0.1-3 flexmix_2.3-14 \n", " [10] bit64_0.9-5 mvtnorm_1.0-8 AnnotationDbi_1.40.0 \n", " [13] lubridate_1.7.4 xml2_1.2.0 codetools_0.2-15 \n", " [16] splines_3.4.1 mnormt_1.5-5 robustbase_0.92-7 \n", " [19] geneplotter_1.56.0 knitr_1.20 IRkernel_0.8.11 \n", " [22] Formula_1.2-1 jsonlite_1.5 broom_0.4.4 \n", " [25] annotate_1.56.0 kernlab_0.9-25 cluster_2.0.6 \n", " [28] compiler_3.4.1 httr_1.3.1 backports_1.1.2 \n", " [31] assertthat_0.2.0 Matrix_1.2-14 lazyeval_0.2.1 \n", " [34] acepack_1.4.1 htmltools_0.3.6 gtable_0.2.0 \n", " [37] glue_1.2.0 GenomeInfoDbData_0.99.0 reshape2_1.4.3 \n", " [40] Rcpp_0.12.15 trimcluster_0.1-2.1 cellranger_1.1.0 \n", " [43] nlme_3.1-131 fpc_2.1-11.1 iterators_1.0.9 \n", " [46] psych_1.8.4 rvest_0.3.2 XML_3.98-1.11 \n", " [49] DEoptimR_1.0-8 MASS_7.3-48 zlibbioc_1.24.0 \n", " [52] scales_0.5.0 hms_0.3 memoise_1.1.0 \n", " [55] rpart_4.1-13 latticeExtra_0.6-28 stringi_1.1.7 \n", " [58] RSQLite_2.0 genefilter_1.60.0 checkmate_1.8.5 \n", " [61] BiocParallel_1.12.0 repr_0.15.0 prabclus_2.2-6 \n", " [64] rlang_0.2.1 pkgconfig_2.0.1 bitops_1.0-6 \n", " [67] evaluate_0.10.1 lattice_0.20-34 bindr_0.1.1 \n", " [70] labeling_0.3 htmlwidgets_1.2 tidyselect_0.2.4 \n", " [73] bit_1.1-12 plyr_1.8.4 magrittr_1.5 \n", " [76] R6_2.2.2 Hmisc_4.0-3 pbdZMQ_0.3-2 \n", " [79] DBI_1.0.0 pillar_1.2.2 whisker_0.3-2 \n", " [82] foreign_0.8-67 withr_2.1.1 survival_2.40-1 \n", " [85] RCurl_1.95-4.8 nnet_7.3-12 modelr_0.1.2 \n", " [88] crayon_1.3.4 uuid_0.1-2 viridis_0.5.1 \n", " [91] locfit_1.5-9.1 grid_3.4.1 readxl_1.1.0 \n", " [94] data.table_1.10.4 blob_1.1.1 forcats_0.3.0 \n", " [97] diptest_0.75-7 digest_0.6.15 xtable_1.8-2 \n", "[100] munsell_0.5.0 viridisLite_0.3.0 " ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "sessionInfo()" ] } ], "metadata": { "kernelspec": { "display_name": "R", "language": "R", "name": "ir" }, "language_info": { "codemirror_mode": "r", "file_extension": ".r", "mimetype": "text/x-r-source", "name": "R", "pygments_lexer": "r", "version": "3.4.1" } }, "nbformat": 4, "nbformat_minor": 2 }