{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Linear Regression"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"A major goal of this morning's lecture was to introduce the idea of intra-subject variability and how it affects the modeling of a particular data set. We will begin by reviewing (briefly) simple linear models, and we'll discuss how to do such a fit in R. Then, we will look more closely at the Rails example from this morning."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Simple Linear Models"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"A simple linear model is of the form\n",
"\n",
"$$y_i = \\alpha + \\beta x_i + \\epsilon_i$$\n",
"\n",
"The goal of a linear regression is to find the line\n",
"\n",
"$$ y = \\alpha +\\beta x$$\n",
"\n",
"that best fits the data. I.e. we find the line such that the sum of the squared errors is minimized. A key assumption in such a model is that the errors follow a standard normal distribution. This is important, because when this assumption is invalid, applying the standard confidence interval calculation for the slope $\\beta$ will be wrong.\n",
"\n",
"We will use a sample data set from R to illustrate a simple linear regression."
]
},
{
"cell_type": "raw",
"metadata": {},
"source": [
"# load the data set\n",
"data(ToothGrowth)"
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/html": [
"
\n",
"
len
supp
dose
\n",
"\n",
"\t
1
4.2
VC
0.5
\n",
"\t
2
11.5
VC
0.5
\n",
"\t
3
7.3
VC
0.5
\n",
"\t
4
5.8
VC
0.5
\n",
"\t
5
6.4
VC
0.5
\n",
"\t
6
10
VC
0.5
\n",
"\t
7
11.2
VC
0.5
\n",
"\t
8
11.2
VC
0.5
\n",
"\t
9
5.2
VC
0.5
\n",
"\t
10
7
VC
0.5
\n",
"\t
11
16.5
VC
1
\n",
"\t
12
16.5
VC
1
\n",
"\t
13
15.2
VC
1
\n",
"\t
14
17.3
VC
1
\n",
"\t
15
22.5
VC
1
\n",
"\t
16
17.3
VC
1
\n",
"\t
17
13.6
VC
1
\n",
"\t
18
14.5
VC
1
\n",
"\t
19
18.8
VC
1
\n",
"\t
20
15.5
VC
1
\n",
"\t
21
23.6
VC
2
\n",
"\t
22
18.5
VC
2
\n",
"\t
23
33.9
VC
2
\n",
"\t
24
25.5
VC
2
\n",
"\t
25
26.4
VC
2
\n",
"\t
26
32.5
VC
2
\n",
"\t
27
26.7
VC
2
\n",
"\t
28
21.5
VC
2
\n",
"\t
29
23.3
VC
2
\n",
"\t
30
29.5
VC
2
\n",
"\t
31
15.2
OJ
0.5
\n",
"\t
32
21.5
OJ
0.5
\n",
"\t
33
17.6
OJ
0.5
\n",
"\t
34
9.7
OJ
0.5
\n",
"\t
35
14.5
OJ
0.5
\n",
"\t
36
10
OJ
0.5
\n",
"\t
37
8.2
OJ
0.5
\n",
"\t
38
9.4
OJ
0.5
\n",
"\t
39
16.5
OJ
0.5
\n",
"\t
40
9.7
OJ
0.5
\n",
"\t
41
19.7
OJ
1
\n",
"\t
42
23.3
OJ
1
\n",
"\t
43
23.6
OJ
1
\n",
"\t
44
26.4
OJ
1
\n",
"\t
45
20
OJ
1
\n",
"\t
46
25.2
OJ
1
\n",
"\t
47
25.8
OJ
1
\n",
"\t
48
21.2
OJ
1
\n",
"\t
49
14.5
OJ
1
\n",
"\t
50
27.3
OJ
1
\n",
"\t
51
25.5
OJ
2
\n",
"\t
52
26.4
OJ
2
\n",
"\t
53
22.4
OJ
2
\n",
"\t
54
24.5
OJ
2
\n",
"\t
55
24.8
OJ
2
\n",
"\t
56
30.9
OJ
2
\n",
"\t
57
26.4
OJ
2
\n",
"\t
58
27.3
OJ
2
\n",
"\t
59
29.4
OJ
2
\n",
"\t
60
23
OJ
2
\n",
"\n",
"
\n"
],
"text/latex": [
"\\begin{tabular}{r|lll}\n",
" & len & supp & dose\\\\\n",
"\\hline\n",
"\t1 & 4.2 & VC & 0.5\\\\\n",
"\t2 & 11.5 & VC & 0.5\\\\\n",
"\t3 & 7.3 & VC & 0.5\\\\\n",
"\t4 & 5.8 & VC & 0.5\\\\\n",
"\t5 & 6.4 & VC & 0.5\\\\\n",
"\t6 & 10 & VC & 0.5\\\\\n",
"\t7 & 11.2 & VC & 0.5\\\\\n",
"\t8 & 11.2 & VC & 0.5\\\\\n",
"\t9 & 5.2 & VC & 0.5\\\\\n",
"\t10 & 7 & VC & 0.5\\\\\n",
"\t11 & 16.5 & VC & 1\\\\\n",
"\t12 & 16.5 & VC & 1\\\\\n",
"\t13 & 15.2 & VC & 1\\\\\n",
"\t14 & 17.3 & VC & 1\\\\\n",
"\t15 & 22.5 & VC & 1\\\\\n",
"\t16 & 17.3 & VC & 1\\\\\n",
"\t17 & 13.6 & VC & 1\\\\\n",
"\t18 & 14.5 & VC & 1\\\\\n",
"\t19 & 18.8 & VC & 1\\\\\n",
"\t20 & 15.5 & VC & 1\\\\\n",
"\t21 & 23.6 & VC & 2\\\\\n",
"\t22 & 18.5 & VC & 2\\\\\n",
"\t23 & 33.9 & VC & 2\\\\\n",
"\t24 & 25.5 & VC & 2\\\\\n",
"\t25 & 26.4 & VC & 2\\\\\n",
"\t26 & 32.5 & VC & 2\\\\\n",
"\t27 & 26.7 & VC & 2\\\\\n",
"\t28 & 21.5 & VC & 2\\\\\n",
"\t29 & 23.3 & VC & 2\\\\\n",
"\t30 & 29.5 & VC & 2\\\\\n",
"\t31 & 15.2 & OJ & 0.5\\\\\n",
"\t32 & 21.5 & OJ & 0.5\\\\\n",
"\t33 & 17.6 & OJ & 0.5\\\\\n",
"\t34 & 9.7 & OJ & 0.5\\\\\n",
"\t35 & 14.5 & OJ & 0.5\\\\\n",
"\t36 & 10 & OJ & 0.5\\\\\n",
"\t37 & 8.2 & OJ & 0.5\\\\\n",
"\t38 & 9.4 & OJ & 0.5\\\\\n",
"\t39 & 16.5 & OJ & 0.5\\\\\n",
"\t40 & 9.7 & OJ & 0.5\\\\\n",
"\t41 & 19.7 & OJ & 1\\\\\n",
"\t42 & 23.3 & OJ & 1\\\\\n",
"\t43 & 23.6 & OJ & 1\\\\\n",
"\t44 & 26.4 & OJ & 1\\\\\n",
"\t45 & 20 & OJ & 1\\\\\n",
"\t46 & 25.2 & OJ & 1\\\\\n",
"\t47 & 25.8 & OJ & 1\\\\\n",
"\t48 & 21.2 & OJ & 1\\\\\n",
"\t49 & 14.5 & OJ & 1\\\\\n",
"\t50 & 27.3 & OJ & 1\\\\\n",
"\t51 & 25.5 & OJ & 2\\\\\n",
"\t52 & 26.4 & OJ & 2\\\\\n",
"\t53 & 22.4 & OJ & 2\\\\\n",
"\t54 & 24.5 & OJ & 2\\\\\n",
"\t55 & 24.8 & OJ & 2\\\\\n",
"\t56 & 30.9 & OJ & 2\\\\\n",
"\t57 & 26.4 & OJ & 2\\\\\n",
"\t58 & 27.3 & OJ & 2\\\\\n",
"\t59 & 29.4 & OJ & 2\\\\\n",
"\t60 & 23 & OJ & 2\\\\\n",
"\\end{tabular}\n"
],
"text/plain": [
" len supp dose\n",
"1 4.2 VC 0.5\n",
"2 11.5 VC 0.5\n",
"3 7.3 VC 0.5\n",
"4 5.8 VC 0.5\n",
"5 6.4 VC 0.5\n",
"6 10.0 VC 0.5\n",
"7 11.2 VC 0.5\n",
"8 11.2 VC 0.5\n",
"9 5.2 VC 0.5\n",
"10 7.0 VC 0.5\n",
"11 16.5 VC 1.0\n",
"12 16.5 VC 1.0\n",
"13 15.2 VC 1.0\n",
"14 17.3 VC 1.0\n",
"15 22.5 VC 1.0\n",
"16 17.3 VC 1.0\n",
"17 13.6 VC 1.0\n",
"18 14.5 VC 1.0\n",
"19 18.8 VC 1.0\n",
"20 15.5 VC 1.0\n",
"21 23.6 VC 2.0\n",
"22 18.5 VC 2.0\n",
"23 33.9 VC 2.0\n",
"24 25.5 VC 2.0\n",
"25 26.4 VC 2.0\n",
"26 32.5 VC 2.0\n",
"27 26.7 VC 2.0\n",
"28 21.5 VC 2.0\n",
"29 23.3 VC 2.0\n",
"30 29.5 VC 2.0\n",
"31 15.2 OJ 0.5\n",
"32 21.5 OJ 0.5\n",
"33 17.6 OJ 0.5\n",
"34 9.7 OJ 0.5\n",
"35 14.5 OJ 0.5\n",
"36 10.0 OJ 0.5\n",
"37 8.2 OJ 0.5\n",
"38 9.4 OJ 0.5\n",
"39 16.5 OJ 0.5\n",
"40 9.7 OJ 0.5\n",
"41 19.7 OJ 1.0\n",
"42 23.3 OJ 1.0\n",
"43 23.6 OJ 1.0\n",
"44 26.4 OJ 1.0\n",
"45 20.0 OJ 1.0\n",
"46 25.2 OJ 1.0\n",
"47 25.8 OJ 1.0\n",
"48 21.2 OJ 1.0\n",
"49 14.5 OJ 1.0\n",
"50 27.3 OJ 1.0\n",
"51 25.5 OJ 2.0\n",
"52 26.4 OJ 2.0\n",
"53 22.4 OJ 2.0\n",
"54 24.5 OJ 2.0\n",
"55 24.8 OJ 2.0\n",
"56 30.9 OJ 2.0\n",
"57 26.4 OJ 2.0\n",
"58 27.3 OJ 2.0\n",
"59 29.4 OJ 2.0\n",
"60 23.0 OJ 2.0"
]
},
"execution_count": 1,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# Let's see what it looks like:\n",
"ToothGrowth"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"These data are the results of an experiment where 60 Guinea Pigs were divided in to 6 groups and then were given a specific dose of either vitamin C or orange juice over a period of time, and then their tooth length was measured. We'll do two separated fits: one for vitamin C and one for OJ."
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAA0gAAANICAYAAAD958/bAAAEDWlDQ1BJQ0MgUHJvZmlsZQAAOI2NVV1oHFUUPrtzZyMkzlNsNIV0qD8NJQ2TVjShtLp/3d02bpZJNtoi6GT27s6Yyc44M7v9oU9FUHwx6psUxL+3gCAo9Q/bPrQvlQol2tQgKD60+INQ6Ium65k7M5lpurHeZe58853vnnvuuWfvBei5qliWkRQBFpquLRcy4nOHj4g9K5CEh6AXBqFXUR0rXalMAjZPC3e1W99Dwntf2dXd/p+tt0YdFSBxH2Kz5qgLiI8B8KdVy3YBevqRHz/qWh72Yui3MUDEL3q44WPXw3M+fo1pZuQs4tOIBVVTaoiXEI/MxfhGDPsxsNZfoE1q66ro5aJim3XdoLFw72H+n23BaIXzbcOnz5mfPoTvYVz7KzUl5+FRxEuqkp9G/Ajia219thzg25abkRE/BpDc3pqvphHvRFys2weqvp+krbWKIX7nhDbzLOItiM8358pTwdirqpPFnMF2xLc1WvLyOwTAibpbmvHHcvttU57y5+XqNZrLe3lE/Pq8eUj2fXKfOe3pfOjzhJYtB/yll5SDFcSDiH+hRkH25+L+sdxKEAMZahrlSX8ukqMOWy/jXW2m6M9LDBc31B9LFuv6gVKg/0Szi3KAr1kGq1GMjU/aLbnq6/lRxc4XfJ98hTargX++DbMJBSiYMIe9Ck1YAxFkKEAG3xbYaKmDDgYyFK0UGYpfoWYXG+fAPPI6tJnNwb7ClP7IyF+D+bjOtCpkhz6CFrIa/I6sFtNl8auFXGMTP34sNwI/JhkgEtmDz14ySfaRcTIBInmKPE32kxyyE2Tv+thKbEVePDfW/byMM1Kmm0XdObS7oGD/MypMXFPXrCwOtoYjyyn7BV29/MZfsVzpLDdRtuIZnbpXzvlf+ev8MvYr/Gqk4H/kV/G3csdazLuyTMPsbFhzd1UabQbjFvDRmcWJxR3zcfHkVw9GfpbJmeev9F08WW8uDkaslwX6avlWGU6NRKz0g/SHtCy9J30o/ca9zX3Kfc19zn3BXQKRO8ud477hLnAfc1/G9mrzGlrfexZ5GLdn6ZZrrEohI2wVHhZywjbhUWEy8icMCGNCUdiBlq3r+xafL549HQ5jH+an+1y+LlYBifuxAvRN/lVVVOlwlCkdVm9NOL5BE4wkQ2SMlDZU97hX86EilU/lUmkQUztTE6mx1EEPh7OmdqBtAvv8HdWpbrJS6tJj3n0CWdM6busNzRV3S9KTYhqvNiqWmuroiKgYhshMjmhTh9ptWhsF7970j/SbMrsPE1suR5z7DMC+P/Hs+y7ijrQAlhyAgccjbhjPygfeBTjzhNqy28EdkUh8C+DU9+z2v/oyeH791OncxHOs5y2AtTc7nb/f73TWPkD/qwBnjX8BoJ98VVBg/m8AAEAASURBVHgB7N0J3HznfDd+aVZJJCJSIrLYFVGEpokttUSLLhq1pFWUWGpp6V+pelqq9PH8VVvV1la7eKy1FqWIEGuKEBIhicgmsi+yJ8/nG3P0/KYz85v7vmc9875er8/vnHOda865zvvM777nus/MmetdTyFAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIEBgksMWgSnUECCycwFbp0YHJXsluyXnJKcnxyWlJ18sNcoC3aB3kMa35ec7Wz9DbJ/snWybHJd9Jzk0GlX1Tudafu+fnMXWuF7XcOh3bvte5H2Va6Uq5VQ5khwEHc03qLk3q3JwzYL2qTQV2zuIvJfV/pfm5dULmr076y51S8XO9yksy/X5/g77l+rlQPx+q1PaOTXZMbpk0ZVF+XjT9GXfafv7N6//WrunsLyZ3SM5Kvp3Uubs8UQgQIECAwFwEtsteX5acnVw7IPVC7X3J3ZMulK1zEM9K6kV3u/xaFtrH3143r/l64fzZvn5VH/95RIeuHNC+fVyD5t81YnuzXHXH7OyPBuzwS6lr+v3CAeuXuerI1rE1x9g/PTNt/iSpP2Io/1PgYaka9Lz/+f/Z9Lqaz+XfxvjCzNfPwGGlBlLl37T/z17Dg1t1ta7+eNFfhj2f+9vNc/mo7Lw5thfPuCMHZX/1B7hm/+1p/YHuKUkzkM2sQoAAAQIEZiNwu+zmm0n7F9Ow+SvS7ldn062p7aX6X1df6hjv3LeXRRwgvaLX1/5zclhf39uLg14o9j++f3neA6RdcgCvTKrvNRjvL6s+QGrOV12luFs/zoov3zjHXz+bGqNmOuqqd73wbtrV9JBkWDkoK9ptH99rOGqAtLnn87B9zaN+HgOkbXKgL0/qj29t20Hzn0+bQVdYU60QWG4Bf/Fa7vOn990V2CmH9uGkfSWlriJ9Mam/6tVbHu6T1C+zKnXl5b1JvUCr9ctW9kqHP7pkna63yzWlXij8QVJvn/tRUzlg+snU9f/V9b6p27bX9oeZ1iCxXeqF9zzL32bnzQvPefZj3vuu/3//ldT5q/939UK7/ojR/B+s58M7kzsl3n4UhJTyqZ9NTann0X8kN2gqBkzfnbpXJs3jHpn59w5oV1W/06q/LPNNu0szf2JrXXv2b7OwLM/n01vHUVdtZlH+LDupK6JNuSAzn0nK8wHJvklT6m3fdcX8sU2FKQECBAgQmKbAm7Px9l/s3pLlnft2uGOWD+9r9/d9bZZlce++42j/Eq5jWMQrSPXZiOYcPac6uc5ySh7XbOdV69zGNB/2xlb/mheg7f2tyhWkD7UPuje/Z6b9/1frBabyU4HHZNI8ty/MfP8fB4Y5faD1uJ9kvn7W9Zfa1hlJs/1xr7Ru7vncv59VWq4/VJV3Y/qFzNdzvF3ukIVzkqbNNZm/VbuBeQJdEHAFqQtn0TF0TeAmOaBDWwf16cz/fmu5mb04M09N7pXcPKkX7NdP2qXerrJ9r+INmdb77n8vuSr5aFJ/za35ptwsM7Xv+it4XcWqmw7UFYwPJvWLsyl1Zes3egv1QfXadrs8Kgu1rSp11euo6+Z++k/95b39F9zvZfkerfU1W8dbL34+lXw9GVTqF/dvJb+cVB++nLwjuSJZa6kXWw9MaiC2V1J/ra3jPiLp3//DUneLZNekKb+UmWcn1Y9+i6bNJKdr6W//fsc9xzUgf0JSz5mm3CYzdZz1F/p/aSoHTB+auvsk+yTfSOpqaE3HKe3nznfzgHpsf/nFVNy/V1lv/fvHVoMbZP6xye2Seo5clpyZfCapbbWf71ncUKkrfvVcrv8vd+tt6c8z/afkwt5yM1nvOVvv8dw2O35IctfkmqT862dJ//M5VWOVtfT/ptniocn+fVv+495y/ez5Tt+69uLbs9D8fKmfab+e1P/tdrlXFmo/TXlbM5Pp3skhreW/y3z9PBv3+bxl2tY+D0rq/8t2Sf1M+GZSA7FTkna5ZxaaY21+3h2UurriUufhq8mHkuaYq3+/lfxyUtv6bPLxpP+5+ajU1f6rNNut+Vsm9fgqpybVp9pm/fyqvtTP6trnW5PLknHL/07D5nfIFZmvK3S1/Xb5dhbqOf4vSfO8qp8L9ftHIUCAAAECUxOoF6DXtrLfZva0e9bXi6hB5axUNtt6auavbC3/KPNbJU353czUL+imfXv63dTXC5Km1C/t+uVYba5OdkuaUtu8KGke/8FmRW/6mNa62u5bWsvNY5rpM3qPqV/8TV1ND07O6aur+i8kP5+spdQLp3rx0d5+M1/HVi+umhcNmb1uYNms759+rxqssdQLpGY7rxrjsWvtb3uTaznH9SKs6Vf/tOyb8qXMNOv//8z/39ZyU3956p6YjFP+Vxo1j6vn79YDHvRvrTbvba1/cOYHPS+a7X0l6wdtr7WJTWaPzFLz2HqBO6zUgLBpV9P+Af96z9l6j+dp6cOlfX2qftXz+a+SGgCspay1/zVYaHv0z//eZnZe/99qgNk87gMD2v9ja/3ZmW+f1/r50Dy2pnW84z6fb5y2NZhsP749f27W1eC/XV6ShabNSzP/D63lpr5+Jh6Q3D+pwVZT30xfm7r+clQqmvUvbq1sP9/qjzgPTC5otW0ec0zq9kzGLT9Ow+axrx/xoJ/LutpnPS8UAgQIECAwE4G3Zy/NL6n6pbqR0h4g1V8Vm+3WtF5gNOURmbkqaa+vF1P9y/drHpBpDUaa9e0XPPds1df685P2C7L2C+j6i+Vb+to326zpM5Iq/QOkpq8nZV3/C8FXXPeI8f7ZMc3aL0Jqn/3HXXWfSrZIqnw0qbpB+V41WGM5Je2bbW1ugLSe/jbdWes5vmWrX03/mumwAVJzXi7JY3/Q9/j6S/Y4g9cafLcH8r+e5XapF7BXJE1fHtRbedNM67nW1J+W+Y8k/5W0z2m9gB23HJmGzfY+NOJB1aemXU0f3Wq73nO23uM5rK8vZXV2X93LW/3b3Ox6+r/RAVL16Y1JY1rPnZ2rslfq/2Kd32b9vzQretODW+uqTf38Gff53P//u/5/fjdp/iBU27s42S5pyksy0/Sl+TlbfxQ4qVVf62vQ1zy3q//tbdb6xyft0v7ZNGyAVAO2Zpv1f6722/Slpq9Nxik3TKP24546zoO0IUCAAAECsxI4IjtqflHVXzL7S/3V7pdGZIfWA9oDpNrmu5LfTOoF0t2SKvVXzeYXbLX5WHLbZOvk3km9OGj68/3Mb59U+dOkqX/7dTU//ecvWvXN+rv31tfVpfZfT+sv7Xsmv5o0bWt6SLJvsmtSpX+AdEbqbnfdmp9e3flc5pvHn96rH2fy4dbjLsr845J6Qbhb8jdJ+wXMU7Jc5WbJrZPqQ7PP/9Wr2zvTtZa1DJDW09/qz3rO8TZ5XJ2DDyTNcX6yV3eHTJvypcw062tabtv2VtZzrW34pF795ib/lgbNNt/T1/iZrXUnZf7neusPbdV/olfXTB7UW3dqph9M6v/QOGXcAVK9YL86afr8gtbG13vO1nM8O2e/7f/zb87yHkmdjycmTf/qRfzuyThlPf2vwUP9H3l+0uyz+lV1lRskmysPSIPmsTV9XOsB9+pbd8/Wupo9uG/9llke5/lcP4tqEFP7q+dtPW+aUs/ldn9+uVmRaXuAVG3enzTHWFfz2o+r58mvJ1Xq/1cNapr1767KVjkq8826F7fqH9qqr/VnJLWtKvXc/mbSPK4GYuOU+lncPKamTR/Heaw2BAgQIEBg6gLHZA/NL6p6gdZf7peKZv2gaQ2emtJ+sVS/iNt/9Wza1OCm2c7Jma8XU+3yC1lorgxUu+ZF7m0y3zzu7Mw3L1SPaNU365+Tuir3Tpq6GhhsUZUpeydNfU2bX/a1rkr/AOkRP63+2b+Pzlz78U1fftZgwMxt+x7TDIDaTQ9vtTm9vSLzP2yta0z6moy1WA5N31814hEb6e96z3F1542t/r13QP/aA6RvZX2//fGtx79owOMHVdUL08akrh7s0mp0dGtdeyDyB636GuzWQP3OSfMcq8HDWkv9/2v68aHNPLgGHU3b1/TabuScred4ntDqQ70Qv2mvH83kK631f9VUjphupP+12XZ/Th+xn0Gr6nlUj2lM68pOU/4hM039iZlvznGz/uDW+mq3ZbMi0ze21g16Pte2bpXUz6p2qZ+LlyTNfh/cWvmSVn39selGrXU3bq2rx762ta5ma7nZ5meqolWOynyz7sWt+v4B0sNa62q2/dy5om/dsMVDsqLZV037j3/Y49QT6KRA/QBSCBBYLIEzW93ZuzW/0dl6gVcvNvvLr7Qq3pL5y1vLNfud5POtul/szZ+Q6bG9+V0zrb9A1tWr5i+rR2a++eXc7OMhqWvKv2WmfhGvp3yz70Hn9C33D/L6Vl+3eFCrsl5MvqG13My+rpnJdPdkt9byrGcPau1wrf1t/GsTaznHrV2ONVvPh/rLe7u0z82gAXq7bTP/icyc1Fuoc/mo3vydMr1bb77f4IjU10C+yo7Ji5JvJPVHgsOTeu6Ne+UoTddUtkjr9rGd0Xv0Qa2t9Pe3WTXsObae47lts9FMT07Kql7IN/lu5ptSV3I2Vw5qNVhr/1sPXddsPY/e0XpkXVGqnzNlfUirvs7ten+OtDbzs9na1veTLyb1s+xZyf9NTku2T5pSz8tBpR57bmvFBa35mq1BT7u02w7bZrv9oPnP9VWe0VreOvPtfrdWbTJbx9cu9fNOIbCyAgZIK3vqHfgCC/yw1bc9Mr9Na7lmf5zU4KLJF6pyjPKDAW22TN1NW/XNi9JW1XWz9Vfaptyhmcm0+tCUehF276Tp7wcz3wysqn6rpNo05X3NzDqm/cfSDMSaTdWLqM2Vm7ca1IuD/m3U6vZx13L72Gt5lmW9/d3oOV7LMfafl3ps23Wc81KPqRfH7YHD71dlyuOu+/en/3wkk9Nby/XC9InJ1a26mq2/4D86eXtSbf4gmXS5STbYPrYTejtY7zmrh6/neG7T229NbpmUUTuH1opeqZ8tmysb6f/mtj3O+re1GtXPjxoYHZC0+17ndZKlBtevT2rgUj9bX5E8MqnBWbvUc3RQ6R8QXdnXqD4n1y7t/x/t+rXM92/zsrU8uNf2+L7H3KxvuX+xfhZ6DdmvYrkzAp7cnTmVDqRDAh9rHUv9H31Ma7lmv5n8disvrsoxSr0FqL/Ui8mLW5U3aM23Z3duLZzdmm8PkOptcPdvrfvPzH+yt1wvOurFzb695Rrkfa43v55J/7Gs5y/I7RcV4xx39bN97Ovp90Yes97+bvQcr6XP/eelHruec1OPe0PSvLisv+Tvkzwqacprm5nW9M2Zv1Xyv5PjWvXNbA2W6sXvrzQVE5oe2LedE3rL6z1nzebWejztF9tnZSOfGJHvNTsZMd1o/0dseqxVX0uruoLdlDr/v9MsZPpfSXt9a9W6ZnfKo45InpDUz6z62fi+5BlJ/eyqn1tNGTZAap6zTbv+afsc9a9bz3L9/+rf57C+jdr+eVnZPr77jWh8o6z7elJ/oHhNctdEIdApAQOkTp1OB9MRgQ/nONqDlhdmuX5ZDytbD1vRV39533KzeHIzk+k9WvPN7JaZaf8CrAFaU+oFyim9hf0yrUFQlRpI1C/QeoHWlJc0M5m+P6kX7sPKLH42ndza+S6ZrxfW/eXurYp6YfPd1vKsZ09u7XCt/W0/dq3nuLXbmf7F+EfZ8QdaO39Z5vfoLf8w04+11rVnf5CFP09+Ian2v5fUi9zm+bZF5usPDJMqtb0XtDZ2Wua/1Vs+uVW/1nPWPHQtx3Ni86BMr0p+NTl4SGoQsLlycqvBevvf2sS6ZttXiO6bLfxuayvtK0yt6rFn+3/OPCSPvFvv0Zdmesekfqa9Kqlz2v5DUfN8SvVcy3r/ADGo0x9uVT40880ftFrV180+Pf/W752bJE9KbpooBDol0P/DoVMH52AILKlA/WL+q1bfb575o5PmF3ezqgZNz0ve0lT0pvWCbVCpF0yDSr14bMqjM3NAs9Cb/nGm+/Tm65fxx3vzzaS5ilQ/T27Rq/x0ptW2+l1/mazSHoC091nr+vu2TVVOudRxXNLax99mvn7pN2W3zLygWcj0k8mVreVZz26kv23vR6fjB/R1ftQ5bp+bWZyXdtde01p4RGu+ri71v0B9ceo+n9TgvHlOnp75eoFdL3L/M2lK+zw3deuZ3joPqhfpd209+NmZb66kbeScred46vibcrPM3LdZyHTL5KikPlvzr0n77a5ZHFg20v+BG1xH5eF5TP0sqVI/Y+r/ZZU6//XZoLWWUc/ne7Y2dkzmT2kt/3Lm28//rVrrujL7ZzmQC3oHU79HPpLUcbfL47LwF62K72X+Y61lswQIECBAYGoC9ULgiKReGLRzapbrRcu3k3qB0F5X85clt0uaUm+zado8tqnsm9ZfAY9vtattvDp5TlIvNJvH1/Sfkv5y31S029T8k1qN3tO3/vwst19oVNOd+trUYOTlycOTKvX2vfY+rqts/dPfh+1b60bNPisr29utAd0Lkr9JyrpZd3Hm90na5YdZaNa3j7fdZpz5ehHWbOdVm3nAevu7kXP8ilb/Lsn8S5K3tPr5pdb6F7bqm9lPt9b/n6ZyzGm9SDuh9fhyquf9nkl/+dNUNI41rQHvfZJfSuq5fHnSrH905scpR6ZR85j6w8VpvZyR6YWtdU2bT6Suv6z3nK3neMqrXtg3/flB5h+T3D+pc9bU17Rsxinr7X9t+wlJs8/Tx9nZkDafa22n2d5/DGlb1Qf3td+y1XbU8/nP+h5Xfzi4RfLE5OSk2XdND02aUv8nmnXV1/7SrKtp/8D0r1LXrP9C3wOPaq17cWvdQ1v19f+hv9w3Fc02azruz8PazjP7HluPr0HQR5MT+9bVvn8jUQgQIECAwMwE6pfaW5P2L7pR8/Xi/q59vTur9fjH9q1rL9YL6G+22g7az6ey/gbtB/Xm68VHvXe9/Zhbtdo9uW/d21rr2rNf72tX26sXM1WmNUCqbT89uSZp9789X4OjRyb95YepaNrNaoBUfVhvf9d7jn+rdZzN8dZ0p+pMyjQHSLX9/oHCh6tyQNkudfWX7HYfB82/P21qIDFOOTKNBm1jUN0H0/bmQza6nnO23uO5S/rQHnQP6uvfDennsOr19L+29YSk2f9GBkhPaW2n2d7v1w6GlFEDpFHP572yvfOTZh/taQ0GaoDc1NWgqCldGiDVMf1hUn8MaY512PSp1VghQIAAAQLzEKjBwfuSK5L+X1TnpO7w5EHJoDLuAKkeu2vyz8mxSXvAcGqWn5GMelH5r1nf9O2kzLdLDZaadTX97fbK1vy9Ml8vopq29Xa2v++tn+YAqXbxiOTfk/aLo7qSVi+4b5kMKvMaIFVf1tPfetx6zvHWedwbkua81LQGxPskVaY9QNot+2hf/fnN6/Y6+J9tU/28pJ6z7f7WfP1feHZSA49xy6gB0o+yka8k707uN8YG13PO1ns8ZVZXf9vP5zI4OakXv+sp6+n/pAZI9bxt//yrF++D/ljTHNeoAdLmns/1NrtvJ+3nz7eyfGDy+FZ9XVVpStcGSHVct0vqjxFnJ22LGih+ILlbohDorMCoFzydPWgHRmBJBerFUv2FunJVcmZyclK/sCZdbpQN3j75blK/IGdVtsqO6hdzvYitgVoNUmZZfi472zcp3+N700wWtmykv2s9x/UitZ4TP0hqALLIpVx2T/bsdfLkTGtAUy/05l3Wc842cjy3yAHXz4w6Z6ckG/15sZ7+Z7cLV0Y9n+sY9072SI5LZvkzMLtbuFLPn1snZyQnJTVYVQgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAwDIKbLmMnZ5gn/fOtvZPbpBckFyVKAQIECBAgAABAgQIEOikwJNzVIcn1+87un2z/JXk2lbOz/xzk1UfNIZAIUCAAAECBAgQIECgiwJvyEHVIGjn1sHtmfkaDFV9DZJendQg6tSk6l6RKAQIECBAgAABAgQIEOicwKAB0ttzlDUQenrf0W6f5WbdA/rWWSRAgAABAgQIECBAgMDSCwwaIJ2Uo/rSkCOrt+Kdnbx0yHrVBAgQIECAAAECBAh0WODnOnxsww5tp6z45pCVl6b+uOROQ9arJkCAAAECBAgQIECgwwKrOEA6OuezbtIwqOyaynskZwxaqY4AAQIECBAgQIAAgW4LbNXtw/vZ0X05c19NanB0VPK/kt9IPpg0Za/MvCzZJjmiqZzh9O7Z19Yz3J9dESBAgAABAgQIEJiUwBXZUL3WXvqyxdIfwegDeHhWH5rcJblFX9MfZrkGRVUekrw/qQFjDaDuldSNHGZVanBUd9RTCBAgQIAAAQIECCyrQL2mXfpBUtevIL0nJ6lSpW71XQOlJu3BYX33UX3+6B3Js5KNDo52zDaek4x7RagZqN0gj6nRt0KAAAECBAgQIEBgWQTqHVgXJTVd+tL1AVL7BF2QhXrrXKW/fCIV9fmjK/tXrHN5hzzubsm4T5I9evupgZkBUg/DhAABAgQIECBAgACB2Qtsm13eNqmrSPMqh2XHNTiqgZVCgAABAgQIECBAYJkE6qJAvZY9YJk6Payvq3IXu/r80VOShyX19rcquyf19ruzk+OTC5OXJOO+LS5NFQIECBAgQIAAAQIECCyXQPOZohrVVk5Kdkve2Vs+L9N/T07vLVf9rIsrSLMWtz8CBAgQIECAAIFJCXTqCtKkUBZ1O7+ajl2TfCt5ZvLs5JykrhjVYOlPk+snVbZL3pJU/YOSWRYDpFlq2xcBAgQIECBAgMAkBQyQJqk55W29JtuvO2q0P9vzW1muQVDd5rv/c0c1WPpx8vfJLIsB0iy17YsAAQIECBAgQGCSAp0aIHX9M0j758x/LLmk9Qz4j8xflnw4ubpVX7N1q+/jktvUgkKAAAECBAgQIECAwGoJdH2AVJ8vqkFS+zh/kuUXJN9J+ssNU3GPpD6PpBAgQIAAAQIECBAgQKBTAs/L0dTb6eotczfdzJFtnfX/nFT7R2+m7aRXe4vdpEVtjwABAgQIECBAYFYCnXqL3azQ5rWfuvHC0UkNeuptdbskg8ohqfxRUu0+lWyRzLIYIM1S274IECBAgAABAgQmKdCpAVL7rWeTRFqUbdWg6F7JS5JjknrL3aBSN3GoE/vK5MFJDZQUAgQIECBAgAABAgQIrKRA3b2u/452s4RwBWmW2vZFgAABAgQIECAwSYFOXUHaapIyS7ytunudQoAAAQIECBAgQIDAigt0/S12K356HT4BAgQIECBAgAABAmsRMEBai5a2BAgQIECAAAECBAh0WsAAqdOn18ERIECAAAECBAgQILAWAZ9BWouWtgQIECBAgAABAgSWQ+BW6eaTk/163a2vvnlN8v3esskQAVeQhsCoJkCAAAECBAgQILCkAo9Lv7+d3Dc5qpear7rHJQqBhRdwm++FP0U6SIAAAQIECBBYCoEaCF2VPHVAb6uu1lWbSZZO3eZ7kjC2tX4BA6T123kkAQIECBAgQIDAfwt8NrP/+t+L/2Ou1lWbSRYDpElq2tZ1AgZInggECBAgQIAAAQIbFdg+G7g6ufeIDdW6alNtJ1U6NUDyGaRJPS1shwABAgQIECBAgMB8BXbK7uv1/VkjulHrqk21VQYIGCANQFFFgAABAgQIECBAYAkFfpw+X5zcaUTf9+21qbbKAAEDpAEoqggQIECAAAECBAgsoUC9de5dyZ8l9ba3/lJ1z0uqTbVVCCysgM8gLeyp0TECBAgQIECAwFIJ7J7enpZ8LNknaco+mam6WldtJll8BmmSmrZFgAABAgQIECBAgMDEBM7IlupGDPUZoxOT43qp+aqrddVGGSKw1ZB61QQIECBAgAABAgQILKdADYYOTO6R7Nc7hKMz/Upv3mSEgAHSCByrCBAgQIAAAQIECCyxQA2IDIrWeALdpGGNYJoTIECAAAECBAgQINBdAQOk7p5bR0aAAAECBAgQIECAwBoFDJDWCKY5AQIECBAgQIAAAQLdFTBA6u65dWQECBAgQIAAAQIECKxRwABpjWCaEyBAgAABAgQIECDQXQEDpO6eW0dGgAABAgQIECBAgMAaBQyQ1gimOQECBAgQIECAAAEC3RUwQOruuXVkBAgQIECAAAECBAisUcAAaY1gmhMgQIAAAQIECBAg0F0BA6TunltHRoAAAQIECBAgQIDAGgUMkNYIpjkBAgQIECBAgAABAt0VMEDq7rl1ZAQIECBAgAABAgQIrFHAAGmNYJoTIECAAAECBAgQINBdAQOk7p5bR0aAAAECBAgQIECAwBoFDJDWCKY5AQIECBAgQIAAAQLdFdiqu4fmyAgQIECAAAECBAisrMBeOfInJfv1BI7O9LXJKb1lkyECriANgVFNgAABAgQIECBAYEkFDk2/j08eknyzl5qvulqnEFh4gcPSw2uTHRa+pzpIgAABAgQIECCwyAL3TOeuTP54QCerrtZVm0mWbbKxei17wCQ3alurLWCAtNrn39ETIECAAAECBCYl8Ols6E0jNlbrqs0kS6cGSD6DNMmnhm0RIECAAAECBAgQmJ/A9bPr+yT3G9GFN2bdp5Jqe+mIdiu7ymeQVvbUO3ACBAgQIECAAIGOCdwwx1Ov788YcVxn9tpUW2WAgAHSABRVBAgQIECAAAECBJZQ4Mfp8yXJHUf0/Q69NtVWGSBggDQARRUBAgQIECBAgACBJRS4Kn1+T/K8ZNBHaaqu1lWbaqsQWFgBN2lY2FOjYwQIECBAgACBpRLYI72tt9F9KKn5ptR81dW6dn2zfiPTTt2kwRWkjTwVPJYAAQIECBAgQIDAYgmclu7UjRp2T36QHNNLzVddras2yhCBQZfehjRVTYAAAQIECBAgQIDAEgh8N328R3LPZL9ef4/O9PNJfV+RMkLAAGkEjlUECBAgQIAAAQIEllSgBkKf62VJD2E+3fYWu/m42ysBAgQIECBAgAABAgsoYIC0gCdFlwgQIECAAAECBAgQmI+AAdJ83O2VAAECBAgQIECAAIEFFDBAWsCToksECBAgQIAAAQIECMxHwABpPu72SoAAAQIECBAgQIDAAgoYIC3gSdElAgQIECBAgAABAgTmI2CANB93eyVAgAABAgQIECBAYAEFDJAW8KToEgECBAgQIECAAAEC8xEwQJqPu70SIECAAAECBAgQILCAAgZIC3hSdIkAAQIECBAgQIAAgfkIGCDNx91eCRAgQIAAAQIECBBYQAEDpAU8KbpEgAABAgQIECBAgMB8BAyQ5uNurwQIECBAgAABAgQILKCAAdICnhRdIkCAAAECBAgQIEBgPgIGSPNxt1cCBAgQIECAAAECBBZQwABpAU+KLhEgQIAAAQIECBAgMB8BA6T5uNsrAQIECBAgQIAAAQILKGCAtIAnRZcIECBAgAABAgQIEJiPgAHSfNztlQABAgQIECBAgACBBRQwQFrAk6JLBAgQIECAAAECBAjMR8AAaT7u9kqAAAECBAgQIECAwAIKGCAt4EnRJQIECBAgQIAAAQIE5iNggDQfd3slQIAAAQIECBAgQGABBQyQFvCk6BIBAgQIECBAgAABAvMRMECaj7u9EiBAgAABAgQIECCwgAIGSAt4UnSJAAECBAgQIECAAIH5CBggzcfdXgkQIECAAAECBAgQWEABA6QFPCm6RIAAAQIECBAgQIDAfAQMkObjbq8ECBAgQIAAAQIECCyggAHSAp4UXSJAgAABAgQIECBAYD4CBkjzcbdXAgQIECBAgAABAgQWUGCrBezTtLu0S3awc7JtcnFyfnJJohAgQIAAAQIECBAgsOICq3IF6a45z69PzkrOTU5KjktOTWqQ9P3kNcluiUKAAAECBAgQIECAwIoKrMIVpL/IuX1R7/yekukXkhok1cCoriTdKNkreVJySPLM5PBEIUCAAAECBAgQIECAQKcEfidHc23y0eRuI45si6y7T/KVpNofmMyyHJad1X53mOVO7YsAAQIECBAgQIDABAS2yTbqtewBE9iWTUxZ4O3Zfr19rj5vNE6pzyddmLx6nMYTbGOANEFMmyJAgAABAgQIEJipQKcGSF3/DNKd89Sot9RdPuZT5Ly0OybZY8z2mhEgQIAAAQIECBAg0CGBrg+Qzsi52i/ZesxzVleQalBVN3BQCBAgQIAAAQIECBBYMYGuD5DenPN5++S9yf4jzm19BuneyceS7ZP3JwoBAgQIECBAgAABAism0PW72NXd6H4++evk15PTkrq19zlJfdZop+RGyd7J7slVyZ8kn08UAgQIECBAgAABAgQIdFLgljmqdyQ1QKo7bLRTXxJ7QvLyZM9kkqWuTI2Tw9Ku+uQudpPUty0CBAgQIECAAIFZCHTqJg2zAFu0fdRVoxoI3Sap70GaRrlVNnpl0h6IjTNvgDSNs2GbBAgQIECAAAEC0xTo1ACp62+xG/REqLfWVZpStwDfO6nbgV/dVG5wemIef++knizjlIem0XPGaagNAQIECBAgQIAAAQIENipwi2zgKcnDkh17G6vPHL0nuSipqzv1VruXJFsnsy7eYjdrcfsjQIAAAQIECBCYlECnriBNCmWRt/OsdK799raTsrxb8s5efX330b8np/eWq37WxQBp1uL2R4AAAQIECBAgMCkBA6RJSc5gO7+afVyTfCt5ZvLspO5gd3xSg6Y/Ta6fVNkueUtS9Q9KZlkMkGapbV8ECBAgQIAAAQKTFDBAmqTmlLf1mmy/3kLXvvnBb2W5BkE/TLZM2qUGSz9O/r5dOYN5A6QZINsFAQIECBAgQGCFBH4xx/ra5Ohear7qplE6NUDq+hfF1pfD1pe/1ueLmvIfmbks+XDSf1OGS1N3XHKbRCFAgAABAgQIECCwjAL1zqn/SvZJDu+l5muwVOuUFRb4dI79lKR/IFhfBjvoyXHD1Nfg6XXJLIsrSLPUti8CBAgQIECAQHcF6iMmVyWPHnCIh/bWVZtJlk5dQZokzCJu63npVL2drt4yd9PNdHDrrP/npNoPekJt5uEbWm2AtCE+DyZAgAABAgQIEOgJfDHTV43QqHXVZpLFAGmSmlPe1nbZfl1KrEFPXRnaJRlUDknlj5Jq96lki2SWxQBpltr2RYAAAQIECBDopkB97r5uUHbgiMOrddWm/Rn9Ec3HWtWpAVL/W8/GEliiRjUoulfykuSYpG7pPajUE6RO7CuTByc1UFIIECBAgAABAgQILJPADdLZ+kP/OSM6XeuqTbVVCAwVqLvX9d/RbmjjKaxwBWkKqDZJgAABAgQIEFgxgXo9e34y6uMita7aTPK1rytIAe1aqbvX9d/RrmvH6HgIECBAgAABAgS6LVCvZw9Pnp803/XZPuKqq3XVxmvftoz5hRNwBWnhTokOESBAgAABAgSWUmDX9PrE5HPJnVtHUN+B9Pmk1lWbSRZXkCapaVsECBAgQIAAAQIECExMoD5jVJ/Bvyj5RnJmL1/P9MKk1o36jFJWr3bZarUP39ETIECAAAECBAgQ6JzA6TmiX0tuk+zXO7qjMz2hN28yQsAAaQSOVQQIECBAgAABAgSWWKAGRAZFazyBXb/N9xo5NCdAgAABAgQIECBAYJUFDJBW+ew7dgIECBAgQIAAAQIENhEwQNqEwwIBAgQIECBAgAABAqssYIC0ymffsRMgQIAAAQIECBAgsImAAdImHBYIECBAgAABAgQIEFhlAQOkVT77jp0AAQIECBAgQIAAgU0EDJA24bBAgAABAgQIECBAgMAqCxggrfLZd+wECBAgQIAAAQIECGwiYIC0CYcFAgQIECBAgAABAgRWWcAAaZXPvmMnQIAAAQIECBAgQGATAQOkTTgsECBAgAABAgQIECCwygIGSKt89h07AQIECBAgQIAAAQKbCBggbcJhgQABAgQIECBAgACBVRYwQFrls+/YCRAgQIAAAQIECBDYRMAAaRMOCwQIECBAgAABAgQIrLKAAdIqn33HToAAAQIECBAgQIDAJgIGSJtwWCBAgAABAgQIECBAYJUFDJBW+ew7dgIECBAgQIAAAQIENhEwQNqEwwIBAgQIECBAgAABAqssYIC0ymffsRMgQIAAAQIECBAgsImAAdImHBYIECBAgAABAgQIEFhlAQOkVT77jp0AAQIECBAgQIAAgU0EDJA24bBAgAABAgQIECBAgMAqCxggrfLZd+wECBAgQIAAAQIECGwiYIC0CYcFAgQIECBAgAABAgRWWcAAaZXPvmMnQIAAAQIECBAgQGATAQOkTTgsECBAgAABAgQIECCwygIGSKt89h07AQIECBAgQIAAAQKbCBggbcJhgQABAgQIECBAgACBVRYwQFrls+/YCRAgQIAAAQIECBDYRMAAaRMOCwQIECBAgAABAgQIrLKAAdIqn33HToAAAQIECBAgQIDAJgIGSJtwWCBAgAABAgQIECBAYJUFDJBW+ew7dgIECBAgQIAAAQIENhEwQNqEwwIBAgQIECBAgAABAqssYIC0ymffsRMgQIAAAQIECBAgsImAAdImHBYIECBAgAABAgQIEFhlAQOkVT77jp0AAQIECBAgQIAAgU0EDJA24bBAgAABAgQIECBAgMAqCxggrfLZd+wECBAgQIAAAQIECGwiYIC0CYcFAgQIECBAgAABAgRWWcAAaZXPvmMnQIAAAQIECBAgQGATga02WbJAgAABAgQIECBAgEAXBG6Tg3hKsl/vYI7O9NXJCb1lkyECriANgVFNgAABAgQIECBAYEkF/iD9PjY5MPlMLzVfdbVOIbDwAoelh9cmOyx8T3WQAAECBAgQIEBgkQUOSueuSp40oJNP7q07aMC6jVRtkwfXa9kDNrIRjyXQFjBAamuYJ0CAAAECBAgQWK/AkXng60Y8uNZVm0kWA6RJatrWdQIGSJ4IBAgQIECAAAECGxXYPhu4Jrn3iA3VumpTbSdVOjVA8hmkST0tbIcAAQIECBAgQIDAfAV2yu63SM4a0Y1aV22qrTJAwABpAIoqAgQIECBAgAABAkso8OP0+aJk3+ThyWeTS3qp+aqrddWm2ioDBNzmewCKKgIECBAgQIAAAQJLKHB1+vyu5J+TukL0muRlSZWDk7clFybVptoqAwQMkAagqCJAgAABAgQIECCwpALHpN+PT76a/ENyYlLlO8kvJ3dPqo0yRMBb7IbAqCZAgAABAgQIECCwhAL15bCvSq5MvpfUF8NWar7qal21UQgstIC72C306dE5AgQIECBAgMBSCNwwvazvI7pbr7f7ZVqvMytNXU2rzc7JpEqn7mLnLXaTelrYDgECBAgQIECAAIH5Cmzd2/1lvenRmVbapVlXgxplgIC32A1AUUWAAAECBAgQIEBgCQXOTp/PTO4zou+1rtpUW2WAgAHSABRVBAgQIECAAAECBJZQoN4697rkBclNBvS/6mpdtam2CoGFFfAZpIU9NTpGgAABAgQIEFgqge3S26OSk5JHJvW5pErNV12tqzaTLJ36DNIkYWxr/QIGSOu380gCBAgQIECAAIFNBbbP4t8lFyd1pahS81V3/WTSxQBp0qK2d92dReqJuwMLAgQIECBAgAABAhMSqCtFd+ll0leN2l3s1ADJXezap9Y8AQIECBAgQIAAge4I1B3rvt6dw5nNkbhJw2yc7YUAAQIECBAgQIAAgSUQMEBagpOkiwQIECBAgAABAgQIzEbAAGk2zvZCgAABAgQIECBAgMASCBggLcFJ0kUCBAgQIECAAAECBGYjYIA0G2d7IUCAAAECBAgQIEBgCQTcxW4JTpIuEiBAgAABAgQIEFijwI5pX18Ou1/vcUdn+s6kvg9JGSHgCtIIHKsIECBAgAABAgQILKHAQenz95KXJrv1UvNVd1CiEFh4gcPSQ18Uu/CnSQcJECBAgAABAgsvcMf08JLk75P2l8PWfNXVumozydKpL4qdJIxtrV/AAGn9dh5JgAABAgQIECDw3wIfzOyH/nvxf8x9ODXVZpLFAGmSmrZ1nYABkicCAQIECBAgQIDARgVqoHJFcvCIDT2o16baTqp0aoC06p9B2jvPinoC3SW5/qSeIbZDgAABAgQIECBAYA4Cu2afWycnj9j3Sb021VYZIND1AdKTc8yHJ/2Dn31T95Xk5OTjydeSM5LnJlsmCgECBAgQIECAAIFlEzgnHa4rSLcc0fFaV22qrbKCAm/IMdfND3ZuHfuemT+/V1+DpFcnNYg6tVf3ikxnXbzFbtbi9keAAAECBAgQ6KbAv+WwPjri0GpdtZlk6dRb7CYJs4jbGjRAens6WoOmp/d1ePssN+se0Ldu2osGSNMWtn0CBAgQIECAwGoI/EIO86Lkn5N6fduUmq+6Wnf7pnJCUwOkCUHOYjODBkj1vssvDdl5vRXv7OSlQ9ZPq9oAaVqytkuAAAECBAgQWD2Be+WQ691R9Ta6D/RS81VX6yZdOjVA2mrSOkuwvZ3Sx/8c0s9LU39ccqch61UTIECAAAECBAgQWHSBz6WDt00OSfbrdfY9mb43+Ulv2WSIwCoOkI6Oxb5DPHZN/T2SNw1Zr5oAAQIECBAgQIDAMgjUQOitvSxDfxemj12/i10D/eXM1OeLnp0cldw9+Y2kXfbKwquSukR4RHuFeQIECBAgQIAAAQIECHRB4OE5iPclJyZ1Y4Z2TslyUx6SmSuTWv/5ZItklsVnkGapbV8ECBAgQIAAAQKTFPAZpElqTnlb9V7LSpW61Xd9IWyT9iCovvuoPn/0juRZSQ2UNlLqLiFPT+rJMk5p3hs6TlttCBAgQIAAAQIECBCYksAqfQbpghjWW+cGvX3uE6mvzx/VVaRJlBqM/Wqy9Zgbu8mY7TQjQIAAAQIECBAgQIDAxAQ295mrupK0S7LdxPY43oa8xW48J60IECBAgAABAgQWT6BTb7Hb3IBh8fjX3qO6OvPO5NzkwuTTyT2TQaXublftnjtopToCBAgQIECAAAECBLot0PUB0o45fV9JHpHU1aFTk/smn01ekigECBAgQIAAAQIECBD4mUDXB0jPyZHumbwouXly+6S+5+hbyfOTVyQKAQIECBAgQIAAAQIErhPo+gDpwBzlWclfJxddd8TXu159Uex9kiOTumNdDaIUAgQIECBAgAABAgQIXK/rA6Q9co5rIHRV37muO9o9NDkmeVlSb8FTCBAgQIAAAQIECBBYcYGuD5B+kPP7gGTQXenqhg0PTupzSW9Oht24IasUAgQIECBAgAABAgRWQaDrA6T/zEms7yR6aXKzASf0tNQ9MKm33/178pBEIUCAAAECBAgQIECAQCcF6srRscm1ydXJo5JB5S6pPC+pdpUXJrMsvgdpltr2RYAAAQIECBAgMEkB34M0Sc0pb+uybH//5JXJKckVyaDy9VTePfnYoJXqCBAgQIAAAQIECBAg0EWBcd5SWLcBry+MnWVxBWmW2vZFgAABAgQIECAwSYFOXUHaapIyS7Cta8boY32xrEKAAAECBAgQIECAwAoKjHNFZQVZHDIBAgQIECBAgAABAqsoYIC0imfdMRMgQIAAAQIECBAgMFDAAGkgi0oCBAgQIECAAAECBFZRwABpFc+6YyZAgAABAgQIECBAYKCAAdJAFpUECBAgQIAAAQIECKyigAHSKp51x0yAAAECBAgQIECAwEABA6SBLCoJECBAgAABAgQIEFhFAQOkVTzrjpkAAQIECBAgQIAAgYECBkgDWVQSIECAAAECBAgQILCKAgZIq3jWHTMBAgQIECBAgEDXBR6UA/xIcmYvNV91ymYEDJA2A2Q1AQIECBAgQIAAgSUT+N/p74eTs5I/7qXmq67WKQQWXuCw9PDaZIeF76kOEiBAgAABAgQILLLAo9K5y5L7Dejk/Xvrqs0kyzbZWL2WPWCSG7Wt1RYwQFrt8+/oCRAgQIAAAQKTEjgmG/qbERurddVmkqVTAyRvsZvkU8O2CBAgQIAAAQIECMxPYKfset/kfSO6UOuqTbVVBggYIA1AUUWAAAECBAgQIEBgCQW26/X54t60Xuvv1Uvzur9Z17TtNTVpBLZqZkwJECBAgAABAgQIEFhqgR+n95V7Jw9PnpbcJKnyo+RVSd2soWmXWaVfwACpX8QyAQIECBAgQIAAgeUUqBslvCn5+6SuFP1l8h9JlYOTFyU7Jv+YVFtlgIAB0gAUVQQIECBAgAABAgSWVOCi9Hvr5MLk5OSUpMrJSdXdMGneZpdZhcBiCriL3WKeF70iQIAAAQIECCybQA2I/jR5fXJFcnUvNV91z02aQVNmJ1I6dRe7iYjYyIYFDJA2TGgDBAgQIECAAIGVF7hxBOqtc3fqSdTVovo8UqXmq9S6alNtJ1U6NUDyFrtJPS1shwABAgQIECBAgMB8Ba7p7X7L3vT8TI/s61Kzrq4sKQMEmtv9DViligABAgQIECBAgACBJRI4N339fvLgEX2uddXmvBFtrCIwdwFvsZv7KdABAgQIECBAgEAnBOrW3hckzdvs2gdVdbWu2kyydOotdpOEsa31Cxggrd/OIwkQIECAAAECBP5bYIvMHp7UHevqNt8H9FLzVVfrqs0kiwHSJDVt6zoBAyRPBAIECBAgQIAAgUkJ1ADoycmxSd2QoVLzVTfpwVE2eT0DpFJQJipggDRRThsjQIAAAQIECBDoCWyXaWWapVMDJHexm+ZTxbYJECBAgAABAgQIzFfgsvnufvn27i52y3fO9JgAAQIECBAgQIAAgSkJGCBNCdZmCRAgQIAAAQIECBBYPgEDpOU7Z3pMgAABAgQIECBAgMCUBHwGaUqwNkuAQKcF6mfnI5ODk12SE5N3JF9KFAIECBAgQGCJBVxBWuKTp+sECMxFYK/s9ejkn5ItkxOSOyRHJa9Oqk4hQIAAAQIEllTAFaQlPXG6TYDAXATqNqb/nvw4uV9yTtKUAzPzweTc5PlNpSkBAgQIECBAgMDaBXwP0trNPILAPASelJ3W4OiGQ3b+sNRfntxkyHrVBAgQIECgiwL1B8T6MtoDunBw3mLXhbPoGAgQmJXAr2VH707OH7LD96f+guT+Q9arJkCAAAECBBZcwABpwU+Q7hEgsFACu6U3p4/oUf317IzkxiPaWEWAAAECBAgssIAB0gKfHF0jQGDhBH6QHt1uRK/qLQa3SE4Z0cYqAgQIECBAYIEFDJAW+OToGgECCydQb697eHLrIT17WuqvSj45ZL1qAgQIECBAgACBMQTcpGEMJE0ILIjAR9KP7ye/1OpP3dr76ckVyeNb9WYJECBAgMAqCHTqJg2rcMKW4RgNkJbhLOkjgZ8KbJ/JW5Nrku8kn0nOSi5M6v+yQoAAAQIEVk2gUwMk34O0ak9fx0uAwEYFfpINPCZ5afLAZJfkX5O6slTfgaQQIECAAAECSyxggLTEJ0/XCRCYq0BdPaooBAgQIECAQIcE3KShQyfToRAgQIAAAQIECBAgsDEBA6SN+Xk0AQIECBAgQIAAAQIdEjBA6tDJdCgECBAgQIAAAQIECGxMwABpY34eTYAAAQIECBAgQIBAhwQMkDp0Mh0KAQIECBAgQIAAAQIbEzBA2pifRxMgQIAAAQIECBAg0CEBA6QOnUyHQoAAAQIECBAgQIDAxgR8D9LG/DyaAAECBAgQIECAwKIK3DEd26/XuaMzPXZRO6pfBPoFDkvFtckO/SssEyBAgAABAgQIEFijwJ5p/59Jvb48pZear7paN+myTTZY2z9g0huex/a8xW4e6vZJgAABAgQIECBAYDoCu2Wzn0u2TO6Q7NVLzVddras2CoGFFnAFaaFPj84RIECAAAECBJZG4DXp6deT7Qb0uOq+kVSbSZZOXUGaJIxtrV/AAGn9dh5JgAABAgQIECDwU4G6QnRB8sgRILWu2lTbSZVODZC8xW5STwvbIUCAAAECBAgQIDBfgXrr3E5JXUEaVmpdtfE2uyFCBkhDYFQTIECAAAECBAgQWDKBi9LfulnCjUf0u9ZVm2qrDBAwQBqAoooAAQIECBAgQIDAEgpckj5/Mfm9EX2vddWm2ioEFlbAZ5AW9tToGAECBAgQIEBgqQQekN5elTx2QK+rrtZVm0mWTn0GaatJytgWAQIECBAgQIAAAQJzFfhk9v6M5F+TxycfT6o8KLlXUuuqjTJEwFvshsCoJkCAAAECBAgQILCkAv+Sft85+VbyG73UfNXVOmWEgCtII3CsIkCAAAECBAgQILCkAt9Ov5++pH2fa7ddQZorv50TIECAAAECBAgQILBIAgZIi3Q29IUAAQIECBAgQIAAgbkKGCDNld/OCRAgQIAAAQIECBBYJAEDpEU6G/pCgAABAgQIECBAgMBcBQyQ5spv5wQIECBAgAABAgQILJKAAdIinQ19IUCAAAECBAgQIEBgrgIGSHPlt3MCBAgQIECAAAECBBZJwABpkc6GvhAgQIAAAQIECBAgMFcBA6S58ts5AQIECBAgQIAAAQKLJGCAtEhnQ18IECBAgAABAgQIEJirgAHSXPntnAABAgQIECBAgACBRRIwQFqks6EvBAgQIECAAAECBAjMVWCrue59PjvfJbuODUpoAABAAElEQVTdOdk2uTg5P7kkUQgQIECAAAECBAgQWHGBVbmCdNec59cnZyXnJiclxyWnJjVI+n7ymmS3RCFAgAABAgQIECBAYEUFVuEK0l/k3L6od35PyfQLSQ2SamBUV5JulOyVPCk5JHlmcniiECBAgAABAgQIECBAoFMCv5OjuTb5aHK3EUe2RdbdJ/lKUu0PTGZZDsvOar87zHKn9kWAAAECBAgQIEBgAgLbZBv1WvaACWzLJqYs8PZsv94+V583GqfU55MuTF49TuMJtjFAmiCmTREgQIAAAQIECMxUoFMDpK5/BunOeWrUW+ouH/Mpcl7aHZPsMWZ7zQgQIECAAAECBAgQ6JBA1wdIZ+Rc7ZdsPeY5qytINaiqGzgoBAgQIECAAAECBAismEDXB0hvzvm8ffLeZP8R57Y+g3Tv5GPJ9sn7E4UAAQIECBAgQIAAgRUT6Ppd7OpudD+f/HXy68lpSd3a+5ykPmu0U3KjZO9k9+Sq5E+SzycKAQIECBAgQIAAAQIEOilwyxzVO5IaINUdNtqpL4k9IXl5smcyj3JYdlp9che7eejbJwECBAgQIECAwEYEOnWThq5fQWpO9ImZeXRvoa4a1fcfbZfUF8dekEy61IDsa8nWY254yzHbaUaAAAECBAgQIECAwBQFVmWA1BDWZ67qrXWVQaUGKjWAujS5bFCDMetOTrvfTmo0PU55UBr90TgNtSFAgAABAgQIECBAgMBGBG6SB78zOTe5OPl0cs9kULlLKuutbn85aOUU67zFboq4Nk2AAAECBAgQIDBVgU69xa7rd7HbMU+FrySPSOrqUN2g4b7JZ5OXJAoBAgQIECBAgAABAgR+JtD1AdJzcqR144UXJTdP6pbf90i+lTw/eUWiECBAgAABAgQIECBA4DqBrg+QDsxR1o0Y/jq56Lojvt71js70PsmRybOSGkQpBAgQIECAAAECBAgQuF7XB0h75BzXQKi+36hd6s51D02OSV6W1FvwFAIECBAgQIAAAQIEVlxgPXexu1/MHpPUF7BeP9ki6S9vSsWb+yvnsPyD7PMBSd3Su/+udHUnuwcnX0iqr6cl9Z1ICgECBAgQIECAAAECBMYSqCstdZe3zeWFY21t+o3+v15f67NGNxuyu9ulvvk+pD/vtXcXuyFYqgkQIECAAAECBAj0CXTqLnZ9x7bZxePTom6VfWiye1J3hhuUQVeV0nTmpa4cHZvUgO7q5FHJoFK39z4vaQZ+LxzUaIp1bvM9RVybJkCAAAECBAgQmKpApwZIa/kM0g5hvU3y1uTw5IykBh2DUgONRSj1trr9k1cmpyRXJIPK11N59+Rjg1aqI0CAAAECBAgQIECAQL9ADabOT17ev2KJlscZENZtwPed8TG5gjRjcLsjQIAAAQIECBCYmMDKXkG6JoRHJI9OxhloTEx8ghuqY9hcqS+W/ebmGllPgAABAgQIECBAgED3BNY60KkrHT9J3pPUdwntlew6IHV3O4UAAQIECBAgQIAAAQKdFvhijq6+Q6i5mcGw6Qs7rTD5g/MWu8mb2iIBAgQIECBAgMBsBDr1Fru1fg/S12J8+hjO3xmjjSYECBAgQIAAAQIECBBYKIG1DpCeulC91xkCBAgQIECAAAECBAhMUGCtn0Fq77o+Z1R3e6vbaFep24ArBAgQIECAAAECBAgQWFqB9QyQ6sYM70ouSY5Jmtt+vy3zf51smygECBDoukBdga/vT3tgcquuH6zjI0CAAAECBAYL7J7qs5O6OcO3k5OTI5Mq70+q/lvJdokyvoCbNIxvpSWBRRCotxufldTPvPoC6pp+OakBk0KAAAECBFZNoFM3aVjryXt3HlBXju7Ve+D7Mm0GSFtmvq4g1QuFJyfK+AIGSONbaUlg3gJ/kw7U1x38cbJLrzO3y/TtyaXJgb06EwIECBAgsCoCKz1AOjdn+f+0znR7gFTVWyfnJ2+sBWVsAQOksak0JDBXgXtk7/WF0w8c0ovXpv6EpN5+pxAgQIAAgVUR6NQAaS2fQdopZ7j+Wnr8iDN9ZdYd22s3oplVBAgQWEqBP0ivP558Ykjvn5f6vZP6Im2FAAECBAgQWEKBtQyQLszxnZnUX1CHlRpE3TE5blgD9QQIEFhigTuk718Y0f+6yv7dpNopBAgQIECAwBIKrPVtIB/NMT4xqRsxvClplxtm4U3Jzsmwv65mlUKAAIGlFajPGO24md7X+mqnECBAgACBeQrUhZCDkv16nTg6088k9VZxZYICNQg6JakbMVyQ1BWl05L3J+ckVe/zR0FYYzks7cvOd0mtEU5zAjMWeEH2V28zrpvSDCr1S6j+L9dNGxQCBAgQIDAvgXonwzeSutPqV3up+aqbxrscOvUZpBitudw4j3h1cnlSLwSa1ADpGcmwFw5ZpQwRMEAaAqOawIIJ1M+/+ln3D8kWfX3bLcv13XDv6au3SIAAAQIEZimwZ3Z2VlI3U7tJa8c1X3W1rtpMsqz8AKnBrIHQLZMDk5s1labrEjBAWhebBxGYi8B9s9e6gv7F5A+TQ5IXJj9KvpzUlXaFAAECBAjMS+Ct2fHnk0EXLaruqKTaTLIYIE1S07auEzBA8kQgsFwCe6W7/5TULb3PTmpg9Kxk20QhQIAAAQLzEqj7C1yS/OaIDvxWr81a70UwYpPX69QAaXMw9cu+PuC11lK3+75qrQ/SngABAksiUJ/FfNqS9FU3CRAgQGB1BOrt3tsn3xlxyN/utam2Z4xot7KrNjf4+VJk6hvj15o/X1lRB06AAAECBAgQIEBgPgLnZ7dXJ6M+/lLrqk21VQYIbO4KUr1Hse5Ut9by/bU+QHsCBAgQIECAAAECBDYkUF8zcUTyxOQzyaBS66pNtVUILKyAzyAt7KnRMQIECBAgQIDAUgn8cnpbH3f506R9x9War7orkmozybJSn0GaJJxtESBAgAABAgQIECAwXYG6y+qhyZuS308+mVR5YLJP8rtJtVGGCGzuM0hDHqaaAAECBAgQIECAAIEFFXh3+nWb5F3JLXp5Z6+u1ikjBDb3GaQRD7WKAAECBAgQIECAAIEFFTg9/fqrBe3bQnfLFaSFPj06R4AAAQIECBAgQIDALAUMkGapbV8ECBAgQIAAAQIECCy0gAHSQp8enSNAgAABAgQIECBAYJYCBkiz1LYvAgQIECBAgAABAgQWWsAAaaFPj84RIECAAAECBAgQIDBLAQOkWWrbFwECBAgQIECAAAECCy1ggLTQp0fnCBAgQIAAAQIECBCYpYAB0iy17YsAAQIECBAgQIAAgYUWMEBa6NOjcwQIECBAgAABAgQIzFLAAGmW2vZFgAABAgQIECBAgMBCCxggLfTp0TkCBAgQIECAAAECBGYpsNUsd2ZfBAgQ6JDAzjmWxyY3TY5O3psoBAgQIECAAAECExA4LNu4NtlhAtuyCQIEpiuwRTb/oeSaXq7OtP7/Xpo8NVEIECBAgMCqCWyTA67fhQd04cC9xa4LZ9ExECAwS4H/ys4ekrw12S3ZMrlHclLyT8mzEoUAAQIECBAgQGADAq4gbQDPQwnMUOBJ2VddOXr6kH1+PfVXJNcfsl41AQIECBDookCnriB18QQt4zEZIC3jWdPnVRT4dg76zBEHvmfW1QDquSPaWEWAAAECBLom0KkBkrfYde3p6XgIEJimwM2y8W+N2MEPs+7yZL8RbawiQIAAAQIEFljAAGmBT46uESCwcAL19rm6e92oUncHvWhUA+sIECBAgACBxRUwQFrcc6NnBAgsnkDdzvsXk2GfMXpC1tVNG96WKAQIECBAgAABAusU8BmkdcJ5GIEZC+yV/dVtvb+TbN2373pbXb29ru5mpxAgQIAAgVUS6NRnkHxR7Co9dR0rAQIbFTglG6g72b02uSD5VHJactekBkj11roDE4UAAQIECBAgQGADAq4gbQDPQwnMQWDf7PNLyU+SK5Nzk7cm2yYKAQIECBBYNQFXkFbtjDteAgQI9Al8M8v799VZJECAAAECBDog4CYNHTiJDoEAAQIECBAgQIAAgckIGCBNxtFWCBAgQIAAAQIECBDogIABUgdOokMgQIAAAQIECBAgQGAyAgZIk3G0FQIECBAgQIAAAQIEOiBggNSBk+gQCBCYucAds8cvJJckVyTnJG9K3MUuCAoBAgQIEFhmAQOkZT57+k6AwDwE/iA7PSa5S3JE8uakvhz295Mzk5skCgECBAgQIECAwAYEfA/SBvA8lMAMBfbKvq5Ojku27tvv3bN8eXJiX71FAgQIECDQdYFOfQ+SK0hdf7o6PgIEJinw6mysBkh3TeoLYtvlq1l4erJP8iuJQoAAAQIECCyhgAHSEp40XSZAYG4CdZWo3l536ZAevC71NYD6vSHrVRMgQIAAAQILLmCAtOAnSPcIEFgogXoLwfmb6dFVWX+DzbSxmgABAgQIEFhQAQOkBT0xukWAwEIKnJFe1R3shpU9s6LuZHf0sAbqCRAgQIAAgcUWMEBa7POjdwQILJbAP6Q7dZe6pw3p1gdSX2+xe+WQ9aoJECBAgAABAgTGEHAXuzGQNCGwIAJfTz+uSd6Y7NLr036ZHptU/bN7dSYECBAgQGBVBDp1F7tVOWmLfpwGSIt+hvSPwH8LbJHZjyQ1GKrUFaNrk8uSYVeWskohQIAAAQKdFejUAGmrzp4mB0aAAIHpCNRg6CFJXT16XHLTpD5z9O6k1ikECBAgQIDAEgsYIC3xydN1AgTmKnBe9v53c+2BnRMgQIAAAQITF3CThomT2iABAgQIECBAgAABAssqYIC0rGdOvwkQIECAAAECBAgQmLiAAdLESW2QAAECBAgQIECAAIFlFTBAWtYzp98ECBAgQIAAAQIECExcwABp4qQ2SIAAAQIECBAgQIDAsgoYIC3rmdNvAgQIECBAgAABAgQmLmCANHFSGyRAgAABAgQIECBAYFkFfA/Ssp45/SZAYN4CB6YDByf1hbEnJu9LfpgoBAgQIECAwBILuIK0xCdP1wkQmIvADbPXDyefTR6Y7Jk8PTkheW6iECBAgAABAkss4ArSEp88XSdAYOYC9UelDyQ3Su6UHJc05dDMvD65NHllU2lKgAABAgQIECCwdoHD8pBrkx3W/lCPIEBghgKPyr4uTm4+ZJ/1f/nCZOch61UTIECAAIEuCmyTg6rXsgd04eC8xa4LZ9ExECAwK4GHZUfvSk4dssM3pv6apN56pxAgQIAAAQJLKLDqA6S9c87qQ9Z3Sa6/hOdPlwkQmK3AHtnd90fs8qqs+0FysxFtrCJAgAABAgQWWKDrA6Qnx/7wpH/ws2/qvpKcnHw8+VpyRlIfsN4yUQgQIDBI4MxU7pPU22H/OPlIclTytuQhSf1Mrbff/ShRCBAgQIAAAQILJ/CG9KjeD9n+PEDdcer8Xn0Nkl6d1CCq3jJTbV+RzLr4DNKsxe2PwPoEHpuH1WeM6ipR/cz4u+TPkvoZcnnypeQnya6JQoAAAQIEVkVgmxxovY7uxGeQun7SBg2Q3t47gXVb3nbZPgvNuge0V8xg3gBpBsh2QWACAjfINi5Lzk1u07e9p2T56qSuKCkECBAgQGCVBAyQluhsDxognZT+1195B5V6K97ZyUsHrZxinQHSFHFtmsAEBZ6ZbdXbcT+f1O28/z15Y/LVpAZH70jqc0jD7nKXVQoBAgQIEOicQKcGSF3/DNKgZ99OqfzmoBWpqxc89b0m9f0mCgECBPoFHpiKdyf3Sg5Jjk+2SD6Y3DF5dPLj5FcShQABAgQIEFhCga2WsM8b7fLR2UDdpGFQqc8N3CN506CV6ggQWHmBG0bgrKTeZ11Xjyr9pQZI1U4hQIAAAQIEllBgVa4gfTnn5u3Js5P6fMDdk99I2mWvLLwqqUuER7RXmCdAgEBP4MRM7zxCoz7LeKuk2ikECBAgQIAAgYUTeHh69L6kXqzUX3zbOSXLTXlIZq5Man19tqDeMjPLclh2VvveYZY7tS8CBNYs8KA8on5WDBsk/WXW1a3A6/OMCgECBAgQWBWBTn0GqetvsXtPnpWVKnWr77u00h4E1Xcf1eeP6gPWz0pqsLKRsl0e/ISknizjlP3HaaQNAQJzF/h4elA/U2pa/8c/mjR/3HhO5l+QPCKpnycKAQIECBAgsIQC7UHCEnZ/Yl2uv/bWnafqL8OTKHUHq3oRNe4A6UZpu3eyY3JJohAgsLgCW6drL0uekZyX1GeSbplckDwtqavWCgECBAgQWCWBes17eXJg8oVVOnDHOj0Bb7Gbnq0tE5iWwO7Z8KFJDYp+LakrxwoBAgQIEFhFAW+xW8Wz7pgJECDQJ3BGlg/vq7NIgAABAgQILLnAqtzFbslPk+4TIECAAAECBAgQIDALga7fpKHeurbTOiCPymO8f3IdcB5CYIUE6uYuv5jsktSdMk9KFAIECBAgQIDAQgt8Lb2rO0ytNX8546PyGaQZg9sdgQ0KPDmP/1FSP1uarwj4YubvligECBAgQGDVBHwGaYnOeH1wuu4odUDygeQNyTjl+HEaaUOAwEoKvCRHXV8HULf0fnNyTvILyV8kn0vun7gCHQSFAAECBAgQWEyBbdOt+stu3XrwrovZxeu5grSgJ0a3CPQJ3D3L1yQP6qtvFl+Xme8mXX/7cnO8pgQIECBAoAQ6dQVpVU7pHXOgNUCqv+4uYjFAWsSzok8E/qfAv6TqY/+z+mc1u2buiuRXflZjhgABAgQIdF+gUwOkVbmL3bF5Xj4/qRs27Nv956gjJEBgSgJ3yHbrJi7DSr3drq4gVTuFAAECBAgQWEKBVRkg1an52+TOyTdrQSFAgMA6BC7LY3bczONqfbVTCBAgQIAAgSUUWKUB0hKeHl0mQGDBBI5Mf34zqVt8Dyp1F7u9k0V9O++gPqsjQIAAAQIECCycgM8gLdwp0SECAwVunNpzk79LtuhrUeu+kby3r94iAQIECBDoukCnPoPkTktdf7o6PgIEJilwdjZ2SPL+ZP/kLUl9H1J9tvEPk1OTJyYKAQIECBAgQIDABgRcQdoAnocSmIPAPtln3dHu+0ldUfpq8ifJdolCgAABAgRWTcAVpFU7446XAAECfQInZ/mpfXUWCRAgQIAAgQ4IuElDB06iQyBAgAABAgQIECBAYDICBkiTcbQVAgQIECBAgAABAgQ6IGCA1IGT6BAIECBAgAABAgQIEJiMgAHSZBxthQABAgQIECBAgACBDggYIHXgJDoEAgQIECBAgAABAgQmI2CANBlHWyFAgAABAgQIECBAoAMCBkgdOIkOgQCBmQvsnj3+bXJM8sPkiOQpydaJQoAAAQIECCyxwFZL3HddJ0CAwDwEDsxOP5SckrwpOSvZN3lJ8nvJg5MLE4UAAQIECBAgQGCdAoflcdcmO6zz8R5GgMBsBHbJbmpA9Jqk/wp8XVX6TnJ4ohAgQIAAgVUS2CYHW69lD1ilg3as0xUwQJqur60TmJTAn2VD30uGXX3fP+vqF8StE4UAAQIECKyKQKcGSP1/AV2Vk+g4CRAgsB6B++RB70+uGvLgL6W+3npX7RQCBAgQIEBgCQUMkJbwpOkyAQJzE6i3wV6wmb3X54+230wbqwkQIECAAIEFFTBAWtATo1sECCykwHHpVb2Nbli5YVbcNql2CgECBAgQIECAwDoFfAZpnXAeRmDGAvXh06uTg4bs9x9Tf2Ky9ZD1qgkQIECAQBcFOvUZpC6eoGU8JgOkZTxr+ryqAq/IgV+UPDlp7jy5d+b/Nbk8uW+iECBAgACBVRIwQFqlsz2jYzVAmhG03RCYkMCzsp3zkrpZQ33mqO5cV18aW9+RpBAgQIAAgVUTMEBatTM+g+M1QJoBsl0QmLDAttnevZNfT+404W3bHAECBAgQWCaBTg2Qhn2XxzKdEH0lQIDAPATq7XRHzmPH9kmAAAECBAhMT8Bd7KZna8sECBAgQIAAAQIECCyZgAHSkp0w3SVAgAABAgQIECBAYHoCBkjTs7VlAgQIECBAgAABAgSWTMAAaclOmO4SIECAAAECBAgQIDA9AQOk6dnaMgECBAgQIECAAAECSyZggLRkJ0x3CRAgQIAAAQIECBCYnoAB0vRsbZkAAQIECBAgQIAAgSUTMEBashOmuwQIECBAgAABAgQITE/AAGl6trZMgAABAgQIECBAgMCSCRggLdkJ010CBAgQIECAAAECBKYnYIA0PVtbJkCAAAECBAgQIEBgyQQMkJbshOkuAQIECBAgQIAAAQLTEzBAmp6tLRMgQIAAAQIECBAgsGQCBkhLdsJ0lwABAgQIECBAgACB6QkYIE3P1pYJECBAgAABAgQIEFgyAQOkJTthukuAAAECBAgQIECAwPQEDJCmZ2vLBAgQIECAAAECBAgsmYAB0pKdMN0lQIAAAQIECBAgQGB6AgZI07O1ZQIECBAgQIAAAQIElkzAAGnJTpjuEiBAgAABAgQIECAwPQEDpOnZ2jIBAgQIECBAgAABAksmYIC0ZCdMdwkQIECAAAECBAgQmJ6AAdL0bG2ZAAECBAgQIECAAIElEzBAWrITprsECBAgQIAAAQIECExPwABpera2TIAAAQIECBAgQIDAkgkYIC3ZCdNdAgQIECBAgAABAgSmJ2CAND1bWyZAgAABAgQIECBAYMkEDJCW7ITpLgECBAgQIECAAAEC0xPYanqbtuUFE7hF+rNfr09HZ3rSgvVPdwgQIECAAAECBAgQIHCdwGH599pkhyl43CTb/GBv++dkWql9VV2tUwgQIECAAAECBAhsRGCbPLheXx6wkY0symO9xW5RzsR0+nGjbPbzyc8nd0927aXmq+5zSbVRCBAgQIAAAQIECBAgsDAC07qC9Koc4bHJ9gOOtOpqXbVRCBAgQIAAAQIECKxXoFNXkNaL4HGTFZjGAKmuDp6XHDqiq7Wu2riSOALJKgIECBAgQIAAgZECnRogeWE88lwv9cp6C90Nk7ohw7DyX1lRbXYb1kA9AQIECBAgQIAAgVUSMEDq7tm+uHdo9RmjGySvSL7YS81X3S5JlUt+OvEvAQIECBAgQIAAAQIE5i8wjbfY1VF9OflEcmVyTXJWLzVfdbWu2igECBAgQIAAAQIE1ivgLXbrlfO4mQt8IHu8f1IDo92TettdpearrtZVG4UAAQIECBAgQIAAAQILIzCtK0g/zBHWW+2uTj6S/FEvNV91ta7aKAQIECBAgAABAgTWK+AK0nrlPG6mAvWls3sk/yf5paSuGD2hl5qvulpXbabxBbXZrEKAAAECBAgQIEBguQS2Wq7u6u0aBG6dtlskdWOGupPd45P+Ul8cW22q7Tf6V1omQIAAAQIECBAgsGoC7mLX3TN+Yg7t2uSuIw6x1lWbaqsQIECAAAECBAgQIEBgIQSm9RmkH+XoTh9xhLXuzBHrrSJAgAABAgQIECCwOQGfQdqckPULI/CH6clNky8l12/1quarrtY9rVVvlgABAgQIECBAgAABAnMXmNYVpDqw5yZ1x7qrknorXaXmq67WKQQIECBAgAABAgQ2IuAK0kb0PHbmAi/LHvdJ3pVc0UvN75PUOoUAAQIECBAgQIAAgZ6Au9itxlOhvuvo0NU4VEdJgAABAgQIECBAYP0C7mK3fjuPJECAAAECBAgQIECgYwIGSB07oQ6HAAECBAgQIECAAIH1Cxggrd/OIwkQIECAAAECBAgQ6JiAAVLHTqjDIUCAAAECBAgQIEBg/QIGSOu380gCBAgQIECAAAECBDomYIDUsRPqcAgQIECAAAECBAgQWL/AKt7me5dw7Zxsm1ycnJ9ckigECBAgQIAAAQIECKy4wKpcQbprzvPrk7OSc5OTkuOSU5MaJH0/eU2yW6IQIECAAAECBAgQILCiAqtwBekvcm5f1Du/p2T6haQGSTUwqitJN0r2Sp6UHJI8Mzk8UQgQIECAAAECBAgQINApgd/J0VybfDS524gj2yLr7pN8Jan2ByazLIdlZ7XfHWa5U/siQIAAAQIECBAgMAGBbbKNei17wAS2ZRNTFnh7tl9vn6vPG41T6vNJFyavHqfxBNsYIE0Q06YIECBAgAABAgRmKtCpAVLX32J35zw16i11l4/5FDkv7Y5J9hiz/TI1u1M6u1+vw0dn+q1l6ry+EiBAgAABAgQIEJiFQNcHSGcEsQYFWydXjgFaV5BqUFU3bOhK2TMH8ubkV5If9g6q6j6dPLZV11tlQoAAAQIECBAgQGB1Bbp+F7saGNw+eW+y/4jTXJ9BunfysWT75P1JF0rdle9zSR3fLyR1M4pKzVddrXPnviAoBAgQIECAAAECBFZBoAYBz0ouSeqDY6cmX0w+kryjN6234J2e1Pq6yvRHyazLtD6DVFfCvp5sN+CAqq7Wdelq2YDDVEWAAAECBAgQIDBlgU59BmnKVguz+VumJzUgOi2pgVA7NXg6IXl5Um89m0eZxgBpyxzIBckjRhzQI3ttqq1CgAABAgQIECBAYD0CnRogdf0zSM0JPjEzj+4t7JRpff9RXUGpL46tQcSkyy2ywc8n9WQZp2w7TqM1tqm3ztWxfmPE4+oKUrWptmeOaGcVAQIECBAgQIAAgZUQWJUBUvtk1m28K9Ms9YW0T0m2HnMn90+7p47ZdtxmF6VhXSm7cXL8kAfVumpTbRUCBAgQIECAAAECKy+wigOkWZz0q7OTD65hRzdaQ9txm9ZbB7+YPCapq1mDSq2rz2BVW4UAAQIECBAgQIAAAQILITCNzyDVgT0guSp5XNJfHpeKWldtFAIECBAgQIAAAQLrFfAZpPXKzeFxNfCoz9istRyVB9SVlWUvn8wBPD15XfK45D+SKgcn90xqXbVRCBAgQIAAAQIECBBYAYGv5Rjbd6wbd/4vZ2wzrStIzWHcITOvSmrgV6n5qlMIECBAgAABAgQIbFRgm2ygXmcfsNENLcLju/4ZpF8L8vt6J+sDmb5hTPRhNzUY8+EL1+zb6VFdLVIIECBAgAABAgQIEFhxgbqFdt2s4PLkrgtqMe0rSAt62LpFgAABAgQIECDQAYFOXUH6uQ6ckM0dQg2MntBr9I+ba2w9AQIECBAgQIAAAQKrK7AKA6Q6u8cmz0/qhg37JgoBAgQIECBAgAABAgQILKiAt9gt6InRLQIECBAgQIAAgc0KeIvdZok0IECAAAECBAgQIECAwBIKrMpb7Jbw1OgyAQIECBAgQIAAAQKzFjBAmrW4/REgQIAAAQIECBAgsLACBkgLe2p0jAABAgQIECBAgACBWQsYIM1a3P4IECBAgAABAgQIEFhYAQOkhT01OkaAAAECBAgQIECAwKwFDJBmLW5/BAgQIECAAAECBAgsrIAB0sKeGh0jQIAAAQIECBAgQGDWAgZIsxa3PwIECBAgQIAAAQIEFlbAAGlhT42OESBAgAABAgQIECAwawEDpFmL2x8BAgQIECBAgAABAgsrYIC0sKdGxwgQIECAAAECBAgQmLWAAdKsxe2PAAECBAgQIECAAIGFFTBAWthTo2MECBAgQIAAAQIECMxawABp1uL2R4AAAQIECBAgQIDAwgoYIC3sqdExAgQIECBAgAABAgRmLWCANGtx+yNAgAABAgQIECBAYGEFDJAW9tToGAECBAgQIECAAAECsxYwQJq1uP0RIECAAAECBAgQILCwAgZIC3tqdIwAAQIECBAgQIAAgVkLGCDNWtz+CBAgQIAAAQIECBBYWAEDpIU9NTpGgAABAgQIECBAgMCsBQyQZi1ufwQIECBAgAABAgQILKyAAdLCnhodI0CAAAECBAgQIEBg1gIGSLMWtz8CBAgQIECAAAECBBZWwABpYU+NjhEgQIAAAQIECBAgMGsBA6RZi9sfAQIECBAgQIAAAQILK2CAtLCnRscIECBAgAABAgQIEJi1gAHSrMXtjwABAgQI/L/27gRYurMgEzAhfyJkBcI6CkYKEAEhEkAIMyTsA0giA+LCYkrBVBhlKlKK41YZI+WopWC5oINgcAGLUVDQEiGAMRCBEBASIMQZQFkCxBBMSMKazPuG7tD29O2/b9/b97/39PNVvX+f/s53Tp/v6T51++uz/AQIECBAYNcKGCDt2rfGhhEgQIAAAQIECBAgsNMCBkg7Le71CBAgQIAAAQIECBDYtQIGSLv2rbFhBAgQIECAAAECBAjstIAB0k6Lez0CBAgQIECAAAECBHatgAHSrn1rbBgBAgQIECBAgAABAjstYIC00+JejwABAgQIECBAgACBXStggLRr3xobRoAAAQIECBAgQIDATgvs2+kX9HoHTODWeeX7jV79vXm88oBtiRcmQIAAAQIECBAgsEsFHEHapW/MNm7W0VnXHySfSc4ZpdOt6zyFAAECBAgQIECAAIGRgAHSsD8KR6R75yYPSr4rucUonW5d57WNQoAAAQIECBAgQIAAgV0j8OxsyQ3J4du8Rb+S9X046el106V1ndc2CgECBAgQIECAAIFlBQ7Ngv0u+5BlV2A5AtMCqxggHZQXuTz5oekXm3jeeW3TtgoBAgQIECBAgACBZQQGNUByit0yH4G9sczts5m3Tf5hzuZ2Xtvcbk4bswgQIECAAAECBAisjYC72A33rb5u1LVeY9SB8EnJ8UnLhcnfJePrj76QaYUAAQIECBAgQIDA2gsYIA33I3BVuva+5EeS70zumfT23i0vSC5J3pG0TdsqBAgQIECAAAECBAgQ2BUCq7gGqR07Pbk+OS+5QzIunW5d57WNQoAAAQIECBAgQGBZgUFdg+QI0rIfg72x3EOzmZ9IekeR3q3uDUnLY5LWdd4JyYsThQABAgQIECBAgAABArtCYBVHkDr4vSY5JXl08rrkk6N0unWd1zYGykFQCBAgQIAAAQIElhJwBGkpNgvttEDvTHdY8sHk0uSNyXS5Ryrapm0vm57pOQECBAgQIECAAIF1E3Cb7+G+459L176a/Ic5Xey8tmlbhQABAgQIECBAgMDaCxggDfcjcF26dm7yrDld7Ly2aVuFAAECBAgQIECAAAECu0JgFdcgtWMPTr6U/GRyUDIunW5d57WNQoAAAQIECBAgQGBZAdcgLStnuR0XeHte8WnJ2ckPJuPrkHqDhmOTzmsbhQABAgQIECBAgACBCDjFbvgfg/+dLt49+dPk2FE63brOUwgQIECAAAECBAgQGAm4vfN6fBR6e++z1qOrekmAAAECBAgQIEBgeQFHkJa320tLnpSN/fPko6N0+qREIUCAAAECBAgQIEBgQsAAaQJjoJNnpl/nJL0hQ6ebTreu0woBAgQIECBAgAABAgR2lcCzszU3JIdv81Y9OevrYOhxM9bbus5rG4UAAQIECBAgQIDAsgKDuovdsgiW216BVQ2Q3pPN/NU5m9p5baMQIECAAAECBAgQWFZgUAMkp9gt+zHY/csdmU08Lpl3p7rOa5u2VQgQIECAAAECBAisvYAB0nA/AoeNunbVnC6O543bzmlqFgECBAgQIECAAIHhCxggDfc9vjxduyJ58Jwudl7btK1CgAABAgQIECBAYO0FDJCG+xG4Pl17efIzydEzutm6zmubtlUIECBAgAABAgQIECCwKwRWdZOGo9K7i5P3JQ9POiBuOt26ixLXHwVBIUCAAAECBAgQWFrATRqWprPgTgv0GqP/lHQw1P/36LpROt26hyVXJwoBAgQIECBAgAABAhHYR2HwAlemh09Pzkh6x7qWf0xcd3QjhX8IECBAgAABAgQIfF3AAOnrFkOf6nvdw58t3vevOfiXAAECBAgQIECAAIFdKLCqa5Da1WOSVyW9EcPnR+l06zpPIUCAAAECBAgQILAVAdcgbUXPsjsq0DvVvTW5W9LrjXpDhqbTreu8WXe4S7VCgAABAgQIECBAgACBAyOwqiNIL0p3PpTMulNd6zrvhYlCgAABAgQIECBAYFmBQR1BWhbBctsrsIoBUm/nfUXyjDmb+sxRG/8f1hwkswgQIECAAAECBOYKDGqA5Ivx3Pd6T8+8Xbb+NskFc3rxzlGbtlUIECBAgAABAgQIrL2AAdJwPwLXjro27xqj8bxx2+Fq6BkBAgQIECBAgACBBQQMkBZA2qNN+h/Avjt56pzt/95RG/9Z7BwkswgQIECAAAECBAgQ2FmBVVyD1B58d/Ll5OQ+mSqt67xTpuo9JUCAAAECBAgQILAZgUFdg7RvMz3Xds8J/EW2+MzkNaO8IY8tj0melPxc8peJQoAAAQIECBAgQIAAgV0jsKojSOMOnpCJVyaXjtLp1ikECBAgQIAAAQIEtirgCNJWBS2/4wLn5xUbhQABAgQIECBAgACBOQJOsZuDM6BZd0lfepTq+FGfLszjS5J/GT33QIAAAQIECBAgQIBABNzFbvgfgx9IFz+UPDG5OHn/aLp1nacQIECAAAECBAgQIEBgVwms6hqkh6aXvVPdGTN627rOaxuFAAECBAgQIECAwLICg7oGaVkEy22vwKoGSG/JZr58zqZ2XtsoBAgQIECAAAECBJYVGNQAad2vQfrmfAq+NflM0lPOrkuGUm6ZjjwsecScDr0s896ctO2Q+j6ny2YRIECAAAECBAgQ2Fhg6NcgnZauvyLpAGCyfHueXJB8NPnb5D3JZcnzk4OTIZRbpRN9f9uvjcqnMqNt2lYhQIAAAQIECBAgQGDgAj1CckNy9EQ/75zpz43qO0j63aSDqI+P6n49jztdVnGKXY8Ofj7pfwi7Uem8tln3I4kb+agnQIAAAQIECBDYv8CgTrHbf3f3dotZA6Q/SZc6aPrRqa4dlufjeY+amrfqp6sYIHWbe43R25NZA6DWdd68a5QyWyFAgAABAgQIECAwV2BQA6RZX5zn9n4AM09IH96Z/NZUX67N82clj0163c45ybKlH5KnJYcsuIL/uGC7zTb76SzQ//Po1cnpySeSlm9MXpwcmzw5UQgQIECAAAECBAgQiMA6DpCOSr/ftMG73xsVXJLcZ4P5i1bfIQ1/POlAaZFy+KhRb7u9naUDohOTVyT/nPT/QGq5d/Le5GHJeNCUSYUAAQIECBAgQIDAegus4wCpR1R6k4ZZ5ZhUPjA5e9bMTdR9LG03eo1Zq3lIKs+fNWMb6np3vgckPUp1/9H6avC2pKcaKgQIECBAgAABAgQIjATWZYDUU+relXRg0IHIzyUnJ69NxuUumfjlpEd9zh1XDuSxA6HzRhlIl3SDAAECBAgQIECAAIHNCjwlC/T6mw8nHSRM5l/yfFyekIme3tb5PbJyULKTpUeQ+todnCkECBAgQIAAAQIE9pJAv8P2u2y/0+75MvQjSH+Wd6hp6a2+j5vI5CCo//dRrz96ZXJG0jdYIUCAAAECBAgQIECAwFoK9D+SPeQA9twRpAOI76UJECBAgAABAgS2JOAI0pb4dufCPXqkECBAgAABAgQIECCw5gI3X/P+6z4BAgQIECBAgAABAgRuEjBAuonCBAECBAgQIECAAAEC6y5ggLTunwD9J0CAAAECBAgQIEDgJoGh38Xupo6auPE/wD1+5ND/D+oCJgQIECBAgAABAgQIENiNAqu8i91d0+Hzk+uTS0bpdOs6TyFAgAABAgQIECCwFYFB3cXOKXZb+Sjs/mXvlE08L7kq6WDonqN0unWd1zYKAQIECBAgQIAAAQIEdo3Aqo4gvTQ9fFfSUf10aV3ntY1CgAABAgQIECBAYFmBQR1BWhbBctsrsIoB0sHZxKuTJ8/Z1KeM2rStQoAAAQIECBAgQGAZgUENkJxit8xHYG8sc7ts5hHJxXM296JRm7ZVCBAgQIAAAQIECKy9gAHScD8CvcaoN2O4/Zwudl7btK1CgAABAgQIECBAYO0FDJCG+xG4Nl17W3LqnC52Xtu0rUKAAAECBAgQIECAAIFdIbCKa5DasROTrySn98lUaV3ntY1CgAABAgQIECBAYFmBQV2DtCyC5bZXYFUDpG7lqckXk3ckZ43S6dadmigECBAgQIAAAQIEtiIwqAHSvq1IWHZPCJydrTwvOS05IWk5N/mB5P/2iUKAAAECBAgQIECAAIHdJLDKI0i7qZ+2hQABAgQIECBAYHgCgzqC5CYNw/uA6hEBAgQIECBAgAABAksKGCAtCWcxAgQIECBAgAABAgSGJ2CANLz3VI8IECBAgAABAgQIEFhSwABpSTiLESBAgAABAgQIECAwPAEDpOG9p3pEgAABAgQIECBAgMCSAgZIS8JZjAABAgQIECBAgACB4QkYIA3vPdUjAgQIECBAgAABAgSWFDBAWhLOYgQIECBAgAABAgQIDE/AAGl476keESBAgAABAgQIECCwpIAB0pJwFiNAgAABAgQIECBAYHgCBkjDe0/1iAABAgQIECBAgACBJQUMkJaEsxgBAgQIECBAgAABAsMTMEAa3nuqRwQIECBAgAABAgQILClggLQknMUIECBAgAABAgQIEBiegAHS8N5TPSJAgAABAgQIECBAYEmBfUsuZ7HVCBy6mtX+u7Ue8u+eeUKAAAECBAgQIDB0gS+vuIM78R12xV34+uoNkL5ucSCnxh/aqw/kRnhtAgQIECBAgAABAlsQ+NIWlt01ix60a7bEhjwgBKs+unNmXuOI5OxEIUBg6wL3ySpOS35s66uyBgIERgK/mcffSy4mQoDAtgicmrV8PjkzWWXp4OjCVb6AdRNYhcDZWWmjECCwPQKPz2qu2Z5VWQsBAiOB7lPdtxQCBLZH4OysplEWFHCThgWhNCNAgAABAgQIECBAYPgCBkjDf4/1kAABAgQIECBAgACBBQUMkBaE0owAAQIECBAgQIAAgeELGCAN/z3WQwIECBAgQIAAAQIEFhQwQFoQSjMCBAgQIECAAAECBIYvYIA0/PdYDwkQIECAAAECBAgQWFDAAGlBKM0IECBAgAABAgQIEBi+gAHS8N9jPSRAgAABAgQIECBAYEEBA6QFoTQjQIAAAQIECBAgQGD4AvuG30U9nBD40sS0SQIEti7w5azCfrV1R2sgMCnQfar7lkKAwPYI+Du1PY7WMlCB26RfjUKAwPYI9Cj8XbdnVdZCgMBIoPuUM1x8HAhsn4Dvf9tnaU0ECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECGyvwMHbuzprO0ACfR8fkjwo+Ury2WQz5S5pfKsNck3qr9/MyrQlMDCB705/uo9dvsl+bXW/3OTLaU5gzwgcmy19QnLRJrb4qLS9YzLrb9Uhqb92E+vSlMBQBA5LR+6fPDTpvnFV8sVkM+Wb0vjEpI+fSb6cKAT2vMDd04MPJjdM5P2ZvnOySLl9Gk0uOz19j0VWog2BgQo8O/3qPvG8TfZvq/vlJl9OcwJ7RqADnQ8kV29yi38n7af/Po2fv2KT69KcwBAEnplOfDoZ7wd97ADpucmi5X+kYQdE43X0R/afXHThIbfbN+TOrUHfDkofX5p8Y/KM5O3Jw5PfSN6a3CvpEaB55bjRzHPyePGMhlfOqFNFYB0ETkknf3uJjm7HfrnEy1qEwK4XuHW28JXJtyWf3+TW9m9Vl/n9GctdOKNOFYEhCzw6nTs7+efkp5PXJY9InpP0O2C/u/1RMq90HT+fvCY5Kzkk+YXkl5Prkt9MFAJ7UuD0bHVH/adNbf2zN6ifanbj0+eP2p44a6Y6AmsocEz6/MdJ960vjB6fl8dFy3bsl4u+lnYE9orAk7Khn0y6X/UUoKuTRcvN07CDo7csuoB2BAYu0H2h+9Jjpvr5wFF9zySaV3pq3keSjyc9HXxcDs1E6z+WTNaP53sksCcE3pGt7Be4nnc6WXoKQ0f/F0xWbjDdX/N6jdGRG8xXTWDdBLpf9Q/Pq5KewtDpzQyQtmO/zEsqBAYj8Lj0pPvRvyYnJ+9ONjNA+ta07/K/migE1l2gPxi8M+kgaNYg5pLU91S5WfNSfWMZ75P/c1wx8fiCTHd/63WCa1uKrOxNgR4K7SkHlyafm+pCz0HtDnK/pO3mlfE6+qvB9ydnJI9NbpkoBNZRoKfrPDp5ajK9b+3PY7v2y/29jvkE9pJAv6z9YnKP5LVLbHj/TrV03zwh+bHkB5MOnBQC6ybQH7UflNw7+epU52+R53dKPppMz0vVTaXLt3SgNV3GdQ+YnrFOz/etU2cH1teey91BzRUb9Ouzqe+Xtdsln9ygzWGp7x+sy5OPJEcm4/JPmXh6Mt5RxvUeCQxd4Dlb6OB27JdbeHmLEtiVAm/MVjXLlvEAqddH3H1iJf2i+BtJLyrvIEwhsO4CvWyiZxH97n4g7jCaP+s7ZL8/tvT69rUtjiDt3be+O0BLT1mYVcYf8MNnzRzV3TeP/Qz0S91Zyb2S/iLxS8ldk9clt0kUAgQWE9iO/XKxV9KKwPoIfMeoq5/K4+OTO48eP5jHM5KfShQC6y7Qsx5+PukP3Gcm88q8v1WLfH+ct+5BzHMEae++jV8YbfpGg9zxuafzDrF+OOvoaXUfS942Wl8fekeULt9f5X48+dlEIUBg/wLbsV/u/1W0ILBeAi9Id1+VvCIZ72Mfz/R7kkuS/o16YXJNohBYR4FT0+n/lfSMoFOSXoc+r4z3o1nfIRf5/jhv3YOYNwtmEB1bg070l7ReRLfREZ5x/b/NsfhM5v1pMjk4Gjf/w9HE+Je7cb1HAgQ2FtiO/XLjtZtDYD0Fzku3X5aMv9SNFbq/9dS9b0h6BoRCYB0FetToD5L+aPCwpEdW91fGl16MvytOth/Xzfv+ONl+kNOOIO3dt7XnW3eAM/4gT/ek9dcmm73IfLye/grRMj4M+7Vn/iVAYJ7AqvfLea9tHoF1FPC3ah3fdX2uQP/PvRclz00uSJ6YfDpZpCwyQPrEIisaahtHkPb2O9tfCfqr2W2nutEbM3xbcmEy7xS7nrv9oaSn2U2Xe44qOl8hQGBxga3ul4u/kpYEhi/Qmwf1b9n5yazvLP5WDf8zoIf/v0D3hR5V7eDoL5KTkkUHR2l601GmE/tkqozr3jlV7ymBPSPwX7KlPc2u1wpNlp/Kk9Y/ZbJyxvSTR+0uzmN/iRiXTr8+6Tp6uFYhsK4CJ6fj3Q828/8gbXW/XFdr/V4fgXenq5v5f5AuSvvuh70IfbI8NE+uT940WWmawBoInJ4+dp94dTK+Zmiz3X5fFrgsOWpiwaMz3VNXe32fs8wmYEzuLYH+gvCBpEeJzkoelfzi6Hl3msly3zzpzvTeicruVG8e1b8lj89InpS8YVT3kjwqBNZZ4OR0vvvNRgOk7med3/1mXDazX46X8UhgnQTenc5uNECatU89Mu37d653bf21pH/r+sNg13FFct9EIbAuAseko1cm/dvTHwd6BGlWjkh9S/ePtp38/tf6nj3U+h6h7Q/q35N03+yp4vdPFAJ7WqCn1/1N0l/R+kFv/ja5YzJZNtpBbp1GL066Q4yX7x+hn0gUAusucHIAul9sZoBUs0X3y7ZVCKybQL+EbWaAVJ/HJ5cm479T/Zt1XvItiUJgnQR6l7rxfjDvsd/vWjb6/td5T0s+m4zX0+kfThQCgxE4Mj05PpkeGC3awVuk4bcnxy66gHYECOxXYKv75X5fQAMCayZwp/S3v24ftmb91l0CqxLoZRV3S+6d9I6QCgECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAwBoIHLwGfdRFAgQIEBiOwCHpyinJUcknhtMtPSFAgAABAgQIECBAgMDmBW6dRW5I/nzzi1qCAAECBAjsX+Dm+2+iBQECBAgQIECAAAECBNZDwABpPd5nvSRAgAABAgQIECBAYAGBfQu00YQAAQIECBwogXvkhR+f3Cp5c3JRslG5d2Y8Ovnm5CPJ3yf/mEyXg1Lxn5MHJ0cklyTnJpcm06V/J5+QHJd8Q9L1vS65LlEIECBAgAABAgQIECCwYwK/nVfq9UZfSi4fTf/+6HH6GqRfT/1XkuuTT44ev5rH1k/+GNibPPxN0vW2/adH01/M448mk+WuefKOpG3/LfnX0fQH8njfRCFAgAABAgQIECBAgMCOCDwrr9KByR8lh41e8ZF5vCJp/eQA6YdGda/P4x2Sltsmr03a9nnJuDwzE637leTIUeW98thBVY8K9UhVS48yXZB0kPX00fM83HiEqtvwoeTQVigECBAgQIAAAQIECBBYtcDH8gKfSm459ULPzfPJAVIHMlcmHbQcnUyWw/PksuTqpNMtL0i6/MP7ZKI8JtP/NRkPsL4v023X0+mmyy+kovNOm57hOQECBAgQIECAAAECBLZb4JissAOQP5yx4g5gOm98BOnY0fNZbTPrZr8zmn98n6Q8IunyHTR13hOT8eApkzeVF2Wq7c5IejrdZMaDp5ekXiFAgAABAgQIECBAgMBKBU7K2js4+aUZr9IjRl9IxgOkx2a6bc9KZpXnp7Lzv3di5g9n+nOj+s7r+v4q+c5kXP46E503L28ZN/ZIgAABAsMRmLxwdTi90hMCBAgQ2MsCPV2uZdaRnQ6Qbn7j3K/9c81oelbbzjpyNL+DoHF5aSb+JHlU0gHW45InJL0DXp//XTJu/7RM90YOs8pVsyrVESBAgAABAgQIECBAYDsFDs7Krk3eMGOl35K6HtUZH0Ean3L3+hltW/XqpO2P65OUuyW9bfh0GR9p+r3RjB696nLfNd0wz3sjhw6u7jxjnioCBAgQIECAAAECBAhsu8Abs8besvv+U2t+YZ5PDpA6+x+Stn1An0yU+2S6t/L+cNIjTy2vSbp8jxhNlh49an3X3/KQpOs8P+mAbbL8cZ607VMnK00TIECAAAECBAgQIEBgVQI9OnNZ0tPtnpP0LnP9f5F6ZKmDnvERpEzerDdg6P+V1OuKnpc8MvlvSZdt7peMy8Mz0Vt3fzzpHe36H8b+9+T/JD2t7oHJuLwsEx0IvTXpNUxPSl6etO4vE4UAAQIECBAgQIAAAQI7JtAjQm9KOvjpoKS3/T4x6R3oJgdIeXqz70jelbRd04HUOcn0EahU3TjY+Wgex217pOj9yeRNGvL0xmudfiKPkzd0aNs/S+6YKAQIECBAgAABAgQIENhxgaPzindf8FWPIRit6wAAAeRJREFUSrvekvvQ/bTvjR6+KekAqsvsr9wlDXokapG2+1uX+QQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIENhBgf8HRUw6HjERbyAAAAAASUVORK5CYII=",
"image/svg+xml": [
"\n",
"\n"
],
"text/plain": [
"Plot with title “Growth of Tooth vs Dose of Vitamin C”"
]
},
"metadata": {
"image/svg+xml": {
"isolated": true
}
},
"output_type": "display_data"
}
],
"source": [
"# Let's see a scatter plot\n",
"with(subset(ToothGrowth, supp == \"VC\"), plot(dose, len))\n",
"title(main=\"Growth of Tooth vs Dose of Vitamin C\")"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {
"collapsed": false,
"scrolled": true
},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAA0gAAANICAYAAAD958/bAAAEDWlDQ1BJQ0MgUHJvZmlsZQAAOI2NVV1oHFUUPrtzZyMkzlNsNIV0qD8NJQ2TVjShtLp/3d02bpZJNtoi6GT27s6Yyc44M7v9oU9FUHwx6psUxL+3gCAo9Q/bPrQvlQol2tQgKD60+INQ6Ium65k7M5lpurHeZe58853vnnvuuWfvBei5qliWkRQBFpquLRcy4nOHj4g9K5CEh6AXBqFXUR0rXalMAjZPC3e1W99Dwntf2dXd/p+tt0YdFSBxH2Kz5qgLiI8B8KdVy3YBevqRHz/qWh72Yui3MUDEL3q44WPXw3M+fo1pZuQs4tOIBVVTaoiXEI/MxfhGDPsxsNZfoE1q66ro5aJim3XdoLFw72H+n23BaIXzbcOnz5mfPoTvYVz7KzUl5+FRxEuqkp9G/Ajia219thzg25abkRE/BpDc3pqvphHvRFys2weqvp+krbWKIX7nhDbzLOItiM8358pTwdirqpPFnMF2xLc1WvLyOwTAibpbmvHHcvttU57y5+XqNZrLe3lE/Pq8eUj2fXKfOe3pfOjzhJYtB/yll5SDFcSDiH+hRkH25+L+sdxKEAMZahrlSX8ukqMOWy/jXW2m6M9LDBc31B9LFuv6gVKg/0Szi3KAr1kGq1GMjU/aLbnq6/lRxc4XfJ98hTargX++DbMJBSiYMIe9Ck1YAxFkKEAG3xbYaKmDDgYyFK0UGYpfoWYXG+fAPPI6tJnNwb7ClP7IyF+D+bjOtCpkhz6CFrIa/I6sFtNl8auFXGMTP34sNwI/JhkgEtmDz14ySfaRcTIBInmKPE32kxyyE2Tv+thKbEVePDfW/byMM1Kmm0XdObS7oGD/MypMXFPXrCwOtoYjyyn7BV29/MZfsVzpLDdRtuIZnbpXzvlf+ev8MvYr/Gqk4H/kV/G3csdazLuyTMPsbFhzd1UabQbjFvDRmcWJxR3zcfHkVw9GfpbJmeev9F08WW8uDkaslwX6avlWGU6NRKz0g/SHtCy9J30o/ca9zX3Kfc19zn3BXQKRO8ud477hLnAfc1/G9mrzGlrfexZ5GLdn6ZZrrEohI2wVHhZywjbhUWEy8icMCGNCUdiBlq3r+xafL549HQ5jH+an+1y+LlYBifuxAvRN/lVVVOlwlCkdVm9NOL5BE4wkQ2SMlDZU97hX86EilU/lUmkQUztTE6mx1EEPh7OmdqBtAvv8HdWpbrJS6tJj3n0CWdM6busNzRV3S9KTYhqvNiqWmuroiKgYhshMjmhTh9ptWhsF7970j/SbMrsPE1suR5z7DMC+P/Hs+y7ijrQAlhyAgccjbhjPygfeBTjzhNqy28EdkUh8C+DU9+z2v/oyeH791OncxHOs5y2AtTc7nb/f73TWPkD/qwBnjX8BoJ98VVBg/m8AAEAASURBVHgB7N0HvDxnXS/+xPySQBICAUKVJDQJYFAI5YYOIlURQdCAFQXRKyggygX/EO8FCyoX0OsFReqfoPQOgjTpYBACCAFSCKSQXgik536+yU4yWXb3nLNny8zu+3m9PtnZmWdmnnnPOfntd2d3zk47aQQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAqMEdh410zwCBAhsQWBH+t492S/ZNzkzOT45KjkhWYd2qxzkHoMD/W4eK11o184g7pocmDTn5BuZviQZbjfIjBsNz9zE8zrPF2yi3zK6XCs7vXlrx0e2pvs+ecscwJ4jDuLSzPtBclZy+ojlZl1dYCu/I1df8+rP9srTg5I7JOclX06+mkzzu/EjWe/Hk6Z9JxNnNE88EiBAgAABAt0VuEaG9pfJacllI1Iv1N6S3DlZlXb7HMjvjziYz2ReY3DYiOXLmPXz2elFSTOu5rEKoVHt2ZnZ9NnK4+1GbWzB83bN/p6aVKHabg/Jk/axtJf1ffpjQ8fWPs5m+uT0eXpSb2JoPyyw1d+RH97CTjv9YmZ+Pan/3zXuzePFmfeepN482kqrwr7ZRj0+cSsr60uAAAECBAgsR+A22e2XkvY/4uOmL0y/By9nmDPb6z7Z0kuSKjiq6BtuXSuQrp8BlvvwOZl0Ra+vBVL9bNU79XWs9e59u617gdSc/7pydqc2jOmdpvkdabPVFePXJY3xpMdz0m8rRY4CqS1tmsASBLyrtAR0uyTQc4G9M/53Je136+sq0qeT+rjVTyT3TnZLqtW7+29O6gVaLe9j+5sM+jd6NPAqYMu9aTX29yf1wmtcOzYLqk+7/WietK8QfSTPq/Bqt/o40bJavTP/3mXtvEP7rd+/zyf10az6vauCvn4Gmt/BgzL9L0l9bGuaj3xltZVr0/yOtBFekCePbc2oN08+lXwhqeKp/n/XFKX1e/ey5KTknYlGgAABAgQIrJjAq3M87XdLX5Pn9Tn+dtsrTw5P2v1e1O7Qs+lXto7lzSPG3rUrSL/SGm+9e10vnKdpj89K7XNY77p3qe2fwbTHV4VAu63LFaRRL7pvFojh39X/0cZZ8+nt/I78VOzaH6n7Zp7fZYTnoZl3dtL8jB6b6WuO6Dc8qwqqZp16fOJwB88JEJivgCtI8/W1dQKrJnDDHFD7XdMP5/mvjjjI72Xe7yT3TOoqxNHJ8AuDutJULzSq1UekPprUOndO6p3YdyTHJU27SSZq3/UueF3F+lpyZFL9vp+0W734qRtGVKsrDLX9pu2fiUcNntSLjxcn9WKnaQ/NxIGDJ9/I462T+u5R0+r505IfJP+3mTni8Wcy797JAckXk7rqVo9bbVXc/HTykGS/5Mykjru86t3qdqubLJTR3dozM/0Hg+fvzeNXh5bN+ulWxju8762sWx+tu8fQBupnsd6l/1AybNN0rcLhEcl/S85KPpu8Prkw2ai1f3aqbxUgp49Y6UmZV1cRqtV3hT53+dQVV/B+LdO3SWoc5ycnJx9J6ufj4mRW7dvZ0G8k9ftyp8FG62OU/yc5Z/C8/bCV369mvXohP83x7JL1HpnU73pdia4Co87X25IfJNO0zY5/Fr8jz88Adx4M8pI81u/61wbP2w/1c3WN5BWDmQfk8RnJ/xw890CAAAECBAisgMDTcgxVVDQ5eINjunGW14uoUe13M7PZTl1tqhe1zfN6fHLStMdlol48tpc301/P/Hs2HQePL231/duhZX/cWlbbaF48Nt2Obi3/g9Z0s7/msf3C+DOtfn+V6X9uPW/6X5B5v5VspVUh+Omk2Ub7sV6Y/e+kXXjebUzfZr1fzvKttMenc7NuPV5/g5W3Ot725ra67muGxtYeZ/OzU0Vle/4D87zOW3teTX8qGXfziiy6su2ZqfYVgd+/cslVE1X4t7d/0GBRFd6j9t30rSJq10HfzTxU4dWsO+oKUrONevHe9KvHUVc6tvr7Vdue9nj2z7ofT9pjaqa/kvmNVyY33bYy/u3+jtwwo7o0acb8TxuMsorBKp6a/v++Qf9afK1W/1rPFaRS0QgQIECAQEcFXpdxNf/Qn7vNMbYLpLoC1Gy3HqsYal6wPmbwvL28ioPh5/fPvKY9KBPN8m82MwePH2gtqz5Pby0/sLWsCpo7tJ4322se68Vu09oFUo29+pyXfGsw3axzfp43x5XJiW2vLP1k0qxbj8PHXfOqsGzezd7ui79s6mptKwXSNONtdjbNutMUSM25OTY7/kHStn1hM5gNHv++td4RI/rWdprtVuFV7UZJXa1q5p+Q6Xcnn0/a5/TP8nyzbbMFUhW1zX7rsT721W7T/H5Nezy7Z8dHJ+3xnJzn7YLje3leRchm21bHv93fkSoM2+Ov4myj9vJ0aNb57kads1yBtAkkXQgQIECAQFcEPpqBNP/Qj/q42N5ZftcJqXfgm9YukGqbpyY179eT/5VUOyS5KGn2+b5M/1hS77TfK6mrR82yeuG1R1KtlrdfkN768rk77VQv0L6fNOvU47sGy+qhiqVmWb2A3S05KHl7a/6/DebdLo9NaxdItf6fJ7Wvaj+XtF8APvHyuRv/p8bVjKWK0V9PqpDYN6ntt7f5pDyvdo2kPrL0rKRZ95TBvJpfL7y20rZSIE0z3mYs06x7s6z84KQ5znp8VFLn63pJteErSCdl3m0uX3LFlbf2lYwTB/M3ehi+QvTjrRV2ZLpeADdjKr9qj02aeVWgt9uD8qSWfSd5R1K/Q5tpmy2Qqni+JGn2/yetjU/7+zXt8bR/Luv3/eHJjyQHJu3/t7wozzfTphn/dn9Hfi0Dayzr8R6bGGiZt9e5zgbrKJA2ALKYAAECBAh0SeDIDKb5h75eoA23+2dGs3zUYxVPTatiqN2nng+312VG0+e4TO8+1OG2eX5x0vRpFx/tdZ8yWO9+rb7NOvWRqV0Gyz/YWv6bg3n18MrW/De35jeT7QLpy5lZL/ra7ag8afb3p+0FY6Z/rNW/1nvSiH6Ht/oMv7ivsTf7G142YlNjZ9UL/GY79Xj9MT23M97trLv/0PiqOGq34QKprja026F50j6+4fPW7tue/lRrvRe0Fvxsa379XDVvCLQdq9h9TnKHpIqXate+4mFL/63fv2bs79xgzfabAi9r9W3/jhyX+Zv9/Zr2eL6dfTRj/vvWOGryYa1ldXVvj5q5QZt2/LXZaX9Hnpx1m2Oox/r53aj9Tjq017ndBitca6j/EzfobzEBAjMW2Ow/BjPerc0RINBTgZNb496/NT2LyTeM2EgVNE17TSYuaJ4MHr+ax0+05tW7+017azORx3qhXO2nrni4/L91JahavWN/8ODxXjUjrd5xr6tG07SvZKW6utNup7ee1DvYG7X7tjrUWF7Ret5M/mMzkccbJ3VlaVntvq0db3W821m3tdtNTX5pqFf7vNSi4QJhqPuVT9tFxuMyd5fBkl+7sscVfyPnvMHzj+axCvlqdRWwiuQvJqckhydVHNTP4TxaFWHtn7mTWjuZ9vdrmuOpguemrX2flumHtlJX3y4aLK/x/uhgetLDtOOftM2Nln1rqMPNhp6Pejrc5/hRncwjQKA7Agqk7pwLIyHQB4F6B7hp9WJnt+bJ4LE+NlOFSZN6p30zrd7hrhdM7VYvOuu7Dk07tpkYejym9fx2ren6ON75g+f3zeM1kwcMnte7+38+mK6HeqFVy3atJ2kfS4bHc/mCTfxn+AVUrXJha72dW9PjJtsvDk8YWr9Zp33cNa997E2fRT1uZ7zbWXerxzd8btrnpba1mXNT/d6Q1Ec4q90kqZ+d6yY/mzTtH5uJPB6d/FZSxWO71RW5Q5O6ElJ9Hp/MutX3edrH9Y3BDrbz+zXN8dxqaBz/X56/u5W3Zbr5/cvk1Yqpej7ctjP+4W1t5fnXhjrffOj5qKcHtGbW7/P3Ws9HTbbP16jl5hEgMGeBHXPevs0TILBaAlV0NC/i6g2WX0n+qXWI9Q79I1vP68rNe1rPx01WgTTcLsmMeiFRHzep1jxe8eyq/177qsmrFTW17geSetFa70g/IrlzUu2jSRVB9Q5/fQzq/kn7ozJvyfNp26hjqY/XbKU1L75rnc0cd/WbtqCrdbfbtjPe7ay71XEPn5utnpdmf7Wd1yZPHsz4xTzulzRvGPxHpv9zsKx5eHUmPpI8KamfxQOTdrt+nrw8qTcCPtxesM3puw+t3xRI2/392urxDBej9eZJ/Y6Oaxudm+2Of9x+N5pfb0xclDTF3GMzXedtXLtOFjy4tfCowfQd83ivpH5uTklekDRtj2Zi8Dj8czu02FMCBGYtUC9wNAIECGxW4F3p2H5Rc1ie7zVh5eZFxIQuly+6YEyH41rz79KabibrXeR6odG04Y9Q1ZWspv2vTFT/av+W1IucKpSq3SN56OVTV3xXoL3eYPaVD4v4/+ZxV+5tp532yfQtW8+byTs3E3msF59fbz1f9ORxrR1udbzbWbe128snF3Fumn22P2b38Mz8pWZBHv+hNd2e/FaePDu5bXLT5JeTKsbrxX61nZP2GwyXz9zGf2p7f9Jav65efLn1/LjW9DS/X1s5ntpXu+h5TZ4/cEI+kmUbteNaHaYZf2v1TU9enJ7vbvW+X6brTZhx7VlZUL8TTWvefHlQZrw4eXryq83CweMNhp6330QYWuQpAQIECBAg0AWBZ2QQ9UKnSb0jeqehgVXR9Myk/mFv+tXj3ZKm/W4mmmXHNTOHHg/L86ZPvTA5ZGh5vbholl+a6fb2q+v1k1qv6dM83q4Wpj01aeY1j5++fMnV//OPrX7tF0dNr8+0lh/WzGw9fri1/AWt+eMm66pWFaLNmN6W6XaxuW+e1zvZzfLhMf1ma9mJmZ62PT4rNvuox/Ic1bYz3u2sW0VGe3x3GRpcXcFsLx9avNN9hpbvMdxhg+cfH1q/9nVuMvymQRXnn0hOS96eDLd/zYxmnC8dXjjm+cda67xzRJ/6SNvrWn1q+48Z6ndYa/lWfr+mPZ7Ptfb30aGx1NiOTt6R1Mdfhw0z64faYZnTuG1l/LWh7fyO7J/1z2vt+weZ/p2kCtKmXSMTf5c046vHzye7JNUelbSXPeDyuVdchazCqb1s/8EyDwQIECBAgEBHBepd+npx0/4HvKa/k9QLvf9K6h3x4eXnZ95tkqa1C6Rjm5lDjzfM8yrAmm3VNuoF5DOSusrTzK/H/5OMah/OzHa/dsHw40PLqt8fjdjIC1v96oXR85N6B7xpsy6QarvDxdsRmfcnSb14LOvmmKqQOiBpt+28+GtvZ7MFUq2znfFOu+7e2W/jUI//lvx18gtJtXkXSL+SfbT3X9Ojrh7Vz1S739/k+b2Tuyb1s3xB0iw/NNObaR9Lp2adeoF+wiAn5fGc1rKmzwcyb7hN+/s17fEMFwUvy4DumzwhqfE3Y/1QpjfTph1/bXu7vyPPzDaa8TaPZ2feR5IqBOv/Vc38eqz/J/63pGnXy8QZSdOnfgbq/6untubVso8kGgECBAgQINADgXqn/bVJ84/7Ro/14v6OQ8e1mQKpVqkXQV9KJu2jXlBdKxnVnpKZ7XVr3O1WLyjby+ud9+H2iMxo92mm6wV6tXkUSLXd30suTZr9DT9WcfSLyXDb7ou/ZntbKZBqnWnHu511v5CVh11eWBtMm3eBVFcJTk/a+79z7XioVb/3Je1+o6brSmH7KsTQZq729GOb2F6zj7oq86NXW/uqJ9P8fk17PHVsL06acY16rN/H21w1vA2nphl/bXS7vyN1LPX/sHOTUcfRnldXxu6TDLf2/wPb/Zvp+tm6w/BKnhMgQIAAAQLdFqgXoG9JLkyaf9Sbx/rH/fDkQcmo1n5xcOyoDq159W7r3ydfSdoFQ11JeXIy6UXlflnejKkefy1ptyqYmuVHthe0pnfN9Cta/ap/vdN7QFJtXgVSbfsxyXuSs5JmnPXudL3gvkUyqm33xV+zza0WSLXeNONt9jfNuvfMynVVsLG5KNMvGmxw3gVS7aaKsWbfnx/sd9TD7pn5zKR99a9Z75TMf1pShcdm26QC6bvZSF3FeGNy/01scJrfr+0cz69lTEcl7SvNF+f5G5JRb1Bk9sQ2zfhn9Tuyf0b2L8nxSXM+67GO52vJ3yR7JuPaI7Ng+GeiXN6e3G7cSuYTIDBfgUkvKua7Z1snQGCVBOrFUr1DXakXBicnxyX1D/2s23WzwQOTryenzXrjG2yvXojVvr+V1IuaRbYfyc4OSsq3XlzWY5fbdsa71XV3BOI2SRUYVURXAdnVVsd24+RmgwEel8cqaOpFdRfaVn+/tnM8VTjUz3R9vOyYpD6itt221fFvd3/t9ffOk9snP0i+mtRxbbbdJB1vndRV4WOTMxKNAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAwJIFdl7y/u3+KoE7Z3LXq56aIkCAAAECBAgQINAbgQsz0iN6M9oJA1UgTcBZ4KIqjj63wP3ZFQECBAgQIECAAIFZC9Rr2t4XSTtmrWJ7Uwk0V46ulbWr+tYIECBAgAABAgQI9EVgtwz03KQee98USN06hVUcKZC6dU6MhgABAgQIECBAYI0EfmSNjtWhEiBAgAABAgQIECBAYKKAAmkij4UECBAgQIAAAQIECKyTgAJpnc62YyVAgAABAgQIECBAYKKAAmkij4UECBAgQIAAAQIECKyTgAJpnc62YyVAgAABAgQIECBAYKKAAmkij4UECBAgQIAAAQIECKyTgAJpnc62YyVAgAABAgQIECBAYKKAAmkij4UECBAgQIAAAQIECKyTgAJpnc62YyVAgAABAgQIECBAYKKAAmkij4UECBAgQIAAAQIECKyTgAJpnc62YyVAgAABAgQIECBAYKKAAmkij4UECBAgQIAAAQIECKyTgAJpnc62YyVAgAABAgQIECBAYKKAAmkij4UECBAgQIAAAQIECKyTgAJpnc62YyVAgAABAgQIECBAYKLAjolLLSRAgAABAgQIECBAoI8Ct8ygfzs5eDD4I/L4suTowXMPYwRcQRoDYzYBAgQIECBAgACBngr8esb9X8l9kk8OUtM179cTjUDnBQ7JCC9Lduv8SA2QAAECBAgQIECgywJVCF2c/M6IQda8WlZ9ZtnqNWy9lq3XtBqBmQgokGbCaCMECBAgQIAAgbUX+PcI/NMEhVpWfWbZFEiz1LStywUUSH4QCBAgQIAAAQIEtiuwRzZwSXKvCRuqZdWn+s6qrVSB5DtIs/qxsB0CBAgQIECAAAECyxXYO7uv1/enTBhGLas+1VcbIaBAGoFiFgECBAgQIECAAIEeCpyaMX8v+fEJYz9o0Kf6aiMEFEgjUMwiQIAAAQIECBAg0EOB+ujcG5L/kYy6+VfNe+agT/XVCHRWwHeQOntqDIwAAQIECBAg0CuBG2e0JyTvSw5ImnZAJmpeLas+s2y+gzRLTdsiQIAAAQIECBAgQGBmAidlS3UjhvqO0THJ1wap6ZpXy6qPNkZgx5j5ZhMgQIAAAQIECBAg0E+BKobuntwlOXhwCEfk8XODaQ8TBBRIE3AsIkCAAAECBAgQINBjgSqIFEVbPIFu0rBFMN0JECBAgAABAgQIEFhdAQXS6p5bR0aAAAECBAgQIECAwBYFFEhbBNOdAAECBAgQIECAAIHVFVAgre65dWQECBAgQIAAAQIECGxRQIG0RTDdCRAgQIAAAQIECBBYXQEF0uqeW0dGgAABAgQIECBAgMAWBdbxNt/7xOjaye7J95KzkvMSjQABAgQIECBAgACBNRdYlytId8x5fnlySnJGcmxSf1X4O0kVSUcnL0v2TTQCBAgQIECAAAECBAisrMBzcmSXDfKtPH4yeVfyz8l7k88kJyXV57Tkscmi2yHZYe1/t0Xv2P4IECBAgAABAgQIbFOgXsPWa9l6Tat1XODRGV+drCqE7jRhrDtn2b2T+kvD1f/uySKbAmmR2vZFgAABAgQIECAwSwEF0iw157yt12X79fG5+r7RZlp9P+mc5KWb6TzDPgqkGWLaFAECBAgQIECAwEIFVqpAWvXvIN0hPxqfSi7Y5I/Imel3ZHLTTfbXjQABAgQIECBAgACBFRJY9QKpvlt0cLLrJs9ZXUGqoqpu4KARIECAAAECBAgQILBmAqteIL065/PA5M3J3Sac2/oO0r2S9yV7JG9LNAIECBAgQIAAAQIE1kxg1f8O0uE5nzdInpf8bHJCUrf2Pj2p7xrtnVw32T+5cXJx8vTkE4lGgAABAgQIECBAgMCaCdSVk3Vot8hBPj+pO9XdZOiAv5/nJyZvT16cfDvZbqvC69lJfWFtM+1m6fSopG4mceFmVtCHAAECBAgQIECAQEcE6jVvfee/7gRd3//vdVv1K0jNyTkmE4cOnlTxcu3kGkn94dizk1m32vbNk80WSPsNBlDflVIgDTA8ECBAgAABAgQIECCweIG6avNjyS6L3/WVe3xCpurvL+155RwTBAgQIECAAAECBPohUBcF6rXsIf0Y7uRRrvpNGpqjr6s5T0p+PtlrMLO+c/Sm5LTkqKS+k1Qfw6urOBoBAgQIECBAgAABAgRWUuCpOaqqaJscm+l9k38ZzKu/ffSe5MTB85q/6OYK0qLF7Y8AAQIECBAgQGBWAit1BWlWKF3dzoMzsEuTLydPSZ6W1B3s6opRFUx/lFwzqVbfG3pNUvMflCyyKZAWqW1fBAgQIECAAAECsxRQIM1Sc87belm2f27S/m7PI/K8iqC6W93w946qWDo1eVGyyKZAWqS2fREgQIAAAQIECMxSYKUKpFX/DlL9cdj646/ntX4C3p/p85N3JZe05tfkD5KvJbeuJxoBAgQIECBAgAABAuslsOoFUn2/qIqk9nHW3z36k+SryXC7TmbcJanvI2kECBAgQIAAAQIECBBYKYFn5mjq43T1kbkbbXBku2b53yfV/9AN+s56sY/YzVrU9ggQIECAAAECBBYlsFIfsVsU2rL2UzdeOCKpoqc+VrdPMqo9KjO/m1S/DyU7J4tsCqRFatsXAQIECBAgQIDALAVWqkBqf/Rslkhd2VYVRfdMnp8cmdRH7ka1uolDndiXJA9NqlDSCBAgQIAAAQIECPRV4B4Z+D8n3xikpmueRmBTAnX3uuE72m1qxRl1cgVpRpA2Q4AAAQIECBAgsNOzY1A3I3tT8sRBarrm1bJZt5W6gjRrHNubTkCBNJ2btQgQIECAAAECBK4uUH/S5qLkZ68++/JnDx8sqz6zbAqkWWra1uUCCiQ/CAQIECBAgAABArMQqO/f/82EDdWy6jPLtlIF0qp/B2mWJ962CBAgQIAAAQIECHRZ4FoZ3J2SN0wYZC2rPtVXGyGgQBqBYhYBAgQIECBAgACBHgrsMRjz2RPG3ixr+k7oup6LFEjred4dNQECBAgQIECAwOoJnJpDOiO564RDq2XVp/pqIwQUSCNQzCJAgAABAgQIECDQQ4FLM+bXJHWnulEfoat5taz6VF9thIACaQSKWQQIECBAgAABAgR6KnBYxl3Fz0eT+nugOw9S0zWvlh2WaGMEFEhjYMwmQIAAAQIECBAg0EOB+o5RFUPfTP49+d4gNV3zalnzPaRMasMCO4ZneE6AAAECBAgQIECAQK8FTs/oH5PcOKk71lX7fHLS5VP+M1FAgTSRx0ICBAgQIECAAAECvRWogujdvR39kgbuI3ZLgrdbAgQIECBAgAABAgS6J6BA6t45MSICBAgQIECAAAECBJYkoEBaErzdEiBAgAABAgQIECDQPQEFUvfOiRERIECAAAECBAgQILAkAQXSkuDtlgABAgQIECBAgACB7gkokLp3ToyIAAECBAgQIECAAIElCSiQlgRvtwQIECBAgAABAgQIdE9AgdS9c2JEBAgQIECAAAECBAgsSUCBtCR4uyVAgAABAgQIECBAoHsCCqTunRMjIkCAAAECBAgQIEBgSQIKpCXB2y0BAgQIECBAgAABAt0TUCB175wYEQECBAgQIECAAAECSxJQIC0J3m4JECBAgAABAgQIEOiegAKpe+fEiAgQIECAAAECBAgQWJKAAmlJ8HZLgAABAgQIECBAgED3BBRI3TsnRkSAAAECBAgQIECAwJIEFEhLgrdbAgQIECBAgAABAgS6J6BA6t45MSICBAgQIECAAAECBJYkoEBaErzdEiBAgAABAgQIECDQPQEFUvfOiRERIECAAAECBAgQILAkAQXSkuDtlgABAgQIECBAgACB7gkokLp3ToyIAAECBAgQIECAAIElCSiQlgRvtwQIECBAgAABAgQIdE9AgdS9c2JEBAgQIECAAAECBAgsSUCBtCR4uyVAgAABAgQIECBAoHsCCqTunRMjIkCAAAECBAgQIEBgSQIKpCXB2y0BAgQIECBAgAABAt0TUCB175wYEQECBAgQIECAAAECSxJQIC0J3m4JECBAgAABAgQIEOiegAKpe+fEiAgQIECAAAECBAgQWJKAAmlJ8HZLgAABAgQIECBAgED3BBRI3TsnRkSAAAECBAgQIECAwJIEFEhLgrdbAgQIECBAgAABAgS6J6BA6t45MSICBAgQIECAAAECBJYkoEBaErzdEiBAgAABAgQIECDQPQEFUvfOiRERIECAAAECBAgQILAkAQXSkuDtlgABAgQIECBAgACB7gkokLp3ToyIAAECBAgQIECAAIElCSiQlgRvtwQIECBAgAABAgQIdE9AgdS9c2JEBAgQIECAAAECBAgsSUCBtCR4uyVAgAABAgQIECBAoHsCCqTunRMjIkCg+wLXzRAPSz6R/FfyruRxif+nBkEjQIAAgU4I3CmjeEXyhUFquuZpGwj4x3wDIIsJECAwJFD/uHwlOTR5f/K3yfHJS5P3JXskGgECBAgQWKbAU7PzzyU3Sl41SE3XvFqmEei8wBMywsuSPTs/UgMksN4Ce+fwT0hem+w6RHFAnh+d1Dt0GgECBAgQWJbAQ7Pji5PHjBhAzatl1WeWbbdsrF7LHjLLjdrWegsokNb7/Dv6/gj8YYb6rWT3MUO+V+ZfmhwwZrnZBAgQIEBg3gKfyQ5eMmEntaz6zLKtVIHkI3az/NGwLQIEVl3gfjnANycXjDnQj2X+icl9xyw3mwABAgQIzFNgr2z8rsnrJ+ykllWf6quNEFAgjUAxiwABAmMErpX5Z45Z1sw+IxPVTyNAgAABAosWaIqe+rdoXGv+HfPVjjFCCqQxMGYTIEBghMA3Mm/SHYCqMLp18vUR65pFgAABAgTmLXBKdnBWcvCEHdW/Y9Xn1Al9LCKwdAHfQVr6KTAAApsSuE96XZLcbUzvF2T+t5P6LLZGgAABAgSWIfB32WndbXWPETuvebWs+syyrdR3kGYJY1vTCyiQprezJoFFC/xDdlgfXXhssutg59fP44uSi5IHD+Z5IECAAAECyxC4bnb6zeRTSftTDzVd82pZ9ZllUyDNUtO2LhdQIPlBINAfgfpo8nOS7yfnJSckdVWpbvH9gEQjQIAAAQLLFqi/efSupG69XR+lO20wXfNq2aybAmnWora3kwLJDwGB/gnU30R6aFJXkurvPvhOZxA0AgQIEOiUwC0ymkcPUtPzaitVIO2Yl5LtEiBAYMUFzsnxvWfFj9HhESBAgEC/BY7J8CvaFgS847kFLF0JECBAgAABAgQIEFhtAQXSap9fR0eAAAECBAgQIECAwBYEFEhbwNKVAAECBAgQIECAAIHVFlAgrfb5dXQECBAgQIAAAQIECGxBQIG0BSxdCRAgQIAAAQIECBBYbQEF0mqfX0dHgAABAgQIECBAgMAWBBRIW8DSlQABAgQIECBAgACB1RZQIK32+XV0BAgQIECAAAECBAhsQUCBtAUsXQkQIECAAAECBAgQWG0BBdJqn19HR4AAAQIECBAgQIDAFgQUSFvA0pUAAQJDAnvl+U2TXYfme0qAAAECBLoicGAGUtE2KaBA2iSUbgQIEGgJ3C/TH0/OSb6TnJm8KrlJohEgQIAAgWUL1Bt370wuSr46SE3XPG/qBUHrvsATMsTLkj27P1QjJLD2Ao+PwMXJPyT3SG6V/Hzy2eTE5JaJRoAAAQIEliVQBdBJySXJW5OHD1LTNa+WzbpI2i3brNeyhyQagZkIKJBmwmgjBOYuUMXQhclvj9hT/WPz3uTTI5aZRYAAAQIEFiXwjuyoCqH7j9hhzatl1WeWTYE0S03bulxAgeQHgUA/BP4qw5xUAO2f5Zcmd+3H4RglAQIECKygQH2UblIBVMuqzyzbShVIvoM0yx8N2yJAYNUFDs4BfmDCQX4ry76e3GlCH4sIECBAgMC8BOqTDjuSV03YQS2rPtVXGyGgQBqBYhYBAgTGCNTnqzdqO2/UwXICBAgQIDAngfoUQ7VJ/xY1y5q+V6zhv1cKKJCupDBBgACBDQWOSI8HTeh18yy7dfIfE/pYRIAAAQIE5iVwTDZcH5/7jQk7qGXVp/pqBDor4DtInT01BkbgagK3yLMLkv9+tblXPKnPX78/+cSIZWYRIECAAIFFCbwlO6obMTx4xA5rXi2rPrNsK/UdpFnC2Nb0Agqk6e2sSWDRAr+aHdZtvl+Z3De5bfKY5PPJd5K6iqQRIECAAIFlCeySHde/R1UIvSepf6MqNV3zaln1mWVTIM1S07YuF1Ag+UEg0C+Be2W4H07qH5r6XtLZyT8mN0w0AgQIECCwbIEqgN6c1J+mqH+nKjVd82ZdHGWTOymQSkGbqYACaaacNkZgYQLXyJ5ukPg+58LI7YgAAQIEtiiwX/pX5tlWqkDaMU8p2yZAgMCKC5yf46toBAgQIECgqwLHd3VgXR2Xdz27emaMiwABAgQIECBAgACBhQsokBZObocECBAgQIAAAQIECHRVQIHU1TNjXAQIECBAgAABAgQILFxAgbRwcjskQGAFBG6ZY/in5NvJucmRyTOTayYaAQIECBAg0GMBBVKPT56hEyCwFIGfzl6/kNwqeW5yaHJ48uTkU8n1Eo0AAQIECBAgQGAbAm7zvQ08qxJYoEDd0vus5AUj9nndzKs/Fvv2EcvMIkCAAAECqyywUrf5XuUT1adjUyD16WwZ6zoLPCcH/9Vk3NX3n8iy+mN8t000AgQIECCwLgIrVSCN+0d+XU6m4yRAgMBWBO6Rzu9ILh2z0hcz/9ik+mkECBAgQIBADwUUSD08aYZMgMDSBK6RPX9/g73X8t036GMxAQIECBAg0FEBBVJHT4xhESDQSYEvZ1STrg5dP8tvk3ylk6M3KAIECBAgQGBDgR0b9tCBAAECBBqBurX3fyQPS97dzGw9/lWmv5l8rDXPJAECBAgQWJZAvWl38GDnR+TxqGUNxH4JbFXATRq2KqY/geUJHJZdn5/U3z26UbJLUjdneHPyveSuiUaAAAECBJYpcNPs/F+TunHQiYPUdM2rZbNuK3WThlnj2N50Agqk6dysRWBZAr+RHZ+Q1D82Tf4903dINAIECBAgsEyB+rj3sUl9muGg1kBquubVsuozy6ZAmqWmbV0uoEDyg0CgfwL1Hc4fT+6V/Gj/hm/EBAgQILCiAv83x3Vkcs0Rx1fzaln1mWVTIM1S07YuF1Ag+UEgQIAAAQIECBDYrkB97Lv+oPkvTdhQLas+1XdWbaUKJHexm9WPhe0QIECAAAECBAgQWK7Avtn9tZP/nDCMWlZ9qq82QkCBNALFLAIECBAgQIAAAQI9FDg3Y67vxl5vwthrWfWpvtoIAQXSCBSzCBAgQIAAAQIECPRQ4LyM+TPJ4yaMvZZVn+qrEfghgf0z54HJTyajvsj2QyvMaYbvIM0J1mYJzEngWtnuHyUfSOrvIr0h+flEI0CAAAECyxZ4UAZwcTKqSKp5taz6zLKt1HeQZgnTxW39dgZ1eDJc/NRtDj+X1OXFJvVltT9OZvmFtWxuU02BtCkmnQh0QqDuXHd88q3kL5OnJ69KfpC8Pdk90QgQIECAwDIFfi87r0Ko3sh7xiA1XfNq2aybAmnWonPc3iuy7SqA6otoTbtZJqoYqvlVJL00qSLqO0nNe2Gy6KZAWrS4/RGYTmDPrFaF0RuTawxt4jZ5XoXTrG+dOrQbTwkQIECAwKYE6oJAvc6t17vNa96aN4+mQJqH6py2OapAel32VYXQcPW8R+Y1yx4wp/GM26wCaZyM+QS6JfAHGU69mTJ8VboZ5f0zcUlSb8RoBAgQIEBgXQRWqkBax5s03D0/qZ9N/m7oJ/b7ef5byelJvcjRCBAgMCxQb568OamP041qH8rM7yb3G7XQPAIECBAgQKD7AutYIO2d0/KlMaemXvR8LanvGGgECBAYFqiP6546PHPo+Wl53v5Y79BiTwkQIECAAIEuC6xjgXRETsi4z1/WfeHvkpzU5ZNmbAQILE3gm9lz3fVyXNszC26VHD2ug/kECBAgQIBAtwXWpUCqj9TV94uelnwyuXPy8KTd9suT+thdfYbyo+0FpgkQIDAQqP+P/FxypzEiz8z8uglMfdROI0CAAAECBAh0TuAXMqK3JMckdWOGdo7P86Y9LBMXJbX8E8nOySKbmzQsUtu+CGxP4DVZ/ZTkEUnzJlN9dPfPkrp96vCbL5mlESBAgACBlRZYqZs07FjpU7XTTm/K8VWq1XcC6qMxTdpFUP3to/r+0euTpyZVKG2n1bbvm+y6yY3cbpP9dCNAYPkCj88Qnpf8S1J/hby+c7R/Ut9Nqj8W+85EI0CAAAECBHoq0C4SenoIMxl23bK33vmtq0izaLfIRr6YVDW9mVbvQlexuldSL7g0AgS6L7BvhnifZJ+krlJ/LLkw0QgQIECAQBcEbphB1Jt6Bw8GU9/Df0VSd1uddavXvBckdbfoT81647Y3X4EqRCa1upJUL3aG/wDkpHVmscxH7GahaBsECBAgQIAAAQIl8Mjk3KTuzlzfsa/UdM2rTzvMuq3UR+xmjdPF7VX1XB+FOSP5XvLh5B7JqFYfv6uP1z131MI5zlMgzRHXpgkQIECAAAECayRw1xxrfaLhWUn74kBN17xaVn1m2RRIs9Sc87bqI2vHJ1X0nJ1U5XxpUn/p/vnJcFMgDYt4ToAAAQIECBAg0CeBD2Swh08YcC2rPrNsCqRZas55W3+a7VdxdFhyraRafQ7zi0nNf2HSbgqktoZpAgQIECBAgACBPgnU10Tqe/X3mzDoWlZ9ZvmVkpUqkNqX3SY49nbR3TPyuh1v3XGqPnNZrb6gdu+kvlD91OQZiUaAAAECBAgQIECg7wL75ADqO/UnTDiQWtZ8735Ct/VdtOoF0k1zaqsQqiq53erjdj+THJn8ZfKYRCNAgAABAgQIECDQZ4H60xP1p2sOnHAQtaz61J+n0EYIrHqB9K0c8wOSUZcQz8n8hybfSV6djLtxQxZpBAgQIECAAAECBDovcFFG+NakPiFVV4l2Tm40SE3XvFpWfYYvIGSWtg4Cf5iDbL5rdJMxB3ybzK+P4dVVpWcn1f+5ySKbu9gtUtu+CBAgQIAAAQKrK7B/Dq2uJH0xOTGp17aVmq55taz6zLKt1HeQZgnTxW3VlaOvJPVDUXeu+6VkVKubM5yZND9Ah43qNMd5CqQ54to0AQIECBAgQGCNBOoq0UeTuppU+c9Bmue1rPrMsq1UgbTqH7E7P2f+bslLkuOTuu/7qPaFzLxz8r5RC80jQIAAAQIECBAg0BOBp2Wct09ulzwsecMgNV3zaln10QhcLrCZgvAu6XnQgr1cQVowuN0RIECAAAECBFZU4Fs5rkkFUC2rPrNsK3UFaZYwtjW9gAJpejtrEiBAgAABAgQIXCFwvTzUV0Ymvdlfy6pP9Z1VW6kCaTNXVGYFZzsECBAgQIAAAQIECMxPoAqfapNe4zfLmr5XrOG/Vwo0QFfOMEGAAAECBAgQIECAQC8Fzsioj00eNGH0Dx70qb4agc4K+IhdZ0+NgREgQIAAAQIEeiXwlIy27s582xGjrnm1rPrMsq3UR+xmCWNb0wsokKa3syYBAgQIECBAgMBVAvUJsTcmZyXPSg4epKZrXi2b9afIFEhB1WYroECaraetESBAgAABAgTWWaAKoN9Lvp7Ud40qNV3zZl0cZZM7KZBKQZupgAJpppw2RoAAAQIECBAgMBC4Vh4r82wrVSDtmKeUbRMgQIAAAQIECBAgsFSBc5e69x7ufB6X2HrIYMgECBAgQIAAAQIECBCYz2cQuRIgQIAAAQIECBAgQKCXAq4g9fK0GTQBAgQIECBAgAABAvMQUCDNQ9U2CRAgQIAAAQIECBDopYACqZenzaAJECBAgAABAgQIEJiHgAJpHqq2SYAAAQIECBAgQIBALwUUSL08bQZNgAABAgQIECBAgMA8BBRI81C1TQIECBAgQIAAAQIEeimgQOrlaTNoAgQIECBAgAABAgTmIaBAmoeqbRIgQIAAAQIECBAg0EuBHb0ctUETIEBg+QLXyxDuk+yTHJN8PLko0QgQIECAAAECBLYp8ISsf1my5za3Y3UCBOYvsEt28WfJBclZyTeTC5Pjk4clGgECBAgQWDeB3XLA9Vr2kHU7cMc7PwEF0vxsbZnArAVenQ2emjwyaT6mfO1M/0VycfKziUaAAAECBNZJQIG0Tmd7QceqQFoQtN0Q2KbAT2X9KoIOHrOd52X+Cck1xiw3mwABAgQIrKLAShVIzbufq3iiHBMBAgRmLfDL2eDbkiPGbPjPM7++k3S/McvNJkCAAAECBDouoEDq+AkyPAIEOiVwq4zmCxNGdF6W1XeSqp9GgAABAgQI9FBAgdTDk2bIBAgsTeDs7Pn6G+y97m53zgZ9LCZAgAABAgQ6KqBA6uiJMSwCBDop8MGM6lHJuO8Y1UfrbpR8ONEIECBAgACBHgrs6OGYDZkAAQLLEvjH7PipyeHJ55P7J83fQaqi6BnJy5PjE40AAQIECBAgQGBKAXexmxLOagSWIFC396472dXfPvpk8tbkqOTS5OSkbvmtESBAgACBdRJwF7t1OtuOlQABAi2BvTL9ouTtyWHJD5L9ky8lT07qj8e+INEIECBAgAABAgS2IeAK0jbwrEpggQL18bpvJ5O+g3RJlu+3wDHZFQECBAgQWLaAK0jLPgP2T4AAgSUJ1B+KfXNy/pj91/eQ6mN2/g7SGCCzCRAgQIBA1wXcxa7rZ8j4CBDokkB9v+i0DQZ0epbvvUEfiwkQIECAAIGOCiiQOnpiDIsAgU4K1B+BveOEke2ZZfVHYqufRoAAAQIECPRQQIHUw5NmyAQILE3gtdnzzyUHjxnBszL/zORDY5abTYAAAQIEFilQb9zddZCa1gj0RsBNGnpzqgyUwE6visGpSf3B2F2SatdJ/jKp23//TKIRIECAAIFlClQx9HdJ3W31skFquubNo1BaqZs0xEjrgIACqQMnwRAIbFKgiqLnJ3WjhrOTo5P6m0j1x2EfmmgECBAgQGCZAtfMzj+b1Me9fz6pgqhS0zWvllWfWTYF0iw1betyAQWSHwQC/RO4boZc/9g8PrlvsmuiESBAgACBZQvUm3j1pt2+IwZS82pZ9ZllUyDNUtO2LhdQIPlBIECAAAECBAgQ2K7AztlA/bmJJ07YUC2rPtV3Vm2lCqQfmZWK7RAgQIAAAQIECBAgsFSBukJ0w+TjE0ZRy6rPqCtME1Zbn0UKpPU5146UAAECBAgQIEBgtQUuGBzepO8YNcuavqstMsXRKZCmQLMKAQIECBAgQIAAgQ4K1M2DvpI8YsLY6vuz1af6agQ6K+A7SJ09NQZGgAABAgQIEOiVwK9ktHVL73uNGHXNq2XVZ5Ztpb6DtGOWMrZFgAABAgQIECBAgMBSBeqPmtcfNP+35BXJ+5NqD0wen/x9Un00Ap0WcAWp06fH4AgQIECAAAECvRP4uYz4g8lZg9R0zZtHcwVpHqq2SYAAAQIECBAgQIDAzATeni1VtC0KuEnDFsF0J0CAAAECBAgQIEBgdQUUSKt7bh0ZAQIECBAgQIAAAQJbFFAgbRFMdwIECBAgQIAAAQIEVldAgbS659aRESBAgAABAgQIENg7BBVtkwIKpE1C6UaAAAECBAgQIECgJwL1Gv/JyTeS+oOwlZqueV7/B2FS83eQJulYRoAAAQIECBAgQKBfAlUAvSH5qeQvk+bvID0o0/8zuU/ymOTSRCPQWQF/B6mzp8bACBAgQIAAAQK9Evj9jPbM5MARo655taz6zLKt1N9BmiWMbU0voECa3s6aBAgQIECAAAECVwkck8k/uurpD03Vsuozy7ZSBZLPIM7yR8O2CBAgQIAAAQIECCxP4LrZ9c2T900YQi2rPtVXGyGgQBqBYhYBAgQIECBAgACBHgrsPBjzZRPG3ixr+k7oup6LFEjred4dNQECBAgQIECAwOoJnJ5DOj756QmHVsuqT/XVCHRWwHeQOntqDIwAAQIECBAg0CuBP8xoT0tuOWLUNa+WVZ9ZtpX6DtIsYWxregEF0vR21iRAgAABAgQIELhKYJdMvjM5Nam71d12kJqu4qiWVZ9ZNgXSLDVt63IBBZIfBAIECBAgQIAAgVkJVAFUd6v7dlLfOarUdM2bdXGUTe6kQCoFbaYCCqSZctoYAQIECBAgQIBABOpGDDccZJ4gK1Ug7ZinlG0TIECAAAECBAgQILA0gbpy9N2l7b2nO3YXu56eOMMmQIAAAQIECBAgQGD2Agqk2ZvaIgECBAgQIECAAAECPRVQIPX0xBk2AQIECBAgQIAAAQKzF1Agzd7UFgkQIECAAAECBAgQ6KmAAqmnJ86wCRAgQIAAAQIECBCYvYACafamtkiAAAECBAgQIECAQE8FFEg9PXGGTYAAAQIECBAgQIDA7AUUSLM3tUUCBAgQIECAAAECBHoqoEDq6YkzbAIECBAgQIAAAQIEZi+gQJq9qS0SIECAAAECBAgQINBTgR09Hbdhb13ggKxy8GC1I/J43GDaAwECBAgQIECAAAECBDol8ISM5rJkzzmM6obZ5jsG2z89j5XaV82rZRoBAgQIECBAgACB7QjslpXr9eUh29lIV9b1EbuunIn5jOO62ezHkxskd0muN0hN17xaVn00AgQIECBAgAABAgQIdEZgXleQ/jZH+F/JqCtTNa+WVR+NAAECBAgQIECAwLQCK3UFaVoE681WYB4FUl0dPDN53ISh1rLq40riBCSLCBAgQIAAAQIEJgqsVIHkhfHEc93rhfURuuskdUOGca2WVZ99x3UwnwABAgQIECBAgMA6CSiQVvdsf29waPtMOMRm2XkT+lhEgAABAgQIECBAYG0EFEire6qrQPpc8ksTDvHQQZ+mmJrQ1SICBAgQIECAAAECBAgsRmAe30GqkT8suTh5dD0ZajWvllUfjQCBrQnske5PSd6VfCJ5bfLQRCNAgAABAusosFLfQVrHE9jFY55XgVTH+vTkkqReyNULuuZFXc2rZRoBAlsTODDdj0lOSF6cPCt5fXJh8sak/pHQCBAgQIDAOgkokNbpbC/oWOdZINUhHJy8MjlykJqueRoBAlsTqCtHVRy9Panpdrt9nlTR9LftmaYJECBAgMAaCCiQ1uAkL/oQ510gLfp47I/Aqgo8OQd2YjJcHDXH+8BM1EdXf7SZ4ZEAAQIECKyBwEoVSG7SsAY/sQ6RAIGZCVQB9Kbk+2O2+P7MPzW535jlZhMgQIAAAQIdF1AgdfwEGR4BAp0SqL8bdsoGI6rlzS30N+hqMQECBAgQINA1AQVS186I8RAg0GWB+v7RQRMGeM0su1Vy9IQ+FhEgQIAAAQIdFlAgdfjkGBoBAp0TODwj+vnkDmNG9ozMPzf50JjlZhMgQIAAAQIECGxCwE0aNoGkC4GOCPxzxnFS8pDWeOqmDc9N6gYNj2rNN0mAAAECBNZBYKVu0rAOJ6wPx6hA6sNZMkYCVwjsmocXJRcl302+lNRNG05OFEdB0AgQIEBg7QRWqkDasXanzwETIEBgewJVGP1B8oKk7lZXN2So7ybVx+rOTzQCBAgQIECgxwIKpB6fPEMnQGCpAidm769b6gjsnAABAgQIEJi5gJs0zJzUBgkQIECAAAECBAgQ6KuAAqmvZ864CRAgQIAAAQIECBCYuYACaeakNkiAAAECBAgQIECAQF8FFEh9PXPGTYAAAQIECBAgQIDAzAUUSDMntUECBAgQIECAAAECBPoqoEDq65kzbgIECBAgQIAAAQIEZi6gQJo5qQ0SIECAAAECBAgQINBXAQVSX8+ccRMgQIAAAQIECBAgMHMBBdLMSW2QAAECBAgQIECAAIG+CiiQ+nrmjJsAAQIECBAgQIAAgZkLKJBmTmqDBAgQIECAAAECBAj0VUCB1NczZ9wECBAgQIAAAQIECMxcQIE0c1IbJECAAAECBAgQIECgrwI7+jrwbYx7n6x77WT35HvJWcl5iUaAAAECBAgQIECAwJoLrMsVpDvmPL/Jw/bwAAA6n0lEQVQ8OSU5Izk2+VrynaSKpKOTlyX7JhoBAgQIECBAgAABAmsqsA5XkJ6Tc/ung/N7fB4/lVSRVIVRXUm6brJf8sTkUclTksMTjQABAgQIECBAgAABAisl8OgczWXJe5M7TTiynbPs3snnkup/92SR7QnZWe13z0Xu1L4IECBAgAABAgQIzEBgt2yjXsseMoNt2cScBV6X7dfH5+r7Rptp9f2kc5KXbqbzDPsokGaIaVMECBAgQIAAAQILFVipAmnVP2J3h/xo1EfqLtjkj8iZ6XdkctNN9teNAIH1FbhFDv2nknpj5ZjkX5NzE40AAQIECBDoscCq36ThpJybg5NdN3mO6oVOFVV1AweNAAECowSukZn/kHwjeXZS312sm8Acl/xyohEgQIAAAQIEOivwuIysPg/5juRuE0ZZ30G6V/KZ5OLkHskim4/YLVLbvghsT+CtWb1u+HKf1mbqowV/mFyUPLY13yQBAgQIEFgHgZX6iN2qn7AqfJ6a1N85qkKpbuv96eTdyesHj/URvBOTWl4vbn4/WXRTIC1a3P4ITCfwM1mtPrJ74JjV/zjzT03ccGUMkNkECBAgsJICCqQentb6rkAVRCckVQi1U8XTN5K/Tm6WLKMpkJahbp8Eti7w2qxy+ITV6uN39ScEHj6hj0UECBAgQGDVBFaqQJrmJg33zxn9leQGyTWTukoz3F6VGa8enrnE5/UF6kMH+987j/X3j+qFTP3h2LOTWbdbZoNfSXad9YZtjwCBpQockL3XzRjGtfOzoO6cecC4DuYTIECAAAEC3RbYaoH0mBzOv2zikD66iT7L6FI3pajbeFdGtV0yswqoHyT1QmfaVgXZA5KqpjfTHppOT99MR30IEFiqwBnZ+40mjKDeMKrlp0/oYxEBAgQIECCwQgJH5Vjq4yP1JeQbJ1VQjEq9SOhKu2EGUkVdvbCpsX84GXcThp/Msvr43XOTRTYfsVuktn0RmF7gd7Lqd5NrjdlEfUfpwqT+/6gRIECAAIF1EVipj9ht5aTVl44vTf7vVlZact+9sv+621QVPfVRuq8ldQyXJM9PhpsCaVjEcwIE2gL10dx6o+hDyUuSLyb1/5iPJPX/lCqe6vuMGgECBAgQWCeBtS2Q6uNpZyV9+sf/TzPeKo4OS5p3fOvvItWLmpr/wqTdFEhtDdMECIwS+IXMrD8HUHe9/HTytqRu9FJvvpycXCfRCBAgQIDAOgmsVIFURc9mW/3jX98tOjTZynqb3f48+t09G60bMTwvOXewgyPyeO/kY8lTk2ckGgECBDYjsE86/X3yyuR3k7p6VFfX64rSo5Mzk1quESBAgAABAmsiUHeuq3dK35JUkbFfcr0RuWbmdaH9VwbxpjED2Tvz60rSpcljBn1cQRpAeCBAYKTAMzO37lI37gY3d8uyujp9q0QjQIAAAQLrIrBSV5C2etLq4yRnJ/UCYFIOy/IutPdmEGcl9b2BUe2mmVnvAP8guUeiQAqCRoDAWIH6f8pGHzOu/6c8fuwWLCBAgAABAqsnsFIF0rh3Qcedtv/MghPHLWzN/2prepmTH8zOH5z8WVIvaobHfkLm/XRSH7d7T/KCRCNAgMA4gfo4Xb1JNKnV8j0mdbCMAAECBAgQILAsgbpyVH+wta521Z3rfikZ1erKUX13oLkqdtioTnOc94TBvuvFl0aAQHcF/iFDe9eE4V0nyy5IHjChj0UECBAgQGDVBFbqCtKPbOPs1PeMDkruNthGF1/cnz8YX92Otz72Un+fZFT7QmbeOXnfqIXmESBAYCDwqjw+JLnP4Pnww//KjLoyXTe00QgQIECAAIE1EagbM7whqZsb1BWX+nhatbcmz0t2rycdbZspCO+SsVfht8jmCtIite2LwPYE/ndWr7tiPjFp3hiq/y++PKmrR/dNNAIECBAgsE4CK3UFaasn7sZZ4bSkCqO6Q9xxSVMgvS3TNf/LybibImSRNkJAgTQCxSwCHRZ4WsZ2VlJ/D6m5cc2XMl03e9EIECBAgMC6Cax1gfTGnO3zknsOznrd7rspkHbJdF1BqiLptxNt8wIKpM1b6UmgKwL1RtC9k4cni77q3BUD4yBAgAABAiWw1gXSGQFo3+mtXSAVzq5Jvav6ynqibVpAgbRpKh0JECBAgAABAgQ6JrBSBdJmvpPT+O+diX2So5oZIx4vyry6a1z10wgQIECAAAECBAgQINArga0USOfkyE5O6iYG41oVUbdPvjaug/kECBAgQIAAAQIECBDoqsBWCqQ6hvor8r+V/F6yV9Ju18mT1yTXTj7QXmCaAAECBAgQIECAAAECqyhQRdDxSd2Ioe7cVFeUTkjelpye1HzfPwrCFpvvIG0RTHcCBAgQIECAAIHOCKzUd5CmUb1+VnppUn/vowqiJlUgPTmpu9lpWxNQIG3NS28CBAgQIECAAIHuCKx9gdSciiqEbpHcPblJM9PjVAIKpKnYrESAAAECBAgQINABgZUqkHZsA/SSrHvMINvYjFUJECBAgAABAgQIECDQDYGNCqTdM8yt3sihjqxu911/YV4jQIAAAQIECBAgQIBAbwQ2Kn4+kyP5/hR5dm8EDJQAAQIECBAgQIAAAQIDgY2uIH0y/epOdVttR291Bf0JECBAgAABAgQIECCwbIGNCqTfXfYA7Z8AAQIECBAgQIAAAQKLEtjoI3aLGof9ECBAgAABAgQIECBAYOkCCqSlnwIDIECAAAECBAgQIECgKwIKpK6cCeMgQIAAAQIECBAgQGDpAgqkpZ8CAyBAgAABAgQIECBAoCsCCqSunAnjIECAAAECBAgQIEBg6QIKpKWfAgMgQIAAAQIECBAgQKArAgqkrpwJ4yBAgAABAgQIECBAYOkCCqSlnwIDIECAAAECBAgQIECgKwIKpK6cCeMgQIAAAQIECBAgQGDpAgqkpZ8CAyBAgAABAgQIECBAoCsCCqSunAnjIECAAAECBAgQIEBg6QIKpKWfAgMgQIAAAQIECBAgQKArAgqkrpwJ4yBAgAABAgQIECBAYOkCCqSlnwIDIECAAAECBAgQIECgKwIKpK6cCeMgQIAAAQIECBAgQGDpAgqkpZ8CAyBAgAABAgQIECBAoCsCCqSunAnjIECAAAECBAgQIEBg6QIKpKWfAgMgQIAAAQIECBAgQKArAgqkrpwJ4yBAgAABAgQIECBAYOkCCqSlnwIDIECAAAECBAgQIECgKwIKpK6cCeMgQIAAAQIECBAgQGDpAgqkpZ8CAyBAgAABAgQIECBAoCsCCqSunAnjIECAAAECBAgQIEBg6QIKpKWfAgMgQIAAAQIECBAgQKArAgqkrpwJ4yBAgAABAgQIECBAYOkCCqSlnwIDIECAAAECBAgQIECgKwIKpK6cCeMgQIAAAQIECBAgQGDpAgqkpZ8CAyBAgAABAgQIECBAoCsCCqSunAnjIECAAAECBAgQIEBg6QIKpKWfAgMgQIAAAQIECBAgQKArAgqkrpyJ+Y7j4Gz+lcmRg9R0zdMIECBAgAABAgQIEGgJKJBaGCs6+fQc12eTfZOXD1LTNa+WaQQIECBAgAABAgQIEOiUwBMymsuSPWc8qodlexcnjx6x3ZpXy6qPRoAAAQIECBAgQGBagd2yYr2WPWTaDViPwLDAvAqkukr04uGdtZ6/JNPVRyNAgAABAgQIECAwrcBKFUg+Yjftj0H319srQ7xL8s8Thvr6QZ/qqxEgQIAAAQIECBBYewEF0ur+CDRFz5kTDrFZNuuP9k3YpUUECBAgQIAAAQIEuiugQOruudnuyE7JBs5KJt2trpZVn1MTjQABAgQIECBAgMDaCyiQVvdH4NIc2v+fPDsZdYWo5tWy6lN9NQIECBAgQIAAAQJrL6BAWu0fgefm8HZNPpjcuXWoNV3zaln10QgQIECAAAECBAgQiIACabV/DM7I4d0zqY/bfS45fZCarnm1rPpoBAgQIECAAAECBAhEYAeFlRf4bo7w4ckBSfN9pCMyfVyiESBAgAABAgQIECDQElAgtTBWfPK4HF9FI0CAAAECBAgQIEBgjICP2I2BMZsAAQIECBAgQIAAgfUTUCCt3zl3xAQIECBAgAABAgQIjBFQII2BMZsAAQIECBAgQIAAgfUTUCCt3zl3xAQIECBAgAABAgQIjBFQII2BMZsAAQIECBAgQIAAgfUTUCCt3zl3xAQIECBAgAABAgQIjBFQII2BMZsAAQIECBAgQIAAgfUTUCCt3zl3xAQIECBAgAABAgQIjBFQII2BMZsAAQIECBAgQIAAgfUTUCCt3zl3xAQIECBAgAABAgQIjBFQII2BMZsAAQIECBAgQIAAgfUTUCCt3zl3xAQIECBAgAABAgQIjBFQII2BMZsAAQIECBAgQIAAgfUTUCCt3zl3xAQIECBAgAABAgQIjBFQII2BMZsAAQIECBAgQIAAgfUTUCCt1znfI4db0QgQIECAAAECBAgQGCGgQBqBsmKzds7x/E7y1eS8QWq65tUyjQABAgQIECBAgACBgcAOEistUAXQ65OHJH+d/GtS7UHJXyT3SQ5NLks0AgQIECBAgAABAgQIdELgCRlFFSl7zng0T872zkpuP2K7Na+W/d6IZWYRIECAAAECBAgQ2KzAbulYr2UP2ewK+hHYSGBeBdLR2fEzJ+y8llUfjQABAgQIECBAgMC0AitVIPkO0rQ/Bt1f77oZ4i2S904Yai2rPtVXI0CAAAECBAgQILD2Agqk1f0RaM7tJRMO8dLBMjdrmIBkEQECBAgQIECAwPoINC+i1+eI1+dIT8uhfjt5wIRDrmXV5/QJfSwiQIAAAQIECBAgQIDAQgXm9R2kP85RnJrcfMTR1Lxa9kcjlplFgAABAgQIECBAYLMCK/UdpM0etH7zFZhXgVS3ca/vGZ2S/Pfk1oPUdM17T+JW70HQCBAgQIAAAQIEphZQIE1NZ8VxAvMqkGp/VQA9KzkpqdsvVmq65imOgqARIECAAAECBAhsS0CBtC0+K48SmGeB1OyvbsRw00HclKFR8UiAAAECBAgQILBdgZUqkFxB2O6PQ3/WrytHJ/RnuEZKgAABAgQIECBAYPEC7mK3eHN7JECAAAECBAgQIECgowIKpI6eGMMiQIAAAQIECBAgQGDxAgqkxZvbIwECBAgQIECAAAECHRVQIHX0xBgWAQIECBAgQIAAAQKLF1AgLd7cHgkQIECAAAECBAgQ6KiAAqmjJ8awCBAgQIAAAQIECBBYvIACafHm9kiAAAECBAgQIECAQEcFFEgdPTGGRYAAAQIECBAgQIDA4gUUSIs3t0cCBAgQIECAAAECBDoqoEDq6IkxLAIECBAgQIAAAQIEFi+gQFq8uT0SIECAAAECBAgQINBRAQVSR0+MYREgQIAAAQIECBAgsHgBBdLize2RAAECBAgQIECAAIGOCiiQOnpiDIsAAQIECBAgQIAAgcULKJAWb26PBAgQIECAAAECBAh0VECB1NETY1gECBAgQIAAAQIECCxeQIG0eHN7JECAAAECBAgQIECgowIKpI6eGMMiQIAAAQIECBAgQGDxAgqkxZvbIwECBAgQIECAAAECHRVQIHX0xBgWAQIECBAgQIAAAQKLF9ix+F12ao/7ZzS3SU5Jjkp+kKxq2yMHdrvBwf1XHr+/qgfquAgQIECAAAECBAgQGC3w25l9eHLNocUH5fnnkstaOSvTf5zskiy6PSE7rLHsOYcd1zb/Nqnirznemq5589hfNqsRIECAAAECBAiskcBuOdZ6nXnIGh1zbw/1FYOTde3WEdws01UM1UmsIumlSRVR30lq3guTRbd5FUhVGH4m+WbyyGSvQWq65tWy4eIxszQCBAgQIECAAAECmxZQIG2aavkdRxVIr8uwqhD6vaHh1UfQmmUPGFo276fzKpCel4Efn+w74gBqXi2rPhoBAgQIECBAgACBaQUUSNPKLWG9UQXSsRlHXTkZ1epqymnJn41aOMd58yiQds54T06eOGHctaz6VF+NAAECBAgQIECAwDQCK1UgreNd7PbOWf/SmDNf3835WvLjY5b3aXZdIbph8vEJg65l1WfUFaYJq1lEgAABAgQIECBAYDUF1rFAOiKnsm7SMKpdLzPvkpw0amHP5l0wGO+k7xg1y5q+PTtEwyVAgAABAgQIECAwW4F1KZA+G7b6ftHTkk8md04enrTbfnnyd0ldIvxoe0FPp8/OuOt23o+YMP5aVn2qr0aAAAECBAgQIECAwIoL/EKO7y3JMUndmKGdukFB0x6WiYuSWv6JZNHfyZnHd5ByGDv9SlJ/7+ie9WSo1bz6SGH10QgQIECAAAECBAhMK7BS30HaMa1CT9Z7U8ZZqVa3+v7JVtpFUP3toyoWXp88NalCaRXaa3MQdbXsg8k/Je9Pqj0w+c2kbnFefTQCBAgQIECAAAECBCLQLhLWGaS+i3NxUleRZtFukI28LNl1kxu7WfrdIdkrOW+T62ylW32U7inJwYOV6ntYL0neNnjugQABAgQIECBAgMC0AnUFqb7TfvfkU9NupCvrrfoVpM0619WjWbbaXn23p35YNtPqPFSBNK9WhZBiaF66tkuAAAECBAgQIECAwEwF5vUdpJkO0sYIECBAgAABAgQIjBBYqe8grctd7EacR7MIECBAgAABAgQIECBwdQEF0tU9PCNAgAABAgQIECBAYI0FVv07SPXRtb2nOL+fzDq9/4LZFMdtFQIECBAgQIAAAQJrLbDqBdLv5uz+5BRn+LCso0CaAs4qBAgQIECAAAECBPossOoF0kNyct6SHJK8PXlFspl21GY66UOAAAECBAgQIECAwGoJrHqBdHJO1/2SjyZVLP1p8p/JurW6s8jDkzsNDrz+DtI7kwsHzz0QILB1gbtmlZ9O9kmOSepW+icmGgECBAgQIECg8wK3zwjrj1d9vKMjnedtvutFXL14Oyd5/yA1XfPukmgECGxN4NrpXsXQJclnknqz4dik/v7Z0xKNAAECBAism8BK3eZ7nU7e03OwRyYHdfCg51Ug3TrHelZSHy1s36yipmteLbtVohEgsDmBndPtQ0n9Ieh646XdfjVPqkj67+2ZpgkQIECAwBoIKJDW4CQv+hDnVSC9MQfyb0m9qBtuNa+WVR+NAIHNCTwm3c5L9hvT/UmZf3ZSV5k0AgQIECCwLgIKpHU50ws8znkUSLtm/OcnD51wHA8b9Km+GgECGwv8c7q8akK3+l5nXZl91IQ+FhEgQIAAgVUTWKkCyR+KXbUfz6uO5/qZ3D355lWzfmjqG4M+1VcjQGBjgR9Nl/q9GdcuzoJvJTcd18F8AgQIECBAoNsCCqRun5/tjO6MrFwv1sZ9FKi2XcuqT/XVCBDYWOC76TLpd6r+n1rFUfXTCBAgQIAAgR4KKJB6eNI2OeS6a98HkvpjueNaLas+1VcjQGBjgbpjXX0PadxV11/Msj2TDyYaAQIECBAgQIDAlALz+A5SDeUnk7qr1p8n7e8Z1fRfDJb9RB41AgQ2J1DfMaq/I/ap5CZDqzwwz+sGDX8yNN9TAgQIECCw6gIr9R2kVT9ZfTm+eRVIdfwPSk5Pvp28OnnNYLrm1TKNAIGtCdwo3atA+n7y9uQfBs/r7yK9IBl118jM1ggQIECAwMoKrFSB5CN2K/tzeuWB/Wumbpn8ZXJpUi/iarrm1TKNAIGtCZyc7ndPfimpNx7qI3X/ltTV2D9KLks0AgQIECBAgACBbQjM8wrSNoZlVQIECBAgQIAAAQIbCriCtCGRDgQIECBAgAABAgQIEOihgI/Y9fCkGTIBAgQIECBAgAABAvMRUCDNx9VWCRAgQIAAAQIECBDooYACqYcnzZAJECBAgAABAgQIEJiPgAJpPq62SoAAAQIECBAgQIBADwUUSD08aYZMgAABAgQIECBAgMB8BBRI83G1VQIECBAgQIAAAQIEeiigQOrhSTNkAgQIECBAgAABAgTmI6BAmo+rrRIgQIAAAQIECBAg0EMBBVIPT5ohEyBAgAABAgQIECAwHwEF0nxcbZUAAQIECBAgQIAAgR4KKJB6eNIMmQABAgQIECBAgACB+QgokObjaqsECBAgQIAAAQIECPRQQIHUw5NmyAQIECBAgAABAgQIzEdAgTQfV1slQIAAAQIECBAgQKCHAgqkHp40QyZAgAABAgQIECBAYD4CCqT5uNoqAQIECBAgQIAAAQI9FFAg9fCkGTIBAgQIECBAgAABAvMRUCDNx9VWCRAgQIAAAQIECBDooYACqYcnzZAJECBAgAABAgQIEJiPgAJpPq62SoAAAQIECBAgQIBADwUUSD08aYZMgAABAgQIECBAgMB8BBRI83G1VQIECBAgQIAAAQIEeiigQOrhSTNkAgQIECBAgAABAgTmI6BAmo+rrRIgQIAAAQIECBAg0EMBBVIPT5ohEyBAgAABAgQIECAwHwEF0nxcbZUAAQIECBAgQIAAgR4KKJB6eNIMmQABAgQIECBAgACB+QgokObjaqsECBAgQIAAAQIECPRQQIHUw5NmyAQIECBAgAABAgQIzEdAgTQfV1slQIAAAQIECBAgQKCHAgqkHp40QyZAgAABAgQIECBAYD4CCqT5uNoqAQIECBAgQIAAAQI9FFAg9fCkGTIBAgQIECBAgAABAvMRUCDNx9VWCRAgQIAAAQIECBDooYACqYcnzZAJECBAgAABAgQIEJiPgAJpPq62SoAAAQIECBAgQIBADwUUSD08aYZMgAABAgQIECBAgMB8BBRI83G1VQIECBAgQIAAAQIEeiigQOrhSTNkAgQIECBAgAABAgTmI6BAmo+rrRIgQIAAAQIECBAg0EMBBVIPT5ohEyBAgAABAgQIECAwHwEF0nxcbZUAAQIECBAgQIAAgR4KKJB6eNIMmQABAgQIECBAgACB+QgokObjaqsECBAgQIAAAQIECPRQQIHUw5NmyAQIECBAgAABAgQIzEdAgTQfV1slQIAAAQIECBAgQKCHAgqkHp40QyZAgAABAgQIECBAYD4CCqT5uNoqAQIECBAgQIAAAQI9FFAg9fCkGTIBAgQIECBAgAABAvMRUCDNx9VWCRAgQIAAAQIECBDooYACqYcnzZAJECBAgAABAgQIEJiPgAJpPq62SoAAAQIECBAgQIBADwUUSD08aYZMgAABAgQIECBAgMB8BBRI83G1VQIECBAgQIAAAQIEeiigQOrhSTNkAgQIECBAgAABAgTmI6BAmo+rrRIgQIAAAQIECBAg0EMBBVIPT5ohEyBAgAABAgQIECAwHwEF0nxcbZUAAQIECBAgQIAAgR4KKJB6eNIMmQABAgQIECBAgACB+QgokObjaqsECBAgQIAAAQIECPRQQIHUw5NmyAQIECBAgAABAgQIzEdAgTQfV1slQIAAAQIECBAgQKCHAgqkHp40QyZAgAABAgQIECBAYD4CCqT5uNoqAQIECBAgQIAAAQI9FFAg9fCkGTIBAgQIECBAgAABAvMRUCDNx9VWCRAgQIAAAQIECBDooYACqYcnzZAJECBAgAABAgQIEJiPgAJpPq62SoAAAQIECBAgQIBADwUUSD08aYZMgAABAgQIECBAgMB8BBRI83G1VQIECBAgQIAAAQIEeiigQOrhSTNkAgQIECBAgAABAgTmI6BAmo+rrRIgQIAAAQIECBAg0EMBBVIPT5ohEyBAgAABAgQIECAwHwEF0nxcbZUAAQIECBAgQIAAgR4KKJB6eNIMmQABAgQIECBAgACB+QgokObjaqsECBAgQIAAAQIECPRQQIHUw5NmyAQIECBAgAABAgQIzEdAgTQfV1slQIAAAQIECBAgQKCHAgqkHp40QyZAgAABAgQIECBAYD4CCqT5uNoqAQIECBAgQIAAAQI9FFAg9fCkGTIBAgQIECBAgAABAvMRUCDNx9VWCRAgQIAAAQIECBDooYACqYcnzZAJECBAgAABAgQIEJiPgAJpPq62SoAAAQIECBAgQIBADwUUSD08aYZMgAABAgQIECBAgMB8BBRI83G1VQIECBAgQIAAAQIEeiigQOrhSTNkAgQIECBAgAABAgTmI6BAmo+rrRIgQIAAAQIECBAg0EMBBVIPT5ohEyBAgAABAgQIECAwHwEF0nxcbZUAAQIECBAgQIAAgR4KKJB6eNIMmQABAgQIECBAgACB+QgokObjaqsECBAgQIAAAQIECPRQQIHUw5NmyAQIECBAgAABAgQIzEdAgTQfV1slQIAAAQIECBAgQKCHAgqkHp40QyZAgAABAgQIECBAYD4CCqT5uNoqAQIECBAgQIAAAQI9FNjRwzFvd8j7ZAPXTnZPvpeclZyXaAQIECBAgAABAgQIrLnAulxBumPO88uTU5IzkmOTryXfSapIOjp5WbJvohEgQIAAAQIECBAgsKYC63AF6Tk5t386OL/H5/FTSRVJVRjVlaTrJvslT0welTwlOTzRCBAgQIAAAQIECBAgsFICj87RXJa8N7nThCPbOcvunXwuqf53TxbZnpCd1X73XORO7YsAAQIECBAgQIDADAR2yzbqtewhM9iWTcxZ4HXZfn18rr5vtJlW3086J3npZjrPsI8CaYaYNkWAAAECBAgQILBQgZUqkFb9O0h3yI9GfaTugk3+iJyZfkcmN91k/750q6tjb0yOGaSma55GgAABAgQIECBAgEBLYNULpJNyrAcnu7aOedJkXUGqoqpu4LAq7Tk5kA8nlyTPG6Sma14t0wgQIECAAAECBAgQWBOBx+U46/OQ70juNuGY6ztI90o+k1yc3CNZZJvXR+wemYO4MHnoiIOpebWs+mgECBAgQIAAAQIEphVYqY/YTYvQl/Wq8HlqUn/nqAqluq33p5N3J68fPNZH8E5MavlFye8ni27zKpA+nwP5qwkH89dZVn00AgQIECBAgAABAtMKrFSBVAXEOrRb5CCfn9T3bm4ydMDfz/MqkN6evDj5drLdtns28GvJZj/aV3fNe2yyV1LF3CzatbKRc5K6cvbZMRusZVUw7p2cO6aP2QQIECBAgAABAgQmCVSBVN/5r9e0dfGh120d/g5SnaBjkkMHZ6qKgfr7R9dI6g/Hnp3Muu2bDT4pqR+WzbQqZqrVFaxZtT0GG6oiaVxrjr36KpDGKZlPgAABAgQIECBAgMBCBeqe8fURv80WVJsZXN2A47SkrmSNa7Ws+qz6zTrGHb/5BAgQIECAAAEC2xeo17D1WrZe0/a+rcsVpN6fqCkO4NKs8+rkT5K3JjdPHpFUe1tybFLLqk/11QgQIECAAAECBAgQINAJgXlcQaoDq48Tfj25IKkiqJ2ad1RSfTQCBAgQIECAAAEC0wq4gjSt3BLWq7vDTVMAfDLr9f4LZjmG+q7V/kl9hK4uezbfcaqbR9S8A5LqM+l7SlmsESBAgAABAgQIECCwCgL/mYOowmCree6CD35eV5COyHHUlaIbJzdIHjRITde8WlZ9NAIECBAgQIAAAQLTCriCNK3cEtZ7SPb5luSQpG7j/YpkM+2ozXTqeJ9dMr6fTF6enDQY678OHpuHV2Xit5Lqe0miESBAgAABAgQIECCw4gK75/jqb/3U1ZI7dvRYq4Crq1xVfc+q3T4bqm1WkTiu1bLqU301AgQIECBAgAABAtMIrNQVpHW4vXMVRr85ONN/O80Z7+k6ZwzGfeMJ42+WNX0ndLWIAAECBAgQIECAAIFVEnh6DubI5KAOHtQ8riDVYZ6X/MeE461l1UcjQIAAAQIECBAgMK3ASl1BWqe/g/Q3OeOVdWovzsE+M3lR8r3k4KRa3Zih7u53p+QvEo0AAQIECBAgQIAAAQKdEZjXFaQ6wC8l9fePLki+PEhN17y6oqYRIECAAAECBAgQ2I7ASl1BWofvIG3nZPd93XvmAA5M3picnNx6kJp+U3Lb5B6JRoDA/2vvXmBmKes7AHM5oCBX8QJRLBKhChaRiy2YeEREK1Qo1dqLl5JaQ6CVhhKLbRpDRWIvsWqMtlaxp2ptY1ptpY3UG1qEFvHQC4hIW9FwExFQEOQm9Pc/zuC63W+/3fl2D2dnnzf5nZl5553ZfZ/9JrvvzuwcAgQIECBAgAABAluMwLzOIH02Pdwwppe17oIx660iQIAAAQIECBAgsJpAr84grdZZ6zePwDwGSDvkqdf/bbR+TBdqXbWptgoBAgQIECBAgACBLgK9GiC5xK7Ln8BibLNbnma9vu1/EjvqWdeldtWm2ioECBAgQIAAAQIEll7AAKm/fwI3p2t1C+9x/wlsras21VYhQIAAAQIECBAgsPQCBkj9/RO4P12rGzHUbb5H3c696s5s2lRbhQABAgQIECBAgAABAluEwDx+g1Qde0JSl9Gd18xnsqlUfdXVuppXCBAgQIAAAQIECHQV8BukrnK22+wC1+cRn5PslXw9qf/3qFLzVVfrqo1CgAABAgQIECBAgEAERl16BaZfAlenO4cnRyaHNl3bmOnFyYPNsgkBAgQIECBAgAABAhEwQFqOP4MaCF3UZDl6rJcECBAgQIAAAQIEOgi4SUMHNJsQIECAAAECBAgQINBPAQOkfr6uekWAAAECBAgQIECAQAcBA6QOaDYhQIAAAQIECBAgQKCfAgZI/Xxd9YoAAQIECBAgQIAAgQ4CBkgd0GxCgAABAgQIECBAgEA/BQyQ+vm66hUBAgQIECBAgAABAh0EDJA6oNmEAAECBAgQIECAAIF+Chgg9fN11SsCBAgQIECAAAECBDoIGCB1QLMJAQIECBAgQIAAAQL9FDBA6ufrqlcECBAgQIAAAQIECHQQMEDqgGYTAgQIECBAgAABAgT6KWCA1M/XVa8IECBAgAABAgQIEOggYIDUAc0mBAgQIECAAAECBAj0U8AAqZ+vq14RIECAAAECBAgQINBBwACpA5pNCBAgQIAAAQIECBDop4ABUj9fV70iQIAAAQIECBAgQKCDgAFSBzSbECBAgAABAgQIECDQTwEDpH6+rnpFgAABAgQIECBAgEAHgXUdtrHJYgocnqd9aPPUN2Z66WJ2w7MmQIAAAQIECBAgQKDvAkekgw8m28+ho/tmnxcnDyRXNan5qqt1CgECBAgQIECAAIG1CNRn2PosW59pF764xG7hX8KxHdgray9Mbk9qMPTUJjVfdbWu2igECBAgQIAAAQIECBDYYgTmdQbp3PTwi8moM1NVV+uqjUKAAAECBAgQIECgq0CvziB1RbDdbAXmMUDaNk/xjuQlY57qS5s21VYhQIAAAQIECBAg0EWgVwMkl9h1+RNYjG0em6e5U3LFmKd7edOm2ioECBAgQIAAAQIEll7AAKm/fwL1G6O6GcPjxnSx1lWbaqsQIECAAAECBAgQWHoBA6T+/gncla5dlJw0pou1rtpUW4UAAQIECBAgQIAAAQJbhMA8foNUHVuf3J+cUgtDpepqXbVRCBAgQIAAAQIECHQV6NVvkLoi2G62AvMaINWzPCm5J7kkObtJzVfdSYlCgAABAgQIECBAYC0CvRogrVuLhG0XQmBDnuWFycnJkUmVzyW/nPxvLSgECBAgQIAAAQIECBDYkgTmeQZpS+qn50KAAAECBAgQINA/gV6dQXKThv79geoRAQIECBAgQIAAAQIdBQyQOsLZjAABAgQIECBAgACB/gkYIPXvNdUjAgQIECBAgAABAgQ6ChggdYSzGQECBAgQIECAAAEC/RMwQOrfa6pHBAgQIECAAAECBAh0FDBA6ghnMwIECBAgQIAAAQIE+idggNS/11SPCBAgQIAAAQIECBDoKGCA1BHOZgQIECBAgAABAgQI9E/AAKl/r6keESBAgAABAgQIECDQUcAAqSOczQgQIECAAAECBAgQ6J+AAVL/XlM9IkCAAAECBAgQIECgo4ABUkc4mxEgQIAAAQIECBAg0D8BA6T+vaZ6RIAAAQIECBAgQIBARwEDpI5wNiNAgAABAgQIECBAoH8CBkj9e031iAABAgQIECBAgACBjgLrOm5ns/kIbD+f3f7IXrf7kSULBAgQIECAAAECfRe4b84d3ByfYefchR/u3gDphxYP51z7R3vHw/kkPDYBAgQIECBAgACBNQjcu4Ztt5hNt95inoknclgI5n1256w8xk7JhkQhQGDtAk/PLk5OXrv2XdkDAQKNwDsyfXdyBRECBGYicFL28t3krGSepQZHG+f5APZNYB4CG7LTikKAwGwEjs1u7pzNruyFAIFGoI6pOrYUAgRmI7Ahu6koEwq4ScOEUJoRIECAAAECBAgQINB/AQOk/r/GekiAAAECBAgQIECAwIQCBkgTQmlGgAABAgQIECBAgED/BQyQ+v8a6yEBAgQIECBAgAABAhMKGCBNCKUZAQIECBAgQIAAAQL9FzBA6v9rrIcECBAgQIAAAQIECEwoYIA0IZRmBAgQIECAAAECBAj0X8AAqf+vsR4SIECAAAECBAgQIDChgAHShFCaESBAgAABAgQIECDQf4F1/e+iHg4I3Dswb5YAgbUL3JddOK7W7mgPBAYF6piqY0shQGA2At6nZuNoLz0VeHT6VVEIEJiNQJ2F33c2u7IXAgQagTqmXOHiz4HA7AR8/pudpT0RIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIDBbgW1nuzt7e5gE6nU8InlWcn9yazJNeVIa77ZC7kz9A9PsTFsCPRP42fSnjrGbp+zXWo/LKR9OcwILI7BPnulxyeVTPONd0nbPZNR71Xapv2uKfWlKoC8CO6YjhyTPTurYuD25J5mmPDGN1yc1/WZyX6IQWHiB/dKDLycPDuRLmd87maQ8Lo0Gtx2e33+SnWhDoKcCr0m/6pg4Y8r+rfW4nPLhNCewMAI10LkyuWPKZ/yutB9+f2qXPzTlvjQn0AeBV6UTNyXtcVDTGiCdlkxafj8Na0DU7qO+ZP/tSTfuc7t1fe7cEvRt6/Tx3OQJySuTf0uOSt6efD45IKkzQOPKwc3KT2V6xYiGt42oU0VgGQROSCff2aGjszguOzysTQhs8QK75xn+dfK05LtTPtt6r6pt3jtiu40j6lQR6LPAMenchuTrye8m5yXPS05N6jNgfXb7QDKu1D7ekHw0OTvZLnlj8ofJ95J3JAqBhRQ4Jc+6Rv0nDz3716xQP9Rs0+KZTdv1o1aqI7CEAnukzx9M6ti6u5mekemkZRbH5aSPpR2BRRE4MU/0hqSOq7oE6I5k0rJNGtbg6IJJN9COQM8F6lioY+kFQ/08vKmvK4nGlbo075rkuqQuB2/L9pmp+muTwfp2vSmBhRC4JM+yPsDVdaeDpS5hqNH/pYOVK8zXt3n1G6OdV1ivmsCyCdRxVW88H07qEoaan2aANIvjMg+pEOiNwIvSkzqOvpUcn1yWTDNA+vG0r+3/OFEILLtAfWHwhaQGQaMGMVelvi6VG7Uu1ZtKe0z+QVsxMD0n83W81e8El7YUsrKYAnUqtC45uDr59lAX6hrUOkCekVS7caXdR31r8EvJ6ckLkx0ShcAyCtTlOsckL0uGj63VPGZ1XK72ONYTWCSB+rD2pmT/5GMdnni9T1WpY/PI5LXJryQ1cFIILJtAfan9rOTA5PtDnX9klvdKvpYMr0vVQ6W2r1IDreHS1h02vGKZltctU2d71te6lrsGNbes0K9bU18f1h6b3LBCmx1TX29YNyfXJDsnbfnvzLwiaQ+Utt6UQN8FTl1DB2dxXK7h4W1KYIsU+GSeVaVraQdI9fuI/QZ2Uh8U357Uj8prEKYQWHaB+tlEXUX0Z6tAPL5ZP+ozZH1+rFK/b1/a4gzS4r70dQBUqUsWRpX2D/xRo1Y2dQdlWn8D9aHu7OSApL6ReHOyb3Je8uhEIUBgMoFZHJeTPZJWBJZH4JlNV7+R6bHJ3s30y5menrw+UQgsu0Bd9fCGpL7gPisZV8a9V03y+XHcvnuxzhmkxX0Z726e+kqD3Pba03GnWL+afdRlddcmFzX7q0ndEaW2r2/lfiv5vUQhQGB1gVkcl6s/ihYElkvgnHT3w8mHkvYYuy7z/55cldR71FuTOxOFwDIKnJRO/3lSVwSdkNTv0MeV9jga9Rlyks+P4/bdi3WjYHrRsSXoRH2TVj+iW+kMT1v/nTEW38y6v0kGB0dt8/c3M+03d229KQECKwvM4rhcee/WEFhOgQvT7fcl7Ye6VqGOt7p07xFJXQGhEFhGgTpr9BdJfWnwnKTOrK5W2p9etJ8VB9u3deM+Pw627+W8M0iL+7LW9dY1wGn/kId7UvV3JdP+yLzdT30LUaU9DfuDJf8SIDBOYN7H5bjHto7AMgp4r1rGV12fS6D+z723JacllyYvTm5KJimTDJCun2RHfW3jDNJiv7L1LUF9a/aYoW7UjRmelmxMxl1iV9dufyWpy+yGy1ObilqvECAwucBaj8vJH0lLAv0XqJsH1XvZxcmozyzeq/r/N6CH/1+gjoU6q1qDo79PnptMOjhK04fOMq2vhaHS1n1hqN4igYUR+Lk807rMrn4rNFhen4Wqf+lg5Yj5lzTtrsi0voloS82fn9Q+6nStQmBZBY5Px+s4mOb/QVrrcbms1vq9PAKXpavT/D9Il6d9HYf1I/TB8uwsPJB8erDSPIElEDglfaxj4iNJ+5uhabv9X9ngxmSXgQ13zXxdulq/73OV2QCM2cUSqG8QrkzqLNHZyfOTNzXLddAMloOyUAfTfw5U1kH1mab+gkxfmZyYfKKpe0+mCoFlFjg+na/jZqUBUh1ntb6Om7ZMc1y225gSWCaBy9LZlQZIo46po9O+3ufqrq1vSeq9rr4YrH3ckhyUKASWRWCPdPS2pN576suBOoM0KjulvkodH9V28PNf1dfVQ1VfZ2jrC/WfT+rYrEvFD0kUAgstUJfXfTypb9HqD73yz8meyWBZ6QDZPY3+NKkDot2+3oRelygEll3g+ADUcTHNAKnMJj0uq61CYNkE6kPYNAOk8jk2uTpp36fqPevC5MmJQmCZBOoude1xMG5an++qrPT5r9a9PLk1afdT869OFAK9Edg5PTk0GR4YTdrBR6bhTyT7TLqBdgQIrCqw1uNy1QfQgMCSCeyV/ta32zsuWb91l8C8BOpnFU9JDkzqjpAKAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIDAEghsuwR91EUCBAgQ6I/AdunKCckuyfX96ZaeECBAgAABAgQIECBAYHqB3bPJg8nfTb+pLQgQIECAwOoC26zeRAsCBAgQIECAAAECBAgsh4AB0nK8znpJgAABAgQIECBAgMAEAusmaKMJAQIECBB4uAT2zwMfm+yWfCa5PFmpHJgVxyQ/llyT/EvyH8lw2ToVP538VLJTclXyueTqZLjU++RxycHJI5La33nJ9xKFAAECBAgQIECAAAECm03gnXmk+r3RvcnNzfx7m+nwb5D+JPX3Jw8kNzTT72da9YNfBtZNHj6e1H6r/U3N/D2Z/kYyWPbNwiVJtf1O8q1m/spMD0oUAgQIECBAgAABAgQIbBaBX8uj1MDkA8mOzSMenektSdUPDpB+tak7P9PHJ1Uek3wsqbZnJG15VWaq7o+SnZvKAzKtQVWdFaozVVXqLNOlSQ2yXtEsZ7LpDFU9h68k21eFQoAAAQIECBAgQIAAgXkLXJsH+Eayw9ADnZblwQFSDWRuS2rQsmsyWB6VhRuTO5Kar3JOUtsfVQsD5QWZ//WkHWD9YuarXV1ON1zemIpad/LwCssECBAgQIAAAQIECBCYtcAe2WENQN4/Ysc1gKl17RmkfZrlUW2zaqt3NesPrYWU5yW1fQ2aat2Lk3bwlNmHytsyV+1OT+pyusG0g6f3pF4hQIAAAQIECBAgQIDAXAWem73X4OTNIx6lzhjdnbQDpBdmvtqenYwqZ6ay1v/CwMpXZ/7bTX2tq/39Y/KTSVv+KTO1blwuaBubEiBAgEB/BAZ/uNqfXukJAQIECCyyQF0uV2XUmZ0aIG2zae0P/rmzmR/Vtlbt3KyvQVBbzs3MXyXPT2qA9aLkuKTugFfLn03a9i/PfN3IYVS5fVSlOgIECBAgQIAAAQIECMxSYNvs7K7kEyN2+uTU1Vmd9gxSe8nd+SPaVtVHkmp/cC2kPCWp24YPl/ZM07ubFXX2qrb7meGGWa4bOdTgau8R61QRIECAAAECBAgQIEBg5gKfzB7rlt2HDO35rVkeHCDV6n9Nqu1htTBQnp75upX3V5M681Tlo0ltX2eMBkudPar62n+VI5La58VJDdgGywezUG1fNlhpngABAgQIECBAgAABAvMSqLMzNyZ1ud2pSd1lrv5fpDqzVIOe9gxSZreqGzDU/5VUvys6Izk6+c2ktq08I2nLUZmpW3dfl9Qd7eo/jP2d5H+Suqzu8KQt78tMDYQ+n9RvmE5M/jKpun9IFAIECBAgQIAAAQIECGw2gToj9OmkBj81KKnbfq9P6g50gwOkLG71zOSLSbWr1EDqU8nwGahUbRrsfC3Ttm2dKfpSMniThixu+q3T6zIdvKFDtf3bZM9EIUCAAAECBAgQIECAwGYX2DWPuN+Ej7pL2tUtubdfpX3d6OGJSQ2gapvVypPSoM5ETdJ2tX1ZT4AAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAgc0o8H9Qu0M49aO/zwAAAABJRU5ErkJggg==",
"image/svg+xml": [
"\n",
"\n"
],
"text/plain": [
"Plot with title “Growth of Tooth vs Dose of OJ”"
]
},
"metadata": {
"image/svg+xml": {
"isolated": true
}
},
"output_type": "display_data"
}
],
"source": [
"with(subset(ToothGrowth, supp == \"OJ\"), plot(dose, len))\n",
"title(main=\"Growth of Tooth vs Dose of OJ\")"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/plain": [
"\n",
"Call:\n",
"lm(formula = ToothGrowth$len ~ ToothGrowth$dose, subset = (ToothGrowth$supp == \n",
" \"VC\"))\n",
"\n",
"Residuals:\n",
" Min 1Q Median 3Q Max \n",
"-8.2264 -2.6029 0.0814 2.2288 7.4893 \n",
"\n",
"Coefficients:\n",
" Estimate Std. Error t value Pr(>|t|) \n",
"(Intercept) 3.295 1.427 2.309 0.0285 * \n",
"ToothGrowth$dose 11.716 1.079 10.860 1.51e-11 ***\n",
"---\n",
"Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1\n",
"\n",
"Residual standard error: 3.685 on 28 degrees of freedom\n",
"Multiple R-squared: 0.8082,\tAdjusted R-squared: 0.8013 \n",
"F-statistic: 117.9 on 1 and 28 DF, p-value: 1.509e-11\n"
]
},
"execution_count": 4,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# Fit for vitamin C\n",
"fit.tooth.VC<-lm(ToothGrowth$len ~ ToothGrowth$dose,subset=(ToothGrowth$supp==\"VC\"))\n",
"summary(fit.tooth.VC)"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/plain": [
"\n",
"Call:\n",
"lm(formula = len ~ dose, data = ToothGrowth, subset = (supp == \n",
" \"VC\"))\n",
"\n",
"Residuals:\n",
" Min 1Q Median 3Q Max \n",
"-8.2264 -2.6029 0.0814 2.2288 7.4893 \n",
"\n",
"Coefficients:\n",
" Estimate Std. Error t value Pr(>|t|) \n",
"(Intercept) 3.295 1.427 2.309 0.0285 * \n",
"dose 11.716 1.079 10.860 1.51e-11 ***\n",
"---\n",
"Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1\n",
"\n",
"Residual standard error: 3.685 on 28 degrees of freedom\n",
"Multiple R-squared: 0.8082,\tAdjusted R-squared: 0.8013 \n",
"F-statistic: 117.9 on 1 and 28 DF, p-value: 1.509e-11\n"
]
},
"execution_count": 5,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# Fit for vitamin C\n",
"fit.tooth.VC<-lm(len ~ dose, subset=(supp==\"VC\"), data=ToothGrowth)\n",
"summary(fit.tooth.VC)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Discussion\n",
"----\n",
"\n",
"* What is the biological hypothesis?\n",
"* What is the statistical hypothesis?\n",
"* How do we test the statistical hypothesis?\n",
"* What is your conclusion?"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Look at OJ and Tooth Growth"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/plain": [
"\n",
"Call:\n",
"lm(formula = ToothGrowth$len ~ ToothGrowth$dose, subset = (ToothGrowth$supp == \n",
" \"OJ\"))\n",
"\n",
"Residuals:\n",
" Min 1Q Median 3Q Max \n",
"-7.2557 -3.7979 -0.0643 3.3521 7.9386 \n",
"\n",
"Coefficients:\n",
" Estimate Std. Error t value Pr(>|t|) \n",
"(Intercept) 11.550 1.722 6.708 2.79e-07 ***\n",
"ToothGrowth$dose 7.811 1.302 6.001 1.82e-06 ***\n",
"---\n",
"Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1\n",
"\n",
"Residual standard error: 4.446 on 28 degrees of freedom\n",
"Multiple R-squared: 0.5626,\tAdjusted R-squared: 0.547 \n",
"F-statistic: 36.01 on 1 and 28 DF, p-value: 1.825e-06\n"
]
},
"execution_count": 6,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# Fit for OJ\n",
"fit.tooth.OJ<-lm(ToothGrowth$len ~ ToothGrowth$dose,subset=(ToothGrowth$supp==\"OJ\"))\n",
"summary(fit.tooth.OJ)"
]
},
{
"cell_type": "markdown",
"metadata": {
"collapsed": true
},
"source": [
"Note that the `lm` function (for linear model) takes arguments in a specific format:\n",
"\n",
"$$ y\\_values \\sim x\\_values$$\n",
"\n",
"Or more formally stated: Dependent Variable ~ Independent Variable"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## R Formula Syntax"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"A more complicated linear model might include more than one main effect and/or interaction terms such as:\n",
"\n",
"$$ y = \\alpha + \\beta_1 x_1 + \\beta_2 x_2 + \\beta_3 x_1 x_2 +\\epsilon$$\n",
"\n",
"Below is a table of R formula syntax and the corresponding model. There are others, but that is a topic for more advanced study."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"\n",
"| Syntax | Model |\n",
"| ------------------ | ----- |\n",
"| $x_1 + x_2 \\;\\;\\;\\;\\;\\;\\;\\;\\;\\;\\;\\;\\;\\;\\;\\;\\;\\;\\;\\;$ | $y = \\alpha + \\beta_1 x_1 + \\beta_2 x_2 +\\epsilon$ |\n",
"| $x_1:x_1$ | $y = \\alpha + \\beta x_1 x_2 +\\epsilon \\;\\;\\;\\;\\;\\;\\;\\;\\;\\;\\;\\;\\;\\;\\;\\;\\;\\;\\;\\;\\;\\;\\;\\;$ |\n",
"| $x_1 * x_2$ | $y = \\alpha + \\beta_1 x_1 + \\beta_2 x_2 + \\beta_3 x_1 x_2 +\\epsilon \\;\\;\\;\\;\\;\\;\\;\\;\\;\\;\\;\\;\\;\\;\\;\\;$ |\n",
"| $x_1 * x_2 *x_3$ | $y = \\alpha + \\beta_1 x_1 + \\beta_2 x_2 + \\beta_3 x_3 +\\beta_4 x_1 x_2 +\\beta_5 x_1 x_3 + \\beta_6 x_2 x_3 + \\beta_7 x_1 x_2 x_3 +\\epsilon$ |\n",
"| $(x_1 + x_2 + x_3)^2$ | $y = \\alpha + \\beta_1 x_1 + \\beta_2 x_2 + \\beta_3 x_3 +\\beta_4 x_1 x_2 +\\beta_5 x_1 x_3 + \\beta_6 x_2 x_3 +\\epsilon$ |\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Work!"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Load the R data set called \"mtcars\". \n",
"\n",
"* Perform a linear regression on mpg using cyl and hp as main effects. \n",
"* Add wt (weight) as a third main effect.\n",
"* Add interaction terms for hp and weight\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Rails Example"
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/html": [
"
\n",
"
Rail
travel
\n",
"\n",
"\t
1
1
55
\n",
"\t
2
1
53
\n",
"\t
3
1
54
\n",
"\t
4
2
26
\n",
"\t
5
2
37
\n",
"\t
6
2
32
\n",
"\t
7
3
78
\n",
"\t
8
3
91
\n",
"\t
9
3
85
\n",
"\t
10
4
92
\n",
"\t
11
4
100
\n",
"\t
12
4
96
\n",
"\t
13
5
49
\n",
"\t
14
5
51
\n",
"\t
15
5
50
\n",
"\t
16
6
80
\n",
"\t
17
6
85
\n",
"\t
18
6
83
\n",
"\n",
"
\n"
],
"text/latex": [
"\\begin{tabular}{r|ll}\n",
" & Rail & travel\\\\\n",
"\\hline\n",
"\t1 & 1 & 55\\\\\n",
"\t2 & 1 & 53\\\\\n",
"\t3 & 1 & 54\\\\\n",
"\t4 & 2 & 26\\\\\n",
"\t5 & 2 & 37\\\\\n",
"\t6 & 2 & 32\\\\\n",
"\t7 & 3 & 78\\\\\n",
"\t8 & 3 & 91\\\\\n",
"\t9 & 3 & 85\\\\\n",
"\t10 & 4 & 92\\\\\n",
"\t11 & 4 & 100\\\\\n",
"\t12 & 4 & 96\\\\\n",
"\t13 & 5 & 49\\\\\n",
"\t14 & 5 & 51\\\\\n",
"\t15 & 5 & 50\\\\\n",
"\t16 & 6 & 80\\\\\n",
"\t17 & 6 & 85\\\\\n",
"\t18 & 6 & 83\\\\\n",
"\\end{tabular}\n"
],
"text/plain": [
"Grouped Data: travel ~ 1 | Rail\n",
" Rail travel\n",
"1 1 55\n",
"2 1 53\n",
"3 1 54\n",
"4 2 26\n",
"5 2 37\n",
"6 2 32\n",
"7 3 78\n",
"8 3 91\n",
"9 3 85\n",
"10 4 92\n",
"11 4 100\n",
"12 4 96\n",
"13 5 49\n",
"14 5 51\n",
"15 5 50\n",
"16 6 80\n",
"17 6 85\n",
"18 6 83"
]
},
"execution_count": 7,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# Rails example\n",
"\n",
"# Just loading some library functions\n",
"library(nlme)\n",
"library(lattice)\n",
"\n",
"# Get the dataset (it is part of R)\n",
"data(Rail)\n",
"\n",
"# Look at the data\n",
"Rail"
]
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAA0gAAANICAYAAAD958/bAAAEDWlDQ1BJQ0MgUHJvZmlsZQAAOI2NVV1oHFUUPrtzZyMkzlNsNIV0qD8NJQ2TVjShtLp/3d02bpZJNtoi6GT27s6Yyc44M7v9oU9FUHwx6psUxL+3gCAo9Q/bPrQvlQol2tQgKD60+INQ6Ium65k7M5lpurHeZe58853vnnvuuWfvBei5qliWkRQBFpquLRcy4nOHj4g9K5CEh6AXBqFXUR0rXalMAjZPC3e1W99Dwntf2dXd/p+tt0YdFSBxH2Kz5qgLiI8B8KdVy3YBevqRHz/qWh72Yui3MUDEL3q44WPXw3M+fo1pZuQs4tOIBVVTaoiXEI/MxfhGDPsxsNZfoE1q66ro5aJim3XdoLFw72H+n23BaIXzbcOnz5mfPoTvYVz7KzUl5+FRxEuqkp9G/Ajia219thzg25abkRE/BpDc3pqvphHvRFys2weqvp+krbWKIX7nhDbzLOItiM8358pTwdirqpPFnMF2xLc1WvLyOwTAibpbmvHHcvttU57y5+XqNZrLe3lE/Pq8eUj2fXKfOe3pfOjzhJYtB/yll5SDFcSDiH+hRkH25+L+sdxKEAMZahrlSX8ukqMOWy/jXW2m6M9LDBc31B9LFuv6gVKg/0Szi3KAr1kGq1GMjU/aLbnq6/lRxc4XfJ98hTargX++DbMJBSiYMIe9Ck1YAxFkKEAG3xbYaKmDDgYyFK0UGYpfoWYXG+fAPPI6tJnNwb7ClP7IyF+D+bjOtCpkhz6CFrIa/I6sFtNl8auFXGMTP34sNwI/JhkgEtmDz14ySfaRcTIBInmKPE32kxyyE2Tv+thKbEVePDfW/byMM1Kmm0XdObS7oGD/MypMXFPXrCwOtoYjyyn7BV29/MZfsVzpLDdRtuIZnbpXzvlf+ev8MvYr/Gqk4H/kV/G3csdazLuyTMPsbFhzd1UabQbjFvDRmcWJxR3zcfHkVw9GfpbJmeev9F08WW8uDkaslwX6avlWGU6NRKz0g/SHtCy9J30o/ca9zX3Kfc19zn3BXQKRO8ud477hLnAfc1/G9mrzGlrfexZ5GLdn6ZZrrEohI2wVHhZywjbhUWEy8icMCGNCUdiBlq3r+xafL549HQ5jH+an+1y+LlYBifuxAvRN/lVVVOlwlCkdVm9NOL5BE4wkQ2SMlDZU97hX86EilU/lUmkQUztTE6mx1EEPh7OmdqBtAvv8HdWpbrJS6tJj3n0CWdM6busNzRV3S9KTYhqvNiqWmuroiKgYhshMjmhTh9ptWhsF7970j/SbMrsPE1suR5z7DMC+P/Hs+y7ijrQAlhyAgccjbhjPygfeBTjzhNqy28EdkUh8C+DU9+z2v/oyeH791OncxHOs5y2AtTc7nb/f73TWPkD/qwBnjX8BoJ98VVBg/m8AAEAASURBVHgB7N0JvE3l/sfx7+EcjnkejplMRYOZkGMoJN2GU0Ii0aUZt0ma1FX9SdyUonTjdoUiKjKUoQiZr5kiZZ7n4ZzDfz3PGTrHGRwLZ6+99+d5vba991pr7/V73s+u/HrW+j0h55wmGgIIIIAAAggggAACCCCAgLJggAACCCCAAAIIIIAAAgggECdAgsQvAQEEEEAAAQQQQAABBBCIFyBB4qeAAAIIIIAAAggggAACCMQLkCDxU0AAAQQQQAABBBBAAAEE4gVIkPgpIIAAAggggAACCCCAAALxAiRI/BQQQAABBBBAAAEEEEAAgXgBEiR+CggggAACCCCAAAIIIIBAvAAJEj8FBBBAAAEEEEAAAQQQQCBegASJnwICCCCAAAIIIIAAAgggEC9AgsRPAQEEEEAAAQQQQAABBBCIFyBB4qeAAAIIIIAAAggggAACCMQLkCDxU0AAAQQQQAABBBBAAAEE4gVIkPgpIIAAAggggAACCCCAAALxAiRI/BQQQAABBBBAAAEEEEAAgXgBEiR+CggggAACCCCAAAIIIIBAvAAJEj8FBBBAAAEEEEAAAQQQQCBegASJnwICCCCAAAIIIIAAAgggEC9AgsRPAQEEEEAAAQQQQAABBBCIFyBB4qeAAAIIIIAAAggggAACCMQLkCDxU0AAAQQQQAABBBBAAAEE4gVIkPgpIIAAAggggAACCCCAAALxAiRI/BQQQAABBBBAAAEEEEAAgXgBEiR+CggggAACCCCAAAIIIIBAvAAJEj8FBBBAAAEEEEAAAQQQQCBegASJnwICCCCAAAIIIIAAAgggEC9AgsRPAQEEEEAAAQQQQAABBBCIFyBB4qeAAAIIIIAAAggggAACCMQLkCDxU0AAAQQQQAABBBBAAAEE4gVIkPgpIIAAAggggAACCCCAAALxAiRI/BQQQAABBBBAAAEEEEAAgXgBEiR+CggggAACCCCAAAIIIIBAvAAJEj8FBBBAAAEEEEAAAQQQQCBegASJnwICCCCAAAIIIIAAAgggEC9AgsRPAQEEEEAAAQQQQAABBBCIFyBB4qeAAAIIIIAAAggggAACCMQLkCDxU0AAAQQQQAABBBBAAAEE4gVIkPgpIIAAAggggAACCCCAAALxAiRI/BQQQAABBBBAAAEEEEAAgXgBEiR+CggggAACCCCAAAIIIIBAvAAJEj8FBBBAAAEEEEAAAQQQQCBegASJnwICCCCAAAIIIIAAAgggEC9AgsRPAQEEEEAAAQQQQAABBBCIFyBB4qeAAAIIIIAAAggggAACCMQLkCDxU0AAAQQQQAABBBBAAAEE4gVIkPgpIIAAAggggAACCCCAAALxAiRI/BQQQAABBBBAAAEEEEAAgXgBEiR+CggggAACCCCAAAIIIIBAvAAJEj+FTBXYvHmzHn300Uw9Jye7vALnzp1T586dtXv37sv7xXxbpgoMGjRIs2bNytRzcrLLK/D999/r//7v/y7vl/JtmSqwd+9e++/Ts2fPZup5OdnlFXjssce0adOmy/ulfJtPBUiQfMoffCdft26dxowZE3wdD6AenzlzRqNHj9aWLVsCqFfB15Wvv/5aCxYsCL6OB1CPFy5cqClTpgRQj4KvK1u3brX/Pj116lTwdT6AevzZZ59pzZo1AdQjukKCxG8AAQQQQAABBBBAAAEEEIgXIEHip4AAAggggAACCCCAAAIIxAuQIPFTQAABBBBAAAEEEEAAAQTiBUiQ+CkggAACCCCAAAIIIIAAAvECJEj8FBBAAAEEEEAAAQQQQACBeAESJH4KCCCAAAIIIIAAAggggEC8AAkSPwUEEEAAAQQQQAABBBBAIF4gFIkrKxAbG6s5c+YoJibmyp7IT7592bJl1mL69Ol+EjFhni9g1kEyzazBcvjw4fN3895PBA4cOCCzcDP/LPrJgKUSplmY8uDBg4xhKjb+smnDhg021JkzZyo8PNxfwibO8wSio6O1fPly5ciR47w9wfk2NDRUkZGRypo1q98ChJxzmt9G7weBm+SoadOmyp49ux9Ee+VDNKuFm2QxW7ZsV/5knOGKCJh/ZZgkKSwsTFmyMAl9RZAz4UvNf9DN+Pnzf8AygcnTpzD/A878O9X8s0jzT4GEf5+a/yaGhIT4ZyeI2v430SQF/Dcx7sdw+vRpzZo1S82bN/fbXwczSFd46EwyYP6hYZXsKwzN1yOAAAIIIIAAAgj4XMDMhvr7lVP871+f/4wIAAEEEEAAAQQQQAABBLwiQILklZEgDgQQQAABBBBAAAEEEPC5AAmSz4eAABBAAAEEEEAAAQQQQMArAiRIXhkJ4kAAAQQQQAABBBBAAAGfC5Ag+XwICAABBBBAAAEEEEAAAQS8IkCC5JWRIA4EEEAAAQQQQAABBBDwuQAJks+HgAAQQAABBBBAAAEEEEDAKwIkSF4ZCeJAAAEEEEAAAQQQQAABnwuQIPl8CAgAAQQQQAABBBBAAAEEvCJAguSVkSAOBBBAAAEEEEAAAQQQ8LkACZLPh4AAEEAAAQQQQAABBBBAwCsCJEheGQniQAABBBBAAAEEEEAAAZ8LkCD5fAgIAAEEEEAAAQQQQAABBLwiQILklZEgDgQQQAABBBBAAAEEEPC5AAmSz4eAABBAAAEEEEAAAQQQQMArAiRIXhkJ4kAAAQQQQAABBBBAAAGfC5Ag+XwICAABBBBAAAEEEEAAAQS8IkCC5JWRIA4EEEAAAQQQQAABBBDwuQAJks+HgAAQQAABBBBAAAEEEEDAKwIkSF4ZCeJAAAEEEEAAAQQQQAABnwuQIPl8CAgAAQQQQAABBBBAAAEEvCJAguSVkSAOBBBAAAEEEEAAAQQQ8LkACZLPh4AAEEAAAQQQQAABBBBAwCsCJEheGQniQAABBBBAAAEEEEAAAZ8LkCD5fAgIAAEEEEAAAQQQQAABBLwiQILklZEgDgQQQAABBBBAAAEEEPC5AAmSz4eAABBAAAEEEEAAAQQQQMArAiRIXhkJ4kAAAQQQQAABBBBAAAGfC5Ag+XwICAABBBBAAAEEEEAAAQS8IkCC5JWRIA4EEEAAAQQQQAABBBDwuQAJks+HgAAQQAABBBBAAAEEEEDAKwIkSF4ZCeJAAAEEEEAAAQQQQAABnwuQIPl8CAgAAQQQQAABBBBAAAEEvCJAguSVkSAOBBBAAAEEEEAAAQQQ8LkACZLPh4AAEEAAAQQQQAABBBBAwCsCoV4JxG0cP/74o/bv36877rgjxVds375d33zzjYoUKaKmTZuqQIECro5J8SE2IIAAAggggAACCCCAQEAK+PUM0oYNG9S2bVt99dVXKQanb9++qlSpkiZMmKBevXqpRo0a2rRpU7LjMnJMsg/wBgEEEEAAAQQQQAABRyAmVvphnfThbGn8YmnvUVgCRcBvEyST+Nx00006fPhwirFYtGiR3nrrLU2bNk2zZs2SSaRKly6tRx55JPHYjByTeDAvEEAAAQQQQAABBBCIF1ixTar1inT3u9JHc6Wnx0lVn5OGTIcoEAT8MkH65z//qXvvvVft27e3M0PnD8R7771ntzdp0sTuCg8PV+/evfX9999ry5YtdltGjjn/e3mPAAIIIIAAAgggENwCfxyQ2r4j1S4n/TpQ+uUVaesgaVgn6fWvpQ+cGSWafwv4ZYJUoUIFLVmyREOGDFH27NlTjMBvv/2mevXqJdtet25dnTt3TuvWOXOhTsvIMcm+gDcIIIAAAggggAACQS8wcKpUsZg08kGpYK44jpAQqX196Y17pP6TpVPRQc/k1wB+WaTBzByl17Zu3armzZsnOyShQMOuXbvs9owck+wLUnkzf/58mUv10msbN27U2bNn0zuEfQgggAACCCCAAAJ+IjB7vfTkzVKWVKYZOjaQeo+Vlm6VGlbykw5d5jBjY2P15Zdfas2aNel+s5m8aNSoUbrH+GqnXyZIF8Lau3evcuWKT+njD86RI4dCnPT+2LFjdktGjrnQeebOnWt/AOkdd+TIETtzld4x7EMAAQQQQAABBBDwD4ETZ6Q8OVKPNUeYFJZVOukcE6zNTAzMnj1bS5cuTZfg+PHjJEjpCl3mncWKFUtRvCEhUTHFGkzLyDEXCstUwTOP9JopEtG6dev0DmEfAggggAACCCCAgJ8IVC8pzXVmkdrVTRnwwl+lMzFSNeeYYG1hYWEaNmyYWrZs6bcEqUwO+m1fEgMvUaKE9uzZk/jevDAzRqaVK1fOPmfkGHsgfyCAAAIIIIAAAgggEC/wmHMXx2c/S1NXJicxZb6f/MypbFdbisiffB/v/EsgIC+xM9czjh8/3l7aZi6rM82U/DbV7K666ir7PiPH2AP5AwEEEEAAAQQQQACBeIGbq0svtHVmkIZLt14n1Skv7XJWnTFrIZUrLA3tCJW/CwTkDNITTzyhnTt32svfzPWNixcv1htvvKGXXnpJefPmtWOWkWP8fXCJHwEEEEAAAQQQQODyCzxzqzTzaSl/TmcmaZW0ZZ/08h3SrGfitl3+M/KNmSkQkDNIZcqUscUTunbtaheMNRXsoqKi9PTTzi85vmXkmIRjeUYAAQQQQAABBBBAIKlAfeeiJPOgBZ6A3ydIP//sXASaSrv99tvtfUemnLcpzBAamrKrGTkmla9mEwIIIIAAAggggAACCASoQMqsIYA6au4/Kl/euTA0nZaRY9L5OLsQQAABBBBAAAEEEEAggAQC8h6kABofuoIAAggggAACCCCAAAKZKECClInYnAoBBBBAAAEEEEAAAQS8LUCC5O3xIToEEEAAAQQQQAABBBDIRAESpEzE5lQIIIAAAggggAACCCDgbQESJG+PD9EhgAACCCCAAAIIIIBAJgqQIGUiNqdCAAEEEEAAAQQQQAABbwuQIHl7fIgOAQQQQAABBBBAAAEEMlGABCkTsTkVAggggAACCCCAAAIIeFuABMnb40N0CCCAAAIIIIAAAgggkIkCJEiZiM2pEEAAAQQQQAABBBBAwNsCJEjeHh+iQwABBBBAAAEEEEAAgUwUIEHKRGxOhQACCCCAAAIIIIAAAt4WIEHy9vgQHQIIIIAAAggggAACCGSiAAlSJmJzKgQQQAABBBBAAAEEEPC2AAmSt8eH6BBAAAEEEEAAAQQQQCATBUiQMhGbUyGAAAIIIIAAAggggIC3BUiQvD0+RIcAAggggAACCCCAAAKZKECClInYnAoBBBBAAAEEEEAAAQS8LUCC5O3xIToEEEAAAQQQQAABBBDIRAESpEzE5lQIIIAAAggggAACCCDgbYFQb4dHdAgggAACCCCAAAIIeFNg5TZp426pYC6pQUUpZzZvxklUFydAgnRxXhyNAAIIIIAAAgggEOQCm5yk6KGPpWW/S0XzSodPSOFh0oAoqXOjIMcJgO6TIAXAINIFBBBAAAEEEEAAgcwR2H1EavW2dEMZae0AqUwh6VS09PE86cn/SqFZpY4NMicWznJlBEiQrowr34oAAggggAACCCAQgAJvT5OK5JE+7ymFOcmQaWb26NHmUnSM1PcL6Z46Ujb+lh2H44d/UqTBDweNkBFAAAEEEEAAAQR8IzBjtdTFuYwuITlKGsVDTaT9x+IuvUu6ndf+JUCC5F/jRbQIIIAAAggggAACPhQ4ckoqlDv1APKES9mdmaOjJ1Pfz1b/ECBB8o9xIkoEEEAAAQQQQAABDwhcHSH9vDn1QJY7RRtOO5fZVS2R+n62+ocACZJ/jBNRIoAAAggggAACCHhAoHuk9O+fpJ82Jg/mqDOz1Gus1PJaqXTB5Pt4518C3D7mX+NFtAgggAACCCCAAAI+FLijprTQmUG6bYjUvp5Up7y067A0ekHcOkjjHvFhcJz6sgiQIF0WRr4EAQQQQAABBBBAIFgE3rxXalJVGvWj9K+ZUgFnodiHGks9m0m5nfuQaP4tQILk3+NH9AgggAACCCCAAAI+EGh9nWQetMAT4B6kwBtTeoQAAggggAACCCCAAAIuBUiQXMLxMQQQQAABBBBAAAEEEAg8ARKkwBtTeoQAAggggAACCCCAAAIuBUiQXMLxMQQQQAABBBBAAAEEEAg8ARKkwBtTeoQAAggggAACCCCAAAIuBUiQXMLxMQQQQAABBBBAAAEEEAg8ARKkwBtTeoQAAggggAACCCCAAAIuBUiQXMLxMQQQQAABBBBAAAEEEAg8ARKkwBtTeoQAAggggAACCCCAAAIuBUiQXMLxMQQQQAABBBBAAAEEEAg8ARKkwBtTeoQAAggggAACCCCAAAIuBUiQXMLxMQQQQAABBBBAAAEEEAg8ARKkwBtTeoQAAggggAACCCCAAAIuBUiQXMLxMQQQQAABBBBAAAEEEAg8ARKkwBtTeoQAAggggAACCCCAAAIuBUiQXMLxMQQQQAABBBBAAAEEEAg8ARKkwBtTeoQAAggggAACCCCAAAIuBUiQXMLxMQQQQAABBBBAAAEEEAg8ARKkwBtTeoQAAggggAACCCCAAAIuBUiQXMLxMQQQQAABBBBAAAEEEAg8ARKkwBtTeoQAAggggAACCCCAAAIuBUiQXMLxMQQQQAABBBBAAAEEEAg8gdDA6xI9QgABBBBAAAEEEEDgygv8cUDauEsqmEu6rrSUlamHK4+eCWcgQcoEZE6BAAIIIIAAAgggEDgCOw5KPUdL36+VQrNKMbFSifzSoPuk22sETj+DtSfkucE68vQbAQQQQAABBBBA4KIFDh6Xbh4onTwjzX9BOvS+9Pvb0v03Oo8PpcnLLvor+YDHBJhB8tiAEA4CCCCAAAIIIICAdwUGT5eyOX+DnvyklCNbXJyFcksv/U3KEiL1+Vy67QYut/PuCF44MmaQLmzEEQgggAACCCCAAAIIWIGpK6WHbvorOUrK8mhzaddhafnvSbfy2t8ESJD8bcSIFwEEEEAAAQQQQMBnAuYSu+L5Uj99AadYQ3iYdMA5hua/AiRI/jt2RI4AAggggAACCCCQyQIVi0lLt6Z+0jXbpVPRkjmG5r8CJEj+O3ZEjgACCCCAAAIIIJDJAl0aSR/Nk1ZuS37i005i9Mw46aYqUoUiyffxzr8EKNLgX+NFtAgggAACCCAQQAJnzzo39vO/q/1qRDs0kOZsiKtk1z1SqlM+7r6jj+dKR05JM5/2q+4QbCoCJEipoLAJAQQQQAABBBC4UgJ7j0r//DquHLR5Xbqg1NH5S3efVqnf+H+l4uB73QuM6CI1cWaKRjkzSWPmS+beo1uvc8awtVTYqWhH828BEiT/Hj+iRwABBBBAAAE/Eth5SGr2lpQvh5Mk3e0kR4Ukc9/K4O+kH9ZJ3/YiSfKX4TRJrXnQAk+ABCnwxpQeIYAAAggggIBHBXqPlSLyS1N7x1U7M2E2rizdWcu5d2WANHBa3Ho6Hg2fsBAICgGueg2KYaaTCCCAAAIIIOBrgUMnnBkiZw2dV+/8KzlKiKlY3rhL7D77OWELzwgg4CsBEiRfyXNeBBBAAAEEEAgqgT8OSGfPSdVLpt7t6qWk7QelmNjU97MVAQQyR4AEKXOcOQsCCCCAAAIIBLlA0TxxACZRSq1t2+/c7J9TCs2a2l62IYBAZgmQIGWWNOdBAAEEEEAAgaAWKJZPqldBGuTcZ3R+M2vo/Gum9Lea5+/hPQIIZLYACVJmi3M+BBBAAAEEEAhagcHtpe/+Jz0wQvrfn866OSelnzdLtw2R9h2VXvxb0NLQcQQ8I0AVO88MBYEggAACCCCAQKALXF8mbiHRXk41uwavxfU2JERqda307+ckU6yBhgACvhUgQfKtP2dHAAEEEEAAgSATMEnSD89KZk2kPUekUs5CsYVYXDTIfgV018sCJEheHh1iQwABBBBAAIGAFTDrIZkHDQEEvCXAPUjeGg+iQQABBBBAAAEEEEAAAR8KkCD5EJ9TI4AAAggggAACCCCAgLcESJC8NR5EgwACCCCAAAIIIIAAAj4UIEHyIT6nRgABBBBAAAEEEEAAAW8JkCB5azyIBgEEEEAAAQQQQAABBHwoQILkQ3xOjQACCCCAAAIIIIAAAt4SIEHy1ngQDQIIIIAAAggggAACCPhQgATJh/icGgEEEEAAAQQQQAABBLwlQILkrfEgGgQQQAABBBBAAAEEEPChAAmSD/E5NQIIIIAAAggggAACCHhLgATJW+NBNAgggAACCCCAAAIIIOBDARIkH+JzagQQQAABBBBAAAEEEPCWAAmSt8aDaBBAAAEEEEAAAQQQQMCHAiRIPsTn1AgggAACCCCAAAIIIOAtARIkb40H0SCAAAIIIIAAAggggIAPBUiQfIjPqRFAAAEEEEAAAQQQQMBbAiRI3hoPokEAAQQQQAABBBBAAAEfCpAg+RCfUyOAAAIIIIAAAggggIC3BEiQvDUeRIMAAggggAACCCCAAAI+FCBB8iE+p0YAAQQQQAABBBBAAAFvCZAgeWs8iAYBBBBAAAEEEEAAAQR8KECC5EN8To0AAggggAACCCCAAALeEiBB8tZ4EA0CCCCAAAIIIIAAAgj4UIAEyYf4nBoBBBBAAAEEEEAAAQS8JUCC5K3xIBoEEEAAAQQQQAABBBDwoQAJkg/xOTUCCCCAAAIIIIAAAgh4S4AEyVvjQTQIIIAAAggggAACCCDgQwESJB/ic2oEEEAAAQQQQAABBBDwlgAJkrfGg2gQQAABBBBAAAEEEEDAhwIkSD7E59QIIIAAAggggAACCCDgLQESJG+NB9EggAACCCCAAAIIIICADwVIkHyIz6kRQAABBBBAAAEEEEDAWwIkSN4aD6JBAAEEEEAAAQQQQAABHwqQIPkQn1MjgAACCCCAAAIIIICAtwRIkLw1HkSDAAIIIIAAAggggAACPhQgQfIhPqdGAAEEEEAAAQQQQAABbwmQIHlrPIgGAQQQQAABBBBAAAEEfChAguRDfE6NAAIIIIAAAggggAAC3hII9VY4RIMAAggggAACFxLYcVD6aZN0Olq6rrR0fZkLfYL9XhM4dkqat0Hac1QqW0hqVFkKy+q1KIkHgeAUIEEKznGn1wgggAACfigQEyu9OFF673upYC4pZ3Zp236pSRXp44ek4vn8sFNBGPK4xdI/xjoJbkzcmP1xQIrIL418UGpYKQhB6DICHhPgEjuPDQjhIIAAAgggkJbAcxOk/y6UvnhM2vq2tHaAtKK/dNKZSbp9SNyMUlqfZbs3BL5dKXUfJfVuJf0xWFr1etxY3lJduuNf0prt3oiTKBAIZgESpGAeffqOAAIIIOA3Ar/tlT6cI33aXTJ/mU5oFYtJEx+X9jqXao1ekLCVZ68K9P1CevIWqVdLKXtYXJT5ckhDOsTNBL42xauRExcCwSNAghQ8Y01PEUAAAQT8WGD2OqlMQSmyaspO5M/pzD7UlGatSbmPLd4R2LpP+nWP1KVR6jGZ7d+vTX0fWxFAIPMESJAyz5ozIYAAAggg4Frg+Gkpv3PfUVrNJEknnGNo3hUwY2iaGavUmtl+8owUeza1vWxDAIHMEiBByixpzoMAAggggMAlCFQr6dxz5Nyfsu9Y6l/y40bpGucYmncFKhSRwp3L6sxYpdbM9qoRUlb+dpYaD9sQyDQB/hHMNGpOhAACCCCAgHsBc2ldxaLSY2OkM071s6Rt+A/Skq3SQzcl3cprrwnkyBZ3eZ25D2m7U6o9aVu21bkPaYbUs1nSrbxGAAFfCFDm2xfqnBMBBBBAAIGLFDCzCmP+LrV1qtXVfVWKqiPlzh53z8qPm6ThD0iVi1/kl3J4pgu8dpczE7gjbgw7NHDuK3PWQFr9pzR+sdS+Pklupg8IJ0QgFQESpFRQ2IQAAggggIAXBczlV4tecpIhZ8ZoznrplFPe+3pnodg375XMJXg07wuYWaQpT0qf/SxNWibNd5LbcoWd5Pdh6bYbvB8/ESIQDAIkSMEwyvQRAQQQQCBgBMwCsS+0jXsETKeCrCOhWaXOTsU686AhgID3BLgHyXtjQkQIIIAAAggggAACCCDgIwESJB/Bc1oEEEAAAQQQQAABBBDwngAJkvfGhIgQQAABBBBAAAEEEEDARwIkSD6C57QIIIAAAggggAACCCDgPQESJO+NCREhgAACCCCAAAIIIICAjwRIkHwEz2kRQAABBBBAAAEEEEDAewKU+fbemBARAggggAACaQrsOiwNnRG3DtLpGOm6UtKjLaQ65dP8CDsQQAABBC5CgBmki8DiUAQQQAABBHwpsOoPqV7/uOTovnpSz2aSSZKavyWNmufLyDg3AgggEDgCzCAFzljSEwQQQACBABaIjpU6jZCaXS191FXKmiWus92bSGPmO7NIY5zk6SqpWskARqBrCCCAQCYIxP/rNRPOxCkQQAABBBBAwLXA7HXSnwekdzr8lRwlfFmnhlLDStInPyZs4RkBBBBAwK2A6xmkFStWyDzWrFmj1atXa+3atcqaNasiIiJUoUIFtW7d2j4KFCjgNjY+hwACCCCAAALxAut2SleXkPLnTJ2kQUVp8W+p72MrAggggEDGBS4qQYqNjdUXX3yhQYMGacmSJYlnCQkJUZEiRXTkyBFt2bJFCxYs0H/+8x+FhoaqW7dueu2111S4cOHE43mBAAIIIIAAAhcnkDdc2n8s7c/sOyrlcY6hIYAAAghcmkCGL7FbtWqV6tevr/vuu0/Hjh1Tv3799MMPP2jz5s06efKkdu/erePHj+u3337TtGnT9M4776hDhw7697//rYoVK2rw4MGKjo6+tGj5NAIIIIAAAkEq0PwaaftBafr/UgLscxKnSUulltem3McWBBBAAIGLEwg557QLfWTMmDHq3r277rrrLj377LO6/vrrL/SRxP0mcRo6dKiGDx9uZ5lMUlWqlFOTNEjarFmz7KWGJIdBMuB0EwEEELiCAv2+jLvP6F/3S3fUjLsXaeU2qcenca9nPyeFZb2CAfDVCCCAwAUEwsPDNXnyZLVs2fICR3p3d4YusTP3Fs2fP1+1atW66J4UK1ZMAwYM0PPPP68PPvjAzjJd9JfwAQQQQAABBBBQ/zul8DCp+ydOiW8nKTKvDxyXbr1OGt6Z5IifCAIIIHA5BDI0g3Q5ThSs38EMUrCOPP1GAAEErpyASYoW/Sqdcq5cv660dFXRK3cuvhkBBBC4GIGgmUG6GJQdO3bIwBQsWPBiPsaxCCCAAAIIIJBBgYK5pNbOrBENAQQQQODyC2S4SMP5p96+fbuee+45W5DB7Dtz5oy91rBkyZIqWrSo7r77booynI/GewQQQAABBBBAAAEEEPC0gKsEKSYmRnfccYfeeustuxaS6aG5z2jGjBkyCVK9evU0ceJE9erVy9OdJzgEEEAAAQQQQAABBBBAIKmAqwTp22+/tesg9e3bV71797bfN3r0aHtp3cqVK21Bh06dOslsy0CRvKTx8BoBBBBAAAEEEEAAAQQQ8JmAqwRpzZo1ypYtm61Mlz17dq1fv94uEBsZGalChQrZztx22206evSoXSfJZ73jxAgggAACCCCAAAIIIIDARQi4SpD27t2rPHnyKHfu3PZUZmFY01q1amWfzR9m8VjTzL1JNAQQQAABBBBAAAEEEEDAHwRcJUgVKlTQ/v37tXbtWnsJ3fjx421fW7dundjnSZMmKUuWLCpbtmziNl4ggAACCCCAAAIIIIAAAl4WcJUgRUVFyVxa16RJEzVt2lQLFy60z5UrV9aGDRtUp04du4LuvffemzjL5GUEYkMAAQQQQAABBBBAAAEEjICrBCkiIkLffPONvczuxx9/VOPGjfX5559bUXP53ZIlS2zCNGzYMJQRQAABBBBAAAEEEEAAAb8RCHUbaYsWLfTbb7/p1KlTtnpdwvfUqFHDlv6+/vrrEzbxjAACCCCAAAIIIIAAAgj4hYCrGaSkPQsPD0/6Vrly5RLJUTIS3iCAAAIIIIAAAggggICfCGRoBmnx4sV2UVg3ffryyy/dfIzPIIAAAggggAACCCCAAAKZLpChBGnHjh2aOHFiusGZog1nz55VdHS0PS5r1qzKkSNHup9hJwIIIIAAAggggAACCCDgJYEMXWLXpk0bHThwINnjoYceUsGCBfWvf/1Lu3btsusemfuRzH1JTz31lK1yZwo50BBAAAEEEEAAAQQQQAABfxHI0AxSWFiYChQokNinefPm6eOPP9asWbPUvHnzxO0hISEqX7683nnnHbtAbLt27WzylHhAJr+YOXOmVq1apUKFCunWW29V0aJFU0Swfft2W5GvSJEitvJe0n6mOJgNCCCAAAIIeEQgJlaKdh45snkkIMJAAAEEAkQgQzNI5/f1hx9+UOHChZMlR+cf87e//U27d+/Wpk2bzt91xd+bS/1uv/12tWzZUuYeqH/84x+qUqWKTEnypK1v376qVKmSJkyYoF69eslU4PNFvElj4jUCCCCAAALpCSz8VWr9tlTwUanI49INL0qj5qX3CfYhgAACCFyMgKsEKX/+/Dp8+LBOnDiR5rk2b94sM/OU2qxNmh+6TDvGjx+vr7/+2i5Wu2DBAplZoquuuko9evRIPMOiRYts4Ylp06bZmTCzwG3p0qX1yCOPJB7DCwQQQAABBLwk8PUKqeUgqVRBacpT0uznpPb1pecmSL3HeilSYkEAAQT8V8BVgmQuVzPFGP7+97/be4/O7/6yZcv04osv2gVk8+XLd/7uK/5+48aNdm2mVq1a2XOZAhJmRstsj411rkdw2nvvvWdnjJo0aWLfm3LlvXv31vfff68tW7bYbfyBAAIIIICAVwSOnpIeHS09e6s08kEpsqpUp7zzvk1csvTRXGnOeq9ESxwIIICA/wpk6B6k87tXuXJlO9Py/vvvy9znc8stt6hkyZI6fvy41q9fb2dkihUr5ro0+Pnnu9j3TZs21csvv6zRo0fLFJM4dOiQvdSuUaNGMtX1TDPFJOrVq5fsq+vWratz585p3bp19l6qZDtTeWOSxCNHjqSy569NZr/5ThoCCCCAAAKXIjBjtRR7VvpH65TfUv8qqe0N0tiFcYlTyiPYggACCGSOgPl7r/n77/79+9M9Yd68ee3VZuke5KOdrhIkE2vCDMyrr76qMWPGJIZvSnubwg2jRo2yl6wl7sjEF40bN5a5zK5Dhw765z//qZ07d6pOnTr2XqOEMLZu3ZriHqqEAg2mKl9GWvfu3fXpp59m5FCOQQABBBBA4JIE/nD+rnGVU2soWxr/5a5aQlq4+ZJOwYcRQACBSxY4c+aM7r333gt+z/33358sh7jgBzLxgDT+NZuxCLp16ybzMCXAE6rFXXPNNYmzNBn7lst/lLmfaPDgwXZWyyRJK1as0Ny5c/Xf//5XTzzxhD3h3r17lStXrmQnN8mdqcR37NixZNvTejNkyBBbACKt/Wb7zz//rJ49e6Z3CPsQQAABBBC4oEDx/NI2J0ly6hApSyoXyG/dKxXP/KvaLxg3ByCAQHAJZMuWzS4D1LBhw3Q7XqpUqXT3+3LnJSVICYGb9ZAiIyMT3vr82Vxe9+eff9p7iUJD47o4fPhwe1mguRywatWqMpcAmkITSVvC5XCmWENGmilWYR7pNTMbZZIuGgIIIIAAApcicEt16cnPpBHOvUY9mib/prU7pEnLpDEPJ9/OOwQQQCCzBczfe8uVK6fq1Z1/aflpc50gmVmjESNGaPHixfY6w4TiB+c7zJ49+/xNV/z99OnTbQGJhOTInNBM4z355JMyVetMglSiRAnt2bMnWSxmVsk0M6g0BBBAAAEEvCRQ0Lno4f+cq1Ye/4+0/aDUsYGUO7v0/Vrp5UlSm+vjHl6KmVgQQAABfxRwlSCdPn1aLVq00PLlyz3ZZzOjZe47StpM8QhTVCFhxscUbDD3KZkbyRJmeEzyZKrZmZLgNAQQQAABBLwm0LmRs/5RbumlidI70+Oiy59TeqRZXDU7r8VLPAgggIA/CqRyFfOFuzFx4kSbHLVp00Zr1qyx1etiYmKU2uPC33b5jzD3/Hz22Wf68MMPdfToUc2bN8+W8I6IiLDlvs0Zzb1IJokyi8Wa6ntmJuyNN97QSy+9JFNVg4YAAggggIAXBUy1uuX9pU1vSf97XdrqrIvUt62U1dV/0b3YQ2JCAAEEfCvgagbJFD0w7aOPPlLx4sV924NUzm7WMzp58qR69eplCySYWaLatWvby+vM7JJpZcqUsaW/u3btasuRmwp2UVFRevrpp1P5RjYhgAACCCDgLYGI9G+B9VawRIMAAgj4kYCrBMkUODD395gFWL3YsjjlfcxCtWZ2yCz6apKihMQoaby33367zH1HpuS3KcyQ9J6lpMfxGgEEEEAAAQQQQAABBIJDwNWEvKlYZ4oyjBs3ztNKZlHYihUrppocJQRu7j8qX748yVECCM8IIIAAAggggAACCASxgKsZpJo1a2rQoEH2fh2TYNx44432Ujszc3N+K1So0PmbeI8AAggggAACCCCAAAIIeFLAVYI0YcIEmyDt27dPPXr0SLdj5v4fGgIIIIAAAggggAACCCDgDwKuEqQiRYqofv36/tA/YkQAAQQQQAABBBBAAAEEMizgKkEy9yCZBw0BBBBAAAEEEEDg4gX+OCBNXSntPuIsUF9Yus0p324WA6YhgIDvBVwlSEnDNmsImUVYN2/ebBdZLVu2rK6//vrExVeTHstrBBBAAAEEEEAg2AUGfyf1nyKVdlYeKevcqv3pfGeh3/HSew9Id9UKdh36j4DvBVwnSGZR2KFDh+qVV17RsWPHkvXEVIWbNGmSTZSS7eANAggggAACCCAQxAKjnWTo9a+dtSQflKLqxEHEnpWGzJAe/EiKyCc1qBjEQHQdAQ8IuE6QnnnmGb3zzju2el2nTp1kZo6OHj2qtWvXasqUKWrWrJlmzpwpU/GOhgACCCCAAAIIBLuAqVvVf7LUr+1fyZExyeoUAe7TSlq3QxrgJE9f9wp2KfqPgG8FXCVIK1as0JAhQ9S2bVuNHTtWuXIlv2h29erVatKkiUwSNWvWLN/2kLMjgAACCCCAAAIeEPh1j7TrsHRP3dSDudfZ3u59ySRSzioqNAQQ8JFAyoWLMhDIvHnz7FGjRo1KkRyZHdWrV9fLL7+sBQsW6MyZMxn4Rg5BAAEEEEAAAQQCWyA6Nq5/2dP439PZwyRzuR0rpAT274DeeV/AVYK0ZcsWe2ld4cJO2ZU0WrVq1XTy5ElbwCGNQ9iMAAIIIIAAAggEjcBVRaW8OaTp/0u9y2b79WWkLK7+dpb6d7IVAQQuXsDVP4LmfqNdu3Zp9+7daZ7RXIZnWrly5ewzfyCAAAIIIIAAAsEskM2ZOXqsuXMP0kRp1R/JJaatkt7/QerdMvl23iGAQOYLpDHJm34gN998s/N/N7Koc+fOGjdunPLlc0quJGlLlixR//79VatWLeXNmzfJHl4igAACCCCAAALBK/BsG8nci9R4gNTq2rgy36u3S/M2OInT7dKdtYLXhp4j4BUBVwmSuXzuiSeesFXsKlSooDZt2tgqdmZNJFPFbsaMGQoNDdXIkSO90k/iQAABBBBAAAEEfC5gKtZ9/JDU8Ubpq6XSNmfB2OtKSW9ExV1e5/MACQABBOQqQTJugwcPtsUY+vTpozFjxiSjrF+/voYNG6YaNWok284bBBBAAAEEEEAAAanZ1XEPLBBAwHsCrhMk05WuXbvqwQcf1O+//64NGzbYinaVKlVSsWLFvNdTIkIAAQQQQAABBBBAAAEELiBwSQnS4cOH9d1336ldu3aJxRgGDhyomJgY9ejRQwUKFLjA6dmNAAIIIIAAAggggAACCHhHwFUVOxP+J598oooVK+rFF19M1pvp06erb9++ql27tn799ddk+3iDAAIIIIAAAggggAACCHhZwFWCtG7dOnXr1k1mHSRzL1LSNnbsWL3yyiu2BHjPnj2T7uI1AggggAACCCCAAAIIIOBpAVeX2E2ZMkVnz57Vl19+qWuuuSZZB4sUKaKXX37ZJkjDhw/XgQMHVLBgwWTH8AYBBBBAAAEEEEAAAQQQ8KKAqxkks0Bs8eLFUyRHSTt4++1OMX+nbdu2LelmXiOAAAIIIIAAAggggAACnhVwlSDVqVPHzhDt2rUrzY6ZqnammXWSaAgggAACCCCAAAIIIICAPwi4SpCaNm2qc+fOqWPHjkotSZo/f769D6lu3brKmzevPzgQIwIIIIAAAggggAACCCDgbqFYc3ndiBEjZIowmBmiBg0aqHTp0jpx4oStXLds2TKFh4dr1KhRECOAAAIIIIAAAggggAACfiPgqkiD6V337t3tfUhvvvmmFi1apB9++MF2Olu2bPrb3/4msx6SWTSWhgACCCCAAAIIIIAAAgj4i4DrBMl0sG3btvZhKtqZNY/CwsJUpkwZZcni6so9fzEjTgQQQAABBBBAAAEEEAhQgcuSyezcuVM7duxQnjx5FBMTo+jo6ADlolsIIIAAAggggAACCCAQyAKuEyRTpOHTTz9ViRIlVKpUKUVGRmrFihVatWqVateurV9++SWQ3egbAggggAACCCCAAAIIBKCA6wSpX79+6tKliw4dOqSbbropkSY2Nlbr16+3hRtMAkVDAAEEEEAAAQQQQAABBPxFwFWCZGaJTHGGDh06aM+ePXr33XcT+1uvXj2ZKnblypXTCy+8IJMw0RBAAAEEEEAAAQQQQAABfxBwlSDNmTNHISEh+uCDD5Q7d+4U/axWrZoefvhhbd++XX/++WeK/WxAAAEEEEAAAQQQQAABBLwo4CpB2rp1qyIiImxRhrQ6VaNGDbvr4MGDaR3CdgQQQAABBBBAAAEEEEDAUwKuEqQqVarY2SFTuS6ttmDBAlvuu3LlymkdwnYEEEAAAQQQQAABBBBAwFMCrhKkZs2a2TWP2rdvr6VLl6bo0NSpU+09Sg0bNlTOnDlT7GcDAggggAACCCCAAAIIIOBFAVcJUqVKlTRgwADNmzfPlvSOioqyfRs4cKB936ZNG3uP0ogRI7zYZ2JCAAEEEEAAAQQQQAABBFIVcJUgmW/q06ePpkyZInO53aZNm+yXT58+3Vawa9mypZYvX66qVaumelI2IoAAAggggAACCCCAAAJeFAi9lKDatm0r8zBrIZkkKTw8XBUrVlSOHDku5Wv5LAIIIIAAAggggAACCCDgE4FLSpASIs6fP7/q1Klj35rCDSdPnlTBggUTdvOMAAIIIIAAAggggAACCPiFgOtL7MwaR88995ymTZtmO3rmzBmZS+tKliypokWL6u6771Z0dLRfIBAkAggggAACCCCAAAIIIGAEXCVIMTExuuOOO/TWW29pxYoVVtIUbZgxY4ZNkOrVq6eJEyeqV69eKCOAAAIIIIAAAggggAACfiPgKkH69ttvtWTJEvXt21e9e/e2nR09erS9B2nlypWaP3++OnXqJLPt3LlzfoNBoAgggAACCCCAAAIIIBDcAq4SpDVr1ihbtmx6/vnnlT17dq1fv15btmxRZGSkChUqZEVvu+02HT16VJs3bw5uYXqPAAIIIIAAAggggAACfiPgKkHau3ev8uTJo9y5c9uOJtyH1KpVq8SOm0INppl7k2gIIIAAAggggAACCCCAgD8IuEqQKlSooP3792vt2rX2Errx48fbvrZu3Tqxz5MmTVKWLFlUtmzZxG28QAABBBBAAAEEEEAAAQS8LOAqQYqKirKX1jVp0kRNmzbVwoUL7XPlypW1YcMGW/J78uTJuvfeexNnmbyMQGwIIIAAAggggAACCCCAgBFwlSBFRETom2++sZfZ/fjjj2rcuLE+//xzK2ouvzMFHEziNGzYMJQRQAABBBBAAAEEEEAAAb8RcL1QbIsWLfTbb7/p1KlTtnpdQo9r1KhhS39ff/31CZt4RgABBBBAAAEEEEAAAQT8QsB1gpTQu/DwcPvSFGXImjWrcuXKJZKjBB2eEUAAAQQQQAABBBBAwJ8EXF1id34HDx06pJw5c+quu+46fxfvEUAAAQQQQAABBBBAAAG/EbgsCZLf9JZAEUAAAQQQQAABBBBAAIF0BEiQ0sFhFwIIIIAAAggggAACCASXAAlScI03vUUAAQQQQAABBBBAAIF0BEiQ0sFhFwIIIIAAAggggAACCASXwCVXsTNcpnLd6NGjVapUqeDSo7cIIIAAAggggAACCCAQUAKXPIN0/PhxrVq1StmyZdORI0fsGkjnzp0LKCQ6gwACCCCAAAIIIIAAAsEh4HoGKSYmRkOHDtUrr7yiY8eOJdMqX768Jk2axHpIyVR4gwACCCCAAAIIIIAAAl4XcJ0gPfPMM3rnnXdUvHhxderUSWXLltXRo0e1du1aTZkyRc2aNdPMmTNVs2ZNrxsQHwIIIIAAAggggAACCCBgBVwlSCtWrNCQIUPUtm1bjR071t6DlNRz9erVatKkiUwSNWvWrKS7eI0AAggggAACCCCAAAIIeFbA1T1I8+bNsx0aNWpUiuTI7KhevbpefvllLViwQGfOnPFs5wkMAQQQQAABBBBAAAEEEEgq4CpB2rJli720rnDhwkm/K9nratWq6eTJk1q/fn2y7bxBAAEEEEAAAQQQQAABBLwq4CpBMvcb7dq1S7t3706zX+YyPNPKlStnn/kDAQQQQAABBBBAAAEEEPC6gKsE6eabb1aWLFnUuXNnHT58OEUflyxZov79+6tWrVrKmzdviv1sQAABBBBAAAEEEEAAAQS8KOCqSIO5fO6JJ56wVewqVKigNm3a2Cp2Zk0kU8VuxowZCg0N1ciRI73YZ2JCAAEEEEAAAQQQQAABBFIVcJUgmW8aPHiwLcbQp08fjRkzJtmX169fX8OGDVONGjWSbecNAggggAACCCCAAAIIIOBlAdcJkulU165d9eCDD+r333/Xhg0bbEW7SpUqqVixYl7uM7EhgAACCCCAAAIIIIAAAqkKXFKCZL4xJCTEFmKgGEOqvmxEAAEEEEAAAQQQQAABPxJwnSAdOHBAI0aM0OLFi3XkyBHFxsam2u3Zs2enup2NCCCAAAIIIIAAAggggIDXBFwlSKdPn1aLFi20fPlyr/WHeBBAAAEEEEAAAQQQQAAB1wKuynxPnDjRJkemet2aNWtkqtfFxMSk+nAdGR9EAAEEEEAAAQQQQAABBDJZwNUMUsIisB999JGKFy+eySFzOgQQQAABBBBAAAEEEEDgygi4mkEyVerMOkfZs2e/MlHxrQgggAACCCCAAAIIIICADwRcJUiRkZG2KMO4ceN8EDKnRAABBBBAAAEEEEAAAQSujICrS+xq1qypQYMG6aWXXrJlvm+88UZ7qV2WLCnzrUKFCl2ZyPlWBBBAAAEEEEAAAQQQQOAyC7hKkCZMmGATpH379qlHjx7phnTu3Ll097MTAQQQQAABBBBAAAEEEPCKgKsEqUiRIqpfv75X+kAcCCCAAAIIIIAAAggggMBlEXCVIJl7kMyDhgACCCCAAAIIIIAAAggEkkDKm4YCqXf0BQEEEEAAAQQQQAABBBC4CIErmiDt2LHjIkLhUAQQQAABBBBAAAEEEEDAtwKuLrEzIZvk57333tOGDRt04sQJJRRjiI2NVUxMjPbv36/Vq1fbcuC+7SJnRwABBBBAAAEEEEAAAQQyJuAqQTp16pSaNm2qjRs3pnmW8PBw3XrrrWnuZwcCCCCAAAIIIIAAAggg4DUBV5fYTZ482SZHUVFRWrJkiV599VUVKFBAO3fu1E8//aSOHTvKrIn07rvveq2/xIMAAggggAACCCCAAAIIpCngKkFKmDnq37+/atWqpWbNmungwYP2sruGDRtqzJgxuuWWW/T444+neWJ2IIAAAggggAACCCCAAAJeE3CVIB04cECFCxfW1VdfbftTtWpV+7xy5Ur7HBISovvuu0/Tpk2TuRyPhgACCCCAAAIIIIAAAgj4g4CrBKlixYq2CMO+fftsH02yVKhQIf3yyy+JfS5Tpowt0JAw25S4gxcIIIAAAggggAACCCCAgEcFXCVIN9xwg61a9/rrr9sKdqZv1157raZPn66TJ0/arn777bf2OW/evPaZPxBAAAEEEEAAAQQQQAABrwu4qmJn7jO65557NHToUK1du1YzZsxQly5d7MPck1S8eHHNnj1bZqbJzCTREEAAAQQQQAABBBBAAAF/EHCVIJmOjRw5Utdcc40OHTpk+9mpUyctWrRIw4cP17p161SkSBF98skntpqdP0AQIwIIIIAAAggggAACCCAQ4izweu5yMuzZs0dbtmyxl9zlzJnzcn61X37XrFmz1Lp1a0VHR/tl/ASNAAIIIIAAAggggEBGBcxaqGZJoJYtW2b0I547zvUMUlo9KVq0qMyDhgACCCCAAAIIIIAAAgj4m4DrBMmU+h4xYoQWL16sI0eO2Ip1qXXe3ItEQwABBBBAAAEEEEAAAQT8QcBVgnT69Gm1aNFCy5cv94c+EiMCCCCAAAIIIIAAAgggkCEBV2W+J06caJOjNm3aaM2aNTp+/LhiYmJSfWQoCg5CAAEEEEAAAQQQQAABBDwg4GoGacWKFTb0jz76yJb09kA/CAEBBBBAAAEEEEAAAQQQuGQBVzNIxYoVU2hoqLJnz37JAfAFCCCAAAIIIIAAAggggIBXBFwlSJGRkbYow7hx47zSD+JAAAEEEEAAAQQQQAABBC5ZwNUldjVr1tSgQYP00ksvKSQkRDfeeKO91C5LlpT5VqFChS45SL4AAQQQQAABBBBAAAEEEMgMAVcJ0oQJE2yCtG/fPvXo0SPdOC/zOrTpnoudCCCAAAIIIIAAAggggMClCLhKkIoUKaL69etfynn5LAIIIIAAAggggAACCCDgOQFXCZK5B8k8aAgggAACCCCAAAIIIIBAIAmkvGkold4NHTpU48ePT2VPxjdt3LhR3bt318qVKzP+IY5EAAEEEEAAAQQQQAABBDJRIEMJUpUqVfTII4+oTp06+uKLL3Ty5MkMh7hkyRJFRUXp6quv1u+//66SJUtm+LMciAACCCCAAAIIIIAAAghkpkCGLrFr1aqV1q5dq8cff1z33HOPcufOrdtuu01NmzZVmTJlVLp0aZUqVUqHDh3S+vXrtWHDBvu8fPlyLVy4UJUrV9ZXX32ltm3bZmbfOBcCCCCAAAIIIIAAAgggcFECGUqQzDcWLVpUZt2j5557zlawM5fcff755+meLCIiQm+//bZNrMLCwtI9lp0IIIAAAggggAACCCCAgK8FMpwgJQRao0YNffbZZ3r//fe1Zs0a+1i9erWdYcqaNatdD6lChQpq3bq1ateubddJSvgszwgggAACCCCAAAIIIICAlwUuOkFK6Ey+fPnsArFmkVgaAggggAACCCCAAAIIIBAIAhkq0hAIHaUPCCCAAAIIIIAAAggggMCFBEiQLiTEfgQQQAABBBBAAAEEEAgaARKkoBlqOooAAggggAACCCCAAAIXEiBBupAQ+xFAAAEEEEAAAQQQQCBoBEiQgmao6SgCCCCAAAIIIIAAAghcSIAE6UJC7EcAAQQQQAABBBBAAIGgEbgsCdL27ds1d+5c7d+/X2fOnFF0dHTQANJRBBBAAAEEEEAAAQQQCBwB1wnSuXPn9Omnn6pEiRIqVaqUIiMjtWLFCq1atcouEPvLL78EjhI9QQABBBBAAAEEEEAAgaAQcJ0g9evXT126dNGhQ4d00003JWLFxsZq/fr1atCggU2gEnfwAgEEEEAAAQQQQAABBBDwuICrBMnMEr355pvq0KGD9uzZo3fffTexm/Xq1dOyZctUrlw5vfDCCzIJEw0BBBBAAAEEEEAAAQQQ8AcBVwnSnDlzFBISog8++EC5c+dO0c9q1arp4Ycflrk36c8//0yxnw0IIIAAAggggAACCCCAgBcFXCVIW7duVUREhPLkyZNmn2rUqGH3HTx4MM1j2IGM8BImAABAAElEQVQAAggggAACCCCAAAIIeEnAVYJUpUoVOzu0Y8eONPuyYMECZcmSRZUrV07zGHYggAACCCCAAAIIIIAAAl4ScJUgNWvWTGFhYWrfvr2WLl2aoj9Tp0619yg1bNhQOXPmTLGfDQgggAACCCCAAAIIIICAFwVcJUiVKlXSgAEDNG/ePFvSOyoqyvZt4MCB9n2bNm3sPUojRozwYp+JCQEEEEAAAQQQQAABBBBIVcBVgmS+qU+fPpoyZYrM5XabNm2yXz59+nRbwa5ly5Zavny5qlatmupJ2YgAAggggAACCCCAAAIIeFEg9FKCatu2rczDrIVkkqTw8HBVrFhROXLkuJSv5bMIIIAAAggggAACCCCAgE8ELilBSog4f/78qlOnTsJbnhFAAAEEEEAAAQQQQAABvxS4pARp3bp1Wr9+vY4cOZJm5zt37pzmPnYggAACCCCAAAIIIIAAAl4ScJUgnTt3Th06dNDnn39+wb6QIF2QiAMQQAABBBBAAAEEEEDAIwKuEqRx48bZ5MhUs3vggQfsorFZs2b1SJcIAwEEEEAAAQQQQAABBBBwJ+AqQVqyZIk924wZM1SuXDl3Z+ZTCCCAAAIIIIAAAggggIDHBFyV+S5durRdKNYUZ6AhgAACCCCAAAIIIIAAAoEi4CpBatWqlV0IdsyYMYHiQD8QQAABBBBAAAEEEEAAAbm6xM4sDmsKNHTt2lV79+5V3bp1lS9fvlQ5GzdunOp2NiKAAAIIIIAAAggggAACXhNwlSCZTuzatUsnTpzQa6+9lm6fTMU7GgIIIIAAAggggAACCCDgDwKuEqT58+frkUceUd68eXXzzTfr2muvVZYsrq7W8wcjYkQAAQQQQAABBBBAAIEgEXCVIM2ePdvyTJgwQbfcckuQUNFNBBBAAAEEEEAAAQQQCHQBV9M+oaGhtopdZGRkoPvQPwQQQAABBBBAAAEEEAgiAVcJUvPmzRUdHa2EmaQg8qKrCCCAAAIIIIAAAgggEMACri6xq1Onjvr376+oqCi9+eabqlWrlsqWLats2bKloCpUqFCKbWxAAAEEEEAAAQQQQAABBLwo4CpB+uKLL/Thhx/q2LFjeuyxx9LtF1Xs0uVhJwIIIIAAAggggAACCHhIwFWCVLhwYbv2kYf6QSgIIIAAAggggAACCCCAwCULuEqQTHEGCjRcsj1fgAACCCCAAAIIIIAAAh4TyFCCdObMGR06dEjZs2dXvnz5dOrUKR05ciRDXSlatGiGjuMgBBBAAAEEEEAAAQQQQMDXAhlKkKZOnao777xTbdq00TfffKPx48erc+fOGYqde5AyxMRBCCCAAAIIIIAAAggg4AGBDCVIJUqUsBXratasaUM2FetMBTsaAggggAACCCCAAAIIIBBIAhlKkOrWrasJEyYk9rtJkyYyDxoCCCCAAAIIIIAAAgggEEgCrhaKNfcfbdiwIV2HP/74Q6YcOA0BBBBAAAEEEEAAAQQQ8BcBVwnSV199papVq6bbx2HDhumee+7Rnj170j2OnQgggAACCCCAAAIIIICAVwQydImdCXbcuHF2YVjzesGCBeZJH3/8sX0+/4/jx49r0qRJCg0NVZ48ec7fzXsEEEAAAQQQQAABBBBAwJMCGU6Qtm3bpmeeeSZZJ7p165bs/flv2rVrpxw5cpy/mfcIIIAAAggggAACCCCAgCcFMpwgPfXUUzLV7EzZ7p9++kkffvihxowZk6JTISEhCgsLk1n/qFGjRin2swEBBBBAAAEEEEAAAQQQ8KpAhhMkk/R07NjR9sOU+T569Kjuv/9+r/aLuBBAAAEEEEAAAQQQQACBixbIcIKU9JsbN24s86AhgAACCCCAAAIIIIAAAoEk4KqKXSAB0BcEEEAAAQQQQAABBBBAIEGABClBgmcEEEAAAQQQQAABBBAIegFXl9j5i5pZzNYUlMidO7duu+025cqVK0Xo27dv1zfffKMiRYqoadOmKlCgQIpj2IAAAggggAACCCCAAALBIRCwM0hDhgxR9erV9f777+vZZ5+1VfXMWk5JW9++fVWpUiVNmDBBvXr1Uo0aNbRp06akh/AaAQQQQAABBBBAAAEEgkggIBOktWvXqnfv3nr77be1dOlS/frrr3rwwQfVr18/xcbG2uFdtGiR3nrrLU2bNk2zZs2SmW0qXbq0HnnkkSAafrqKAAIIIIAAAggggAACSQUydImdSSrOnDmT9HMZfu2LhWIHDRqkevXq6YknnrBxZs2a1SZH1apV06FDh1SoUCG99957dsaoSZMm9pjw8HCbVN19993asmWLypcvn+E+ciACCCCAAAIIIIAAAggEhkCGEqSvv/5ad955p6sem4VlM7stXLhQLVq00PHjx+09SAcOHNBNN92knj17Joby22+/2SQqcYPzom7dunYh3HXr1pEgJYXhNQIIIIAAAggggAACQSKQoQSpaNGiatmypd+QmMILISEhMjNGR44csY/s2bNr1KhRateune3H1q1b1bx582R9SijQsGvXrmTb03ozfPhwffvtt2ntttv37duXeFlfugeyEwEEEEAAAQQQQAABPxeIjo7WSy+9pHfffTfdnrRu3VqPPvpousf4ameGEqQbb7xR3333na9ivKjznjx50iZEZlCGDh2q7t27a+/evfbeom7duqlRo0YqWbKk3XZ+VTtzOaBJrI4dO5ahc5p7lq6++up0j/3999/1yy+/pHsMOxFAAAEEEEAAAQQQCAQB83dp83fkC92uYo7xastQgnSh4M2MzebNm23VuDx58tgkIyws7EIfuyL7TZJjZovMoDz++OP2HGYAnnvuOVvO+/vvv9cDDzygYsWK6fDhw8liMLNN5pLAjA6YKR1uHuk1UwBi0qRJ6R3CPgQQQAABBBBAAAEEAkIgNDTUTlD409Vn58O7rmJnEolPP/1UJUqUUKlSpRQZGakVK1Zo1apVql27tk9nTUw89evXT9ZXU8I7S5YstkiD2WHi3rNnT7JjzEyTaeXKlbPP/IEAAggggAACCCCAAALBJeA6QTIls7t06WITDlMAIaGZinfr169XgwYNbAKVsD0znxs2bChTqOHs2bOJp505c6Z9n5A4mUvtpk+fbmeMEg4yJb9NNburrroqYRPPCCCAAAIIIIAAAgggEEQCrhIkM0v05ptvqkOHDnYWJulNWKa89rJly+wszAsvvOCTAgXPP/+8XfDV3PhlZoXmzp2rV199VXXq1FHNmjXt8JoS4Dt37pRZLNZUu1u8eLHeeOMNe1NZ3rx5g+gnQFcRQAABBBBAAAEEEEAgQcBVgjRnzhx7n9EHH3yg3LlzJ3xX4rOpHvfwww/L3Jv0559/Jm7PrBdVq1bVjBkzNHXqVHuvkSn5nT9/fltxzlwXaVqZMmX05ZdfauTIkTL3TZlKGm3bttXTTz+dWWFyHgQQQAABBBBAAAEEEPCYgKsiDaZEdkREhE0s0uqPuefHtIMHD6ps2bJpHXbFtjdr1kymgpxJ0MyMUGqzQrfffrudYTL9MYUZEpKnKxYUX4wAAggggAACCCCAAAKeFnA1g1SlShU7O7Rjx440O7dgwQJbFKFy5cppHpMZO0zBhtSSo4Rzm1KEpuIdyVGCCM8IIIAAAggggAACCASvgKsEyczOmDLe7du319KlS1PomUvbzD1KplhCzpw5U+xnAwIIIIAAAggggAACCCDgRQFXCVKlSpU0YMAAzZs3z5b0joqKsn0bOHCgfd+mTRt7j9KIESO82GdiQgABBBBAAAEEEEAAAQRSFXCVIJlv6tOnj6ZMmSJzud2mTZvsl5uy2aaCnVkYavny5TLFEmgIIIAAAggggAACCCCAgL8IuCrSkNA5U/XNPA4dOmSTJLOGUMWKFZUjR46EQ3hGAAEEEEAAAQQQQAABBPxGwFWCNHv2bJm1kDp27KjChQvbEtpmjSEaAggggAACCCCAAAIIIODPAq4usfvjjz/01FNPqUSJErr77rv1zTffKCYmxp8diB0BBBBAAAEEEEAAAQQQkKsEyRRl+M9//iNTzW7y5Mn2MjuzjpBZZHXt2rWwIoAAAggggAACCCCAAAJ+KeAqQTKlu83ldd99953MbNKgQYNUrFgx+1ytWjXVq1dPH3zwgb03yS9VCBoBBBBAAAEEEEAAAQSCUsBVgpRUKiIiwla0W7Fihb0v6fnnn9eBAwfUs2dPmX00BBBAAAEEEEAAAQQQQMBfBC45QUra0ZMnTyo6Olrnzp2zm81isjQEEEAAAQQQQAABBBBAwF8ELjlB2rx5s1599VVVrlzZXlr39ttvq1SpUvr3v/+tnTt3+osDcSKAAAIIIIAAAggggAACclXm26x79Nlnn9lCDQsXLrSMpkhDv3791KVLF1111VXQIoAAAggggAACCCCAAAJ+J+AqQZoyZYoee+wxmYVh77vvPnXt2lXNmzdXliyXPCHld4AEjAACCCCAAAIIIIAAAoEj4CpBKlOmjN577z116NDBLhIbOBz0BAEEEEAAAQQQQAABBIJZwFWCFBkZKfO4UNuxY4ddTPZCx7EfAQQQQAABBBBAAAEEEPCCgKsEyQRukh8zi7RhwwadOHEisXJdbGysYmJitH//fq1evVrmPQ0BBBBAAAEEEEAAAQQQ8AcBVwnSqVOn1LRpU23cuDHNPpr7k2699dY097MDAQQQQAABBBBAAAEEEPCagKuqCpMnT7bJUVRUlJYsWWLLfBcoUMCW9f7pp5/UsWNHW7Dh3Xff9Vp/iQcBBBBAAAEEEEAAAQQQSFPAVYKUMHPUv39/1apVS82aNdPBgwftZXcNGzbUmDFjdMstt+jxxx9P88TsQAABBBBAAAEEEEAAAQS8JuAqQTpw4IAKFy6sq6++2vanatWq9nnlypX2OSQkxJb/njZtmszleDQEEEAAAQQQQAABBBBAwB8EXCVIFStWtEUY9u3bZ/tokqVChQrpl19+SeyzKQVuCjQkzDYl7uAFAggggAACCCCAAAIIIOBRAVcJ0g033GCr1r3++uu2gp3p27XXXqvp06fr5MmTtqvffvutfc6bN6995g8EEEAAAQQQQAABBBBAwOsCrqrYmfuM7rnnHg0dOlRr167VjBkz1KVLF/sw9yQVL15cs2fPlplpMjNJNAQQQAABBBBAAAEEEEDAHwRcJUimYyNHjtQ111yjQ4cO2X526tRJixYt0vDhw7Vu3ToVKVJEn3zyia1m5w8QxIgAAggggAACCCCAAAIIhJxz2uVk2LNnj7Zs2WIvucuZM+fl/Gq//K5Zs2apdevWio6O9sv4CRoBBBBAAAEEEEAAgYwKmLVQzZJALVu2zOhHPHecq3uQVq9erZtvvlnz5s1L0aGiRYuqXr16IjlKQcMGBBBAAAEEEEAAAQQQ8LiAqwTJZIVmZmTHjh0e7x7hIYAAAggggAACCCCAAAIZF3CVIJmS3qYdO3Ys42fiSAQQQAABBBBAAAEEEEDA4wKuijR07dpV5jK7p59+2i4Eay6pK1++vLJly5aiu5T5TkHCBgQQQMCnAludJexWbpOyh0n1KkgFcvk0HE6OAAIIIICApwRcJUhff/21zOPo0aN6/PHH0+3QZa4Bke652IkAAgggkLbAwePSo2OkKcul/E4NndMxUuxZqbdzH23f2+RUHU37s+xBAAEEEEAgWARcJUgFChTQddddZx/BAkU/EUAAAX8WiImV7viXkxQ5BTXnPi/VKheXHH21THriP9JJZ/s/7/bnHhI7AggggAACl0fAVYJUu3ZtDRo0SFWqVEkzij/++MOui5TmAexAAAEEEMg0gbELpc27peX9paJ5406b1Zkxuru2lCdcihomdW8ilSucaSFxIgQQQAABBDwp4OqCiq+++kpVq1ZNt0PDhg3TPffcI7MuEg0BBBBAwLcCM9Y4M0i1/kqOkkZzS3WpdEHp+7VJt/IaAQQQQACB4BTI8AzSuHHjEqvWLViwwGp9/PHHqaodP35ckyZNUmhoqPLkyZPqMWxEAAEEEMg8gcMnpQpF0j5fYedf1UecY2gIIIAAAggEu0CGE6Rt27bpmWeeSebVrVu3ZO/Pf9OuXTvlyJHj/M28RwABBBDIZIGqxaWFv6Z+UpMYrXWWtXv21tT3sxUBBBBAAIFgEshwgvTUU0+pRIkSMlXpfvrpJ3344YcaM8Yph3ReCwkJUVhYmIoWLapGjRqdt5e3CCCAAAK+EOjSWKrv3H80er70QMO/IjhrqtiNlYo59yW1qPbXdl4hgAACCCAQrAIZTpBM0tOxY0frVLZsWVvi+/777w9WN/qNAAII+JXANSWkIR2kx5z/r/Xd/6SGleIq2k1cKm3bL01+UsqW4f8i+FXXCRYBBBBAAIGLEnD1n8PGjRvLPGgIIIAAAv4j0PUmaYuzSOyIOXFrIZnIi+eT/uX8v68aZf2nH0SKAAIIIIDAlRRwlSBdyYD4bgQQQACBKyPQ67/Sf51y30+3lppfIx0/LY1d5FxyN1L6t3PKu5wqdzQEEEAAAQSCXYAEKdh/AfQfAQSCQmDOeunjedLMp6V6V/3V5UaVpfLO2kePO5femaQpH3V1/sLhFQIIIIBAUAq4WgcpKKXoNAIIIODHAuOcmaI21ydPjhK689Qtklk01tybREMAAQQQQCDYBUiQgv0XQP8RQCAoBP48IFWNSL2roVmdNZKKStudY2gIIIAAAggEuwAJUrD/Aug/AggEhUBEAem3val31ZT6/t0p3hCRP/X9bEUAAQQQQCCYBC5LgrR9+3bNnTtX+/fv15kzZxQdHR1MhvQVAQQQ8LzA3U4BhsnLpf/9kTLUEXOlE2ekW6qn3McWBBBAAAEEgk3AdYJkFoz99NNP7eKxpUqVUmRkpFasWKFVq1apdu3a+uWXX4LNkv4igAACnhVoea1kkqRbB0sjnYRoizObtHq79MKX0jPjpIHtpEK5PRs+gSGAAAIIIJBpAq4TpH79+qlLly46dOiQbrrJWVwjvsXGxmr9+vVq0KCBTaAStvOMAAIIIOBbgZEPSu3rS89PkK7tJ9XvL/1ngbMukrP9gYa+jY2zI4AAAggg4BUBVwmSmSV688031aFDB+3Zs0fvvvtuYn/q1aunZcuWqVy5cnrhhRdkEiYaAggggIDvBb5cGjd7VKe81Kul9FgLqUBOqZ8zi7Ruh+/jIwIEEEAAAQS8IOAqQZozZ45CQkL0wQcfKHfulNdkVKtWTQ8//LDMvUl//vmnF/pJDAgggEBQC/y6R3r4E+nVO6VpfaTX7pLevEda/LJkEqb7P5RinWINNAQQQAABBIJdwFWCtHXrVkVERChPnjxp+tWoUcPuO3jwYJrHsAMBBBBAIHMEzCKx15eRnrg5+fmyOcuFD+vk3JPkVLH7YW3yfbxDAAEEEEAgGAVcJUhVqlSxs0M7dqR9TcaCBQuUJUsWVa5cORhd6TMCCCDgKYE1TkGGm6qkHpIpzlC9pGSOoSGAAAIIIBDsAq4SpGbNmiksLEzt27fX0qXORe3ntalTp9p7lBo2bKicOZ0L3GkIIIAAAj4VyJVdOnwi7RAOn5RyOsfQEEAAAQQQCHYBVwlSpUqVNGDAAM2bN8+W9I6KirKOAwcOtO/btGlj71EaMWJEsPvSfwQQQMATAs2vcdZBWiYdPJ4ynB83SuYepaZXp9zHFgQQQAABBIJNwFWCZJD69OmjKVOmyFxut2nTJus2ffp0W8GuZcuWWr58uapWrRpsnvQXAQQQ8KTA/Q2kYvmku5yio5t3/xXi9859Rw84/y+rWxOpUrG/tvMKAQQQQACBYBVwbs9139q2bSvzMGshmSQpPDxcFStWVI4cOdx/KZ9EAAEEELjsAtnDpClPSg9+LN3wklSusHTitLTvmPT3ptKAuAsBLvt5+UIEEEAAAQT8TeCSEqTDhw/ru+++U7t27VSnTh3bd3OZXUxMjHr06KECBQr4mwfxIoAAAgErYGaQpvaWVmyTVjoPkzQ1qiSVKhiwXaZjCCCAAAIIXLSA60vsPvnkEztb9OKLLyY7qbnMrm/fvvZepF9//TXZPt4ggAACCPhe4Aan3HfnRtJ99UiOfD8aRIAAAggg4DUBVwnSunXr1K1bNxUuXFiDBw9O1qexY8fqlVde0e7du9WzZ89k+3iDAAIIIIAAAggggAACCHhZwNUldqY4w9mzZ/Xll1/qmmv+v737gLeiPPMH/lw6wYYNxAYohn9ECRbAshJlDUaDcRMTeyyriZqVdXXVrD2sJWpiCboWEt1oElNWEVss2FAxropoFEGN2DBoDIoIKEX+5x0WchuEe7mcO2fOdz6fC+fMzJl5n+9Lub87875Tmhqp1rLBBhvEOeeckwWkq6++OmbOnBnrruv+jVpEXhIgQIAAAQIECBAgkFOBZl1BSleHunfv3iAc1a5x3333zd6++WbpRncLAQIECBAgQIAAAQIEKkCgWQEpTciQQtKMGTOWW+LUqVOzbb17917uPjYQIECAAAECBAgQIEAgTwLNCki77757LF68OA455JBGQ9Ljjz+ejUMaOHBgrLXWWnmqV1sIECBAgAABAgQIECCwXIFmjUFKt9ddd9112SQM6QrRTjvtFJtuumnMnTs30sx1EydOzJ6JdP311y/3xDYQIFCZAq+/H5G+NlgzYuuNK7MGrSZAgAABAgQILE+gWQEpHeyYY47JxiH98Ic/jCeffDIefPDB7BwdOnSIr33ta5Geh9SnT+kBGxYCBAoh8Oq7EcffGDHh1Yg2NRGfLY7o0y3iJ4dG/MNWhShREQQIECBAgACBaNYtdi+88ELsueeesfbaa0e6ne6jjz6Kl19+OaZNmxbz5s2L2267TTjyh4tAgQSmfxCx5yURXTpG/O85ER9dEzH1hxFD+kYMv3xJaCpQuUohQIAAAQIEqligWQFp7NixMW7cuHjnnXcyujZt2mSBqGfPnpFeWwgQKJbAf94esfn6Eb/7XsQXeiypbeOuEZcfHHHIThEn31yselVDgAABAgQIVK9As9LMeuutl4l9/PHH1SuncgJVJHDXpNLtdXtEtGvbsOgRe0b88e2It2Y23GYNAQIECBAgQKDSBJo1Bumoo46KdJvdKaecEp988kkMGjQoevXqFWn8Uf3FLHb1RbwnUFkCpWdCxwdzIzZap/F2b7T2kvUzSz8v2dQzoRtHspYAAQIECBCoGIFmBaQ77rgj0tfs2bPjhBNOWGGxaTpwCwEClSuQ7prtvUHExDcan4zhmdcj2pb2SbfgWQgQIECAAAEClS7QrIDUtWvX2HbbbbOvSgfQfgIE/r7AEbtGXHZPxNcGRPSsFYRmfxJx5q0R+20Xsc7n/v5x7EGAAAECBAgQyLtAswLSHnvsEenLQoBAdQikcUbjXy5dQTq/NBZpaES/TSLe/GvENQ+VxiWVrh796MDqcFAlAQIECBAgUHyBZgWk4rOokACB2gJpcoZffifi0OsiLrk7Yv6iJbfVbVMKSjeV1qeHxloIECBAgAABAkUQWOWANGfOnJgyZUq8+uqr0alTp9h8882jf//+UVNTepKkhQCBQgh8uiDin0ZF/OkvESO/vuQK0lulK0hXPhCx96URD562/EkcCgGgCAIECBAgQKBqBJodkBYuXBhXXHFFnHvuuVF/uu80o92YMWOyoFQ1kgolUGCBS++NeK0Ujh47vW4Q+ubAJQHp30rPQfr1cQUGUBoBAgQIECBQNQLNDkinnnpqXHbZZdG9e/c47LDDsitHaVa7yZMnx+23356NUbr//vtju+1Ko7ctBAhUtMAvJkSctFfdcJQK6tQ+4j9LV5T2+nHEzDkR63ap6DI1ngABAgQIECAQzQpIkyZNissvvzyGDx8eN998c3TpUve7ovSMpCFDhkQKUePGjcNMgEAFC6TnIL1Rup0ujTdqbEnr02z+6ZY7AakxIesIECBAgACBShIozT/V9GX8+PHZh66//voG4Sht6NevX5xzzjkxYcKEmD9/ftNP4BMECORGID0Haf01It6e2XiT3vq/9SZqaNzHWgIECBAgQKCyBJoVkKZNm5bdWrf++rUeiFKv7q233jrmzZuXTeBQb5O3BAhUmMC+pecfjSpdDE6TNdRfflx6PtL2PSN6dK2/xXsCBAgQIECAQOUJNCsgpZnqZsyYEe++++5yK0634aWlZ8+e2e9+IUCgcgXO2Dfi/dkRwy+PePJPEXM+jXjpnYh//lnE7c+WHiJ7UOXWpuUECBAgQIAAgdoCzQpIe+65Z7Qp3Xdz+OGHx6xZs2ofL3v99NNPx8iRI2P77bePtdZaq8F2KwgQqCyBbqW/xmkq70Wl8UhDL47oNiJixx9EPDUt4t5/j9iuZ2XVo7UECBAgQIAAgeUJNGuShnT73IgRI7JZ7Hr37h377LNPNotdeiZSmsXuvvvui3bt2sXo0aOXd17rCRCoMIGfjS9dPXot4kt9IzYu3U734dyIcS+WHhz7+yUPi21fepishQABAgQIECBQ6QIrFZDee++9WLRoUWy00UbL6r300kuzyRhOPvnkuOmmm5atTy8GDx4cV155ZQwYUBq4YCFAoOIF/uepiCvujxj7r6UrSF/4Wzkvz4j4yqWlh8eOXTLd99+2eEWAAAECBAgQqEyBlbrF7oYbbogePXrEO++UBh2UljS+KM1Sd9RRR8XMmTMjTdpwzz33xKOPPpqNTXriiSey2+sqk0SrCRCoL3D5fRHH7VE3HKV9tuoeceH+Edc+FPFJIxM41D+O9wQIECBAgACBvAusVEBKt86l5S9/+Uv2+/PPP5+NMUpvampqsokYhg0bFrvuumt069Yt28cvBAgUQyA94+iPb0f8Y60rR7Ur+8etI+aWZvN/ZflzttTe3WsCBAgQIECAQK4FVuoWu4EDB2ZFHHTQQdl4o9deKw1EKC3nnXde9vuKfjnzzDNXtNk2AgRyLlD6GUik8UXzlvNIs7mlGe3S0nGl/jVZsq9fCRAgQIAAAQJ5FVipb2mGDh0aX/va12Ls2LHx0ksvLavlrLPOWvZ6eS8EpOXJWE+gcgR2+3zEzU9G7N2/YZt/XVq/0ToRfVw8bohjDQECBAgQIFBxAisVkDp37hxjxoyJdOVo+vTpcdddd8XFF18c48aVnhxpIUCg8AJnDl8yvfcPbov4j69GdCj9y5FuvfvVHyLOvyPiqsPS7baFZ1AgAQIECBAgUAUCKxWQkkMaa7TFFltkX+nZR2kq73RlyUKAQPEF0nOObj4u4rv/HTH6kSWTM7w1M2Lmx0tmrzt4p+IbqJAAAQIECBCoDoGVDki1OYYPHx7pq/Yyb968aNu2bXTo0KH2aq8JECiIwF7bRLxwfsQ9f4x44/2IDUsPjx3Wr/TQ2LULUqAyCBAgQIAAAQIlgWYFpPpyH374YXTt2jWbwOHOO++sv9l7AgQKIrBmp4hv7liQYpRBgAABAgQIEGhEYKWm+W7kc1YRIECAAAECBAgQIECgcAICUuG6VEEECBAgQIAAAQIECDRXQEBqrpzPESBAgAABAgQIECBQOAEBqXBdqiACBAgQIECAAAECBJor0CKTNHTp0iVuvPHG2GSTTZrbDp8jQIAAAQIECBAgQIBAqwus8hWkOXPmxPPPP59N7/3RRx/FpEmTSg+QLD1B0kKAAAECBAgQIECAAIEKE2j2FaSFCxfGFVdcEeeee258/HHpaZG1ll69esWYMWOif//+tdZ6SYAAAQIECBAgQIAAgXwLNDsgnXrqqXHZZZdF9+7d47DDDovNN988Zs+eHZMnT47bb7899thjj7j//vtju+22y7eA1hEgQIAAAQIECBAgQOD/BJoVkNJtdJdffnkMHz48br755khjkGovL7zwQgwZMiRSiBo3blztTV4TIECAAAECBAgQIEAgtwLNGoM0fvz4rKDrr7++QThKG/r16xfnnHNOTJgwIebPn5/b4jWMAAECBAgQIECAAAECtQWaFZCmTZuW3Vq3/vrr1z5Wnddbb711zJs3L6ZMmVJnvTcECBAgQIAAAQIECBDIq0CzAlIabzRjxox49913l1tXug0vLT179sx+9wsBAgQIECBAgAABAgTyLtCsgLTnnntGmzZt4vDDD49Zs2Y1qPHpp5+OkSNHxvbbbx9rrbVWg+1WECBAgAABAgQIECBAII8CzZqkId0+N2LEiGwWu969e8c+++yTzWKXnomUZrG77777ol27djF69Og81qxNBAgQIECAAAECBAgQaFSgWQEpHenSSy/NJmM4+eST46abbqpz8MGDB8eVV14ZAwYMqLPeGwIECBAgQIAAAQIECORZoNkBKRV11FFHxZFHHhlvvPFGTJ06NZvRrk+fPtGtW7c816xtBAgQIECAAAECBAgQaFSgWWOQ0nOO0jikNN13TU1NNhHDsGHDYtdddxWOGmW2kgABAgQIECBAgACBShBoVkAaO3Zs9gDYd955pxJq1EYCBAgQIECAAAECBAislECzAtJ6662XHfzjjz9eqZPYiQABAgQIECBAgAABApUg0KwxSGnsUbrN7pRTTolPPvkkBg0aFL169YoOHTo0qNk03w1IrCBAgAABAgQIECBAIKcCzQpId9xxR6Sv2bNnxwknnLDC0hYvXrzC7TYSIECAAAECBAgQIEAgLwLNCkhdu3aNbbfdNvvKSyHaQYAAAQIECBAgQIAAgVUVaFZA2mOPPSJ9WQgQIECAAAECBAgQIFAkgWZN0lAfYPr06fHII4/EX//615g/f34sWLCg/i7eEyBAgAABAgQIECBAIPcCzQ5IaWzRz3/+8+jRo0dssskm8aUvfSkmTZoUzz//fOywww7x1FNP5b54DSRAgAABAgQIECBAgEBtgWYHpDPPPDOOOOKI+PDDD2O33XZbdsxFixbFlClTYqeddsoC1LINXhAgQIAAAQIECBAgQCDnAs0KSOkq0Q9/+MM4+OCD47333otRo0YtKzNN+T1x4sTo2bNnnHHGGZECk4UAAQIECBAgQIAAAQKVINCsgPTwww9HTU1NXHPNNbHGGms0qHPrrbeO73znO5HGJr399tsNtltBgAABAgQIECBAgACBPAo0KyC9/vrrsdFGG8Waa6653JoGDBiQbfvggw+Wu48NBAgQIECAAAECBAgQyJNAswLS5z//+ezq0DvvvLPcWiZMmBBt2rSJrbbaarn72ECAAAECBAgQIECAAIE8CTQrIKVnILVv3z4OOuigeOaZZxrUc/fdd2djlHbZZZf43Oc+12C7FQQIECBAgAABAgQIEMijQLMCUp8+feKCCy6I8ePHZ1N677///lltl1xySfZ+n332ycYoXXfddXmsWZsIECBAgAABAgQIECDQqECzAlI60sknnxy33357pNvtXnnllezg9957bzaD3bBhw+LZZ5+Nvn37NnpSKwkQIECAAAECBAgQIJBHgXar0qjhw4dH+krPQkohqVOnTrHllltG586dV+WwPkuAAAECBAgQIECAAIFWEVipK0hTp06N8847L2655ZZGG7nOOuvEjjvuGNtss82ycDRy5MjYa6+9Gt3fSgIECBAgQIAAAQIECORRYKUC0ksvvRRnnXVWpLFGI0aMiIULF/7dWtLDYtMtdxYCBAgQIECAAAECBAhUisBKBaSlxXTs2DFGjRoVX/7yl+P9999futrvBAgQIECAAAECBAgQKIRAkwLSRRddFLvvvns89NBD2S11zz33XCEQFEGAAAECBAgQIECAAIEk0KSAlMYa3XPPPXH00UfH66+/HjvvvHP89re/JUmAAAECBAgQIECAAIFCCDQpIKWKO3ToEKNHj46rr746FixYEAcccECcfvrp8dlnnxUCRBEECBAgQIAAAQIECFSvQJMD0lKqY489Nh5++OHo3r17XHjhhdl037NmzVq62e8ECBAgQIAAAQIECBCoOIFmB6RUabrF7plnnonBgwfH3XffHYMGDYopU6ZUHIIGEyBAgAABAgQIECBAIAmsUkBKB+jRo0c88sgj2bik9LykFJJSWLIQIECAAAECBAgQIECg0gRWOSClgmuPS5o3b17su+++8cQTT1SahfYSIECAAAECBAgQIFDlAisVkNZdd93YZZddYsMNN1wh19JxSRtssEG89957K9zXRgIECBAgQIAAAQIECORNoN3KNGi33XaLxx57bGV2XTYuKU3cMH/+/JX6jJ0IECBAgAABAgQIECCQB4GVCkhNbWgalzRq1Kimfsz+BAgQIECAAAECBAgQaFWBlbrFrlVb6OQECBAgQIAAAQIECBAok4CAVCZopyFAgAABAgQIECBAIP8CAlL++0gLCRAgQIAAAQIECBAok4CAVCZopyFAgAABAgQIECBAIP8CAlL++0gLCRAgQIAAAQIECBAok4CAVCZopyFAgAABAgQIECBAIP8CAlL++0gLCRAgQIAAAQIECBAok4CAVCZopyFAgAABAgQIECBAIP8CAlL++0gLCRAgQIAAAQIECBAok4CAVCZopyFAgAABAgQIECBAIP8CAlL++0gLCRAgQIAAAQIECBAok4CAVCZopyFAgAABAgQIECBAIP8CAlL++0gLCRAgQIAAAQIECBAok4CAVCZopyFAgAABAgQIECBAIP8CAlL++0gLCRAgQIAAAQIECBAok4CAVCZopyFAgAABAgQIECBAIP8CVRGQnn/++bj66qsb7Y3p06fHtddeG7feemt88MEHje5jJQECBAgQIECAAAEC1SHQruhlfvzxx/H1r389Zs+eHccdd1ydck8//fS4/PLLY+edd45XXnklampq4v77748+ffrU2c8bAgQIECBAgAABAgSqQ6DwV5BOPPHEeP311xv05pNPPhkXXXRR/P73v49x48bF1KlTY9NNN43jjz++wb5WECBAgAABAgQIECBQHQKFDkhjxoyJ2267LY455pgGvXnVVVfFgAEDYsiQIdm2Tp06xUknnRQPPPBATJs2rcH+VhAgQIAAAQIECBAgUHyBwt5i9+c//zkLRtdcc01Mnjy5QU++9tprMWjQoDrrBw4cGIsXL46XXnopevXqVWdbY2/SVac0vmlFS9qejmkhQIAAAQIECBAgUHSBzz77LMaPHx8fffTRCkvdZpttom/fvivcp7U2FjIgpUBy5JFHxt577x37779/jBw5soFvuu1u6NChddZ37do1ez9jxow665f3Jk3u8Itf/GJ5m7P18+fPj0WLFq1wHxsJECBAgAABAgQIFEFg4cKFke7U6tChwwrLOeigg+KKK65Y4T6ttbGQAenKK6/MrgL95je/Wa7rX/7yl+jSpUud7Z07d84makgTO6zMcumll0b6WtGSxjd95StfWdEuthEgQIAAAQIECBAohEAKRul78GHDhlVsPYULSOl2utNOOy2btrtjx47xySefREqyaUmv27dvH23bto1u3brFrFmz6nRcuhSYrj6lyRosBAgQIECAAAECBAhUn0DhAtKdd94Z8+bNa/SqTbpCdPHFF8cpp5wSPXr0iPfee69Oj6erSmnp2bNn9rtfCBAgQIAAAQIECBCoLoHCBaQDDzwwdtxxxzq9eOONN2az2aWHwW6xxRbZtl133TV++9vfZleM0vOP0pKm/E6z2S3dJ1vpFwIECBAgQIAAAQIEqkagcAFps802i/RVe3n00UezgWK77777stUjRozIBoalh8WeeeaZ8eKLL8aFF14YZ599dqy11lrL9vOCAAECBAgQIECAAIHqESj0c5BW1I0pRN1yyy0xevToWHPNNbNb8oYPH57dfreiz9lGgAABAgQIECBAgEBxBWpKkxJU9UN6Uvlpyu80MUO7di1/QW3pLHYLFiwo7p8ilREgQIAAAQIECBAoCaThKmPHjjWLXSX/aUjjj1bmobCVXKO2EyBAgAABAgQIECCwcgJVe4vdyvHYiwABAgQIECBAgACBahIQkKqpt9VKgAABAgQIECBAgMAKBQSkFfLYSIAAAQIECBAgQIBANQkISNXU22olQIAAAQIECBAgQGCFAgLSCnlsJECAAAECBAgQIECgmgQEpGrqbbUSIECAAAECBAgQILBCAQFphTw2EiBAgAABAgQIECBQTQICUjX1tloJECBAgAABAgQIEFihgIC0Qh4bCRAgQIAAAQIECBCoJgEBqZp6W60ECBAgQIAAAQIECKxQQEBaIY+NBAgQIECAAAECBAhUk0C7aipWra0r8NpfIu79Y8QHcyK27BaxT/+ILh1bt03OToAAAQIECBAgQKC2gCtItTW8Xi0CixdHnHVrxBfPirj2oYjxUyNOujlimzMiHp6yWk7poAQIECBAgAABAgSaJeAKUrPYfKgpApfeGzH64YjffS9i2DZLPvnJgohzxkR886qIx0tBaavuTTmifQkQIECAAAECBAisHgFXkFaPq6P+n8Dc+REX3x3xowP/Fo7Spk7tIy76VsTg3ku2AyNAgAABAgQIECCQBwEBKQ+9UOA2PPtGRApJ++/YeJHfGhjx6MuNb7OWAAECBAgQIECAQLkFBKRyi1fZ+eYvjGhTE9G+beOFdyxdSVqwqPFt1hIgQIAAAQIECBAot4CAVG7xKjvftptGpEkaHnqp8cLveyFiwOaNb7OWAAECBAgQIECAQLkFBKRyi1fZ+dZbI+LwXSP+9ZcRr79ft/ib/xDx2/+NOPHLddd7R4AAAQIECBAgQKC1BMxi11ryVXTei0uTMRxwdcQO50Z8tfTso+5rRzxTGpv05J8iLjkg4h+2qiIMpRIgQIAAAQIECORaQEDKdfcUo3GdO0SMHRFx+7MRdz8fkR4Yu2OviJ8cEvH/ehSjRlUQIECAAAECBAgUQ0BAKkY/5r6KmtJEDV/bbslX7hurgQQIECBAgAABAlUrYAxS1Xa9wgkQIECAAAECBAgQqC8gINUX8Z4AAQIECBAgQIAAgaoVEJCqtusVToAAAQIECBAgQIBAfQEBqb6I9wQIECBAgAABAgQIVK2AgFS1Xa9wAgQIECBAgAABAgTqCwhI9UW8J0CAAAECBAgQIECgagUEpKrteoUTIECAAAECBAgQIFBfQECqL+I9AQIECBAgQIAAAQJVKyAgVW3XK5wAAQIECBAgQIAAgfoCAlJ9Ee8JECBAgAABAgQIEKhaAQGparte4QQIECBAgAABAgQI1BcQkOqLeE+AAAECBAgQIECAQNUKCEhV2/UKJ0CAAAECBAgQIECgvoCAVF/EewIECBAgQIAAAQIEqlZAQKrarlc4AQIECBAgQIAAAQL1BQSk+iLeEyBAgAABAgQIECBQtQICUtV2vcIJECBAgAABAgQIEKgvICDVF/GeAAECBAgQIECAAIGqFRCQqrbrFU6AAAECBAgQIECAQH0BAam+iPcECBAgQIAAAQIECFStgIBUtV2vcAIECBAgQIAAAQIE6gsISPVFvCdAgAABAgQIECBAoGoFBKSq7XqFEyBAgAABAgQIECBQX0BAqi/iPQECBAgQIECAAAECVSsgIFVt1yucAAECBAgQIECAAIH6AgJSfRHvCRAgQIAAAQIECBCoWgEBqWq7XuEECBAgQIAAAQIECNQXEJDqi3hPgAABAgQIECBAgEDVCghIVdv1CidAgAABAgQIECBAoL6AgFRfxHsCBAgQIECAAAECBKpWQECq2q5vncLf+yji5RkRc+e3zvmdlQABAgQIECBAgMCKBNqtaKNtBFpK4KlpEaf8JuLp0u9p6Vj6k3fAoIgLvxmxducl6/xKgAABAgQIECBAoLUFXEFq7R6ogvM//krEsB9FbLlhxONnRPzp4ogbvxPx5J8i9iqtn/NpFSAokQABAgQIECBAoCIEBKSK6KbKbeTixRH/clPEoTtF/PSoiP6bRXRbO2Kf/hHjTo2YOSdi1LjKrU/LCRAgQIAAAQIEiiUgIBWrP3NXzQvTI155N+I/vtqwaV27RBy3e8StTzfcZg0BAgQIECBAgACB1hAQkFpDvYrOmSZlaN82YqN1Gi968/Uj3i3tYyFAgAABAgQIECCQBwEBKQ+9UOA2bLpuxIJFpXFH7zVe5EvvRKR9LAQIECBAgAABAgTyICAg5aEXCtyGrbpHbLd5xFm3Rnz2Wd1C35oZcc1DEQcNrrveOwIECBAgQIAAAQKtJSAgtZZ8FZ336sMjxk+N+OrlEXdOWjLVdwpGQy4sTdqwacR3v1RFGEolQIAAAQIECBDItYDnIOW6e4rRuK03LgWk0yPOGRNxxE8jPlkQ0aM0JumYIREn7xXRrjRGyUKAAAECBAgQIEAgDwICUh56oQra0HuDiJtKzz5K036ngNS5QxUUrUQCBAgQIECAAIGKE3CLXcV1WWU3uKZGOKrsHtR6AgQIECBAgECxBQSkYvev6ggQIECAAAECBAgQaIKAgNQELLsSIECAAAECBAgQIFBsAQGp2P2rOgIECBAgQIAAAQIEmiAgIDUBy64ECBAgQIAAAQIECBRbQEAqdv+qjgABAgQIECBAgACBJggISE3AsisBAgQIECBAgAABAsUWEJCK3b+qI0CAAAECBAgQIECgCQICUhOw7EqAAAECBAgQIECAQLEFBKRi96/qCBAgQIAAAQIECBBogoCA1AQsuxIgQIAAAQIECBAgUGwBAanY/as6AgQIECBAgAABAgSaICAgNQHLrgQIECBAgAABAgQIFFtAQCp2/6qOAAECBAgQIECAAIEmCAhITcCyKwECBAgQIECAAAECxRYQkIrdv6ojQIAAAQIECBAgQKAJAgJSE7DsSoAAAQIECBAgQIBAsQUEpGL3r+oIECBAgAABAgQIEGiCgIDUBCy7EiBAgAABAgQIECBQbAEBqdj9qzoCBAgQIECAAAECBJogICA1AcuuBAgQIECAAAECBAgUW0BAKnb/qo4AAQIECBAgQIAAgSYICEhNwLIrAQIECBAgQIAAAQLFFhCQit2/qiNAgAABAgQIECBAoAkCAlITsOxKgAABAgQIECBAgECxBQSkYvev6ggQIECAAAECBAgQaIKAgNQELLsSIECAAAECBAgQIFBsAQGp2P2rOgIECBAgQIAAAQIEmiAgIDUBy64ECBAgQIAAAQIECBRbQEAqdv+qjgABAgQIECBAgACBJggISE3AsisBAgQIECBAgAABAsUWEJCK3b+qI0CAAAECBAgQIECgCQICUhOw7EqAAAECBAgQIECAQLEFBKRi96/qCBAgQIAAAQIECBBogoCA1AQsuxIgQIAAAQIECBAgUGwBAanY/as6AgQIECBAgAABAgSaICAgNQHLrgQIECBAgAABAgQIFFtAQCp2/6qOAAECBAgQIECAAIEmCAhITcCyKwECBAgQIECAAAECxRZoV+zyVJcngRenR/z++YiZcyL6dIvYb7uIrl3y1EJtIUCAAAECBAgQqHYBV5Cq/U9AGer/7LOIk2+OGDQyYszEiKkzIs6/I2KbMyPu+WMZGuAUBAgQIECAAAECBFZSwBWklYSyW/MFLrwr4jf/W7p6dHLEP2y15DgLFy0JSYdcE/HI6RH9Nm7+8X2SAAECBAgQIECAQEsJuILUUpKO06jAx59EXHZvxI8P+ls4Sju2axtxzn4RQ/pG/OjuRj9qJQECBAgQIECAAIGyCwhIZSevrhNOejPi04Wl8UYDGq/7GztETHi18W3WEiBAgAABAgQIECi3gIBUbvEqO9+ixRFtaiLaLudPWlqf9rEQIECAAAECBAgQyIPAcr5tzUPTtKEIAttuElFTCkj3vdB4NWlWux16Nr7NWgIECBAgQIAAAQLlFhCQyi1eZedL03gfMyTixF9FTPlz3eJHP1Ka1e6ZiJOG1V3vHQECBAgQIECAAIHWEjCLXWvJV9F5z/t6xNszIwb/Z8SeW0d0Xzvi6WlLAtNVh5Wm/96iijCUSoAAAQIECBAgkGsBASnX3VOMxnVsH3HzcREPTI6467mID0oPiv3qF5es67l+MWpUBQECBAgQIECAQDEEBKRi9GNFVDH0CxHpy0KAAAECBAgQIEAgrwLGIOW1Z7SLAAECBAgQIECAAIGyCwhIZSd3QgIECBAgQIAAAQIE8iogIOW1Z7SLAAECBAgQIECAAIGyCwhIZSd3QgIECBAgQIAAAQIE8iogIOW1Z7SLAAECBAgQIECAAIGyCwhIZSd3QgIECBAgQIAAAQIE8iogIOW1Z7SLAAECBAgQIECAAIGyCwhIZSd3QgIECBAgQIAAAQIE8iogIOW1Z7SLAAECBAgQIECAAIGyCwhIZSd3QgIECBAgQIAAAQIE8iogIOW1Z7SLAAECBAgQIECAAIGyCwhIZSd3QgIECBAgQIAAAQIE8iogIOW1Z7SLAAECBAgQIECAAIGyCwhIZSd3QgIECBAgQIAAAQIE8iogIOW1Z7SLAAECBAgQIECAAIGyCwhIZSd3QgIECBAgQIAAAQIE8iogIOW1Z7SLAAECBAgQIECAAIGyCwhIZSd3QgIECBAgQIAAAQIE8iogIOW1Z7SLAAECBAgQIECAAIGyCwhIZSd3QgIECBAgQIAAAQIE8iogIOW1Z7SLAAECBAgQIECAAIGyCwhIZSd3QgIECBAgQIAAAQIE8iogIOW1Z7SLAAECBAgQIECAAIGyCwhIZSd3QgIECBAgQIAAAQIE8iogIOW1Z7SLAAECBAgQIECAAIGyCwhIZSd3QgIECBAgQIAAAQIE8iogIOW1Z7SLAAECBAgQIECAAIGyCwhIZSd3QgIECBAgQIAAAQIE8iogIOW1Z7SLAAECBAgQIECAAIGyCwhIZSd3QgIECBAgQIAAAQIE8iogIOW1Z7SLAAECBAgQIECAAIGyCwhIZSd3QgIECBAgQIAAAQIE8iogIOW1Z7SLAAECBAgQIECAAIGyCwhIZSd3QgIECBAgQIAAAQIE8iogIOW1Z7SLAAECBAgQIECAAIGyCwhIZSd3QgIECBAgQIAAAQIE8irQLq8NK1K7Fi1aFEOHDi1SSc2uZe7cufHmm29G3759m30MH2xdgcWLF8fkyZNjyy23jI4dO7ZuY5y92QJvvPFGrLHGGrHeeus1+xg+2LoCM2fOjI8++ih69uzZug1x9mYLzJ8/P1555ZX4whe+EDU1Nc0+jg+2rsCUKVNis802i8997nOt25CcnD39ua70P88C0mr+w7TjjjvGueeeGwsXLlzNZ6qMw7/88ssxceLE2GWXXSqjwVrZQCD9WX7ooYdi7733jk022aTBdisqQ+DVV1+NddZZx9/FyuiuRlv56KOPxvvvv68PG9WpjJXvvPNOPPbYY3HkkUdG+/btK6PRWtlA4PHHH8/+Hvrh7xKaIUOGxMCBAxs4VdKKmtJPgxdXUoO1tbIF7rjjjjjkkEOyn3pWdiXV2/pPP/00OnXqFE888UQMHjy4eiEqvPL0H1i6sn322WdXeCXV2/zzzz8/fv/732ffYFevQmVX/tRTT2XfSM6ZM8fVhwruyq5du8YNN9wQ++23XwVXoem1BYxBqq3hNQECBAgQIECAAAECVS0gIFV19yueAAECBAgQIECAAIHaAgJSbQ2vCRAgQIAAAQIECBCoagEBqaq7X/EECBAgQIAAAQIECNQWEJBqa3hNgAABAgQIECBAgEBVCwhIVd39iidAgAABAgQIECBAoLaAgFRbw2sCBAgQIECAAAECBKpaQECq6u4vf/Hdu3ePPn36lP/EzthiAu3atYstttgi1l9//RY7pgOVX6Bnz54e9Ft+9hY9Y3pQc+pHS+UKrLfeetm/px06dKjcIrQ8ttxyy0jf31iKI+BBscXpS5UQIECAAAECBAgQILCKAq4grSKgjxMgQIAAAQIECBAgUBwBAak4fakSAgQIECBAgAABAgRWUUBAWkVAHydAgAABAgQIECBAoDgCAlJx+lIlBAgQIECAAAECxuLbnwAADvxJREFUBAisooCAtIqAPk6AAAECBAgQIECAQHEEBKTi9KVKCBAgQIAAAQIECBBYRQEBaRUBfZwAAQIECBAgQIAAgeIICEjF6UuVECBAgAABAgQIECCwigLtVvHzPk5gpQX++Mc/xuOPPx6ffPJJ9O/fP3bfffeV/qwd8yFw1113xeLFi+s0ZsMNN4yBAwfWWedNZQhcc801MXTo0OjTp09lNFgrlwl88MEH8dBDD8Wf//znGD58eGy22WbLtnlRGQIff/xx3H777bFo0aIYMmSIPqyMbltuK//nf/4nunbtmv2butydbKgYgZrSNzt1v9upmKZraCUJnHHGGXHhhRfGpptumv0D8txzz8U+++wTt912W7RrJ6dXQl++/vrr0atXrwZNHTZsWNxzzz0N1luRb4FRo0bFiBEj4s4778z+Lua7tVpXW+CZZ56J/fbbL/vGumfPnvGHP/whDj300Ljxxhtr7+Z1jgWuvvrqOPnkk6N3797x6aefxptvvhm/+MUv4pvf/GaOW61pyxN4+OGHs2B03HHHxZVXXrm83ayvIAG32FVQZ1VqU5944om44IIL4vzzz49p06bFpEmTIl2JSF/pPwlLZQikfqupqYnp06fH7Nmzl32lkGupHIG5c+dm35ideOKJldNoLV0mkH6meeSRR8YWW2wRb731VkyYMCHGjRsXN910Uzz11FPL9vMivwLp6t/pp58eZ599drzwwgvxyiuvxNFHHx2HH354zJs3L78N17JGBT788MP49re/nf3/2OgOVlakgIBUkd1WWY1OV4t69OgR6Scrbdos+SO39957Z7f1pPBkqQyBZ599NvumLPXlGmusseyrU6dOlVGAVmYCO+20U9xwww1x6aWXEqlAgXS1Nt2unAJR27Ztswr22GOPrE/TDzAs+Rd49dVXs9si/+Vf/mVZY7/61a9m4ejFF19cts6LyhA4/vjjY7vttou+ffsKSZXRZSvVSgFppZjstCoCxx57bHbVYZ111ll2mPfeey/SLVvum19GkvsX6QrS9ttvHxMnToxzzjknLrvssqxfc99wDawjcNBBB8XLL78c3/jGN+qs96YyBJ588sno1q1bbLLJJtnfxZ///Ofx9NNPxxFHHBE77LBDZRRR5a3ccccds9sh0w+a0vLZZ5/Ff/3Xf0X6P3Lbbbetcp3KKv9Xv/pVPPDAAzF69GjhqLK67u+21uCPv0tkh9UhcN5552Vjj/75n/95dRzeMVeDQApIaUB4Gv+w8cYbx6OPPhojR46MsWPHxm677bYazuiQq0Pg+9//fnbYt99+e3Uc3jFXs0DqtzQW8IADDogxY8ZkV3LTLT7p9qx0ZdBVpNXcAS18+PT38ac//Wk2niyNY+nQoUMLn8HhVpdAGjf2ve99Lwu7G2ywweo6jeO2koArSK0EX82nTd9UpwHiP/nJT8yeVSF/EBYsWBCDBw/Orhyl++XTf+RpPNl6662X/eQ6/QTUQoDA6hd49913I11FWrhwYfZ3MP3Q4kc/+lGkK0k/+9nPVn8DnKFFBdItywceeGB2zDQuacaMGS16fAdbPQLp/7w07mj//ffPbpdcPWdx1NYUEJBaU7/Kzp2mMv3ud7+bXXVI0wunQamWyhBo3759/OY3v4k0G+HSJd0eedhhh2XfpKV76i0ECKx+gXQbVpqo4Qc/+EF2m10aA3jSSSdlV3XT1VxLZQmkmSTTrGfpCn0aX3bttddWVgFV2tpLLrkkGyaQZudNjy5JXyk0pR9cpNcmiK78PxgCUuX3YUVUMH/+/OyWkF/+8pfZbSEpKFkqRyD9Yz9z5sxIV5JqL5///Oezt+l5HhYCBFa/QBp7lMau9OvXb9nJ0m11aXxgutXOkn+BOXPmZD9Yqt3SzTffPHbZZZe4//77a6/2OqcC6ZlHb7zxRqRb6zp37px9TZ48OdIPf9P7dPudpbIFBKTK7r+KaX0aED5+/Ph45JFHXI6umF77W0PTxAzpdro0kLj2csstt2T/GSwNSrW3eU2AQMsLpG+i0w8knn/++WUHT8/RSQ+NHTRo0LJ1XuRXIF11SDOe1R4HmPo0XUVKt9xZ8i+QHlHy4IMP1vlKzyRLzydL69NEKpbKFjBJQ2X3X0W0Pk1Hmx5GmabCnDp1ava1tOHpP4MvfelLS9/6PacCAwYMyKYxTbcVpP/Y05SmaWDxHXfcEaeddlp06dIlpy3XLALFEkjTQX/xi1+Mgw8+OH79619nM5+lcZ3p9p70sFhL/gXSrclpFtB0e91FF12UPSg2PSswPaPM88ny33+phY3NGJmu7KYrvLvvvntlFKGVKxQQkFbIY2NLCFx33XXZYdLVh/pXIIYNGyYgtQTyaj5Gen5VmjErjRvba6+9spmyUig688wz64xLWs3NcHgCBEoCaaxKGiDev3//zKN3797xu9/9LgtOgPIvkK6433rrrdmY3K222ipr8Kabbpr9G7vzzjvnvwAtJFAFAjWlsQWLq6BOJRIg0EICaZzD+++/H+mbsqUP/m2hQzsMAQJNEJg9e3bMmjUr+6l1Ez5m15wIpG+/0liV9O9oCkgWAgTyIyAg5acvtIQAAQIECBAgQIAAgVYWMElDK3eA0xMgQIAAAQIECBAgkB8BASk/faElBAgQIECAAAECBAi0soCA1Mod4PQECBAgQIAAAQIECORHQEDKT19oCQECBAgQIECAAAECrSwgILVyBzg9AQIECBAgQIAAAQL5ERCQ8tMXWkKAAAECBAgQIECAQCsLCEit3AFOT4AAAQIECBAgQIBAfgQEpPz0hZYQIECAAAECBAgQINDKAgJSK3eA0xMgQIAAAQIECBAgkB8BASk/faElBAgQIECAAAECBAi0soCA1Mod4PQECBAgQIAAAQIECORHQEDKT19oCQECBAgQIECAAAECrSwgILVyBzg9AQIECBAgQIAAAQL5ERCQ8tMXWkKAAAECBAgQIECAQCsLCEit3AFOT4AAAQIECBAgQIBAfgQEpPz0hZYQIECAAAECBAgQINDKAu1a+fxOT4AAAQIEGhV47bXX4rnnnmuwraamJjp16hTrrrtubLvtttnrBjut5IrZs2fHuHHjonfv3tG/f//sUxMmTIh333039t1332jbtu1KHsluBAgQIFAUgZrFpaUoxaiDAAECBIojMGrUqBgxYsQKC0pBafTo0XHooYeucL/lbXzxxRejX79+cfzxx8dVV12V7bbXXnvFvffeG3Pnzo3OnTsv76PWEyBAgEBBBVxBKmjHKosAAQJFETj66KPjwAMPrFPOhx9+GBMnTowrr7wyDjvssGxbc0LSGmusEfvss08WkuqcwBsCBAgQqFoBAalqu17hBAgQqAyBLbfcMoYOHdqgsd/4xjdi4403ju9973vxy1/+sllXkTbffPO48847GxzbCgIECBCoXgEBqXr7XuUECBCoeIFvf/vbccIJJ8Rjjz3WoJb3338/HnjggZg6dWqkK04paO26667ZuKWlO6f1Y8eOjb59+8agQYOWrvY7AQIECFSxgIBUxZ2vdAIECFS6wOTJk+Ozzz6L7t271yklhZ50a14KSWuttVZ8+umn2VebNm3iwgsvjFNPPTXbf/r06XHEEUdkY5AEpDqE3hAgQKBqBUzzXbVdr3ACBAhUpsCiRYvijTfeiNtuuy3+6Z/+KSvi2GOPXVbMRx99lI1LSsHpqaeeipkzZ8Zf//rXGDNmTLRr1y7OPffcmDVr1rL9vSBAgAABArUFBKTaGl4TIECAQO4Evv/970ea2nvpVwo5PXv2zMJRmo779NNPjxNPPHFZu9NVpZ133jkuvvji2GGHHbKpurt06RL77bdffPnLX4558+bFW2+9tWx/LwgQIECAQG0Bt9jV1vCaAAECBHIn8MUvfjG23nrrSE+l+OCDD+LBBx/Mbpc76aST4rTTTosNN9ywTpsHDx4c99xzz7J1CxYsiD/96U8xadKk7PlGaUOawttCgAABAgQaExCQGlOxjgABAgRyI5Cm+E5BaOmSHiC7xx57xOWXX55NuHD44Ycv3bTs91dffTV+/OMfx8MPPxzp9cKFCyONP1pzzTWzfTwCcBmVFwQIECBQT8AtdvVAvCVAgACBfAv07t07m5q7ffv28Z3vfCcmTJhQp8FTpkyJgQMHxk9/+tPYYost4gc/+EHcddddMWPGjDjkkEPq7OsNAQIECBCoL+AKUn0R7wkQIEAg9wL9+vWL888/P/793/89vvWtb0Uad5Rmq0vLT37yk+xWvP/+7/+O+leXXn755WyfNNGDhQABAgQINCbgClJjKtYRIECAQO4F/u3f/i122mmnSFN1174Fb9q0aVnbe/XqVaeGZ599Np544olsXRqXZCFAgAABAo0JCEiNqVhHgAABArkXSGOKRo8eHelWu2uvvXbZw2LT+KS0pAB18803Z7fgXXTRRdkMdh07dsy2pam/LQQIECBAoDEBAakxFesIECBAoCIE0ux2aRrwNOnCMcccs2x2u/RcpOeeey4OPvjg2GWXXeKyyy6LCy64IO69996srqW/V0SRGkmAAAECZRWoKf2nsrisZ3QyAgQIECBQBoH0wNg0412aBrxHjx5lOKNTECBAgEARBASkIvSiGggQIECAAAECBAgQaBEBt9i1CKODECBAgAABAgQIECBQBAEBqQi9qAYCBAgQIECAAAECBFpEQEBqEUYHIUCAAAECBAgQIECgCAICUhF6UQ0ECBAgQIAAAQIECLSIgIDUIowOQoAAAQIECBAgQIBAEQQEpCL0ohoIECBAgAABAgQIEGgRAQGpRRgdhAABAgQIECBAgACBIggISEXoRTUQIECAAAECBAgQINAiAgJSizA6CAECBAgQIECAAAECRRAQkIrQi2ogQIAAAQIECBAgQKBFBASkFmF0EAIECBAgQIAAAQIEiiAgIBWhF9VAgAABAgQIECBAgECLCAhILcLoIAQIECBAgAABAgQIFEFAQCpCL6qBAAECBAgQIECAAIEWERCQWoTRQQgQIECAAAECBAgQKIKAgFSEXlQDAQIECBAgQIAAAQItIiAgtQijgxAgQIAAAQIECBAgUAQBAakIvagGAgQIECBAgAABAgRaROD/A1vTiKAJaXKAAAAAAElFTkSuQmCC",
"image/svg+xml": [
"\n",
"\n"
],
"text/plain": [
"plot without title"
]
},
"metadata": {
"image/svg+xml": {
"isolated": true
}
},
"output_type": "display_data"
}
],
"source": [
"#Plot the data\n",
"\n",
"xyplot(travel~Rail,data=Rail,ylab=\"Zero-force travel time (nano-seconds)\")"
]
},
{
"cell_type": "code",
"execution_count": 9,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/plain": [
"\n",
"Call:\n",
"lm(formula = travel ~ 1, data = Rail)\n",
"\n",
"Residuals:\n",
" Min 1Q Median 3Q Max \n",
"-40.50 -16.25 0.00 18.50 33.50 \n",
"\n",
"Coefficients:\n",
" Estimate Std. Error t value Pr(>|t|) \n",
"(Intercept) 66.500 5.573 11.93 1.1e-09 ***\n",
"---\n",
"Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1\n",
"\n",
"Residual standard error: 23.65 on 17 degrees of freedom\n"
]
},
"execution_count": 9,
"metadata": {},
"output_type": "execute_result"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAA0gAAANICAYAAAD958/bAAAEDWlDQ1BJQ0MgUHJvZmlsZQAAOI2NVV1oHFUUPrtzZyMkzlNsNIV0qD8NJQ2TVjShtLp/3d02bpZJNtoi6GT27s6Yyc44M7v9oU9FUHwx6psUxL+3gCAo9Q/bPrQvlQol2tQgKD60+INQ6Ium65k7M5lpurHeZe58853vnnvuuWfvBei5qliWkRQBFpquLRcy4nOHj4g9K5CEh6AXBqFXUR0rXalMAjZPC3e1W99Dwntf2dXd/p+tt0YdFSBxH2Kz5qgLiI8B8KdVy3YBevqRHz/qWh72Yui3MUDEL3q44WPXw3M+fo1pZuQs4tOIBVVTaoiXEI/MxfhGDPsxsNZfoE1q66ro5aJim3XdoLFw72H+n23BaIXzbcOnz5mfPoTvYVz7KzUl5+FRxEuqkp9G/Ajia219thzg25abkRE/BpDc3pqvphHvRFys2weqvp+krbWKIX7nhDbzLOItiM8358pTwdirqpPFnMF2xLc1WvLyOwTAibpbmvHHcvttU57y5+XqNZrLe3lE/Pq8eUj2fXKfOe3pfOjzhJYtB/yll5SDFcSDiH+hRkH25+L+sdxKEAMZahrlSX8ukqMOWy/jXW2m6M9LDBc31B9LFuv6gVKg/0Szi3KAr1kGq1GMjU/aLbnq6/lRxc4XfJ98hTargX++DbMJBSiYMIe9Ck1YAxFkKEAG3xbYaKmDDgYyFK0UGYpfoWYXG+fAPPI6tJnNwb7ClP7IyF+D+bjOtCpkhz6CFrIa/I6sFtNl8auFXGMTP34sNwI/JhkgEtmDz14ySfaRcTIBInmKPE32kxyyE2Tv+thKbEVePDfW/byMM1Kmm0XdObS7oGD/MypMXFPXrCwOtoYjyyn7BV29/MZfsVzpLDdRtuIZnbpXzvlf+ev8MvYr/Gqk4H/kV/G3csdazLuyTMPsbFhzd1UabQbjFvDRmcWJxR3zcfHkVw9GfpbJmeev9F08WW8uDkaslwX6avlWGU6NRKz0g/SHtCy9J30o/ca9zX3Kfc19zn3BXQKRO8ud477hLnAfc1/G9mrzGlrfexZ5GLdn6ZZrrEohI2wVHhZywjbhUWEy8icMCGNCUdiBlq3r+xafL549HQ5jH+an+1y+LlYBifuxAvRN/lVVVOlwlCkdVm9NOL5BE4wkQ2SMlDZU97hX86EilU/lUmkQUztTE6mx1EEPh7OmdqBtAvv8HdWpbrJS6tJj3n0CWdM6busNzRV3S9KTYhqvNiqWmuroiKgYhshMjmhTh9ptWhsF7970j/SbMrsPE1suR5z7DMC+P/Hs+y7ijrQAlhyAgccjbhjPygfeBTjzhNqy28EdkUh8C+DU9+z2v/oyeH791OncxHOs5y2AtTc7nb/f73TWPkD/qwBnjX8BoJ98VVBg/m8AAEAASURBVHgB7N0H2BxVocbxhBhDCYHQewkdpBNAiqE3aSpNmnhRBAQEEbiACEgRFJGmotKRKtIVKYrSRHq5oQoJgQRCIPQUksB9X9iJ47Jldnd2dubM/zzP685OPec3n+Q738yc6dOHggACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCBQS6BvrZnMQwABBBDIRGBxHWXWypHe1efIynT1xyDNWKwyc4o+n65Ml+1jCTV4lkqjx+rTaaf000be1xeUBZXnleHKy0raZbB2uEIlE/Xp4zyleLqd4va77tXlI834sJJx+vygeoXK94H6HBJb9kRsmkkEEEAAAQQQQAABBHoqcIuO/nEl7+tzkTq12S623mt11inD7PtiDie00WB3Rs9VJsX2E/n7c7xysDKD0mnZRDt4VonvP5qepvl/U5ZUWi0baINoP40+/631DlKq/xC6WdX2/fQ9rdJfOzpEaaddadWB/SCAAAIIIIAAAggUWCDeQfIvu9fVaQsdpE9hOukgucPyktKoUxEtu1vrxa+yfHr0ZP/rKzS/VaJ9Nfr0VR53yFopG2jlRvusXnZh1c671UHaQsd5ulK3laqOyVcEEECgUAKfK1RtqSwCCCAQtsD2at7Wys1hNzPz1i2mI96ozBQ78ihN36/4c3llHWV2xWU95XplNWWq0kr5qVb+dmwD3xL5T+UxxbfHraGsrLjMrPxCGaNcrbRT/qWN3lF8JWhGxVdv5lWispcmrlL+Es3owqevfLqzT0EAAQQQQAABBBBAoCOB6itI/uv/CCX+i7wPwBUkK/Tp0+4VJHd2oisrflbndOXzSrzMpy+3K9F6/vxefIUE06trHd8+F+3jBU2vWWO7b2ieb6mM1ntZ0+48JSkbaKVoO39W73+A5h1btc61+h6VblxBWlQ7j9dpxehgfCKAAAJFFOAKUhHPGnVGAIGQBRZT445RjmqxkX5uZlNlS8V/0X9L8QP4/1B89aJW2VczfRXD5QJlBWV3xVdN3Hlzh+FAJSq+2jGXsr3iqyzvKfco1yjexs+7+ArYhoqvYtyr+MrFi0qtsrBm7qEsocyjTFReU+5QblL8S3enZRPtwB3MqFypie9HX2KfPq7r7ueG/Au/y/HKJYotk5QztZLPg8s0ZRvFAzJUl4s1Y0bl3MqChfR5hPKjyvdOPiZr4xMUX8VasLKjpSqfST9a+VnaQjtdt2rHe+r7q8rflHo/e1Wb8BUBBBBAAAEEEEAAgU87IdFf3t3BiKb9S+5yMSD/gh8t8y/y1WWQZtyvROvEP/2Lujs21VelNKvP60q07n6anhL7PlbT/iU+Wu5P3x7mqx3xeZ6+ShlY+axe5s7F8kp18fHiba7e7jItr77K084VpJO0n2jfPp47Y43KN7UwWt+fGzVaObbMV25sHW17YWxZrUn/gfLfsfXvqrVSjXkbxLbxsaqvIEWb+La+qC6PRzP12ewKUqs/S5fEjhMdL/qMd65jVWASAQQQQAABBBBAAIHaAr5KE/0yeb6mfUUm+n5nbJNGHSR3TOIdB28f/0U92p//mt83tk9PxjtIE/Q9WtefZyv9q+ZF67iTFL9FzOuPr6zrzl18v142QvFViah8URMfKV7mTFKeVKJ9RPOP0bx4ibfTV0mSlD9opWh/7pA0K4tohWh9f+7bbIPKcl99i2+3e4LtLohtU6vjW2sXG8S28fFqdZDckY3/DHjQiKg06iC187NEBymS5RMBBIIRiP+DFUyjaAgCCCBQQAF3On4Uq/cGmk7yS/aVWs8dDhd3WnwFZDZlHuUUxb9Eu2yofOeTqdr/M5NmuzPh2+d+rlyoVBdf9fAtawsr8ysjlKgM1sQdio/r5T52VBbTxHLRF33uEpv+m6a97YqKb8t7QIlK9a1b0fxWPpeJrRyvb2z2f02O1repsTnx7WOzPzNZvV6SY42M7cVt93lrtXxFG+yj+IrcDxR3hu5R4v++36vvSUo7P0tHa8dbVu18B31fSbm8aj5fEUAAAQQQQAABBBBoKBC/gnSc1uynPKp8XMlYfc6u1LuCtHRsXW+zr1Jd/EtqtL8xVQvjV3pe0rIZq5ZXX0FyxyleztGXaN8faXqh2MIFYsu8zgaxZZ6cVVlH8Xrx8kN9ifYZ7yx5nftiy5JeQRoX28YWSYrdozpckWQDrfPd2DbedukE27lTEx3Hn9WdrFq72KBqm/j2taav1/rxztJmVdv7Z87F9Y1v38rP0qJV27qzS0EAAQQKKxD/j2ZhG0HFEUAAgUAEfFuUfzF1Z8PFV2NO/mSq9v9sEJvtbS+IfY8mfxdN6NNXfeaOfY9PelAE3+rWqDxYtfCd2PdRmn4l9t23y8XLgPgXTft2wvsq83bU52nKv5QfV+b5o3qb2KLEkyNja1Z3xmKLpk/6mHGjFytLhuhzZJ240+Fl8ZLkWPEOpc+5O6lplQ+1o4uUXZXo50mTdcsGsSWd/izFdsUkAgggUDwB3y5BQQABBBDIj4A7Cb9RfHXB5TvKW59MffZ/4r9g+9Yw/1JcXaJf8KP5y2viH9GX2GeSX87jHSJv6kEdovJ2NFH5rFWX+Cpb68uJysrxmVXTSX6xr9rkM1+f1Zw1KnMX+8zSz87w1ZC+sdnPVKb976WX1Soza+b/VS1YrOp7ra+Lx2aO1HSzDmps9emTF2nK595Xf2w+QXFH9W5ljJK0pPmzlPSYrIcAAgjkUoAOUi5PC5VCAIGSCxyl9n9V8XMpvtL/A6VWiXdKfMtarTJb1cw3qr5HX/2LdbMS7xB5Xf9SHpVmHaJoPX9+QzlfiW7v8gANtyl/V76g/ERxSaOD9Nynu/rkfxfR/66qPBqbd6amH1IuU3y8+PNR+trnaf9PgjJS69inf2Xd7fV5UWXaH34mx+fxGMWd0dmVLZSoJD1OtH70+WtNVN+KGC1r5TPNn6VWjsu6CCCAQO4E6CDl7pRQIQQQQKCPf1n1u3r8S7vL5z/9+OR/41c3RsbmD9b0EsoLsXmejK6eeNqdmHiHwfOiMjmayODzKB0j6hz9UtMHxI4Zf37Ft3p1Wnzr4LGKO5q2O1nZUnFxZ+xAxfPdeXHH7FAlKmM1Mbzy5XV9+jmjWuVxzZyq/Elxx8hlO2Vt5X5/UXHHaAdlJ8WdGnekfM6i8tdookefI2PH7fRnydYUBBBAAAEEEEAAAQRaFrhFW/gqjHOcUl1u14xoefTpX9qjMosm3leiZddrOrqC4XX8LM2LSrTcv8DHi3/pj5btFV9Qmfa+ouX+3KRqnWNjy6uvYviX5Pi2m1e2natqfvwqileJmzxS2Sb6uE8T0T5PiGYm+HSHJNrOn1cqvuI2r3KmMlGJL4+m99T8VspiWtlX4qLt39D0VoqLO0yPKdGy+Kdv44t3gvW1btlAS+Lbrll3zdoLNqvaPuqodvKztGDVPofWPjRzEUAAgWII8FeeYpwnaokAAuUU2F/NbnRl5wMt95WJqPiXcF+x+KHiqyG+lWxxxcXr1rsC4uX+pTuL8pYO4g5JVI7VhK+0OOcr8Q7TQH1Po/iKlTsrUdlZE68o7ijNqbymVBd3zi6tntnk+0gtj24P9Kre982KO0C7KD7ONKW6HK4ZvrrXy9LJz9J7VRW3wWmKr5hREEAAAQQQQAABBBBILHCL1oyuBhxXZyt3IKJ1/Bm/ghRtcoAm/PxMfL34tK8yuVNQXeJXkL5RvVDfu3EFyYc5XYnXLz49KrZskqbjnaR2ryBpN5/cfnhnbN/xY9abvkHr+9mhVopv1/Ntezavt9/q+T6nBykDlGZlA60Q3z6tK0jRcdv9Wap1dcznmYIAAggUToArSIU7ZVQYAQRKJnCK2lvvuaGI4hxN+AqFO1zvRDP16atPtyr+Jf8qJS/lSFXkF4qf24nKRE2coSyjvFSZ6Q7D9pXpTj9e0A42UvZTHlZ8K1y8jNGXm5S7YjO31bSvwi0dm9ds0p2Xs5UvKH9Qog6fJj8pvlLk41+iRFde5tG0b/XzFbRel3Z/ltyxejVWeZ/bGWLfmUQAAQQQQAABBBBAoCcC/qV0ZWUFJe8D8QxSHddQVuxBXX2lZzFlmDKfEi/76Is7mu7s/Dm+oM1pXwXzlZ5VlfgzYovq+22Kj+N4nTyVVn+W/PPmn7vVlRnz1BDqggACCCCAAAIIIIAAAp0JzK3Nj1ZW6Ww3ibbetHKsRCuzEgIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAgh0WaBvl/fP7pMLrKFV+ydfnTURQAABBBBAAAEEEMiNwIeqycO5qU0HFaGD1AFeipu6c/RgivtjVwgggAACCCCAAAIIZC3g32kL30n6XNZqHK+mQHTlaFYtde+bggACCCCAAAIIhCpwjBp2uLKx8kCojSxZuz6v9r6n+JOCQCoCX9RePlb4oUqFk50ggAACCCCAQE4FtlC9pim75bR+VKs9Af8O699l/TstBYFUBOggpcLIThBAAAEEEEAgxwLLq27vKofmuI5UrT0BOkjtubFVAwE6SA1wWIQAAggggAAChReYUy0Yofyx8C2hAbUEguogzVCrhcxDAAEEEEAAAQQQQCAlAT9rfb3ylrJ7SvtkNwh0TYBBGrpGy44RQAABBBBAAAEEJPA7ZQnFI5xNVCgI5FqADlKuTw+VQwABBBBAAAEECi3wE9V+Z2V9ZUyhW0LlEUAgUwGeQcqUm4MhgAACCCCAQAYC2+oYHyk7ZnAsDtFbgaCeQeotJUePBOggRRJ8IoAAAggggEAIAiupEe8rB4TQGNrQVIAOUlMiVmhVgA5Sq2KsjwACCCCAAAJ5FZhHFRulXJHXClKv1AWC6iAxil3qPx/sEAEEEEAAAQQQKK3AALX8RuVVZS+FgkDhBBikoXCnjAojgAACCCCAAAK5FbhQNVtQ8Yh1k3NbSyqGQAMBOkgNcFiEAAIIIIAAAgggkFjgdK25nbKOMjbxVqyIAAII1BDgGaQaKMxCAAEEEEAAgcIIfE019Yh17iBRyicQ1DNI5Tt9+WwxHaR8nhdqhQACCCCAAALNBVbTKhOUI5qvyhqBCtBBCvTE9rJZdJB6qc+xEUAAAQQQQKBdgQW04WjljHZ3wHZBCATVQWIUuyB+JmkEAggggAACCCCQucBMOqJHrBuhHJ750TkgAl0SYJCGLsGyWwQQQAABBBBAIHCBS9W+OZWhyoeBt7WIzVtClf6Osnql8g/r8zfKC5XvfNQR4ApSHRhmI4AAAggggAACCNQVOEdLNlO2Vt6ouxYLeiWwlw78lDJMua8ST3veXgoFgdwL8AxS7k8RFUQAAQQQQACBisDX9TlN2QqRXAq4IzRV2a9G7TzPy7xOmiWoZ5DShGFf7QvQQWrfji0RQAABBBBAIDuBtXSoycrB2R2SI7UocJfWP7/BNl7mddIsdJDS1GRfnwjQQeIHAQEEEEAAAQTyLrCwKviacmreK1ri+s2stvvq3voNDLzM63jdtEpQHSSeQUrrx4L9IIAAAggggAAC4QrMoqbdrDyjHB1uMwvfskFqgX+/f71BS7zM63hdSg0BOkg1UJiFAAIIIIAAAgggMF2gr6YuV9xJ+oriZ1go+RQYp2q9r3yhQfVWrKzjdSkI5FaAW+xye2qoGAIIIIAAAqUX8C11byvLlF6iGADnq5oPKb7trbp4npd5nTRLULfYpQnDvtoXoIPUvh1bIoAAAggggED3BA7Rrn3FaJPuHYI9pywwv/Y3WvmLspgSlcU04Xle5nXSLHSQ0tRkX58I0EHiBwEBBBBAAAEE8iawnirkF8Dun7eKUZ+mAkO0xn3KR4qfG3M87Xlelnahg5S2KPvrQweJHwIEEEAAAQQQyJPAYqqMn1E5IU+Voi4tCwzVFvtW4uluFTpI3ZIt8X7pIJX45NN0BBBAAAEEciYwq+ozXLlN6ZezulGdfAoE1UFiFLt8/pBRKwQQQAABBBBAoBcC/t3wasUdox0Vvy+HgkCpBD5XqtbSWAQQQAABBBBAAIFGAqdr4ZqVvNNoRZYhgAAC3RTgFrtu6rJvBBBAAAEEEEgicIRWmqIMS7Iy6yAQEwjqFrtYu5jsoQAdpB7ic2gEEEAAAQQQ6LOhDDyc97ewQKANATpIbaCxSWMBOkiNfViKAAIIIIAAAt0TWFK7Hq8c071DsOfABeggBX6Ce9E8Oki9UOeYCCCAAAIIIDC7CJ5V/qQweBc/D+0KBNVB4v8I7f4YsB0CCCCAAAIIIFBsAY9Ud43i5452UfwiUQoCpRdgFLvS/wgAgAACCCCAAAIlFThb7V5ZWUN5r6QGNBsBBHIqwC12OT0xVAsBBBBAAIFABfy80WRlnUDbR7OyFQjqFrts6ThaPQE6SPVkmI8AAggggAACaQtsph36BbB7pL1j9ldaATpIpT313Ws4HaTu2bJnBBBAAAEEEPiPwLKa9Atg/c4jCgJpCdBBSkuS/UwXoIM0nYIJBBBAAAEEEOiSwBza7wvK9UrfLh2D3ZZTIKgOEqPYlfOHmFYjgAACCCCAQLkE+qu51ykejGFX5WOFggACNQQYxa4GCrMQQAABBBBAAIHABM5Ve5ZRPGLdhMDaRnMQSFWADlKqnOwMAQQQQAABBBDIncAJqpGvGg1TXsld7agQAgggUEOAZ5BqoDALAQQQQAABBDoW+LL24BHr/CJYCgLdEgjqGaRuIbHf1gToILXmxdoIIIAAAggg0FzgC1rFzxwd3HxV1kCgIwE6SB3xsXEtATpItVSYhwACCCCAAALtCsytDUcqV7e7A7ZDoAWBoDpIjGLXwplnVQQQQAABBBBAoAAC/mX1BmWcsmcB6ksVEciVAIM05Op0UBkEEEAAAQQQQKBjgfO1h0WUocqkjvfWnR3Mo93up6ynzKgMVy5QHlAoCPRUgCtIPeXn4AgggAACCCCAQKoCP9XevqZso7ya6p7T29nG2tWzys7KQ8qtijt09ysnKxQEEECgD88g8UOAAAIIIIAAAp0KfEU78Ih1X+10R13cfnHt2wNHnKZU/6F+M83zO5q+o1CKJRDUM0jFog+3tnSQwj23tAwBBBBAAIEsBFbRQT5QjsriYB0c47fa9u4G239fy15T+jVYh0X5E6CDlL9zUvga0UEq/CmkAQgggAACCPRMYD4d2S+APadnNUh+4BFadZ8Gq8+lZR8rqzZYh0X5Ewiqg1R9aTN/3NQIAQQQQAABBBBAoJ6ABzi4UXlZObTeSjmaP7vq8nqD+rypZb5N0OtREOiJAB2knrBzUAQQQAABBBBAIBWBi7WXeZXtlMmp7LG7O3lRu1+xwSGW1zLfXuf1KAggUGIBbrEr8cmn6QgggAACCLQpcIa284AHjTocbe66a5v5KpefMfKtdLXK1Zp5b60FzMu1QFC32OVaukSVo4NUopNNUxFAAAEEEEhBYCftw7eibZ3CvrLchW8JfFB5Qlk9duC5NX2h4oEmPOAEpVgCdJCKdb4KUVs6SIU4TVQSAQQQQACBXAgMVS0mKj/IRW1ar8RgbXKN4sEYXlKeUqYoTytrKpTiCdBBKt45y32N6SDl/hRRQQQQQAABBHIhsKBq4RfAnp6L2nRWiaW1+TeV/ZRhCkN7C6GghQ5SQU9cnqtNBynPZ4e6IYAAAgggkA+BmVWNR5W7lP75qBK1QOATgaA6SJ/jpCKAAAIIIIAAAgjkXqCvavh7ZTZlE8W3pFEQQKALAnSQuoDKLhFAAAEEEEAAgZQFTtL+NlbWVvyuIAoCCCAQtAC32AV9emkcAggggAACHQkcoK09Yt3mHe2FjRHonkBQt9h1j4k9tyJAB6kVLdZFAAEEEECgPAL+HWGycmB5mkxLCyhAB6mAJy3vVaaDlPczRP0QQAABBBDIXmBRHfJ15SfZH5ojItCSAB2klrhYOYkAHaQkSqyDAAIIIIBAeQQGqqlPKn9VeGa8POe9qC0NqoM0Q1HPAvVGAAEEEEAAAQQCFfDvZ1cqA5SvKVMVCgIIZCTAXyQyguYwCCCAAAIIIIBAQoGfab11lTWVtxNuw2oIIIBAUALcYhfU6aQxCCCAAAIItC1wqLb0O442ansPbIhA9gJB3WKXPR9HrCVAB6mWCvMQQAABBBAol8CX1Fx3jr5TrmbT2gAE6CAFcBLz1gQ6SHk7I9QHAQQQQACBbAWG6HB+Aezx2R6WoyGQigAdpFQY2UlcgA5SXINpBBBAAAEEyiUwSM19WvmLwgBa5Tr3obQ2qA4S/ycM5ceSdiCAAAIIIIBAEQX6qdJ/UD5WdlI+UigIINBDAUax6yE+h0YAAQQQQACB0gucIYHVlaHKu6XXAAABBBCoCHCLHT8KCCCAAAIIlE/gSDX5Q2X98jWdFgcmENQtdoGdm8I2hw5SYU8dFUcAAQQQQKAtgY21lV8Au1dbW7MRAvkSoIOUr/MRRG3oIAVxGmkEAggggAACiQSW1lpvKUcnWpuVEMi/AB2k/J+jwtWQDlLhThkVRgABBBBAoC2BwdrqeeVGpW9be2AjBPInEFQHiVHs8vcDRo0QQAABBBBAIEwBD471R2Wi8nXFI9dREEAgZwKMYpezE0J1EEAAAQQQQCBYgV+pZSsoHrHugzZbOUDb7a1spcyljFI8TPg1Ch0uIVAQQCAMAW6xC+M80goEEEAAAQTqCRyrBZOUteutkGD+YlrHL5Qdq5ylHKFcoLizdZsyUKEg0AuBoG6x6wUgx/ysAB2kz5owBwEEEEAAgVAEtlRDpim7dtAg3/XzhHKHMqhqP4vp+3PKFVXz+YpAVgJ0kLKSLtFx6CCV6GTTVAQQQACBUgksr9b6BbCHddjq3bX928ocdfbjl81+pHyhznJmI9BNgaA6SAzS0M0fFfaNAAIIIIAAAmUW8DNCf1JuV37WIcQm2v5mZXyd/Tys+U8pXo+CAAIdCNBB6gCPTRFAAAEEEEAAgToC/TX/OsUdGl/96bTMrh2Ma7ITL/d6FAQQ6ECADlIHeGyKAAIIIIAAAgjUEfid5i+hbKN4WO9Oy4vawUoNdtJPy1ZQvB4FAQQQKLwAzyAV/hTSAAQQQACBgAU8QIKvCCUtJ2nFCYqfC0qrrKEd+RmjL9XZ4YGa/47iF9FSEMhaIKhnkLLG43i1Begg1XZhLgIIIIAAAr0U+IYO/ojiEejcOXlc+ZbSV6lXttUCr79jvRU6mH+2tn1L2UmJ7gKaUdMeAGKK4vcjURDohQAdpF6oB35MOkiBn2CahwACCCBQOIHzVeMPlJOVYcr6yo+V95TLlFqdJN8C975ykNKN4k7RcYpv2RuvDFdcxzeUPRQKAr0SoIPUK/mAj0sHKeCTS9MQQAABBAon4KtE7ujUukVuRc33cNu+pS1e5tWXUUoW7yKaU8fZUdlf2VqZWaEg0EsBOki91A/02HSQAj2xNAsBBBBAoJACHi772AY1P1zLRsSWD9D0/cq/FE9TECibAB2ksp3xDNpLBykDZA6BAAIIIIBAAoFZtc7HytAG6/plrF5nnso6l+vzZcVXkSgIlFEgqA6SR2WhIIAAAggggAACCHwq4OGyXTzoQb0SLfO6pykemGFdZaxCQQCBggtEI6AUvBlUHwEEEEAAAQQQSEXAzxe9pGzUYG9e9priTtEhym6KR7ijIIAAAgikJMAtdilBshsEEEAAAQRSEPAzRq8ri9bY14KaN0Y5V5mgHKFQECi7QFC32JX9ZOal/XSQ8nImqAcCCCCAAAJ9+vgRhFsVXyXaR1lEWVj5H+UV5T5ltHKWQkEAgT596CDxU5C6AB2k1EnZIQIIIIAAAh0J9NfWxyrjFA/I4LypnKI8otyj+JdCCgII0EHiZ6ALAnSQuoDKLhFAAAEEEEhBwAMxDFGWUHxl6RplhDKXQkEAgU8FgrqC5P+jUxBAAAEEEEAAAQRqC0zT7Bcri3xL3WaK/7D5RmUeHwgggAACXRDgClIXUNklAggggAACKQp8XftyZ2mrFPfJrhAIRSCoK0ihnJSit4MOUtHPIPVHAAEEEAhZYC01bpJycMiNpG0IdCBAB6kDPDatLUAHqbYLcxFAAAEEEOi1gEev82h2P+t1RTg+AjkWCKqDNEOOoakaAggggAACCCDQS4FZdPCblaeVI3tZEY6NAALZCTBIQ3bWHAkBBBBAAAEEiiPQV1W9XJlZ2VCZqlAQQKAEAnSQSnCSaSICCCCAAAIItCxwqrYYpvj5o/Etb80GCCCAAAIdCfAMUkd8bIwAAggggECqAt/T3nzFaJNU98rOEAhXIKhnkMI9TcVqGR2kYp0vaosAAgggEK7Aemrah8r+4TaRliGQugAdpNRJ2SEdJH4GEEAAAQQQ6L3A4qrCOOWk3leFGiBQKAE6SIU6XcWoLB2kYpwnaokAAgggEK7ArGracOU2pV+4zaRlCHRFIKgOEsN8d+VnhJ0igAACCCCAQIEE/PvQ1Yo7Rjsq0xQKAgiUVIBR7Ep64mk2AggggAACCEwXOF1Ta1byzvS5TCCAAAII9EyAW+x6Rs+BEUAAAQRKLnCY2j9F8ZDeFAQQaE8gqFvs2iNgq7QF6CClLcr+EEAAAQQQaC7gF8C6c7R381VZAwEEGgjQQWqAw6L2BOggtefGVggggAACCLQrsKQ29Atgj213B2yHAALTBeggTadgIi0BOkhpSbIfBBBAAAEEmgvMrlWeVf6kMGBVcy/WQKCZQFAdJP6j0Ox0sxwBBBBAAAEEQhLwSHXXKL61bhflI4WCAAIITBco4yh2g9X62ZQByvvK28oHCgUBBBBAAAEEwhc4R01cSRmqvBd+c2khAgggUFtgVc0+T3ld+bhGXtC83yhzK70o3GLXC3WOiQACCCBQNoGj1eDJyjplazjtRaDLAkHdYtdlq1zs/keqRdQpeknT9yk3K1cqtyj/Ul5VvM4byq5K1oUOUtbiHA8BBBBAoGwCm6nBU5U9ytZw2otABgJ0kDJATusQO2pH7vi4I7Rag5321bIvKQ8qXj/rvyzRQRI6BQEEEEAAgS4JLKv9+gWwR3Zp/+wWgbIL0EEq0E/AZaqrb5/z80ZJip9Pelc5N8nKKa5DBylFTHaFAAIIIIBATGBOTft3gesU/0GUggAC6QsE1UEKfRQ7P4T5T2Vywp+Dt7TeE8qCCddnNQQQQAABBBDIr0B/Ve1axX/83E3xXSIUBBBAoKFA6B0kP1u0uuL/QCYpvoLkTtUzSVZmHQQQQAABBBDItYDvCFla2UaZkOuaUjkEEEAgI4Hor0U36nhrNTimL7mvr3jABj/Aua6SZeEWuyy1ORYCCCCAQBkEjlcjJyprlqGxtBGBHgsEdYtdjy27fnh3fA5R/J4jX1Z/Rblf+ZNyReXTt+CNUbx8ivI9JetCBylrcY6HAAIIIBCywJfVuGnKziE3krYhkCMBOkg5OhlJqzJEK7pDNFpxRyged56eV05TFlZ6Uegg9UKdYyKAAAIIhCjwBTXKL4D9foiNo00I5FQgqA7S53KKnHa1XtQOv17Z6SB9zqbMqPjFsR72M+0yj3b4K8U/LEnK3ElWYh0EEEAAAQQQaCjgf0/9rkO/3uP0hmuyEAEEEKgjUJYOUrz5HsnG6WaZpJ37qlTSDtKASmU8mMSHlWk+EEAAAQQQQCC5gP/NvUEZp+yZfDPWRAABBMot0GzUvn7i8Uh2vrqUZfm2Dubb/mbJ8qAcCwEEEEAAgYAELlVb/Kzx/AG1iaYgUBSBoG6xa9ZhKMpJaVTPebXwKmW84itHdyr1RqlbsbLeEfqkIIAAAggggEAxBE5RNb+qeDjvV4tRZWqJAAII9EZgoA47SvHVGT9r5PcbfaR4ZJuTlOqyimZ43WOrF3T5O1eQugzM7hFAAAEEghX4ilrmf9fdQaIggEBvBIK6gtQbwuyO6ncguMNznDKr4uIXxz6ueH71A5x0kIRCQQABBBBAoCACq6qeHo32gILUl2oiEKoAHaQCndnbVdexSvVgFB7F7i7FnaTDlKjQQYok+EQAAQQQQCDfAvOpen7m6Pf5ria1Q6AUAkF1kKo7DqGdwQXVoLuVqVUN8+12W1eWnarPl5SrFQoCCCCAAAIINBbwyKt+1me1ymoP6dNDa3drFFYP3e3b6JZS/H6jvyk+5o2Kb6PfW6EggAACCCQU8HsQ3lbqjUrnDpT/4zpR8cANXEESAgUBBBBAAIE6Amtp/gjlXeU2xXdquNPygrKGknb5lnbo/ftKkTth9yn+o+drysuK3ztIQQCB3gsEdQWp95zdrcEPtPvoWaMF6hxqGc2PXhh7dGX9Y+us263ZDNLQLVn2iwACCCCQlsDS2pHvwDhfiZ7r9b79AvaLlbeUJZS0il/wPkX5rjJDbKc+vjtJw5X+sflMIoBA7wToIPXOvuUj+8qR/wPqTpJHuNlFqVV85cj/Yfd6znFKloUOUpbaHAsBBBBAoB2BP2ojXzXqW2Njz/Otb36tRhrFv2z5KpH/cBkvO+uL/z3fVXlD2VehIIBA7wXoIPX+HLRUg4Fa+0xlhNJoCFD/1cu35NFBEgIFAQQQQACBmICfO5qkbBGbVz3p55ImKGk837yh9vOhEr9SNVTffUu87w5x8Ui07rBREECg9wJ0kHp/DtquQfwSfb2d+D/AK9Zb2KX5XEHqEiy7RQABBBBIRWBB7cV/QFyywd6Wrawzb4N1ki7aXSv6GaOoLKQJvwD2jGiGPvdTnop9ZxIBBHonEFQHKY2/8vTuVLR+ZL8ktll5sNkKLEcAAQQQQKBkAuPVXj/3s4jy7zpt9zI/M+Rb1jstfjZ4bmUmxbfv3aQ8pxymRMXHGxt94RMBBBBISyDJFZW0jsV+EEAAAQQQQKCYAr617a/K/g2q72W3Kr41rtNyt3bgY/6PcpnigSB8m7w7YC6+fX5PxSPbURBAAAEEAhTgFrsATypNQgABBAITWFXt8XNIJynxO1D66/upip8/WklJq3j0OneIPlCWi+10Lk3frjyrzBybzyQCCPROgFvsemfPkRFAAAEEEECgRwKP6rh+Yauv6Oyh3Km4bKT4VrjtlSeUtIrfteQ7XTxAxO+VR5Q5lE0VD7zkASPcKaMggAACqQpwi12qnOwMAQQQQACBoAVuUes86uvPFA/a8JHiq0cevCHNEeXW0f7OUw5WfPXoRsWdMD+btLeymuJOEgUBBBBAIFCBb6td/odmlkDbR7MQQAABBBBIKrCoVnRHyB0vCgIIFEMgqFvsuIJUjB86aokAAggggEAZBDz4ggdeeEI5ugwNpo0IIJA/ATpI+Tsn1AgBBBBAAIEyCvh3kisV/yV6B8XDilMQQACBzAXio9BkfnAOiAACCCCAAAIIVAT8XJOfPVpLebsyjw8EEEAgcwE6SJmTc0AEEEAAAQS6KuAXq/pWtfe6epR0d36IdneQsrnyfLq7Zm8IIIAAAkUUYJCGIp416owAAgjkS2AFVedaxS9Y9cA/bykeCW4BJc9lmCrn9x19J8+VpG4IINBQIKhBGhq2lIWZCdBByoyaAyGAAAJBCmymVvmdQB7gYFvFw2DvojygvKZ4qOw8Fg8Z/qZyQh4rR50QQCCxAB2kxFSsmFSADlJSKdZDAAEEEKgWmEMzxiu1hsX2rfS+qvSk0k/JU5lNlXla8buVGDQqT2eGuiDQugAdpNbN2KKJAB2kJkAsRgABBBCoK+Dnd0Yo9Z4rnlvLJil+vicvxZ21W5XhyqC8VIp6IIBA2wJBdZD4i03bPwdsiAACCCCAQC4EhqoWdyj1hsUep2UPKWsqeSlnqCKrK1sr7+alUtQDAQQQsEC9vzahgwACCCCAAALFEPDVmHqdo6gF0zSRlz+KHqG6eECGjRVf+aIggAACuRLIy38sc4VCZRBAAAEEECiQwKOq64aKh/euVfyszxqK1+t12UQVOEnZR7m715Xh+AgggAAC+RXgGaT8nhtqhgACCORdYD5V8H3lsBoVdafpAuUFxc8I9LIsrYO/pRzTy0pwbAQQ6IpAUM8gdUWInbYsQAepZTI2QAABBBCICeysab9L6HxlLWVBxVeVPEKcn/Hp9fNHg1UHvwD2RqXelS4toiCAQEEF6CAV9MTludp0kPJ8dqgbAgggUAyB9VXNe5WPFL8o1h2mm5RllV4WP+/8N+VxZWAvK8KxEUCgawJ0kLpGW94d00Eq77mn5QgggEDaAr5as6SSl87Ib1WXscoiCgUBBMIUCKqDxCh2Yf6Q0ioEEEAAgfIK+DkfJw/FzxvtqWygjFIoCCCAAAIIJBLgClIiJlZCAAEEECiQwJaq6zRl1wLVmaoigEB7AkFdQWKY7/Z+CNgKAQQQQAABBOoLLK9FVylHKZfXX40lCCCAQP4E6CDl75xQIwQQQAABBIosMJcq/yflNuWnRW4IdUcAgXIK0EEq53mn1QgggAACCHRDwLfZXKeMV/ZQPJoeBQEEECiUAIM0FOp0UVkEEEAAAQRyLeAR65ZQ1lAm5rqmVA4BBBCoI0AHqQ4MsxFAAAEEEECgJYETtPZOit/HNKalLVkZAQQQyJEAHaQcnQyqggACCCCAQEEFtlW9PSDDzsrDBW0D1UYAAQQ+EeAZJH4QEEAAAQQQQKATgZW1sUeqO1S5ppMdsS0CCCCQBwE6SHk4C9QBAQQQQACBYgrMq2rfpNyonFHMJlBrBBBA4L8F6CD9twffEEAAAQQQQCCZwACtdoPi543+J9kmrIUAAgjkX4BnkPJ/jqghAggggAACeRS4UJVaQBmqTMpjBakTAggg0I4AHaR21NgGAQQQQACB1gXcmThQ8ShvMypPKRcof1eKVvwCWA/MsK4ytmiVp74IIIBAIwFusWukwzIEEEAAAQTSEdhCu3lG2VK5XblCmVn5q3KWUqSygyrrARl2Ux4vUsWpKwIIIIBAcQS+rar6beOzFKfK1BQBBBBAIKGAX5z6vnKy0rdqm/X0/T3l4Kr5ef26uio2QTkirxWkXggg0BOBz+uo/l32iz05OgcNUoAOUpCnlUYhgAACnwj8Vv97VwOL/bXsTaV/g3XysMi3CI5WzslDZagDAgjkSoAOUq5ORxiVoYMUxnmkFQgggEAtgRc18zu1FlTmzaZP/+XVgx3ktcykivkFsPco/kWIggACCMQFguogMUhD/NQyjQACCCCAQPoCg7TLNxrs9h0tm6K4o5TH4tsCL1XmUNyJ+1ChIIAAAsEKMEhDsKeWhiGAAAII5ETg36rHKg3qsoKW+fY6r5fH8gtVajNla6VRRy+PdadOCCCAAAIFFeAWu4KeOKqNAAIIJBA4QOu4YzF/nXX/qPm+dS2PZVdVapri0fcoCCCAQD2BoG6xq9dI5mcrQAcpW2+OhgACCGQp4KtDdyvPKl+KHXhBTV+meBS7FWPz8zK5tiriF8AWZYS9vLhRDwTKKEAHqYxnvcttpoPUZWB2jwACCPRYYKCOf7HykTJOGVGZfkKfqyl5KwurQq8pP89bxagPAgjkUoAOUi5PS7ErRQep2OeP2iOAAAJJBdzx2FnZS1lTqX4vkmb1vPidfH4B7J0Kgzn1/HRQAQQKIRBUB4n/8BXiZ45KIoAAAggEIvCy2nFVjtviDtvlyszKhspUhYIAAgiUSoAOUqlON41FAAEEEECgocCpWurnpPz80fiGa7IQAQQQCFSADlKgJ5ZmIYAAAggg0KLAgVr/+8oWigeUoCCAAAIIINAzAZ5B6hk9B0YAAQQQkMB6il8Auz8aCCCAQBsCPIPUBhqbIIAAAgggUBSBlVXRxRXfYvYvZbIScnFbr1M8Yt2vQm4obUMAAQQQKI4AV5CKc66oKQIIhCswTE17SvlYeUvxAAX+DPk9QIPUvuHKbUo/hYIAAgi0IxDUFaR2ANgmfQE6SOmbskcEEECgFYFNtbJvMfu14he4uni4632V95WfKaGVGdSgW5SnldlCaxztQQCBTAXoIGXKXY6D0UEqx3mmlQggkE+BAarWKKXeS1E31jK/4HWoElI5Q415U1kipEbRFgQQ6IkAHaSesId9UDpIYZ9fWocAAvkW2ErVm6DM2qCaf9GyXzZYXrRFh6rCvmLm2wopCCCAQKcCQXWQfHmdggACCCCAQJkFllHjn1Hea4DwgJYt22B5kRb5BbCnKPsp/yhSxakrAgggkIUAHaQslDkGAggggECeBT5Q5Zo9g+PlXq/oZSk14I/Kycr5RW8M9UcAAQQQCFeAW+zCPbe0DAEE8i/gK0MeuW71OlX1rSMvKb4trchldlXeL4C9WeEPpEU+k9QdgfwJBHWLXf54y1kjOkjlPO+0GgEE8iNwtaoyXJmvqkoe+vpC5VXFQ2IXtXxOFb9DeVJp9KxVUdtHvRFAoLcCQXWQ/B9MCgIIIIAAAmUX8B+qPOS1O0nnVT7dWdpDmVf5svKuUtRytiq+kjJUea+ojaDeCCCAAALlEeAKUnnONS1FAIH8CvRX1fzeo78rvqXuUeVUZR6lyOVIVX6ysk6RG0HdEUAg1wJBXUHKtXSJKkcHqUQnm6YigAACGQpsrmNNVXwljIIAAgh0SyCoDhIPaXbrx4T9IoAAAggg0FuB5XR4P1t1rHJpb6vC0RFAAIHiCNBBKs65oqYIIIAAAggkFZhTK3q0ur8pJyfdiPUQQAABBBjmk58BBBBAAAEEQhPws1TXKh5UYjfFQ5hTEEAAAQQSCjCKXUIoVkMAAQQQQKAgAueqnksrHrFuQkHqTDURQACB3AjQQcrNqaAiCCCAAAIIdCzg5412VYYpr3S8N3aAAAIIIIBAjwQYxa5H8BwWAQQQCEhga7VlmrJzQG2iKQggUAwBRrErxnmilggggAACCJRGYEW19ArlCOWq0rSahiKAAAJdEGAUuy6gsksEEEAAAQQyFPCLbG9S/qycluFxORQCCCAQpAAdpCBPK41CAAEEECiJwAC183plnPKNkrSZZiKAAAJdFWCQhq7ysnMEEEAAAQS6KnCe9r6I4hHrJnX1SOwcAQQQKIkAHaSSnGiaiQACCCAQnIBfAPtVZT3l1eBaR4MQQACBHgnQQeoRPIdFAAEEEECgA4GvaFsPyLCj8mgH+2FTBBBAAIEqAZ5BqgLhKwIIIIAAAjkXWFX1+71yiHJtzutK9RBAAIHCCdBBKtwpo8IIIIAAAiUWmF9t94h17hidVWIHmo4AAgh0TYAOUtdo2TECCCCAAAKpCsyovd2gjFK+leqe2RkCCCCAwHQBnkGaTsEEAggggAACuRa4WLXzO4/WVCbnuqZUDgEEECiwAB2kAp88qo4AAgggUBoBvwB2K2Ud5fXStJqGIoAAAj0QoIPUA3QOiQACCCCAQAsCO2tdD8iwnfJkC9uxKgIIIIBAGwI8g9QGGpsggAACCCCQkYBfAHuRcrhys0JBAAEEEOiyAB2kLgOzewQQQAABBNoUWEjb3aj8Tvl5m/tgMwQQQACBFgXoILUIxuoIIIAAAghkIDCzjuHhvJ9TDs3geBwCAQQQQKAiwDNI/CgggAACCCCQL4G+qs5lyiBlE2WKQkEAAQQQyEiADlJG0BwGAQQQQACBhAJnar2NlLWVNxNuw2oIIIAAAikJ0EFKCZLdIIAAAgggkILAHtrH/sqXladT2B+7QAABBBBoUYBnkFoEY3UEEEAAAQS6JOB3HJ2neEjvW7t0DHaLAAIIINBEgA5SEyAWI4AAAgggkIHAojrG9cpZytkZHI9DIIAAAgjUEaCDVAeG2QgggAACCGQkMKuO43ccPaEcmdExOQwCCCCAQB0BOkh1YJiNAAIIIIBABgL+d/gK5fPKDspUhYIAAggg0EMBBmnoIT6HRgABBBAovcDPJOBnj9ZS3i69BgAIIIBADgToIOXgJFAFBBBAAIFSCnxPrT5I2Vx5vpQCNBoBBBBAAIE6At/W/I+VWeosZzYCCCCAQFgCw9ScD5V9wmoWrUEAgZIK+DZh/y77xRDazzNIIZxF2oAAAgggUCSBJVTZaxXfXvfbIlWcuiKAAAJlEEirg+Rb9ZZR+pYBjTYigAACCCDQpsBs2s4j1j2gHNPmPtgMAQQQQKCLAu10kL6m+vwmVqdtNP2m8owyWtlSoSCAAAIIIIDAfwv009erlY+UnSuf+qAggAACCBRZYHtV3vcXTlR8tch/CfOoO/6Pvd/6/U7lu28foCQX4Bmk5FasiQACCBRV4BxVfJyyeFEbQL0RQACBOgJBPYNUp411Zz+qJS8qK1XW2FOf7jD9tPJ9SOX7oZXvfCQToIOUzIm1EEAAgaIKHKaKT1bWL2oDqDcCCCDQQKC0HSTfjucrRyfFcK7UtDtIfn9DVJ7SxGXRFz4TCdBBSsTESggggEAhBTZRrf0C2L0KWXsqjQACCDQXCKqD1MozSLPKZkbltYqR76XeTBmvPFiZ5w+vYyQKAggggAACZRfwAEZ/UE5QLlIoCCCAAAI5F2ilg+Tni9wZim4P2FTTg5W/KH4GyWVVxfdW+zY8CgIIIIAAAmUWmEON94h1dyk/LjMEbUcAAQRCFjhTjfMtdX9X3lDcMRqmuHi40g+UacpyCiW5ALfYJbdiTQQQQKAIAn79xZ3K48rAIlSYOiKAAAIdCAR1i12rDr597hLFzyK9rnxXicodmpig7B7N4DOxAB2kxFSsiAACCBRCwC+A9S3pixSitlQSAQQQ6Eyg1B2kiM4I1S+F9ch2fk6J0roAHaTWzdgCAQQQyKvA0arYJGXtvFaQeiGAAAIpC9BBqoDOpM8VlWgEu1lShi7T7ugglels01YEEAhZwC9L94h1u4bcSNqGAAIIVAmUvoPk2wWiN4H7eaS7K0DX6fNEZUDlOx/JBeggJbdiTQQQQCCvAiuoYu8qR+a1gtQLAQQQ6JJAqTtI8wvVgzO4Y+T3HY1Uog7S9Zr2/P9T/KwSJbkAHaTkVqyJAAII5FFgLlVqhHKNUn0Leh7rS50QQACBNAWC6iC1Msy3Ec9SfGudh/peXnlEicrXNHGS4r+gfSOayScCCCCAAAKBC/gXA99F4Vdh7KH4j4UUBBBAAIGCCrTaQdpY7fylck+N9np47+OVdxQeTK0BxCwEEEAAgSAFPGLdEGUbxaO8UhBAAAEECizg9zQkLYO04mDl2QYbTNGy4ZX1GqzGIgQQQAABBIIQ8B8Gd1J8Z8WYIFpEIxBAAIGSC7RyBckPnvqdDkMbmLkT5VvsnmmwDosQQAABBBAIQWA7NeKHyp7KwyE0iDYggAACCPTp00oHyV63KN9SDlCq3ww+u+Zdosym3K5QEEAAAQQQCFVgZTXsMuUwxQMzUBBAAAEESirgTtAoxQ+g+lkjX1EarXgEuzcVz79QobQmwCh2rXmxNgIIINBLgXl1cP9beHkvK8GxEUAAgRwJBDWKXTuuHsr0XGWy4g5RFHeQDlT6KZTWBOggtebF2ggggECvBPwai/sr8TQFAQQQQKBPn9J3kKIfAneEhijrKAtEM/lsS4AOUltsbIQAAghkLuCrRr565KtIFAQQQACBTwWC6iA1G8VugNo8Q4Mz/6qWOS5+P1JUPJrd1OgLnwgggAACCAQgcIrasK2yrjI2gPbQBAQQQACBNgQe0zbRLXStfB7bxrHKvAlXkMp89mk7AggUQWAHVdLv+/PIdRQEEEAAgf8WKNUVpPvU9tf+u/2Jvr2QaC1WQgABBBBAIP8Cq6uKlyjfU27If3WpIQIIIIAAAsUX4ApS8c8hLUAAgTAF/IztaOWiMJtHqxBAAIFUBIK6gtTo+aJUtNgJAggggAACBRWYWfW+SXlR2aegbaDaCCCAAAItCjQbpGGw9tdfGa940IU5lSTDeH+g9RwKAggggAACRRToq0r7tro5lM2VDxUKAggggAACfaJBGtaoWPivaEkGa2CQhtZ+eLjFrjUv1kYAAQS6LXC6DvCuskK3D8T+EUAAgQAEgrrFrtkVpDt0wp5X3qqcuFv0OU9lutHHU40WsgwBBBBAAIEcC+yquh2kbKMMz3E9qRoCCCCAQA4EhqgOvs2uXvEzTcOUVeqtwPyaAlxBqsnCTAQQQCBzgbV1xEnKwZkfmQMigAACxRUI6gpSq6fBt9g1un3OL4v1LXi/anXHJV+fDlLJfwBoPgII5EJgEdXCr7b4RS5qQyUQQACB4ggE1UFqdovdUjovX4qdm1k1vZqyd2xeNOmrR9GVIw/qQEEAAQQQQKAoAgNVUY9Y51vEDytKpaknAggggED2AoN0yDGKrwolzftad3WFklyAK0jJrVgTAQQQSFvAf+DzC2D9zK1HraMggAACCLQmUKorSB7BZ2tl+YqRR/W5W7mu8j3+8ZG+TFAeUUbFFzCNAAIIIIBAjgXOUt18t4SfP+IOiByfKKqGAAII5FHzxlTmAABAAElEQVTgDFXqq3msWMHrxBWkgp9Aqo8AAoUV2Es193v+NilsC6g4Aggg0HuBoK4g9Z6TGliADhI/BwgggED2AuvrkH4B7H7ZH5ojIoAAAkEJBNVBajZIQ60zt5Fm7qHMo3jUOr9tvLpcpBkXV8/kOwIIIIAAAjkRWFz1uFbxiHW/zkmdqAYCCCCAQA4EWu0g7aQ6X5Wg3v9IsA6rIIAAAggg0AuBQTrozYqfmT2qFxXgmAgggAAC4Qg8q6Z4lDq/ZXx+pV+d1LqqpFUpdQS4xa4ODLMRQACBlAX879YtytPKbCnvm90hgAACZRUI6ha7Vk7iLFrZI9VxK0IrasnWpYOUzIm1EEAAgU4FztQO3lSW6HRHbI8AAgggMF0gqA5SK7fYTRSBh/3+YDoFEwgggAACCBRH4BBV1QMybKq8UJxqU1MEEEAAgTwL+EV6oxW/VI+SngBXkNKzZE8IIIBALQEPMDRF2bvWQuYhgAACCHQkENQVpFYlPHKd3zTukX/8Ur1FlDlrxKPbUZIL0EFKbsWaCCCAQKsCS2mD8coJrW7I+ggggAACiQRK3UG6X0TvKB83yXFaTkkuQAcpuRVrIoAAAq0IzK6VPcCQR63j7odW5FgXAQQQSC4QVAeplWeQTPSoMiaBlUcHoiCAAAIIINBLAf8bd43il8F+XfFAQxQEEEAAAQQaCrTaQfLDrRQEEEAAAQSKIHC2KrmSMlR5rwgVpo4IIIAAAr0XaLWDlKTGfsfEXMrYJCv3YJ3BOqbffTFA8Tud3lYYmU8IFAQQQCAggSPUlv9RNlReCqhdNAUBBBBAoMsC7XSQtledvqa4k9G/Uj+/GNb78uAMSyp+V9JxSl7KqqrId5VtlblrVOpFzbtD+aEyrsZyZiGAAAIIFEdgc1X1JOWbyn3FqTY1RQABBBAoooD/sWk2QMNzWsedqLyUH6kiUZ39V0T/Y+mHda9UblH+pbyqeJ03lF2VrAuDNGQtzvEQQCBUgeXUMA8mdEyoDaRdCCCAQA4FghqkoVVfD77gf3j2UBZQfE/3/ypLK34A1sOo/krJS9lRFXHHxx2h1RpUylfAvqQ8qHj9dZQsCx2kLLU5FgIIhCowpxrmF8Beq/i/6xQEEEAAgWwEguogtfIPiJ8tmqhcp+xcsfZtaRMU37rm4lvZHlLWVtzZ6HW5TBVwXZZXJieozGCt46tMlyv7Jli/3irzacFFin9YkpT5tdKyykCF56GSiLEOAggg8N8C/fXV/yYNUtZV/G8TBQEEEEAgGwH/zuvftX2R4Z/ZHLJ7R2nlGST/8u5/gO6KVecZTW8T++5hwJ9TtlPy0EFaSfXwSUrSOdJqfd5SnlAW9JcOiq+s3aMk7SCtonXdQaIggAACCLQncK42W1oZqtA5as+QrRBAAAEE2hDwAAZnx7Y7QNO+JW3e2LxbNe3bG/JQblMlnlbcsUtSfAXpXeVnSVZOcZ1va192nCXFfbIrBBBAoCwCft7IdzisWZYG004EEEAgZwK+KODfZb+Ys3plUp3bdZSXlbUqRxumT2N8p/J9Vn36L3cXVb73+mM3VcD1u1GJ6lyrTr7VcH3FAzZMVXx7RpaFDlKW2hwLAQRCEthajfF/t3cOqVG0BQEEECiYQKk7SL4V7EPFbyN3J2IGxQ/ETlKuV15X3CHZU8lDccfnEMXP9bheryj3K39Srqh8+ha8MYqXT1G+p2Rd6CBlLc7xEEAgBIEV1Qjf0nx4CI2hDQgggECBBUrdQfJ520j5i7K0v6h4dLiog+FOxu8Vd5zyVIaoMu4QjVZcx3jceXpeOU1ZWOlFoYPUC3WOiQACRRaYR5UfqVxV5EZQdwQQQCAQgdJ3kGqdR49w546SOyJ5Lx7hyB2hpZTZclJZOkg5ORFUAwEECiEwQLW8T3lAmakQNaaSCCCAQNgCQXWQWhnFrtFpnaaFjzRaIUfLPAiDQ0EAAQQQKKbAear2IopHrPPgDBQEEEAAAQRSE0irg5RahdgRAggggAACDQRO1LKvKusprzZYj0UIIIAAAgi0JdBqB+k3Osq8CY50pdZxKAgggAACCKQl4I7RkcoOyqNp7ZT9IIAAAgggEBdotYO0qTZePL6DGtOvaN4/asxnFgIIIIAAAu0KrKoNL1UOVa5rdydshwACCCCAQNoCHtTAL1ONZ059X1nZTfEw31m/ZFWHLHxhkIbCn0IagAACXRSYX/v2H9/cQaIggAACCORPIKhBGtLm9XuSPIT2tmnvOPD90UEK/ATTPAQQaFvAo9R5tDqPWufR6ygIIIAAAvkTCKqDlPb7ih7T+XpJ8a14FAQQQAABBDoVuEg78DuPtlcmKxQEEEAAAQS6KtDqM0jNKuO/7vmWO/9jRkEAAQQQQKATgZ9q462UdRTfwk1BAAEEEECg6wKtdpBmVI361qiV9zO3cqIyUHlIoSCAAAIIINCuwC7a8PuKrxw92e5O2A4BBBBAAIFuC7yoA/gZo0Z5Qcs9mAMluQDPICW3Yk0EEAhfYE010S+A9Yh1FAQQQACB/AsE9QxSq1eQ7tL5ea7GOfpI895VnlD8hvN3FAoCCCCAAAKtCiykDW5Qzld+3urGrI8AAggggAACYQhwBSmM80grEECgM4FZtPmjit+l17+zXbE1AggggECGAqW+gjSXoD1C3cKK/yF7VhmuPKNEowv5H7ULlF8p/1QoCCCAAAIINBPw862/VwYpmyhTFAoCCCCAAAK5FfDgDH5Bn//BqvX80Zuav7vicqAyTfHLYynJBLiClMyJtRBAIFyBM9S0t5Xlwm0iLUMAAQSCFQjqClKSs+S/5vl2B3eM/JyRn0PyP2QeXeiXyl8VXz3y8puUccpvFUpyATpIya1YEwEEwhPYQ02aqmweXtNoEQIIIFAKgVJ1kDwane8Hd+fnD4rfaF6rrKCZ/1K83gSF9yAJoYVCB6kFLFZFAIGgBNZVa/xHNt99QEEAAQQQKKZAqTpIh+kcudPjK0a13n8UP4XbVdb1iHZD4guYbipAB6kpESsggECAAoupTX4BLKPVBXhyaRICCJRKoFQdJA/b7eeJ5khwih/ROtF7ko5JsD6r/EeADtJ/LJhCAIFyCMyqZvoFsHcorb5yohxCtBIBBBAojkBQHaQZGrj7itFSygPK+AbredF6yirKdxVfQVpWoSCAAAIIIFBLwP/2XKH4H9QdFD9/REEAAQQQQCAXAo3+ajdANfTodU8nqOk9WmcB5TXFAznMrlAQQAABBBCoJfAzzVxHWUt5u9YKzEMAAQQQQKBXAo06SJNUqTeVLySsnDtHCynuHL2ccBtWQwABBBAol4AHYzhI2Ux5vlxNp7UIIIAAAkUQaHSLnevvF736fUZJb5nbxRup3PfpB/+LAAIIIIDAdIFhmvKADL4d+87pc5lAAAEEEECgQAJbqa4exc7PIc3cpN6ra7mvOr2u+NY8SnIBBmlIbsWaCCBQTIElVG3flfCTYlafWiOAAAIINBAIapCGBu2cvugSTbmTNErZVRmsRMUDOSyqnKb4PRZjlVUVSmsCdJBa82JtBBAoloDfqefnWf+s9CtW1aktAggggEACgdJ1kHw16DzFnaQo/ivgs8rE2LwRmvaod5TWBeggtW7GFgggUAwBd4huU4Yrg4pRZWqJAAIIINCiQOk6SJHPME1cqnjI76ij5CG9/62crMyvUNoToIPUnhtbIYBA/gXOURXHKYvnv6rUEAEEEECgTYHSdpDiXrPqi0esMwalcwE6SJ0bsgcEEMifwKGqkm+/Xj9/VaNGCCCAAAIpCtBBShGTXX0qQAeJnwQEEAhNYBM1aIqyV2gNoz0IIIAAAp8RCKqD1GyY78+0nhkIIIAAAgg0EVhGy/+gnKxcpFAQQAABBBAojAAdpMKcKiqKAAIIFEJgDtXyZuUu5fhC1JhKIoAAAgggEBOggxTDYBIBBBBAoCOB/tr6j8oEZTfFA/lQEEAAAQQQKJTA5wpVWyqLAAIIIJBngV+qcsspayrv57mi1A0BBBBAAIF6AnSQ6skwHwEEEECgFYEjtfKeygbKKIWCAAIIIIBA6QRmUotXVNaqtHyW0gmk12BGsUvPkj0hgED2AlvpkFOVXbM/NEdEAAEEEMiBQFCj2LXjuYg2ulrxveV+Yezdist1yonKAH+htCRAB6klLlZGAIEcCayguryrHJ2jOlEVBBBAAIFsBUrdQZpf1m8o7hg9pYxUog7S9Zr2/P9TZlQoyQXoICW3Yk0EEMiPwNyqygjFQ3r3zU+1qAkCCCCAQMYCQXWQWh3F7ixh+9Y6vxV9eeURJSpf08RJiv+a+I1oJp8IIIAAAkEK+B9D3znwpuJnj/wHMgoCCCCAAAKFF2i1g7SxWuxRiu6p0fJpmud3XryjrF1jObMQQAABBMIR+K2asriyrTIxnGbREgQQQACBsgu0MordIGENVp5tgDZFy4ZX1muwGosQQAABBAoscKzqvpPiuwnGFLgdVB0BBBBAAIHPCLRyBckP4b6mDP3MXv4zw50o32L3zH9mMYUAAgggEJDAdmrLjxTfVvdwQO2iKQgggAACCHwi0EoHyRvconxLOUAZqMTL7PpyiTKbcnt8AdMIIIAAAkEIrKxWXKYcoVwTRItoBAIIIIAAAh0KuBM0SvHDuH7WyFeURisewc4P6nr+hQqlNQFGsWvNi7URQCB7gfl0SP/3//LsD80REUAAAQRyLhDUKHbtWM+ljc5VJivuEEVxB+lApZ9CaU2ADlJrXqyNAALZCvjVDfdX4mkKAggggAACcYHSd5AiDHeEhijrKAtEM/lsS4AOUltsbIQAAhkJ+KqRrx7Nm9HxOAwCCCCAQLEEguogNRvFboDOzQwNzs+rWua4+P1IUfFodlOjL3wigAACCBRW4GTV3EN5r6uMLWwrqDgCCCCAAAIpCTym/US30LXyeWxKxy/LbriCVJYzTTsRKJbAjqqu/9jlkesoCCCAAAII1BMo1RWk+6TggRhaLS+0ugHrI4AAAgjkSmAN1eZi5fvKDbmqGZVBAAEEEEAAgeAFuIIU/CmmgQgUSmBB1Xa0clGhak1lEUAAAQR6JVCqK0iNkPtr4XKKR7XzrXjjFQoCCCCAQLEFZlb1b1ReVPYpdlOoPQIIIIAAAtkIzK/D3KpUD/M9QvP2zaYKwR2FK0jBnVIahEAhBfqq1n4BrDtH/uMXBQEEEEAAgSQCpb6CtJqE/qR4qNfblaeU95WFlE2UXyvLKocoHtSBggACCCBQHIGfqaqbKn59wxvFqTY1RQABBBBAoHcCl+nQbymr16iCe47nKO4YeThYSnIBriAlt2JNBBDojsBu2q1HrNuyO7tnrwgggAACAQsEdQWplfPkF8O+qfygwUZeZ4xycoN1WPRZATpInzVhDgIIZCewtg41STk4u0NyJAQQQACBgASC6iA1egls9TnzS2UHKqOrF8S+T9P0SGXx2DwmEUAAAQTyK7CIqna98hvljPxWk5ohgAACCCCQjUArHSQPyvCAspdSb7tFtWwV5S6FggACCCCQbwH/0esmxc+THprvqlI7BBBAAAEE8imwtKo1VvFADUMVX05z8bCw2yrPKg8p8ylzxjKTpin1BbjFrr4NSxBAoDsC/kOXh/N+XpmjO4dgrwgggAACJREI6ha7Vs/Zw9pgguKBGBzfUvdO7Hs0v/rzSK1DqS9AB6m+DUsQQKA7Amdptx50Z5nu7J69IoAAAgiUSCCoDpKfK2ql+Ba7l1rZoLKuryxREEAAAQTyIfBNVWM/xSPW8d/nfJwTaoEAAggggAACMQGuIMUwmEQAga4KrK+9f6i4g0RBAAEEEEAgDYGgriDVG2whDSj2gQACCCCQL4Ehqs61ypmKX+xNQQABBBBAAIEqgVZvsfPmsyp+UexCit97VKs8ppmP11rAPAQQQACBnggM0lE9Yt0jyv/2pAYcFAEEEEAAgQIItNpBGqY2Xa3M06Rtx2s5HaQmSCxGAAEEMhLwH7OuUnzXwE6KB9ihIIAAAggggEANgVY7SL/RPtw5ukBxB+hdpVbxFSQKAggggEA+BE5XNfxqhrWUd/JRJWqBAAIIIIBA8QX8QkEP331R8ZuSuxYwSEPuTgkVQiAYge+pJR6UwXcAUBBAAAEEEOiGQFCDNLRyBekDaY5XxnVDlX0igAACCKQusJH2eJqyr/KP1PfODhFAAAEEEECgz8UyeE3pj0WqAlxBSpWTnSGAgASWUvxHrZPQQAABBBBAoMsCpb2CZFe/N+NW5Q7lfGWUUuth35cqy/RBQQABBBDIWGCwjnezcp9yTMbH5nAIIIAAAgiUSmBBtfafip9FapTjtJySXIArSMmtWBMBBBoL+NZp/xHrScWvZaAggAACCCDQbYFSX0G6SLprK8OVuxXfvlGr3FVrJvMQQAABBLoucLaOsJLiUeve6/rROAACCCCAAAIlFnDPcILiWzYo6QpwBSldT/aGQFkFDlPDJynrlBWAdiOAAAII9ESgtFeQPhK3nze6rSfsHBQBBBBAoJHA5lr4E+WbCn/IaiTFMgQQQAABBBoI+K3qSctUrehhYjdVWtku6f5ZDwEEEECgPYHltNnVygnKpe3tgq0QQAABBBBAoB2BhbXRSOXPypbKssqcNTKT5lGSC3CLXXIr1kQAgf8W8H+DX1CuVfr+9yK+IYAAAgggkIlAULfYtSrm2zbeURqNYOdlxymU5AJ0kJJbsSYCCPxHoL8mfWX/EWXm/8xmCgEEEEAAgUwFguogeTjYVsrjWtkvim1Wnm62AssRQAABBDoWOFd7WFrxiHUeRIeCAAIIIIAAAggEIcAVpCBOI41AIFOBo3W0iYo7RxQEEEAAAQR6KRDUFaRuQPbTTuftxo4D3icdpIBPLk1DoAsC22ifHjhn5y7sm10igAACCCDQqkBQHaRWb7Ez1vbK15TZFN//7uIHg70vD86wpPJr5TiFggACCCCQrsCK2t3lyg+Vq9LddaH2NqtqO7syVvmwUDWnsggggAACQQl8U61pNkDDc1rHnShKcgGuICW3Yk0Eyiwwjxo/UrmyxAgbqO33Kn43n/898rNXv1c8yioFAQQQQKA3AkFdQWqV8Glt4FHs9lAWUN5T/ldZWvm6Ml75lUJpTYAOUmterI1AGQUGqNH3KQ8oZX2Vwl5qu28t/J2yjjJE8e2GdvGVpGUUCgIIIIBA9gKl7SD52SLfxhC/peMOfb8xdg5W1fQ0hYeGYygJJukgJUBiFQRKLuAXwL6szF9Sh8XV7snK/jXa71u8b1AeVnzLNwUBBBBAIFuB0naQ/MyRb2f4bsz7HE2/FPvuSV9lOrFqHl8bC9BBauzDUgTKLvBjAXyg+I9QZS0/UcMfatD4BbXMV5fWbbAOixBAAAEEuiMQVAdphhaMfGvdG8qysW2e0fQiyryxeaM0vXzsO5MIIIAAAu0LfFWbHqXsrjza/m4Kv+VqasHtDVoxWsv8BzqvR0EAAQQQQKBtgVY6SD7IY4oHYFjLX1Se/PRj+qAMHlVofeXdynw+EEAAAQTaF/Av+7617nDluvZ3E8SWvoOh2b9Zvr3O61EQQAABBBDITGAVHcnPIXn0IN/G4H+sXlAmKdcrryv+x2lPhZJcgFvskluxJgJlEfCzRq8o7iBRPr11u9EVNN/N4Gdg1wYLAQQQQCBzgaBusWtHbyNt9Bdl6crG/gvnGMUdI8fDrTb7K59WocQE6CDFMJhEAIFPRql7UA73Kh69rojFz0vtpvi9eWkMLOEO0ETl+0p18T/Mtyj3Vy/gOwIIIIBAJgKl7yDVUu6nme4oDam1kHlNBeggNSViBQRKI+DbxDxa6EjF7z0qWllZFX5E8Z0GvgL2luIrO+cpsyidlF208RTFf4jbWFlB2Vnx6HWjlSUUCgIIIIBA9gJ0kKrM/Q+eb2ko6l85q5rTk690kHrCzkERyKXAKarVu8qKuaxd40q5w+K6u4PnKz4u7vD5zoN/K39XPqd0Ur6ojT1Yg0es810LHkDod8p8CgUBBBBAoDcCpesg+R+zHRT/xS7+fiPfRneJMknxP1J+aaz/kfLVJEprAnSQWvNibQRCFfAVEv/iv3VBG3iX6u3nUWuVBTXzTaXWe4xqrd9snv8xnkvxv0UUBBBAAIHeCpSug3SWvKPni74Ss/c7KTx/jHKB8n+V72fok9KaAB2k1rxYG4EQBdZUo/yMzQEFbdyiqrf/TWh05eskLf9nQdtHtRFAAAEE6guUqoO0qxz8D97Tyh5KdGvEcpX5vrVhYcXFf8W7U/H6aymU5AJ0kJJbsSYCIQospEa9qpxX4MZtorp7lNNGxQM2+H16FAQQQACBsASC6iA1uzXBD7++r6ynXKr41g8X33Lncqby8idTnz6Qe3Rl2veIUxBAAAEEmgv4Oc6blGeV/Zqvnts1/OxRf2VQgxrOqWVej4IAAggggEBuBZp1kFZSze9VfN94vGxU+XJzfKamfZudyxqffvC/CCCAAAINBDyAgZ/vnFXx1ZUpSlGL31HkEet850G94mV/q7eQ+QgggAACCORdwH8J9DCtvnIULzPpi++T9+111QMy+C+hHs71SoWSXIBb7JJbsSYCIQmcrsa8rfi25SyL//h1vHKh8lNlmJJGOVQ78RWiWncR/FjzP1CWUigIIIAAAmEJBHWLXbNTM1Ir3Fq10ub67ueMao1UtE5lWXSrXdWmfK0jQAepDgyzEQhYYE+1zbctb5ZhG/0c6S8V//HLgyVcpNyh+MqVb/NrdHucFjctviL2a8XtukI5SDlKeUh5X/myQkEAAQQQCE+gVB2kG3T+/Be/uWLn8RJNu4PkX+qrSzTi3XbVC/jeUIAOUkMeFiIQnMC6atFkJesR63zFapzyJSVeltWXZ5Rb4jM7mPaADe4gPa7cr5ymRAP6aJKCAAIIIBCYQKk6SFvq5Pkvja8o/kvguYr/MjhGif+l0X+V3Ftxx2mUMlihJBegg5TcijURKLrAYmrA68ovMm7IEB3P//32XQC1ypKa6U7bFrUWMg8BBBBAAIEGAqXqINnhh4o7PlHe0/RqSlSW14SHbfVyX21aRaG0JkAHqTUv1kagqAIejOFJ5XbFf1jKsvhq1fNNDui7Bn7VZB0WI4AAAgggUC0QVAcpyT/QJ0rgcmUbxQ/f/kV5VYmK/yLpnF/JY9ECPhFAAAEEpgvMoCnfduZ/RHZU/N/NLMt8OtjIJgf0cm6Fa4LEYgQQQACBsAWSdJAs8KJyZh2Kf2v+AopvxaMggAACCNQW8DOaHshmLcUj12VdxuiAvs2uUVlCC0c2WoFlCCCAAAIIIIBAFgLcYpeFMsdAoHcC39KhPVLchr2rQp9FKnXYtk4dfLu067hxneXMRgABBBBAoJ5AULfY1Wsk87MVoIOUrTdHQyBLgQ10sA+VfbI8aJ1jnaT5fpmrB+CJl1X1xXcKXBefyTQCCCCAAAIJBeggJYRiteQCdJCSW7EmAkUSWFKVfVM5NSeV9nNQrouff/JgEdcoHobbL/j281EzKxQEEEAAAQRaFaCD1KoY6zcVoIPUlIgVECicwGyq8dPKn5V+Oav9UqrP4crZyo+UNRQKAggggAAC7QrQQWpXju3qCtBBqkvDAgQKKeAO0W3KcCX+zrhCNoZKI4AAAggg0EQgqA5S0lHsmpiwGAEEEEAgJuBRP/1cz5qKX49AQQABBBBAAIGCCNBBKsiJopoIIFAYgUNUU18V9mhwIwpTayqKAAIIIIAAAgjkSIBb7HJ0MqgKAh0IbKptPVT2Xh3sg00RQAABBBAomgC32BXtjFFfBBBAIAOBZXSMq5VTlIuUdktfbTif4s9XlY8VCgIIIIAAAgggUCoBriCV6nTT2AAF5lCbnlduUDyUdjvFAzscoYxW3ClyxihHKdwOLQQKAggggEBuBYK6gpRb5ZJVjA5SyU44zQ1KoL9ac6fymDKwzZa5c3STMk45SPHVKOcA5XXlFoVOkhAoCCCAAAK5FKCDlMvTUuxK0UEq9vmj9uUW+K2a/5qySAcMP9C2byhL1NjH4prnTtL/1ljGLAQQQAABBPIgQAcpD2chsDrQQQrshNKc0gj4lriJytodtniEtj+0wT6+p2UvN1jOIgQQQAABBHopQAepl/qBHpsOUqAnlmYFLbCVWjdV2bXDVg7W9n7eaOUG+1m+ss48DdZhEQIIIIAAAr0SCKqD1O7DxL3C57gIIIBAHgRWUCWuVI5XLu+wQu4cuTT677GfUXL56NMP/hcBBBBAAAEEuiXQ6B/kbh2T/SKAAAJFFphblb9ZuVU5MYWGvK19/FvZosG+vGyk4ueUKAgggAACCCCAQPAC3GIX/CmmgQUWcIfoq8o3lC8p9ygPKTMpaZXvakfuKPnKVHVZTjPeUg6uXsB3BBBAAAEEciIQ1C12OTEtfTXoIJX+RwCAHAr4P/ZnKFMUd15GKtMUf99eSbP4pbC+Ze8d5YfKUGUNxe9A8rH/oHDFXwgUBBBAAIFcCtBByuVpKXal6CAV+/xR+/AE3GG5ThmtfFlx5+QYZYLizspkZX0lzeJj7qc8o/i5JOc5xe9ConMkBAoCCCCAQG4F6CDl9tQUt2J0kIp77qh5mAI7qFkevtsva3XxFSOPWOf5Lucq7sh0q+MyUPt2KAgggAACCBRBgA5SEc5SwepIB6lgJ4zqBi9wvVr4u0orV9Hn+8rhle/+mFfx7XZr+QsFAQQQQACBkgsE1UHq1l8/S/4zQvMRQKDgAkup/o8q8yk3KjcoP1WiMlYTrypLRjP4RAABBBBAAIEwBOgghXEeaQUCCKQr8K5256tEvpLk55D2VuLF7yWaTfF6FAQQQAABBBAISOBzAbWFpiCAAAJpCfxVO/qe4g6QR5SbpMTLdvri2wk85DcFAQQQQAABBAISoIMU0MmkKQgEKjC72vV1ZTXFI7v5HURXKO8p3Soza8eDlNuVN6oOsqK+/1r5hfJW1TK+IoAAAggggAACCKQgwCANKSCyiyAFNler3EF5RblMuVzxsz9+BmhDpRtlR+3UI9Z5UAYf+2nleMVXlC5WPMS331nEH5iEQEEAAQQQQEACQQ3SwBnNhwAdpHycB2qRL4FVVZ2JyilK/1jVBmjaV28+UJaPzU9j0i9n9buODq7sbC59unN0t/KY4ncgbaNQEEAAAQQQQOA/AnSQ/mPBVEoCdJBSgmQ3QQncqtZc06BFf9Ky6xosb3XRgtpgtHJhqxuyPgIIIIAAAiUXoINU8h+AbjSfDlI3VNlnkQX8DJBvc2t0G91WWu7BE9K41c3He1jxlSL/R56CAAIIIIAAAskFguogMcx38hPPmgggkJ2Ab23zUNojGxzyJS3z7XYexKGT0lcbX6IMVr6ifKhQEEAAAQQQQKCkAnSQSnriaTYCORd4XfWboizZoJ5LaJmfUep0JLlTtY9NFT9bVD1inWZREEAAAQQQQAABBLIW4Ba7rMU5XhEEblQl/1ynor7q8zfFo8l1UnbTxr6Vb8tOdsK2CCCAAAIIlFwgqFvsSn4uc9N8Oki5ORVUJEcCy6kufteR3zk0S6xes2r6AuVtxVeR2i1f1IZ+hsnDd1MQQAABBBBAoH0BOkjt27FlHQE6SHVgmF16gXUl8LLi2+g8ap2vKL2jjFDWVNoti2hDv0vp7HZ3wHYIIIAAAgggMF0gqA5SGqM/TZdhAgEEEEhZ4F7tb2lle2U15WPlIuUGxS9sbacM1EY3KcOVQ9rZAdsggAACCCCAAAIhCQxWYxZTllH83pP4rTv62pPCFaSesHPQEgp4YBo/2/Sc4v8WUBBAAAEEEECgc4GgriB1zlGMPayqap6neGQs/wW6Oi9o3m+UuZVeFDpIvVDnmGUUOEON9u16/gMJBQEEEEAAAQTSEaCDlI5jZnv5kY4UdYj83pT7lJsVj351i/Iv5VXF63iI312VrAsdpKzFOV4ZBb6pRnvo8E3K2HjajAACCCCAQBcF6CB1ETftXe+oHbrj446Qn1+oVzxk8JeUBxWvv46SZaGDlKU2xyqjwPpqtJ9Z2q+MjafNCCCAAAIIdFmADlKXgdPc/WXamW+fG5Bwp34m4V3l3ITrp7UaHaS0JNkPAp8VGKJZ45Sff3YRcxBAAAEEEEAgBYGgOkh+YDnkspIa908l6WhXfjbhCcWDN1AQQKD4AoPUBI9Y94hyePGbQwsQQAABBBBAoNsCoXeQ/GzR6kr/hJC+guRO1TMJ12c1BBDIr0A/Ve0qxbfQ7qRMUygIIIAAAggggECpBXZT6/1MkYf1XauBhH+B8jMKHrBhqrKukmXhFrsstTlWWQTOVEM98MoSZWkw7UQAAQQQQKBHAkHdYhf6i2Iv1w/JPMqJyjbKaOUV5U3Fzxr59ps5lEWV+RV3jg5V7lUoCCBQXIEDVXUPyLCp4ucQKQgggAACCCCAAAIxAT+kfYXiDpKvKMXzgb4/r5ymLKz0onxbB3Wd8vDS2l60n2MikKbARtrZFGXvNHfKvhBAAAEEEECgrkBQV5DqtjLgBb5q5I7QUspsOWknHaScnAiqUXiBpdWC8cpPCt8SGoAAAggggEBxBILqIIV+i131j5UHpfCtdU6t4oe63YGaqEyqtQLzEEAgtwIeZMUj1t2rHJ3bWlIxBBBAAAEEEMi1QOij2Bl/XsUjWfmvyu4Y3anUG4Rhxcp6R+iTggACxRHwH3v+oHhI/12VjxQKAggggAACCCDQskDoV5AGSuRBxbfUuXPkARqGKXcppyjd+ivzAtq3O2W+3JikzJ1kJdZBAIG6Amdrif/AsabyXt21WIAAAggggAACCDQRCL2DdJja787R8crPFf/itLpygXKUMpPyfSXt4hfO/lFJ2kEaqnUXT7sS7A+BkggcqnZ+U/HgDC+VpM00EwEEEEAAAQQQaEvgdm01VqnuCHpwBl9F8shx7kRFZRVNeN6x0YyMPhmkISNoDhOcwBZqkYfn3yO4ltEgBBBAAAEEiiMQ1CANoT+DtKB+ru5W/AtUvLyjL1srTyinKjspFAQQKJbAcqruVcpJyqXFqjq1RQABBBBAAIG8CoTeQfLtNpsoM9Y4AX4maSvFzyVdrNQbuEGLKAggkDOBOVWfm5W/KscpFAQQQAABBBBAIBWB0DtI/uXJt9OdrHjghOoyWjM2Vfxs0p+VLysUBBDIt4Av41+r+Erw7opvi6UggAACCCCAAAIIJBDwlaPhin+BmqbsotQqfvbIAyt4Pec4JcvCM0hZanOsogt4kJUxykJFbwj1RwABBBBAIBABnkEq0In0y17XUs5SRikfKrXKY5q5hvKXWguZhwACuRE4UjXxHzq2U3x7LAWB/2/vPsClK8tzAVNEmqIoKGpQQrEQgoUiaBQMECE2VIioGIlKDCdRj7GXKNEgQT2JROIxlqgEUWxIU0KCIDEq4VKj2BsSG8WKiggIeV6YwXHce/+z979nZpX7u66HmVlrzVrfd69xO++/yhAgQIAAAQIE1kJgklMK65bb9Xsqs2yOIM1S27baKvCwdLxuuPKYtg5AvwkQIECAQEcFOnUEqaP7aOJhbZAlN07Wnfgd01lQgTQdV2vtjsDOGUpdK1i/X6YRIECAAAECzRLoVIE0yRGVZvGvbm9eldVdmeyyuqu1NgIEVlHgdlnXackZyStWcb1WRYAAAQIECBD4DYG+F0i/AWICAQKNEtgwvXl/cmlyWKIRIECAAAECBKYqcLOprt3KCRAgsHYCb87bt052T+qmKxoBAgQIECBAYKoCCqSp8lo5AQJrIXBk3ntg8oDku4lGgAABAgQIEJi6gAJp6sQ2QIDACgQelfe8ODk4+dQK3u8tBAgQIECAAAECKxCo3z56QnLbFbx3Nd/iLnarqWldbRe4Twbws+TZbR+I/hMgQIAAgZ4IdOoudj3ZZ40fpgKp8btIB2ckcIdsp34A9vgZbc9mCBAgQIAAgbUX6FSB5C52a/+BsAYCBFZHoH6T7NTk4qT+0UAjQIAAAQIECMxcwDVIMye3QQIEFhCoH2t+W7JlUnes+0WiESBAgAABAgRmLqBAmjm5DRIgsIDAUZm2f3L/5LIF5ptEgAABAgQIEJiJgAJpJsw2QoDAEgKHZN5zk7ql94VLLGcWAQIECBAgQGDqAq5BmjqxDRAgsIRAnU73luQvk9OXWM4sAgQIECBAgMBMBBRIM2G2EQIEFhDYOtNOSd6e/MMC800iQIAAAQIECMxcQIE0c3IbJEAgApsmdce6LyVHJBoBAgQIECBAoBECrkFqxG7QCQK9Eqg71p2Q3DLZN7km0QgQIECAAAECjRBQIDViN+gEgV4JvCqjfVCyR/L9Xo3cYAkQIECAAIHGCyiQGr+LdJBApwT+OKN5RvKQ5IudGpnBECBAgAABAp0QcA1SJ3ajQRBohUD9xtEbk2cmZ7WixzpJgAABAgQI9E5AgdS7XW7ABOYisE22enLy+uS4RCNAgAABAgQINFJAgdTI3aJTBDolUDdjOC35dPKsTo3MYAgQIECAAIHOCSiQOrdLDYhAowTqb8w7kw2Sg5NrE40AAQIECBAg0FgBN2lo7K7RMQKdEHhNRlF3q6v8qBMjMggCBAgQIECg0wIKpE7vXoMjMFeBp2Trf5Y8OPnKXHti4wQIECBAgACBCQWcYjchlMUIEFiWwN5Z+nXJXyTnJBoBAgQIECBAoBUCCqRW7CadJNAqge3T2/cmxyZvaFXPdZYAAQIECBDovYACqfcfAQAEVlXg1llb3bHu/OT5q7pmKyNAgAABAgQIzEBAgTQDZJsg0BOB9TPOdyW/TA4ZPOZBI0CAAAECBAi0R8BNGtqzr/SUQNMF6pS6eye7J1c0vbP6R4AAAQIECBBYSECBtJCKaQQILFfgGXnD4ck+yUXLfbPlCRAgQIAAAQJNEVAgNWVP6AeB9grsl66/OqkC6SPtHYaeEyBAgAABAgTWWcc1SD4FBAisjcDd8+a67uiVyVsTjQABAgQIECDQagEFUqt3n84TmKvAbbL1umPdh5O/mmtPbJwAAQIECBAgsEoCCqRVgrQaAj0T2CDjrd86+lny+OS6RCNAgAABAgQItF7ANUit34UGQGAuAq/LVu+R7JZUkaQRIECAAAECBDohoEDqxG40CAIzFXhOtnZosnfyzUQjQIAAAQIECHRGQIHUmV1pIARmIvCH2crRyR8n589kizZCgAABAgQIEJihgGuQZohtUwRaLrBT+v/O5OXJiS0fi+4TIECAAAECBBYUUCAtyGIiAQJjAlvmdd2x7l+Tl43N85IAAQIECBAg0BkBBVJndqWBEJiawM2z5pOT7yd1at31iUaAAAECBAgQ6KSAa5A6uVsNisCqCrwxa/vtpO5Y9/NVXbOVESBAgAABAgQaJqBAatgO0R0CDRN4UfpzUPLA5DsN65vuECBAgAABAgQIdFTg8IyrTlvatKPjM6x2ChyYbl+bVIGkESBAgAABAgQWE6jT8eu77J6LLdCm6a5BatPe0lcCsxO4VzZ1QvLi5D2z26wtESBAgAABAgTmK6BAmq+/rRNoosBW6dSpySnJ3zaxg/pEgAABAgQIEJiWgAJpWrLWS6CdAhul21UYfTt5cjuHoNcECBAgQIAAgZULuEnDyu28k0AXBd6SQdURpN2Tq7o4QGMiQIAAAQIECCwloEBaSsc8Av0SeFmG+9Dk95JL+zV0oyVAgAABAgQI3CigQPJJIECgBA5OXpg8Kvl0ohEgQIAAAQIEeingGqRe7naDJvBrArvm1duS5yZ1cwaNAAECBAgQINBbAQVSb3e9gRO4QeBO+W8VRSclf3fDFP8hQIAAAQIECPRYQIHU451v6L0X2CQCVRx9NXlq7zUAECBAgAABAgQi4BokHwMC/RRYN8M+Ptk8eXBydaIRIECAAAECBHovoEDq/UcAQE8Fjs6490v2TL7XUwPDJkCAAAECBAj8hoAC6TdITCDQeYHHZ4TPTh6WfL7zozVAAgQIECBAgMAyBFyDtAwsixLogEAdMXpz8n+TD3ZgPIZAgAABAgQIEFhVAQXSqnJaGYFGC9w5vXt/Urf0Pq7RPdU5AgQIECBAgMCcBBRIc4K3WQIzFrhFtnda8tnkz2e8bZsjQIAAAQIECLRGQIHUml2lowRWLFD/Oz8x2Tg5KLk20QgQIECAAAECBBYQcJOGBVBMItAxgVdnPA9I7pv8sGNjMxwCBAgQIECAwKoKKJBWldPKCDRO4E/So6clByRfnqB3u2WZg5O6Xuny5AOJmzkEQSNAgAABAgT6IeAUu37sZ6Psp8ADM+zXJ09P/n0NBBtk/puSjydVJNWRprskJydnJ7dJNAIECBAgQIAAAQIzETg8W7k+2XQmW7ORPghsm0HWEaC/n3Cwx2a5S5M9xpbfJq8/nZybrJtoBAgQIECAAIFxgZtnQn2XrZ8T0QisioACaVUYrWQgsFkeP5ecmaw/mLbUQxVTv0z2XWShOt3uyuQRi8w3mQABAgQIEOi3QKcKJKfY9fvDbPTdE6iC6KSkjvY8JqnCZ02trk/6erLYaXj/k3l1LdJDE40AAQIECBAg0GkBN2no9O41uB4K/F3GXNcQ1R3rfjzh+G+X5b65hmWrSNpuDcuYTYAAAQIECBBovYACqfW70AAI3CRQPwB7RLJf8rWbpq75ybeyyPZrWGyHzK8iSSNAgAABAgQIECAwdQHXIE2duPMb2CcjvCZ50gpGeoe856qkTslbqO2UibXu319opmkECBAgQIBA7wU6dQ1S7/dmQwAUSA3ZES3txl3T7x8kx6xF/1+U9/4kOWhsHXWq3sXJu8eme0mAAAECBAgQGAookIYSHldNQIG0apS9W9HmGfGXktOS9dZi9HVTh5ckv0i+mpyR/HdyXfLWZONEI0CAAAECBAgsJNCpAsk1SAvtYtMItEOg/vf7nqSKmsclVcystNVvF7wseUtSt/O+c3Jucmjy2UQjQIAAAQIECBAgMDMBR5BmRt2pDb0+o7k0uUunRmUwBAgQIECAQNsEHEFq2x7TXwIdFHhmxnRYUjdOqGuENAIECBAgQIAAgVUQcIrdKiBaBYEZC+yf7b0qOSz5aKIRIECAAAECBAisksDaXNS9Sl2wGgIEliGwY5Y9KTk6OWEZ77MoAQIECBAgQIDABAIKpAmQLEKgIQJbpB91t7p/T+qOcxoBAgQIECBAgMAqCyiQVhnU6ghMSaAufnxf8uPkCUnddU4jQIAAAQIECBBYZQHXIK0yqNURmJJA3bFu+2T35MopbcNqCRAgQIAAAQK9F1Ag9f4jAKAFAs9LHw9J9kq+1YL+6iIBAgQIECBAoLUCCqTW7jod74nAwzLOo5LHJxf0ZMyGSYAAAQIECBCYm4BrkOZGb8ME1iiwc5Y4MTkyqTvXaQQIECBAgAABAlMWUCBNGdjqCaxQ4PZ5X92x7ozkb1a4Dm8jQIAAAQIECBBYpoACaZlgFicwA4ENs42Tk0uSwxKNAAECBAgQIEBgRgKuQZoRtM0QWIbAm7Ps1kndse6qZbzPogQIECBAgAABAmspoEBaS0BvJ7DKAvUDsAcmD0i+u8rrtjoCBAgQIECAAIE1CCiQ1gBkNoEZCjw626oC6eDkUzPcrk0RIECAAAECBAgMBFyD5KNAoBkC90k3jk9emNT1RxoBAgQIECBAgMAcBBRIc0C3SQJjAnfM61OT9yavHJvnJQECBAgQIECAwAwFFEgzxLYpAgsIbJxppyQXJ4cvMN8kAgQIECBAgACBGQq4BmmG2DZFYExg3bx+W7JFUnes+0WiESBAgAABAgQIzFFAgTRHfJvuvcDLI7B/cr/k8t5rACBAgAABAgQINEBAgdSAnaALvRR4bEb9/OQRyWd7KWDQBAgQIECAAIEGCrgGqYE7RZc6L3DfjPCfk2cnZ3R+tAZIgAABAgQIEGiRgAKpRTtLVzshsHVG8f7k7clrOjEigyBAgAABAgQIdEhAgdShnWkojRfYND2s23l/KTmi8b3VQQIECBAgQIBADwVcg9TDnW7IcxGoO9adkNwy2Te5JtEIECBAgAABAgQaJqBAatgO0Z3OChyTkT0o2SP5fmdHaWAECBAgQIAAgZYLKJBavgN1vxUCT0wvn5k8JPliK3qskwQIECBAgACBngq4BqmnO96wZyZw/2zpDUkVSGfNbKs2RIAAAQIECBAgsCIBBdKK2LyJwK8J1PVFj0vOTi5JvpHU9UYHJCcnVSAdl2gECBAgQIAAAQINF3CKXcN3kO41XmD99PAdSZ0+96akiqFbJAcl9RtHn0/q6JFGgAABAgQIECBAgMCEAodnueuTug201i6Bl6a7lyc7jnS7jsxWcfTdpO5Wd+9EI0CAAAECBAh0VeDmGVh9l92zqwM0rtkLKJBmb74aW9wwK7kiqZswjLb6Adi6U932Sf3uUR1h0ggQIECAAAECXRVQIHV1z85xXAqkOeKvxabvm/fWv5bUbxsNW+3Lq5O6pXe1Kp6+dcMz/yFAgAABAgQIdFOgUwWSmzR080NqVLMR2DibuS752WBze+fxH5M/T85Jqv0kqeU0AgQIECBAgACBFgi4SUMLdpIuNlagftOo7mC3e/K95L3Ja5M3JsNW5+J+YfjCIwECBAgQIECAAAECaxZwit2ajZq6xOnp2H8kVSx9IKm72g3bDnlS1yj9yXCCRwIECBAgQIBABwU6dYpdB/dPK4ekQGrlbruh09vmv1clP032TuqI0kbJIUndxa5u0uBU1iBoBAgQIECAQGcFOlUgOcWus59TA5uRwLOynSqOLkw+lFyb1P+uqmg6NnlJUtcpaQQIECBAgAABAi0QUCC1YCfpYmMFnpaePSXZJ/lIcqfkHkkVR59Mrkw0AgQIECBAgAABAgSWKeAUu2WCNWDx/dKH+hHY8d9AakDXdIEAAQIECBAgMFOBTp1i59qImX52bKwjAnfPON6VvDp5W0fGZBgECBAgQIAAAQIRUCD5GBBYnsBtsvhpyYeTFy3vrZYmQIAAAQIECBBouoACqel7SP+aJLBBOlO/dVQ/DPv4xM0XgqARIECAAAECBLok4CYNXdqbxjJtgddlA3UTht2SKpI0AgQIECBAgACBjgkokDq2Qw1nagJ1O+9Dk72TbyYaAQIECBAgQIBABwUUSB3cqYa06gIPyRqPSZ6QnL/qa7dCAgQIECBAgACBxgi4Bqkxu0JHGiqwU/r1juSowWNDu6lbBAgQIECAAAECqyGgQFoNRevoqsCWGVjdse7M5MhEI0CAAAECBAgQ6LiAAqnjO9jwVixQP3h2cvK9pH4M9vpEI0CAAAECBAgQ6LiAa5A6voMNb8UCb8w7t0l2T36eaAQIECBAgAABAj0QUCD1YCcb4rIFXpB3HJQ8MPnOst/tDQQIECBAgAABAq0VUCC1dtfp+JQEDsx6X54cknxiStuwWgIECBAgQIAAgYYKuAapoTtGt+YicK9s9YTkJcl75tIDGyVAgAABAgQIEJirgAJprvw23iCBrdKXU5NTklc0qF+6QoAAAQIECBAgMEMBBdIMsW2qsQIbpWdVGH07eXJje6ljBAgQIECAAAECUxdwDdLUiW2gBQJvSR/rCFLdse6qFvRXFwkQIECAAAECBKYkoECaEqzVtkbgyPT0ocn9k0sTjQABAgQIECBAoMcCCqQe73xDX+ePYvDi5FHJZ3gQIECAAAECBAgQcA2Sz0BfBXbLwN+aPD+pmzNoBAgQIECAAAECBNZRIPkQ9FHgThl03ZThpOTVfQQwZgIECBAgQIAAgYUFFEgLu5jaXYFNMrQ6YvTV5KndHaaRESBAgAABAgQIrETANUgrUfOetgqsm47/S7J58uDk6kQjQIAAAQIECBAgcJNAHwuk+nJ8q2TD5KfJj5KfJVr3BY7KEPdN9ky+1/3hGiEBAgQIECBAgACBhQXunclvSi5Lrl8gX8u0f0q2TObRDs9Gq1+bzmPjPdnmoRnntckBPRmvYRIgQIAAAQIEZiVw82yovsvWP0JrLRB4Sfo4LIouzvOPJqcn70w+mJyffDepZeqowuOSWTcF0nTF63+s9QOwT5/uZqydAAECBAgQINBLAQVSi3b7welrFT5VCN1niX7XtSkPTC5Iavn7JbNsCqTpad8lq64fgH399DZhzQQIECBAgACBXgsokFq0+9+evtbpc3W90SStrk+6Ipn1l2kF0iR7Z/nL3CJv+UxydtLH6+2WL+YdBAgQIECAAIHlC3SqQOr6bb53zv79WPKLCffzD7NcfaGu38nR2i1Qn+0Tk42Sg5K6/kgjQIAAAQIECBAgsKRA1wukurZol2SDJRV+NbOOIFVR9cVfTfKspQKvTL9/L3loUoWvRoAAAQIECBAgQKD3Ao+PQF1TdGpy3yU06hqkByR1w4Y60nD/ZJbNKXarq/2krO6aZJ/VXa21ESBAgAABAgQILCDQqVPsFhhfpyZV4fPMpH7nqAqlbyUfT85I3jF4rFPwvpPU/PpS/Yxk1k2BtHridbONOqXyz1ZvldZEgAABAgQIECCwhIACaQmcps7aNh2rgujbSRVCo6ni6SvJq5Otk3k0BdLqqNd+rlu1H7s6q7MWAgQIECBAgACBCQQUSBMgNXmRzdK5KoR2SG7VkI4qkNZ+R9S+/HxyZrL+2q/OGggQIECAAAECBCYU6FSB1MdbH9dtvCvDtmWe3Db5cnLdcKLHVglUQXTSoMePyeMvW9V7nSVAgAABAgQIEGiMQB8LpHH8Z2fCc5Mqkn4wPrNDr3fLWOqOftU+kdSP4nal/X0GsmtSN+L4cVcGZRwECBAgQIAAAQKzF+h6gVS37N50Dax3GsyvAmJ4ZOmbeV43dFhpq1P46s55dbhxknbrwUJ1bdRqt7ou54Rkj6SOklW7a1I3qzg0+XrS5lY3Y6jsm3ytzQPRdwIECBAgQIAAgfkLdL1AOj7E95yQua5dGbYj8+Svhy9W8HhZ3vO6ZIMJ37t9lqu77a32j5neIev8j+TCpAqlbyTVtklen9S8OvLy3aSNbZ90+rXJU5Pz2jgAfSZAgAABAgQIEGiWQN0Gu8utjizU6VcbJXVE5wvJeHtQJuye/EPy88HMf89jZVZtz2zoo8mGydWruNE3Z11VIN5vgfXW0a3a5qeTJydta8OjYDXG57St8/pLgAABAgQIEOiQQH2vrJ9Zqe+cH+vQuDo7lN/JyKoIuDJ5WjJeFB6TaXVq222SebUqkKoP9eFarbZ+VvST5NFLrPCgwTK1bJva5ulsnS54WrJemzqurwQIECBAgACBDgrUd9j6LlvfabWWCNSRmfqdo7pL3VnJ8LqjPF2nqwXSVhlbfVDvVoNcpNW8WqaWbUur00LPTj6T3KItndZPAgQIECBAgECHBTpVIPXlX9/rkF/dra4u5L9HcmFySNLldkUGVwXh7ZYYZM2rZWrZtrTj0tGdkoclP21Lp/WTAAECBAgQIECAQFMF6vSs+s2cOnJyYvKGwfOunWKXYd1w44K6RmexVvPadHODZ6S/VyUO3y62R00nQIAAAQIECMxeoFNHkGbP15wtPiFd+XFShVKliwXSXhlX3RnviGS81bSaV8u0oe2fTlZ/D21DZ/WRAAECBAgQINAjAQVSh3b2NhnLu5Nzklsm82rTuEnDcCyH5UmdYnh+8vJB6nlNOyxpQ9sxnaxi9qg2dFYfCRAgQIAAAQI9E1AgdWiH1+8UbZyM39lu1kOcZoFUY9kueWVSNzeo1POa1oa2RTr5teS9ybz3Uxu89JEAAQIECBAgMGsBBdKsxae4vddk3XV63a5T3MYkq552gTRJH5q4TP2Pra6R+mSySRM7qE8ECBAgQIAAAQI3/FRNfaeu77Stb3XLZI1AUwVen45tn9QP+dbvWGkECBAgQIAAAQIEpiqgQJoqr5WvhcBz8t66aJfhCQAAGAFJREFUFXvdROJba7EebyVAgAABAgQIECAwsYACaWIqC85Q4OHZ1tHJ45ILZrhdmyJAgAABAgQIEOi5QF9+KLbnu7lVw985vX178rLkXa3quc4SIECAAAECBAgQaLlA3Zyhfg/ptnMeh5s03LgDbp+Hi5N3zHl/2DwBAgQIECBAgMDkAu5iN7mVJScUUCCts86GsfpYUr/RtNGEbhYjQIAAAQIECBCYv0CnCiTXIM3/A6UHNwq8OQ+/leyWXHXjJP8lQIAAAQIECBAgMFsBBdJsvW1tYYEXZ/KBye8llyy8iKkECBAgQIAAAQIECPRFoM+n2D06O/na5JF92dnGSYAAAQIECBDomECnTrHr2L5p7XD6WiDdJ3vsZ8nzW7vndJwAAQIECBAgQECB5DOw6gJ9LJDuGMX6AdjjV13TCgkQIECAAAECBGYp0KkCye8gzfKjY1tDgY3z5JTkG8nhiUaAAAECBAgQIECgEQJu0tCI3dCrTqyb0b4t2SLZPflFohEgQIAAAQIECBBohIACqRG7oVed+OuMdv/kfsnlvRq5wRIgQIAAAQIECBAgMJFAX65Bemw06o51D5lIxUIECBAgQIAAAQJtEOjUNUiOIDXrI1cfrklanabWtn23a/r8z0n95tG5yaaJRoAAAQIECBAg0FyB+oft6yfo3qTfYSdY1fwXqS/a2vwFqni4YP7d0AMCBAgQIECAAAECKxao77SfWPG7G/JGBVJDdkS6UR+oDSbszgez3DuT1n8AJxyvxdoj8Nx09cKkPqMagSYJHDbozFub1Cl9IRCBA5LfTV5Jg0DDBHZJfw5J6jM6Sbs6C/luOomUZaYicFnWevBU1mylBNZO4D/z9heu3Sq8m8BUBN6atVY0Ak0TqL+Z9bdTI9A0gfquWd85e9f8DlLvdrkBEyBAgAABAgQIECCwmIACaTEZ0wkQIECAAAECBAgQ6J2AAql3u9yACRAgQIAAAQIECBBYTECBtJiM6QQIECBAgAABAgQI9E5AgdS7XW7ABAgQIECAAAECBAgsJqBAWkzGdAIECBAgQIAAAQIEeiegQOrdLjdgAgQIECBAgAABAgQWE1AgLSZjOgECBAgQIECAAAECvRNQIPVulxswAQIECBAgQIAAAQKLCdxssRmmN1rg6vTumkb3UOf6KuCz2dc93/xx12dTI9BEgfr/c5/PJu4ZffLZ9BlolcA26e36reqxzvZF4I4Z6CZ9GaxxtkrgNultRSPQNIH6m3mHpnVKfwhEoL5rbkOCAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECUxRYf4rrturpCmyS1d8nuX9y6+SK5BeJRqBJAtukMw9JLmxSp/SlVwL1/3N7Jrsn1yY/SDQCTRPYJh3yt7Jpe6Xf/dk2w6+/nTsOGL7fbw6jb4PAH6eTlybXj6QKpKcnGoGmCGyWjnw++UlTOqQfvRPYISP+QjL6t/Jzeb117yQMuMkC/lY2ee/0r29bZcjvT0b/btbzDyVVNGkEGimwX3p1XXJR8oJkp6QKoy8m9QF+QqIRmLfA5unAmUl9JhVI894b/dz+uhn2eUn949GhyfbJ4cmVycXJpolGYN4C/lbOew/Y/qjAenlxblL/331SckCyV/LmpL57fjbZKNEINE7gnPSoPrh/MNaz3QbT619HNQLzFHhkNv6dpD6nddqnAikI2swFjsgW6zP41LEtV5G00PSxxbwkMHUBfyunTmwDyxTYK8vX38ePLvC+MwbzDl5gnkkE5ipQlf1/JVUELXT9WB1FqnPsF5qXyRqBqQvUvzbVH9fvJQ9PPpkokIKgzVzg/GzxqqSu0RxtdTrTz5MLRid6TmDGAv5Wzhjc5iYSeGKWuih5ygJLH5Jp9f/vL11gnkkEGitQhzx/nHy1sT3UsT4I1CmgL09uMxisAqkPe715Y9wgXaqjl59ZpGufyvSrk1pOIzAPAX8r56Fum2sj8MK8uQqkOmVZI9Aagaro64N7TGt6rKN9EFAg9WEvN2+Mt0uX6u/hOYt07ezB/DsuMt9kArMW8Ldy1uK2txyBLbLw5Un9Q/xWy3ljW5e9WVs7rt+/JvBHefWS5CvJkYlGgACBPgvUaXTV6lTPhdoPBhPdqGEhHdMIECDwK4H6O3l6UkVSnXp3SdL5pkBq5i6u/3Ov641GW51LXxlvh2XCG5Kq7B+R1Ln1GoFpCSznszmtPlgvgTUJDP9Wjv8dHb5veJ3mL4cTPBIgQIDAbwhUUXRqct/kH5K6m51GYG4CX8uW6/SQ0fztAr2po0a1zNeTuy4w3yQCqy0w6WdzuN1P5ombNAw1PM5KoP7xr25Ju9gpdudmXv3tvG2iEWiCgL+VTdgL+jAqsF1e1JlJ9bfyb0Zn9OG5I0jN3MsfSrfqBzZH2xdHXtTve7wmeXpyQfKw5NJEIzBtgTV9Nqe9fesnMIlA3c3zsmR4s5Dx99T0+j2kH43P8JoAAQIEbviNzbPisGXyp8kbmRBoukCdMvKWpCr6k5NNEo1AUwX8q2hT90z3+3VOhnhNUqeIjLb6P/yaft7oRM8JzFnA38o57wCbv0lg1zz7fnJF8gc3TfWEQMMFjkj/qjh6XzI8j77hXda9Hgv4P/0e7/w5D/1R2X79rXzuWD+eP5h+0Nh0LwnMU8Dfynnq2/ZQYOM8uSip6zj3HE7s46NT7Nq11+t8+VcMunyrPL53ke7XPep/usg8kwkQINAHgfdnkF9Ijk5umXw42Tt5QVJH39+TaAQIECDwK4H6+7hN8p3keclC7fRMfNNCM0wjMC+Buktd/YvomrL5vDpouwTGBPyr6BiIlzMV2CJb+2BSN2wY/t381zzfKtEINEnA38om7Y3+9uVTGfrwb+Vij8f2l8fICRAgQIBAdwTqCNIuicKoO/vUSAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIEBghQLrrvB93kaAAAECKxNYL297xDLe+vEs+7Nkn+RryWeSLrbdM6g7JWckV09xgPfLum+fnJr8chnb2SXL7pn8VvKj5MvJB5Krkja1cefN0/m9kxrP5xKNAAECBAgQIECAwEwFNszWrl9GDsyyOw+Wf20eu9B2yiDePjaQd+d1uWw5Nn21X5452M7GE674d7Pcfw3eM77fvpfpfzLheuax2CTOewzGdsw8OmibBAgQaKLAzZrYKX0iQIBAhwWuydgOGxvfffL66cnZyb+MzftkXt96bFrbX56cAWw0NogaZxUt0zx6NLbJNb58UJY4Ldk0OT45Kflsco9k/+SQ5E1JHeF7V9K01hbnprnpDwECBAgQIECAwJwF6ihRHZ04bpF+dO0I0lcyzm8uMtZpT570CFIVpdXH65KDF+nUjpn+o+QXyX6LLDPPyZM4O4I0zz1k2wQINFLAEaRG7hadIkCAwKICt8icKqjumXwjOSf5fDLe6u/7Q5J7JXVa338ndTTk58l4u3kmPCqp08mqfTo5PbmyXoy038/zumal1vOk5LbJKUkdVam2pm1ulmUemdTjBskTk4uS85K9km2SOkpzVTJstc5dkzqac+ukrsGqozV1JG60bZEX+yR3S2q5ryYfSWr5lbQ/zZvqeqM6olen/y3Uyv3Ryb8ldSRpm+T6pPpS9uXyiWS01TVAdQTq1OSHIzMm6X/ZPzz5WHJJ8uBkt+TSpPowHOtKnPP232g7ZErt8zL9RnJuMtxGnt7U7pBnByXbJZcln0vOSK5NNAIECBAgQIAAAQLLFjgw76gv1sct8s6dB/Pr6McXBs/rqEW9p76E1pfT0bZtXpyf1PwfJ3WtTD2vL/S1rtF277yoIw01/4qklq/nNa2+zI+2KowuTqqftUylvphXm2Sb9YW7jsgM31vP35FUqyKkpm9ZLwatCp0Lk5peffvJ4HmNY/QUvUfk9eWDedX/KrDqPXUThucmo60Ma97GoxMXeP6pwXJ3X2De+KShX90AotoeSW3jmHox1o7N65pXBe6wTdr/4efgZXljFSG1njolsR6vSaqoq7Yc58X6+qyspz5jtY/qSFp9zsrzqGTdZNj2zZOhd33Ohp/LC/L8TsOFPBIgQIAAAQIECBBYjsCkBVJ9EX5fUsVIFQiPS+pLaxUOwy+t9VhfTmv6oSPT98vz7ydfSuqIUbUqEr6Y/DQ5JFkvqfc/KqmC5NvJZsmwnZYn9UX5h8lTkscmD0yWs80sfkPxVV+6R9t4gbRhZp6X1Jfv4Tiqv89LyuFFSbXqX/W1xrZrsn6yaVKm9WX9yuRWybCdmSf1/qUKpFpHjbOKjjqCtaZ2UhaodR4xWHCPwetjBq9HH8YLpOX0f+fBeqtoqaNoeybVvyqwaqw/SDZJhu0rebIm54X6+rC8r8bz4eSOSbVbJicmNf2JybB9PU8uT3YcTKgjnFVE1XJ/O5jmgQABAgQIECBAgMCyBCYtkP4nax09clIb+UhSX0bvXC/SDknqdRUz4+1lmVDznjqY8czB678avB59+MvBvJeOTKx11vv/YmRaPV3ONmv5Sb64V0FX2/r7esNIq2Ls7OSsZIOkvuCfmTw5GW/D/u40MqOWrfUuVSDdYbDMV0fet9TT5w+Wf/lgoepTbWOSAqmWrT5N0v9hgfSNLD8scvP0hlYFU22zlhm2SZwX6usXs4Ja1y7DFQ0eq/CsgvM7Se2H+ixWIX5uUq+HrYrbFyQHDCd4JECAQJsEJvmXsTaNR18JECDQZYFPZ3BXjQ3w3Ly+f7JtUgVUfeGt9qFk9MtyTatT06rVkZZ/Su5ZL9LefuPDr/33hLz6f0ktO97OH5uwnG2OvXXRl/cezHnf2BL1xX2fkWkfz/P9R15X0bRdcq+kfu+o2uhRlRunLP3fOhpTrQqCSdqw2KqjWMttK+n/J7KROrVutH1j8GKz0YkreH7rvOduSRVX1yTjn6ELMu2BSR1Z+nbyn8leyUeTKtLOTOo00KMTjQABAq0UUCC1crfpNAECPRWoAmi8Db/Mrz+YscPg8e/GFxx5vf3geX0RroLjmyPzhk8vy5OfJ8Nlh9Pr8aLRF3m+nG2OvXXRl8PibaG+jb+p+visZO+knt8suS75SVJt9OjGjVOW/u8PMrvGvlVSp4zVKYhLtbsPZn52qYWWmLfc/l+ywLquGkxbb4F5y5k03Jf1WAX5Yq36/O3koOSdyYOSKpTrc1efj+OTVyTjhVwmaQQIEGi2QP2fiEaAAAEC7RCoL/1rasMvyo/PgpcusnBds1PtZ0kVD3UEpI4WjLab58VGyXB9o/PGv/QOl5lkm6PrWer5sD9rOvpTxUkdvahrZP41+Zfkv5M60nFk8n+SlbQ6je+hyQOSDy6xgvr/0eFRtrpxwmhbqDCrgmu0raT/k3wORrexnOfDfVmWr1rijcNisArp30/umhyQ7J/snbw02TN5cKIRIECgVQIKpFbtLp0lQIDAGgW+PFiiiqD6kj/a6vSp+jJ/yWDiV/K4T7Jj8vHBtOFDfXGvL/gXDycs8bicbS6xml+bNbz+Z7tMHZ4aOFzguXmyR/Ls5OnJ5slhyduS0VZf2qutf+PDsv775ixdBdIxyVnJL5Nqta4qmP4xOSV5TrLt4Pl381htWGRsdOPLX/vv9r/2anr9H9vMxC/LvY4qbpGMf35qJfdNyqKOztUpiHUq5OXJl5L6HByb3Db5dPIHyR2T7yQaAQIEWiOwXmt6qqMECBAgMInAqVmovuC+MBkvDI7LtH9L6l/2q73/xocbLqgfP9pR76928o0PS/53OdusFdXRofpyvVT7QGbWOJ42ttBmef2iZN+kTvH67aTaRTc+3PTf+uI+HOcGN02d/EnZHJX8bvL25FZJtc2T+sfFmv/J5KXJD5MjkmH73uBJXaszug9qXbsM5g29p9X/2swkzoPu3PRQpxaelVQ///CmqTc++Z08nJdU8Vj7poq9/0hOSEbb9/Pi4qQKqWGxODrfcwIECBAgQIAAAQJLChyYufWFswqYhdrOmVjzX7vAzL8azNtnZN4/D6Z9JI+PSR6ZvG0w7ZQ8jrb35UWt+/SklntEMpz2hjwffpHP0xvujFfLblYvxtpytnlu3lvreUvypKTau5OatmW9GLQ35bGmVZ8fnjw1uSCpaU9PqtURnHr9ieSxyf2S5yWXJ/VFvebVuIbtzDypaXVa4STt/2ehWv5bSfXnGcnRyUVJTa9UsTS+vo+NzDs0z/86qSMpdaSl3nOvpNpy+r9zlq/3LvQ5eNlgXhVlw3ZuntTyb0kWc64jcbVMHSkbtrvlSRVKlZcm+yV11K6OLl2b7JoM24fypN5fBk9M/ig5Pqlp7000AgQIECBAgAABAssWWO0Cab30oL54/yipL6qV65L3JFslo62OrtSX658mw2Xri/ArktHiKC+XLJCWs829sq5Lk9reZ5NqCxVIdfTlxclo3+pozdOSYatlqoipL+7D/tcphIcn9UW+pr0+GbblFkg1rr9MvpYM11+PVyZVdL46uSqpAuqQZNjukifnJcP3/DjPX5I8aTDtnnmstpz+L7dA2ivrX5PzHlmm+jhaIOXlOnWKZfW/jgINx1BjfGIy2m6bFycmo/51eudxSX22NAIECBAgQIAAAQKNErhzelNfxjdbQ6+qGNou2XoNy00ye9Jt3j4rW+g6nfFtVJGyfVJHNm42PnPwusZXR2XuuMj81Zi8VVayW1J92XBkhb+d51V8VlE53jbPhN9JqhBaqk2z/5M6L9S/TTKxXO+SLDWGW2R+jXOHZLywziSNAAECBAgQIECAAIG+CSxVQPTNwngJECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgMD8Bf4X9sPxcpuqOKAAAAAASUVORK5CYII=",
"image/svg+xml": [
"\n",
"\n"
],
"text/plain": [
"Plot with title “Normal Q-Q Plot”"
]
},
"metadata": {
"image/svg+xml": {
"isolated": true
}
},
"output_type": "display_data"
}
],
"source": [
"# Linear Model ignoring random effect\n",
"\n",
"fit.rails.simple<-lm(travel~1,data=Rail)\n",
"summary(fit.rails.simple)\n",
"res<-fit.rails.simple$residuals\n",
"qqnorm(res);qqline(res)\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"The above plot is called a 'QQ plot'. The straight line represents the quantiles of the normal distribution, while the dots are the quantiles of the residuals. If the errors were normally distributed, the dots would be close to or on the line."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Note: In this example, we are fitting a one-parameter model, i.e.\n",
"\n",
"$$y_i = \\alpha + \\epsilon_i$$\n",
"\n",
"Where $\\alpha$ is the mean travel time along a rail."
]
},
{
"cell_type": "code",
"execution_count": 10,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/html": [
"66.5"
],
"text/latex": [
"66.5"
],
"text/markdown": [
"66.5"
],
"text/plain": [
"[1] 66.5"
]
},
"execution_count": 10,
"metadata": {},
"output_type": "execute_result"
},
{
"data": {
"text/html": [
"23.6450467390978"
],
"text/latex": [
"23.6450467390978"
],
"text/markdown": [
"23.6450467390978"
],
"text/plain": [
"[1] 23.64505"
]
},
"execution_count": 10,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"mean(Rail$travel)\n",
"sd(Rail$travel)"
]
},
{
"cell_type": "code",
"execution_count": 11,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/plain": [
"Linear mixed-effects model fit by REML\n",
" Data: Rail \n",
" AIC BIC logLik\n",
" 128.177 130.6766 -61.0885\n",
"\n",
"Random effects:\n",
" Formula: ~1 | Rail\n",
" (Intercept) Residual\n",
"StdDev: 24.80547 4.020779\n",
"\n",
"Fixed effects: travel ~ 1 \n",
" Value Std.Error DF t-value p-value\n",
"(Intercept) 66.5 10.17104 12 6.538173 0\n",
"\n",
"Standardized Within-Group Residuals:\n",
" Min Q1 Med Q3 Max \n",
"-1.61882658 -0.28217671 0.03569328 0.21955784 1.61437744 \n",
"\n",
"Number of Observations: 18\n",
"Number of Groups: 6 "
]
},
"execution_count": 11,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"\n",
"# Linear Model incorporating random effect\n",
"fit.rails.mm<-lme(travel~1,random=~1|Rail,data=Rail)\n",
"summary(fit.rails.mm)\n",
"res<-fit.rails.mm$residuals"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Simulation"
]
},
{
"cell_type": "code",
"execution_count": 12,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"sim.ranef=function(nk,n,se,sb,verbose=FALSE)\n",
" {\n",
" # n exp units with nk replicates each\n",
" N=n*nk\n",
" \n",
" # generate error from normal distribution with zero mean and variance se\n",
" e=rnorm(N,0,se)\n",
" \n",
" # generate random effect from normal with mean zero and variance sb\n",
" # here we get n different samples from the normal - but replicate those nk times\n",
" b=rep(rnorm(n,0,sb),each=nk)\n",
" \n",
" # assigning a label to each n sample (eg. each rail), repeat nk times\n",
" id=rep(1:n,each=nk)\n",
" \n",
" # Simulated output value\n",
" y=0+e+b\n",
" \n",
" # create a data frame with the id, errors and outcome\n",
" dat=data.frame(id,b,e,y)\n",
" \n",
" \n",
" # fit both models: standard linear model (lm) and linear mixed effects (lme)\n",
" mod0=summary(lm(y~1,data=dat))\n",
" mod1=summary(lme(y~1,random=~1|id,data=dat))\n",
" \n",
" # extract the pvalues\n",
" pval0=mod0$coef[\"(Intercept)\",\"Pr(>|t|)\"] #each package returns a slightly different data frame\n",
" pval1=mod1$tTable[\"(Intercept)\",\"p-value\"] \n",
" \n",
" # Just changing output based on options passed to the function. \n",
" if(verbose)\n",
" {\n",
" out=list(dat,mod0,mod1) # This is a list data type. Basically, you can put anything into a list.\n",
" }\n",
" else\n",
" {\n",
" out=c(pval0,pval1) # Output only the p-values from the two models.\n",
" }\n",
" out\n",
" }\n",
"\n",
"\n"
]
},
{
"cell_type": "code",
"execution_count": 13,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/html": [
"