{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Using R for supervised learning\n",
"====\n",
" \n",
"This notebook goes over the basic concept of how to construct and use a supervised learning pipleine for classificaioon. We will use the k-nearest neighbors algorithm for illustration, but the baisc ideas carry over to all algorithms for classificaiton and regression. "
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"healthdy <- read.table('healthdy.txt', header = TRUE)"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/html": [
"
\n",
"
ID
GENDER
FLEXPRE
FLEXPOS
BAWPRE
BAWPOS
BWWPRE
BWWPOS
BFPPRE
BFPPOS
FVCPRE
FVPOS
METSPRE
METSPOS
\n",
"\n",
"\t
1
0
1
21.000
21.500
70.5
75.6
3.3
3.7
14.58
14.17
5.1
5.1
12.7
18.0
\n",
"\t
2
2
1
21.000
21.250
71.3
70.7
3.2
3.6
16.79
13.95
4.3
4.3
11.1
12.0
\n",
"\t
3
3
1
21.500
20.000
64.5
66.6
4.1
4.0
6.6
08.98
4.5
4.5
15.3
16.7
\n",
"\t
4
4
1
23.000
23.375
97
95.0
4.4
4.3
18.04
17.32
4.7
4.3
12.0
17.5
\n",
"\t
5
5
1
21.000
21.000
71
73.2
3.7
3.8
11.12
11.50
5.8
5.8
12.2
12.2
\n",
"\t
6
6
1
20.500
20.750
72.5
73.1
3.1
3.4
17.88
16.22
4.3
4.3
11.1
10.0
\n",
"\n",
"
\n"
],
"text/latex": [
"\\begin{tabular}{r|llllllllllllll}\n",
" & ID & GENDER & FLEXPRE & FLEXPOS & BAWPRE & BAWPOS & BWWPRE & BWWPOS & BFPPRE & BFPPOS & FVCPRE & FVPOS & METSPRE & METSPOS\\\\\n",
"\\hline\n",
"\t1 & 0 & 1 & 21.000 & 21.500 & 70.5 & 75.6 & 3.3 & 3.7 & 14.58 & 14.17 & 5.1 & 5.1 & 12.7 & 18.0\\\\\n",
"\t2 & 2 & 1 & 21.000 & 21.250 & 71.3 & 70.7 & 3.2 & 3.6 & 16.79 & 13.95 & 4.3 & 4.3 & 11.1 & 12.0\\\\\n",
"\t3 & 3 & 1 & 21.500 & 20.000 & 64.5 & 66.6 & 4.1 & 4.0 & 6.6 & 08.98 & 4.5 & 4.5 & 15.3 & 16.7\\\\\n",
"\t4 & 4 & 1 & 23.000 & 23.375 & 97 & 95.0 & 4.4 & 4.3 & 18.04 & 17.32 & 4.7 & 4.3 & 12.0 & 17.5\\\\\n",
"\t5 & 5 & 1 & 21.000 & 21.000 & 71 & 73.2 & 3.7 & 3.8 & 11.12 & 11.50 & 5.8 & 5.8 & 12.2 & 12.2\\\\\n",
"\t6 & 6 & 1 & 20.500 & 20.750 & 72.5 & 73.1 & 3.1 & 3.4 & 17.88 & 16.22 & 4.3 & 4.3 & 11.1 & 10.0\\\\\n",
"\\end{tabular}\n"
],
"text/plain": [
" ID GENDER FLEXPRE FLEXPOS BAWPRE BAWPOS BWWPRE BWWPOS BFPPRE BFPPOS FVCPRE\n",
"1 0 1 21.000 21.500 70.5 75.6 3.3 3.7 14.58 14.17 5.1\n",
"2 2 1 21.000 21.250 71.3 70.7 3.2 3.6 16.79 13.95 4.3\n",
"3 3 1 21.500 20.000 64.5 66.6 4.1 4.0 6.60 08.98 4.5\n",
"4 4 1 23.000 23.375 97.0 95.0 4.4 4.3 18.04 17.32 4.7\n",
"5 5 1 21.000 21.000 71.0 73.2 3.7 3.8 11.12 11.50 5.8\n",
"6 6 1 20.500 20.750 72.5 73.1 3.1 3.4 17.88 16.22 4.3\n",
" FVPOS METSPRE METSPOS\n",
"1 5.1 12.7 18.0\n",
"2 4.3 11.1 12.0\n",
"3 4.5 15.3 16.7\n",
"4 4.3 12.0 17.5\n",
"5 5.8 12.2 12.2\n",
"6 4.3 11.1 10.0"
]
},
"execution_count": 2,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"head(healthdy)"
]
},
{
"cell_type": "raw",
"metadata": {},
"source": [
"Data from Health Dynamics class at Hope College--collected about 1985 by Gregg Afman.\n",
"Downloaded from http://www.math.hope.edu/swanson/data/healthdy.txt\n",
"\n",
"Gender 1 = Male\n",
"Gender 2 = Female\n",
"\n",
"Flexpre = Flexability at the beginning of the semester\n",
"Flexpro = Flexability at the end of the semester\n",
"\n",
"Bawpre = Air Weight at the beginning of the semester\n",
"Bawpro = Air weight at the end of the semester\n",
"\n",
"Bwwpre = Water weight at the beginning of the semester\n",
"Bwwpro = Water weight at the end of the semester\n",
"\n",
"Bfppre = Body fat at the beginning of the semester\n",
"Bfppro = Body fat at the end of the semester\n",
"\n",
"Fvcpre = Forced capacity at the beginning of the semester\n",
"Fvcpro = Forced capacity at the end of the semester\n",
"\n",
"Metspre = Mets at the beginning of the semester\n",
"Metspro = Mets at the end of the semester"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Supervised learning problem\n",
"\n",
"For simplicity and ease of visualization, we will just use the first 2 indepdendent variables as fearures for predicitng gender. In practice, the selection of approprieate features to use as predictors can be a challenging problem that greatly affects the effectiveness of supervised learning.\n",
"\n",
"So the problme is: How accurately can we guess the gender of a student from the Flexpre and Bawpre variables? "
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Visualizing the data\n",
"----\n",
"\n",
"First let's make a smaller dataframe containing just the variables of interest, and make some plots."
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"df <- healthdy[,c(\"ID\", \"GENDER\", \"FLEXPRE\", \"BAWPRE\")]\n",
"df$ID <- factor(df$ID)\n",
"df$GENDER <- factor(df$GENDER, labels = c(\"Male\", \"Female\"))\n",
"df$FLEXPRE <- as.numeric(df$FLEXPRE)"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/plain": [
" ID GENDER FLEXPRE BAWPRE \n",
" 0 : 2 Male : 82 Min. : 1.00 Min. :35.20 \n",
" 2 : 2 Female:100 1st Qu.:26.00 1st Qu.:57.73 \n",
" 3 : 2 Median :42.00 Median :65.05 \n",
" 4 : 2 Mean :38.76 Mean :66.99 \n",
" 5 : 2 3rd Qu.:52.00 3rd Qu.:74.50 \n",
" 6 : 2 Max. :67.00 Max. :98.50 \n",
" (Other):170 "
]
},
"execution_count": 4,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"summary(df)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Let's check the mean flexibilitiy and weights for boys and girls."
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/html": [
"
\n",
"
Gender
FLEXPRE
BAWPRE
\n",
"\n",
"\t
1
Male
33.46341
75.89024
\n",
"\t
2
Female
43.1
59.695
\n",
"\n",
"
\n"
],
"text/latex": [
"\\begin{tabular}{r|lll}\n",
" & Gender & FLEXPRE & BAWPRE\\\\\n",
"\\hline\n",
"\t1 & Male & 33.46341 & 75.89024\\\\\n",
"\t2 & Female & 43.1 & 59.695\\\\\n",
"\\end{tabular}\n"
],
"text/plain": [
" Gender FLEXPRE BAWPRE\n",
"1 Male 33.46341 75.89024\n",
"2 Female 43.10000 59.69500"
]
},
"execution_count": 5,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"with(df, aggregate(df[,3:4], by=list(Gender=GENDER), FUN=mean))"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"On average, girls are more flexible and weigh less than boys. This is confirmed viually."
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAA0gAAANICAYAAAD958/bAAAEDWlDQ1BJQ0MgUHJvZmlsZQAAOI2NVV1oHFUUPrtzZyMkzlNsNIV0qD8NJQ2TVjShtLp/3d02bpZJNtoi6GT27s6Yyc44M7v9oU9FUHwx6psUxL+3gCAo9Q/bPrQvlQol2tQgKD60+INQ6Ium65k7M5lpurHeZe58853vnnvuuWfvBei5qliWkRQBFpquLRcy4nOHj4g9K5CEh6AXBqFXUR0rXalMAjZPC3e1W99Dwntf2dXd/p+tt0YdFSBxH2Kz5qgLiI8B8KdVy3YBevqRHz/qWh72Yui3MUDEL3q44WPXw3M+fo1pZuQs4tOIBVVTaoiXEI/MxfhGDPsxsNZfoE1q66ro5aJim3XdoLFw72H+n23BaIXzbcOnz5mfPoTvYVz7KzUl5+FRxEuqkp9G/Ajia219thzg25abkRE/BpDc3pqvphHvRFys2weqvp+krbWKIX7nhDbzLOItiM8358pTwdirqpPFnMF2xLc1WvLyOwTAibpbmvHHcvttU57y5+XqNZrLe3lE/Pq8eUj2fXKfOe3pfOjzhJYtB/yll5SDFcSDiH+hRkH25+L+sdxKEAMZahrlSX8ukqMOWy/jXW2m6M9LDBc31B9LFuv6gVKg/0Szi3KAr1kGq1GMjU/aLbnq6/lRxc4XfJ98hTargX++DbMJBSiYMIe9Ck1YAxFkKEAG3xbYaKmDDgYyFK0UGYpfoWYXG+fAPPI6tJnNwb7ClP7IyF+D+bjOtCpkhz6CFrIa/I6sFtNl8auFXGMTP34sNwI/JhkgEtmDz14ySfaRcTIBInmKPE32kxyyE2Tv+thKbEVePDfW/byMM1Kmm0XdObS7oGD/MypMXFPXrCwOtoYjyyn7BV29/MZfsVzpLDdRtuIZnbpXzvlf+ev8MvYr/Gqk4H/kV/G3csdazLuyTMPsbFhzd1UabQbjFvDRmcWJxR3zcfHkVw9GfpbJmeev9F08WW8uDkaslwX6avlWGU6NRKz0g/SHtCy9J30o/ca9zX3Kfc19zn3BXQKRO8ud477hLnAfc1/G9mrzGlrfexZ5GLdn6ZZrrEohI2wVHhZywjbhUWEy8icMCGNCUdiBlq3r+xafL549HQ5jH+an+1y+LlYBifuxAvRN/lVVVOlwlCkdVm9NOL5BE4wkQ2SMlDZU97hX86EilU/lUmkQUztTE6mx1EEPh7OmdqBtAvv8HdWpbrJS6tJj3n0CWdM6busNzRV3S9KTYhqvNiqWmuroiKgYhshMjmhTh9ptWhsF7970j/SbMrsPE1suR5z7DMC+P/Hs+y7ijrQAlhyAgccjbhjPygfeBTjzhNqy28EdkUh8C+DU9+z2v/oyeH791OncxHOs5y2AtTc7nb/f73TWPkD/qwBnjX8BoJ98VVBg/m8AAEAASURBVHgB7J0HuCRF2YV7MznntAtLEJQMSgYFAUkiikoGA4piwCwiOfgrAooiSFaSJMkZlhwlIxl2yWnJaRO7/zl3p7C2d7rv3LmTuuf9nufcrq6qrq56u+9MfV3VNUmCQQACEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCFQjMKBaJHEQgEDNBBZXzllrzp0kDynvZGkWaYnouAeicCuDI3WymSsnfEVbyza3tHBPKEkmaPtoJVzLJq9tWefLO6aWc5Y5zzA1bpmogb4WviZZtqwShlQS39L22SoZF1PcHFF8fO2j6OQT2hlaiXhd2xfixD6Em3V9l1QdZqrUI6sNfagmWTuEQF/v+VDt5RQYXNl5Tts3Q0IHbF2vtST/780ruW7+33xMqvf/Soe23Oq9Ni2vKCeEAAQgAIH2EbhKp57SBwVnZOPUMYPa1IRbo3ocFNXhe1H86Ci+lmBe27LOl3dMOKc7/XtJ7hR3k9k5iu+x2LGuxuGGKP/t1TIo7v4oj8s+q0q+GRRnRyyc+xdV8tQaVcv1rbWsON8d2gn12z9OqDHcrfdUjXjalq2v93yo6KsKhPthlxDZ5q3/j/5PGiuFusVbPzA7X1pNKoLVe22K0DbqCIGPCQz8OEQAAhCAQOcS2FRV8yjbEVIYMejc2ra3ZjdGp19ZYT/xjW0+7SwfRyi8QWrfu6tKdiCCxeWGuCJvuaeKfPWKUXc7E3dJfrjgUflq5pk8X5L88Mj3JAYBCHQAgTAU3QFVoQoQKDyBN9SC//TSio96SW918os64dOVkzZqOsqHUZm1tifvGE9JubzWgsiX3BQxGKqwnaTbo7gNFU5Pr55fcctKj0T51ojC7yt8d7Tf12De9e1rWY3Izz3VCIqUkUdgNiVeIsUj3h5F8v+ip9WtKK0n+X/U5ocR50mrSE7HIACBNhLAQWojfE5dOgL3qkWbFKxVX2lCfd1BH9nHcvOOSXfmPT0FyyZwm5LsiA+qZLGjEztIG1Xi05sNFBE7SGtGGXz8xGi/r8G869vXshqRn3uqERQpI4/A0UqMnaN/av8H0tvRQX437+/SdpU4j47vIf24ss8GAhBoEwEcpDaB57QQqIHA0sqzueQRgMnS/dIo6T4pNr/4Gz/tv0X7fjcj2HAFvhx2tLUj53JsX5cW6glN7UTfWglX23xaka7PJ6XHpeulq6S0pc93pDJMSWdK7Wcds6nyrZ3Ku7P2X5K84MWnorR/KfxCtO+gnYQfSqFDfKXC/5VqsUWVaSdppORpaR4FeVm6RrpYitu0hPa3lmzPS2dLbtMXJNf/A8mji+4kjZOqmZ8kby/5XQRPx7lTOkfqq72rA3yPrFo5ML43HBU7SM63UiXfBtr+rRL2Jj7uhig+BM12G8n1dUfwScnlXSCZVWxZ1zfO4yfo7ij6PptL8r14ofSc5I6l020nSO/0hKr/2ULRfjI/QvL/zCWVrTY9lndPXaccbkMttrwybSl5JOAZyYwulczD57f5XvM9F+y7CoQpoicp7P+lHaVJ0uWS/58ctg2UPi/5HlpMelN6QPJ5suq4q9LMzna9dI8Dkfl+nreyf5O2d1XCy2lrLranJHMPcb4PHGc2V0tZtrQSNpdWliZLZj9KyqqrknpGTxpxz7usajazIl3+mtIAyTz8OfGqFGxbBRat7Dyr7bkhIdr6f/gzlX3fe74H82x+Jfq8wcxh57ATbd9TeA9pHWkRyZxnlKpZX/i2+/OoL3X1/8+GlQY/oq3vbzPx/5Ef9lwkjZEwCEAAAhAoEAF3aKZUdE0f6r1xdJyPd2cztu9r50MplB22HynuQCnO7867O+4hj52E2SWbO1k3SiHtLYWHS8FuVSCkHRQitf1eFP+Mwr+RfO6QN2xPUZw7IbHltS3rfFnH/EMFh3Oltz9RmtsT4veJK1EJfy5Kd6dtsSp5qkX5C3qSFMpOb09X2tDoQHfKQx5/wbtj+3YUF9IeUFzojCn4sS2lkDtvIV/YjlWcnYOw7+0SUm92pDKEY3z9gi2tQIj3/fWlaP+VkElbd9ZCPm/Xj9IcHC7dLMV5QthOgZ2H2LKub8jjNt0phTLC1u1359YdyRA3XOFgdygQ4v+g8FnRfogfr7hvScHy7imzrsV8702QwjnC9hTF/TqKP1nh2NwxD3l9j02M9s1/sGSbTbpdCnnjrf8PfX1nlNL2qCJC3r3Sidq30xLSfxWlu/Me4t0h3VWqdv//XfEzSGnry+dVOLbR97zLjfkeov0HpdCusPXDlY2kYPH18sOFalxvVHw4/oRwYM7W90fI7214WJF1yIJKmDUrUfF95dvOz6O+1jX+rjlDbb1OitnV+j+Zg48kCEAAAhBoNYHYQXIHb/UMrZSqWF6H8dvKG39BuCPmjmIcd3iqvM1S6cdV0tNf1F9PHXdrdFyWgxTO6w7TY1LacftTqsy8tmWdL+uY3jqzx0b1fyBVD+8eE6WPqpJeLWpNRdqZCu0ep7A7Wm9EcU77rRQs7pA4X+j42jkZL4WyvHUnMzY7u3Yq4jyvad/HxnEhbGeiN9tGGUJ+bxesHBB3Rq5W3MxSXL/lKvm+om043u2PO8XDtP9UlO58L0sxMzs080vBsq6v0wdKccfd5b0qPSs57NG3uLM+XPvB7lDAeayQ532F0+zcBj9IsPV2T03Nlf03ZuPz+lo/KoX/i3cUDnU6WeHY3K6Q5naFsLdHVzLOom38f+I0O0VxXofdkRwgxeZ6hHz1Okivq4xwLd+MwqHcP8YnVLiez6tm3POuVsw31Lfa/5LvkYV9gMzbmK//d2Lz/06cvn6cmBE+XfHh/Ha6+mP18G3X51E9df2e4ARW6f8J/0+H/9v+MORYCEAAAhBoMYHYQQof8tW27kDGltVh9MhP/CV/qvb9Be5OqZ+Ch7L9RRI6vQr22J/1N6S7g/NdKXTaHO+y0hZ3xPIcpAd04GKVg92pvkAK57IDt1QlzZustjkt63xZxyyqYzaVwrm8/bK0vDS39BkpTltW+8Hc8Tb3kL5bSOhla4cvdBCvVTg8UR6icNwhvyIqJ+6Q+Hx+Su062jwa8KAU6vGCIyNLdyp+GqW57e7MhWO9HRmlZwXdqYiP+VIl4/lR/C8rcddHce6s2NwJDsff1BPzvz97R2nufG4lmfUnpBukcNxRCgfLur5O/6YUjvH2B46s2CbavivF6SMqad7E18N5DpP8v2L7ohSuo9N2d6Sst3tqaq7qf4cq+ikp1MeO3SKVrHZs/h2lOc8pUmzx/7bTz5Zcz8OlVSTbJVIo323fVXLZ80puX9ym72o/tkY4SD73c9IalYLn0db3eqiTHeolKmn1fl414553ldJ8f1yppze+l+L/pZOjtMsVDu37VxTv4PejtNEKD3BkLxb/H/geSZs/Ez6dI3/G2url247Po3rr6s+cwN5bf6Y4blfpIAmDAAQgAIECEmi0g/RNMQhfFh8pvECKyV1R+oGptBm0H3fEQznePinNmsrv3VulkC/+Mkp/aa2bOnZ+7X8YHRt3RPI6w1nnyztmeHQe1zU4Hgr22MP6G9qwXyXOm/WjeHeMqrXf+aqZ864lLZRK3Ef74Vx3RmnpDklwSEKWb0THTQiRlW3cObsulebdI6VwTm9HOrIGizvL/6f8g6Q3pVDWqpUy4jadXYm7Jcp3SCUubJ6L0o4JkZXt5lGa74+ZKvF51zdu/7WV/PHG5w919nZElBg7SA8p3o5abI9pJxx7QJQwPIp3evqeirJOE/xM6rj0/8VcSn8nynOKwrG9qp1Qn2cU9v9sbEtrJ6R7m3aAnPeMKM+LjogsvuZ7RfEh6M56KP9XIVLbnaN4p385SnPQTtJ7Ujj2546UfVMKcX35vIqveSPv+ZhvtXvpiKi+b7kBFfuqtqEdbme4b508Kko7yBE1mB8ohfJuqpL/c1F6yBdv7TzZ6uXbjs+jeuv6PbUzbrv3MQi0nUD6y6TtFaICECgwgbGq+8UZsiNVi7mDFGyMAn6qvFmkxxUOtmQIVLbjtN1e8hPe2CZpZwfp3TiyD2GXe3Mq/yvavy+KGxmFWx08OTqhOzrBvhIC2l4g9aX9zntr5fhttT1ccmf8wEqcN2GkIor6OJjm9dLHKVMXG4g7YEtEadXukyuj9L4E447ZGjpwVWmOSgFvaHtvJXxNZevN+tJQyfddsBtDQFvXO0xNcrTv+fj+HKz9iU6QufO/SE8o/0/c/mqd2ivyD/849b8KeXQlttejnbQzEiXVHIzr6v+z9HU2Vz/EqMUuVib/b8W2QbRjh+OkaD8Ejw8BbReU5o32ewsO6C2D0t1Zdd1i83W20xxsyUqg3s+rmGMj7/lQP2+vjncq4fh/ySMec1fiL9TWDw9sM0t29G3zSev1hKb++UcUzgu+HCUOj8J9DdbLN32e9H3ajM+jRtX17HTl2YdAOwj4ywyDAAQaQ8BPZ7fqZ1FLRce7E3FptJ8Oxh3VkPagAn+VfhIitPXTWnfu6zU7Q+40pe3FKKI/nYComLqC/9RRh0mDpOWkT0oPS9tIwWrt2IT8WyhwsLRiiKiyTXfG4yzx02nHpzvCcd4R0U7ccQnRMecQV8vWDtK3KhlX03bT6KDrFA71d4f+bckdRncI7WQHZ8Kd9FulYEsqEHeyfxsSMra+Rx/PSAvRI0JAW99raavGJJ3H+x6RSduEKCKudxTdp+CIKPdrClf7v+hPfWOH8gWVH9c/nPrpEKhsfc/fkIrz7sAqcUOiuCwedoaqnff56NjFK+F6P69GRGVV41XvPR8V2zO9Nt53OF2uP7fsRNvZPUP6vmTzg5ZzpC9JgePtCj8h1WLPRZn8PzBUipn63vl3lGcBhdeM9kOwXr7h+LBtxedRI+r6gSrs+w+DQNsJDG57DagABCAQE4i/RF9Vgp2uLIu/hEOe+RXYKexUtu7sbyhdm4qvdTeMOqTzzxRFtPNLzU9r7QS6nTZ3bq6SFvKOzB2weJSkJzLnzy5KO1EaVMljp9PlXS99SjpMsgUHY+re//660zzxf7s9oay8TvSTa18322xTN9P8nXmavdp3boqy+lrtEe3HPD5S/PXSFyvpv6xsvblXejfaj+9PR98meUpSllVzINJ57ZyFUZCwjfNUi4vTQ9idq7TVcv70MXn7rmuweUIgte1PfeOOrKd5VrPZU5FZ/3uxMxQOGRYC2maxmVNpdgrS9+ws0bG+Z23x/dCXzysf34x7vqdSlT/VPrfizyxni9mdrP3gIG2usP/v4lHovjxk8ajnNySbWfoz2Z8pwfyZEj/A+YL2LwuJ0bZevlERPde5FZ9Hjahrtf/huC2EIdAyAjhILUPNiSBQE4H46fAkHeGn/umOSl5B/hJOd9D8pPhUye9ZhI6NgjWbO2R+Yjw6dUT8xDCudypbw3fd4UibOzdbVCLtILnOwU5XwE5Arba3Mgbn6K8K7xkdaIbBssrM6niG49LbpxQROovLphO1v1yVuFqifL1ekPwE2+an1MFiB8lxV0tfrCR+orL15oYo7OAYye3zPWVzp/HYnlD9f8bo0HDPrlGlmA2qxDU6qto9Ve0cY6LIGRReSbovirMTsWq0nxf0qEXaxkQRdlRGSr4/YvNoYDB3Sh8PO9rGndS0Y+1rFu6z6JDpgu4XfFJyJz62+P/9yUpC/H/fl8+rZt3zcX1Xjncq4aWjOLOKR8Xu1r7b7P/xGaXdpM9KNuf9V0+otj+XKNt7ku8H2/6Sj3dcNRtSLVJx9fKNi2vV51Ej6lrtfyJuC2EItIxArV8KLasQJ4JAlxO4JWr/QgqvH+27036rdLt0orSZFNt3teMnn8E80jG5suNOcn86svvr+NApdpHuTLvzFuyeEGjC1h2v2IbGO5WwOyRjK2F38L9RCXvjTnytNo8yxp0olxvbetFOox4wxey+pvJHROdwJ3yvaL+vwZuqHDBGcelOd9phCofdGAKV7Tht3ZEMtl0IVLZ2Tl32RZLvv9BBVDDTLo1SPEV1i2h/NYV/Ee03KljLPVXtXDcr8p0o4QiFQxvdyf2zNHeUnhdM18F5r5Tejw76o8Jx59mO5D5Ruq9bPDrweJSWdhB8beIRlPj/OTqsJ7iv/sbpG2g/Lu/enlzTvpfUl8+rZt7zlar1jP7Y2Qnm/9cfhh1t75fC52OIPjkEtD1U8meuzZ8Db/SEavvzobIdGGVdRGH/36wSxTnoe+dXUvozKrDvz/eBy6/H6r02jahrtf+JetrAMRCAAAQg0GYCV+n8fkJnubNSq22sjOE4b8MXsb8YH4jSnlF4J2lDyV+i8TFxZ92denesQvqZCtuOlEKctzs7MrJbFQ7pB0Xx34viQ7o7st+WDpbcAQjxdyocvtAVbOgy3y5vNimcy1tzPlz6ihTbUdqJ8zkcP92P82aFfR0+kEI5tynsUQ3LTmmI9zbujLpTH9I+Ujht6ysipHsbd1TtvMbn9DXfW9pDcqcqPs7hkVKtVu06npBx8HOKj8/lzuNcVfJ+OZXvOO1vIPneeEEKZVyncLCs+93p80jvSeE48/N9eZM0IYoP6SMUF+wOBUL8/iEy2o6K0n8fxdd6T0WHfBz8v6hMn/sl6TLp2VS8006RYntVO6G+u8QJUdgOccjjre+BfSQ7nM9LIc3MRkixHaSdkO6t//99b/rYmLHTfi0F8+dCfJzD/mzbXTpQelcK6f6fGijZ/H9fz+dVs+75mK/r+5rk+vve9P0U2uBt/DBJuz1mB7TaPbd1Jb0vGzO6QYrP6bCvoR3hhyXf6+l0P4RYRrLVy7cdn0f11jX+jBo9tdn8hQAEIACBohNwJyJ8wTXCQTKPlaRno3JD+fHWHZ9gfjJ6pxTSX1HYnU7bTNKTUkh7W+ERUrBaHKQblflxKZQRb91xWjMUVtnmdYazzpd3jIt1pyw+r8NHOCGyFRVO5/lJlF5r0OWmywn78XVxR2aWSqH96ZC4iHSnOJzP23Olt6QQN1LhWs1P0MNxYfv1jINPTuV1x7eauSP0JymUV21rpyF08lxGb9d3feXxvZkuy47jL1Pxw7UfrF4HycfXck+F88Tbodo5R0rX1fuXS3aWQtrJCscWd+B3iRNS4T21bwc1lJPe2tn5WuoY7y4rvSGl83v/Ccn1C2lZDpIftMSfGSG/tz7velJsff28Csc2456P+aYfaMTt8P9Ulv1bCXHesdofkpW5l3h//v5TisvLC9sZXjlVZj18t4jO2dcHNj59vdemnrp+L6rraJ8cgwAEIACB4hNohoNkKn6S6S/qt6T4C3WM9v2FEtuB2onz+Al/bBtoJ+5s2eEZWMmQ5bDEX1r+gp9b8ghS/HT1P9r3dLa05XWGs86Xd4zLX0d6UQrt9LSio6S03aOIkGeSwgukM9SwP0x57CT5HKEsd9TtlM4ojZFC/I4K2/rbIXEZW0t2LELZdhh+L/la+Ul4iF9C4VrNzkzcYfZ94Hurmu2gyHAOb/9SLVMUt4vCj0nxU3AzP1taUoqtt+vrvO5cnSS5I+9rfZa0hvRJKa7XfNoP1h8HqdZ7Kpwr3vqa/Fy6VnpTuk3aT3JHOnaejtF+bK9qJ7TF/PLsq0q8TIo/A+yUXyHl3QNm9ogUzvO+whdKvu5/jeJ/pXCwnRUI+X2vzSH5mPja3qt9X4tq5rJr/byKj2/0PR/z9YMEM06Puu2rOF+/LNtKCYGFt739H2SVE8d/QTvnS/HnZzjH64o/Q9pEyrK+8m3n51Ff6/o9NTqwGJ0FgHgIQAACEIBAmsDiilhX8nZQOrHF+zPpfO6A2WFqtXmkzB20VSW/m5M2OwMPSuHL1k/L+2Oz6eDVJI/C+NytMl/nlaV2X+ta2zuzMvqecJ1nr/WgKJ87VLNE++mg7/1wTb2tdu3Tx9S639s9lS7H12RhKa+Dbacp1Pd36QLq2Pe5VpR87/flPpxf+VeXahn9SDtIOqzH/D/gEeJ5pu7W9Leez6tm3/NLqeYrSLX8T31F+cL18/YzUqNsmAoaKa0vrV0J11InZf3Y6uH78cF1BPpzbVpd1zqaxyEQgAAEIACBchP4hpoXd2y+Xu7mlqZ1h1aum5+k3yN9NtWy/bUfrutTqbRW7/oBgUfJPBLgupwmxWZn7zUp1HenOLGDw1kOUgdXuSlV88jZ/VK4fo825SwUCgEIQAACEIAABJpIwE7QSdJDUujUeOvOa1+etis71iYCm+u88bXzNMPjpT9K10t2SEJ6/N6Mottid+msoT7eXivZyfM0qeekkPaKwvWMqOmwlls3O0gDRNvTOf8lfSCF6+etH7pgEIAABCAAAQhAoFAEdldt4w6Nw+5Qb1WoVlBZj8Skr2N636NLQzsA1Uqqw/u91Hei0rfrgLrWWoVudpDM6EUpfb/dojgespgOBgEIQAACEIBAoQh4OtYbkjs370ijpM9LWLEI+D2bL0lXS2Ok8dJHkkdkbpT8IncndVYXUX3+IPmdN08N9P33bmXfzt4yUpHM/zNmb51XpIo3qK6XqBxPm/TDlWek30uzSRgEIAABCEAAAhAoLIEhha05Fa9GwNOeOskhqlbHOI77L6ZRzHDR7rliUqbWEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAAQi0jMCAlp2pc040p6oyuzRMek96S3pfwiAAAQhAAAIQgAAEIAABCHQFgZXVyhOkV6UpVfSU4o6T5pUwCEAAAhCAAAQgAAEIQAACpSWwr1oWnKJnFL5VukQ6S7pcukN6SXKesdL2EgYBCEAAAhCAAAQgAAEIQKB0BLZVi+z42BFaJad1nmq4nnSX5PxrSRgEIAABCEAAAhCAAAQgAIFSEThdrfH0Ob9vVIv5/aR3pGNryUweCEAAAhCAAAQgAAEIQKBcBAaXqznTtWYFxdwmjZ8upXrEm4p+QFq4enJTY1dT6UOaegYKhwAEIAABCEAAAhCAQHMITFCxdzen6NaWWnYHye8WrSrZ8ZhYA1qPINmp8oINrTQ7R57eh0EAAhCAAAQgAAEIQKCoBNynLbyTVHYH6VRdpNOk86RDJC/IUM38DtI60uHSTNIFUistjBzNqpPa+8YgAAEIQAACEIAABCBQFAJDVdF3JW8Lb2V3kM7QFZpPOljaUnpBel56XfK7RrNJc0nDpQWlSdJPpVukdpidIxykdpDnnBCAAAQgAAEIQAACEOgiAkuorWdKdpC8Sl0s/0jsE5JHjxaV2mFr6qSuUym87nYA5JwQgAAEIAABCEAAAm0j4D6s+7Lu0xbeyj6CFC7Q0wpsV9nxqNHs0gySfzj2bQmDAAQgAAEIQAACEIAABCCQDOxCBoPUZsttn0WaWcIgAAEIQAACEIAABCAAAQh0jYO0sq71CZJHjN6QRkuPSn4f6T3Jv5V0nDSvhEEAAhCAAAQgAAEIQAACECgtgX3VsvDO0TMK3ypdIp0lXS55ZTsvB+48Y6XtpVYb7yC1mjjngwAEIAABCEAAAhBoFIFSvYPUKCidWs62qpgdHztCq+RU0st8ryf5t4icfy2plYaD1EranAsCEIAABCAAAQhAoJEESuUglX2Rhq115b1Ag7fjc+4CO0U3ShtLHmXaWfJIU702XAdeI4XfN+qtnBkrGeyo1WP+MdxzpG58p6weXp12jKd+frrTKkV9IAABCEAAAhCAQDcSKLuDtIIu6m1SnnMUX/c3tfOAtHAcWUf4RR3jqX32pmsxj159Q/L1qLWucbl2yPx7T9+PIwkXgsAyquWvJTu3kwtRYyoJAQhAAAIQgAAEIFBYAlep5o9ItY7kzKm8/gHZP0ittG/rZB7FmrnOk26j4/zjt1jxCKyrKvvaM/pXvGtHjSEAAQhAAAIQmErAgwLuz6xZBiBl75Sdqov0Cek86TM5F8xT29xRvUKaSbpAwiAAAQhAAAIQgAAEIACBLiNQ9il2Z+h6eurZwdKW0gvS85JHWzxS5B+NnUvyFLUFpUnST6VbJAwCEIAABCAAAQhAAAIQgEApCSyhVp0p2UHy8F+s97X/hHS4tKjUDmOKXTuod8Y5mWLXGdeBWkAAAhCAAAQgUD+BUk2xK/sIUrjMTyuwXWXHo0azSzNIXj3sbQmDAAQgAAEIQAACEIAABCDQs2pat2Hw1DoLgwAEIAABCEAAAhCAAAQgMA2Bsi/SME1j2YEABCAAAQhAAAIQgAAEIJBHoFum2OUxIA0CEIAABCAAAQhAoLEERqi470qrSX4gf690nPS4hEGgowmU3UHy4gd+56ivdqsO8A/MYhCAAAQgAAEIQAACfSOwvbKfJD0k+SdU/EPoG0k/kPaU/i5hEIBAmwj4aUW8Yl2t4f1aXF9WsWsx8A46HavYddDFoCoQgAAEINBvAv6h0InSj6uU9A3F+SdVPl8ljahiE2AVuwJdvy+orudL/me9UPLTjFrssVoykQcCEIAABCAAAQhAYBoCB2jvX9JR08RO3XE/bFXpEOnqqVH8hQAE2kFgmE56uzReWrkdFajhnIwg1QCppFkYQSrphaVZEIAABLqQgF/d8OhR3gjR6kr3jJ45JKw8BEo1gtQNq9jZMfpm5f47ujz3IS2BAAQgAAEIQAACHUVgVtXGTtIrObXyb1DacJCmcuBvBxLoBgfJ2P8r7S15wYblJQwCEIAABCAAAQhAoLEE3lRxVl5fy2njpJckDAIdSaBbHCTD/6O0gvSgdzAIQAACEIAABCAAgYYTOEsl/lKaoUrJHl3yA2u/H+4ZPhgEOpJANzlIHXkBSl6pZdW+L1U0vJe2LhXlnbmXvFnJa1XKGJSVgXgIQAACEIAABJpKwCsBzy5dKo2MzrSYwv+uxP0qiicIAQhAoCqBsi7ScJBa6xcxreOrtvx/kf7QDHntLNVj/q0FlzFjPQe36RgWaWgTeE4LAQhAAAJNIzBcJd8o+fePHpcekT6S7pSWlrDyESjVIg0e6sQgYAJ+P2sdyU99npT+I9nZaIS5HI8k7SH59w/S5nN/IR3JPgQgAAEIQAAChSTwjGq9nuQlvVeTPGPpHskOUqP6FioKg0BzCOAgNYdrkUr1dLT9pJ9L/tB6S5pfekLaXfIToP7aLSrAzteG0pVVCrPz5OXYH5aWq5JOFAQgAAEIQAACxSNwt6psYRAoFAEcpEJdrqZU9kSVuoW0m3Se5N8vWECy03SNtIk0SuqPnaOD15a2lao5SF9X/L3SaKmagzSP4u1cLSN5WVCPcN0sPSDVYr7PN5dWkuyI3SddLH0oYRCAAAQgAAEIQAACEIBAhxFo1ztIG4uDHaJVMnj4d6Oekup1pMM7SF9UGbdKr1cpy86P6+ARLDtoHsWK30Hysa9V4t/Wdlwl7LnMv5Biq/YO0hLKcIfkcn382ErYo1UrSO22dVUB183TDzAIQAACEIBAUQgsooouL3lqPgaBUr2DRKesu2/ondV8OyWeF1zN9lOkV53x6E9/7V8qYC7JI0GxfVk7gyQvC5o2v5v0T8n36eqSj59b8pS8SdL+Ut4H8wCl+7ye/7yT5NEnO2R2DD2N0CNb/ofGIAABCEAAAhCojYC/g/2Q8TnJMzn88PMiaUkJg0ApCOAgleIy1t2IpXXk3TlHv6G00ZLz9dfsjHik5Kupgjy9zu8o+YM2bZ5ud6vkkSIvGuFRo/elC6SrpBmlRaUs+5oS7BxdJp0m+fy2q6W/Sm6XpxZiEIAABCAAAQj0TmAvZTlbskPk72g/tNxQ8vfxndKnJAwChSdQ79SpwjecBvQQeFd/5+yFhdOdr7/2ogq4Sdpa+q7kaXULSl7l5gdSNbtdkZtGCUMUHimtJHkEyDbT1E3Vv2tUYq/TNj2dzk+/bHagjusJ8QcCEIAABCAAgSwCn1TCH6QdJM/OCHaDAv5+d5wfRq4iTZYwCBSWAA5SYS9dQyo+SqXsIu0recpa2jZShB2kG9MJde77w9MOkZ82+X0hjyZ5VMejS1m2pBJ+Km0gOex71h+8wWnzNLosC+8yHZGVQfEuE4MABCAAAQhAIJ/A7kr2jI/YOQpH+Hv5h9Jz0pqS82EQKCwBptgV9tI1pOLHqBS/w3OsNChV4kjtnygdL3n0pxHm9508TW7bSmGeXneN9FplP735hCI8ZP8t6SlpP2lzaQHpdKk3G1fJ4KddG2XoF70VQjoEIAABCEAAAj0zMfxgNcteUoJ/FHbFrAzEQ6AoBPw0HuteAn7HaCvpYslPfM6UvMqbP9x2ljxs7vnGjbJXVJDL9DS7Q6Q1pN2kLPPTKI9g7SqdKsXm94dsacduauzUv/6gtr0jXdsT+t+fORT09LqX/xdFCAIQgAAEIACBDAKeaTI0Iy1EO73ajJSQzhYChSDACFIhLlNTK+n3fPyi5b+lLaQfSYtKHrXxaE0YhVGwIeah+bmkv0jjJZ83yxavJIxOZVhZ+3bobEOmbqr+9UuknsK3t5R2pHz+q6VQjoIYBCAAAQhAAAIZBO5QvPsFAzLSPevDs0/cr8AgAAEI9JvAt1WCO/Iz11nSNjrOy2x2mh2kCrldX4wqNrfCEyvx50fxDnoKnvMv5R3ZzyXv3y1tJ60l/VJ6TXJ7nfYlKdgVCjhuxhCh7UmVuJu19ap2zu/RKOe7UGq3rasKuC48rGj3leD8EIAABCCQR2BhJb4n7VMl0yyKu0Xyg0esOwl49ND9GR48d+f1b0qru8lBMsDgyIR3kQLUtIPkUZ+/SR6u9z+d5Slx5uXpcd4/VgoWyo0dJDsedrTekkIZfpn0XGkBqd2Gg9TuK8D5IQABCECgVgKeIj9O8gNGP5xdW/qu9ITkae0LSlh3EsBB6s7r3tRWl9VBahS02VTQStJC/SxwMR2/ouTyOsVwkDrlSlAPCEAAAhCohYC/R/1A06vJ+sHjs9L/SbNLWPcSKJWDxCIN3XsjF6nl76iy9zWgwv4QtzAIQAACEIAABOojcL8O+3LlUPcjWZShPo4c1cEEPP0IgwAEIAABCEAAAhCAQF8J4Bz1lRj5C0EAB6kQl4lKQgACEIAABCAAAQhAAAKtIMAUu1ZQ5hwQgAAE8gksouSvSktKntd/reTVoDy/H4MABCAAAQhAoIUEGEFqIWxOBQEIQKAKgb0U96T0HcnL4K8iXSTdJLEilCBgEIAABCAAgVYSwEFqJW3OBQEIQGBaAt/U7u+k3aVlJP9W1+elpSQvc3+5NEzCIAABCEAAAhBoEQEcpBaB5jQQgAAEUgRm0P7vpV9J/0ilPad9/2K9l7a3E4VBAAIQgAAEINAiAjhILQLNaSAAAQikCKyn/ZmlY1PxYfcNBf4p+YcZMQhAAAIQgAAEWkSARRpaBLpLT7Oo2r1aDW2/TXleriFfO7OspZPPL/ndkI/aWRHOXRoCfr/I9/2HOS0arbSNc9JJggAEIAABCECgwQRwkBoMlOKmIeAn5KdNE1N9Z0tFX1I9qWNi91VNNpFmkvI6tB1TYSrS8QReUg3tdM8oZd1TiyvN+TAIQAACEIAABFpEAAepRaA7/TSvJ8lsMyfD1hmQTJldenJoMvE/qnOjlhi+TGWdncPgvpw0kiBQVgI3qWF2jLxAw5+qNHJOxe0kHVAljSgIQAACEIAABJpEAAepSWCLUqy8lkFfTIbup5fRfi5/SA7RgLdU9/knJEOfGJBM3n1IMunGBrTlQZVxagPKoQgIlImAnaNfSkdLY6XTpWALK+CHCp6Cd0KIZAsBCEAAAhCAQPMJ4CA1n3FHn2HrZOiJA5Jki8lJstuDyYTz9MLQxPeSZIGhybD9kmTgNR8mgzeZMZk0qsWN8H3pFbxWkoZJHmG6WIqnIfnp+lbSrZI7l57+5t+PeUC6UnpN8iphfn9jHelN6V/S01La1laEz7Wk5BfjH5culMZJvVktde2tDNK7l8Dxavps0knSPtK90lzS+pXwptqOlzAIQAACEIAABCDQVQS+rdZq9KZnRat6Gr6NDtIsub7ZuGTwxhOToRMnJEPsWExnE5JhR0tPyTuq15HeQYW6Xb+brvDsiCWUdIfk496W7Pw4/LC0ghTMYccfLPlHNh2eWNnawVlYGlXZn1DZvq/tylKw2RXwU3ofKx+xx6ly2HpMWkgKdoUCjvf7IsFqrWvIX227riJdrgbxsC4msJja/jPpOOkP0hckPbvAIAABCEAAAoUgMFS1dH9mzULUlkoWgkBbHCRNoztNOiuLkLyTuexATUwGr5+Vp5f44CCdrHx2TKpplqgMdwjvkrxK3I5S6CB+XmE7gHZa/A9oCw6SHZvTJDsz80v/kPwPamfI7z6tJfkYdz4d71GkYPsr4LijpHkk27LSOZLjD5GCpR2kvtQ1lFFti4NUjQpxEIAABCAAAQgUiQAOUpGuVkHq2i4H6c6JyTC9e5RtcqAe1wiT61ePBQfJzkaWNogK/noln6fTpe1ARbiM71QSgoPkH9T0NLxgqyngfO9Ks4VIbe3QeCTp/ijOjtFV0kxRnIOrSi7jXO9ULO0g9aWuoYxqWxykalSIgwAEIAABCECgSARK5SDVO3WqSBeMumYQGJAMeHdyMmXOjOSeaOWZU0M0djb6Yzfr4KszChgTxa9RCV+nrR2g2DzFzmYHyNOQgv1XgfFhR9sHK2GPNr0TxdvheUWaNYr7cRR20KNIn5A+5x1Z2nGaGjv1bz11jY8nDAEIQAACEIAABCDQgQRwkDrworSuSlNGyQHaZVSS7PvZJJmUPq/eUdpIAylzTkom3JhO6+P+LcrvEaDebKlKhiNyMi6ZSnsmte/peba3pm6m+RvSQuRABXaSdpWWl+aWbF7QweZRpyyrp65ZZREPAQhAAAIQgAAEINAhBHCQOuRCtKMaHyQTjpkpGfbDtZNhx56djP/OV6e++9NTlXFJMnJgMuhEDbscP3OSvNii+um0PeapeR7tqWbxqJDTPW2uXvuLDtxDelryYg1+/8lT8Nzel6Q8q6eueeWRBgEIQAACEIAABCDQAQRwkDrgIrSrClrC7Y0JyeStBiQDL9Zy32tOTJIzpyRTtGrcwBX1Y7E7q143PJ+M36uF9Xu8ci47QdemzjuH9j297uVUfL278+lAO0eeuudy4yXE19a+bdDUTdW/raxr1QoQCQEIQAACEIAABCDQeAKeYoR1MYGhycTbxyXjl9NI0b+lLTSr7EdyjhbVe0ffGpKM33zx2n4LqFEEL1JBqkayt5R2Tjza4/eY1pQaYWpaj3mkKnaOPK3OjpNtyNRN1b+trGvVChAJAQhAAAIQgAAEINB4AowgNZ5p4UrUqgWvaaaaf6TSaqfdppOfIu0m3SAdLXkK3daSp93ZKfFUuEaYF3NQu5PPSgdLl0qLSV+XNpY8hW4uKctaWdesOhAPAQhAAAIQgAAEIACBUhL4tlrlkRO97lOXbaOj/DtBnWZ2atyuvvxQrEc1vfS4F1nwsZYGtHqW3F5A22BhmW87UbHZ6fcx18SRlfAYbZ+O4tdR+AkpnGeSwhdLIypbL+qwkGS7QnK+Gb1TsVrrGvJX266rSJfLaG41OsRBAAIQgAAEIFAEAqVa5rsIwLuhjmV1kPp77Tyis6IU/55Rf8tMH2/HZIRkh2sGqV6rt644SPUS5zgIQAACEIAABDqFQKkcJKbYdcptRT2qEXhWkVYzzaNTYxpwglbUtQHVpAgIQAACEIAABCAAgTwCfnqOQQACEIAABCAAAQhAAAIQgIAI4CBxG0AAAhCAAAQgAAEIQAACEKgQwEHiVoAABCAAAQhAAAIQgAAEIFAhgIPErQABCEAAAhCAAAQgAAEIQKBCAAeJWwECEIAABCAAAQhAAAIQgECFAA4StwIEIAABCEAAAhCAAAQgAIEKARwkbgUIQAACEIAABCAAAQhAAAIVAjhI3AoQgAAEIAABCEAAAhCAAAQqBHCQuBUgAAEIQAACEIAABCAAAQhUCOAgcStAAAIQgAAEIAABCEAAAhCoEMBB4laAAAQgAAEIQAACEIAABCBQIYCDxK0AAQhAAAIQgAAEIAABCECgQgAHiVsBAhCAAAQgAAEIQAACEIBAhQAOErcCBCAAAQhAAAIQgAAEIACBCoHBkCgFgclqxRzSmFK0prsaMYOaO6Wi7mo5rYUABCAAAQhAAAIdSAAHqQMvSh1VulrH7CINquNYDmk/gddUBTtJGAQgAAEIQAACEIBAmwngILX5AjTo9O+rnNMaVBbFQAACEIAABCAAAQhAoGsJ8A5S1156Gg4BCEAAAhCAAAQgAAEIpAkwgpQmwj4EIAABCAQCAxTYRtpaWkh6WbpQOlfyu48YBCAAAQhAoHQEGEEq3SWlQRCAAAQaQsALv1wr/UOyo3SL9JF0knSDNJeEQQACEIAABCAAgaYQ+LZK9Uv6Mzel9BIV+t8kGVqi5tAUCHQygUtUOf3LJYulKrmw9u+TvDgMBgEIQAACEDAB98/cl13TOxgEGkEABymH4odJMnxCMvTkicnQ1ycmw6ZoO3ZCMuz4D5JkkZzDSIIABOonsI4OnSR9IqOIJRQ/QdowI51oCEAAAhDoLgKlcpCYYtddN2/hWjshGbL64GTovZrhs5ReeNhTM3zW0vbHekix/JBk2L1KX6lwjaLCEOh8ApuoirdKj2ZU9WnFe5qd82EQgAAEIACBUhHoRgdpTl3BEdIykqeKMK1NEDrRRieJfkR14Lkar73w0GT8esOSCWcOSSbdpu1pFyQT1p6STNEUn4HnMu2uE68edSo4Ab9f5AUZ8szpvIeUR4g0CEAAAhCAQAcTWFl1O0F6VfL8yLSeUtxx0rxSO4wpdlWoa3RoZ0+rUy+sqhP7RpLMrvS3xydDv1rlcKIgAIH6CfxMh/r9ozy7R4n75GUgDQIQgAAEuoZAqabYdcNV21eNDA7RMwp72ohfPj5Luly6Q3pJcp6x0vZSqw0HqQpxvWf0VzlA51VJ+jhK6ZfKkfrjxxEEIACBRhBYXIVMlLzEdzXbTJF+R8kj8RgEIAABCECgVA5S2X8HaVvdrwdIV0i/kfzEs5oNUOS6kjvap0tjJDtSWHsJDJLX6hfB88zpg/IykAYBCPSZwGgdcYh0quQRXH8u6vW/nuW+v6atR9z/ID0m9cVmV2Z/Lq8g2cG6XbpA6u3/XFkwCEAAAhCAAAQaQcBf6p4+N6zGwvx+0jvSsTXmb1S2b6sgj2BVnUrWqJMUrRyNDO2hVeueG5UkVR15zf8ZqvRXlG+3orWN+kKgIAR+qXpqwcie6cl3avuKpIUlk99KfrDUF9tCmV+XPGLvkWGP5L8tPSHZYcIgAAEIQKC4BEo1glTcy1BbzR9UttNqy/pxrpsVuvjjvdYEcJCqcH4rSebUFLo3pf2qJCd69+gwOUivqsc1W7V04iAAgYYQmEel7CD9XNpRmk/qq/l3MTxKdKA0JDrYI0pnSn4/dOEoniAEIAABCBSLAA5Sga7XVarrI1L8hZxX/TCC5KkjrTQcpAza45JhW8lBmqDfQTpFI0Wranhvbm1X1/7pih8/Lhm8acahREMAAp1D4DZV5ZSM6niE+C6p1SP3GdUhug8E7NQeId0neen3KyU70d24Qq6ajUGgqwngIBXo8vupp6euXSR9Jqfe4R0kL9jgefFr5+RtRhIOUg7VicngteQQ3TL1R2J7fih2shZwuFGO0qdzDiMJAhDoDALzqxr+HPZqolm2ixK0YCVWIAKfVV010J/cLXnVQ091Plp6T7pUqnVqu7JiEIBACQjgIBXoItrx2Ut6X/IX9POSXwr2h7endXjrJ5svSk6fKP1IarXhINVA/F0tw65pdZ/SKJKn/GAQgEAxCKykavrz1dPpssyL5DgPIw9ZhDorfgFVx87RkZK/Z2MbqZ1npb/EkYQhAIHSEyiVg+SpDWU2f+H6A/xC6RBpPSk9kuQXkO0g/VH6k/Sc1F/zl/zG0pAaC+IF5RpAzZokr+k1BgmDAAQKRCCMDI1Qne/PqPfiivd7SF4pD+t8Aj9UFe0E/VTy92xsXhjpO5Jnbhwo+bpiEIBA+wio+5R8qnL6h7TV82YMAtMT8Av9i0pLSXlPNKc/svYYf9n7N5U02FGT7KT5S2ZmCYMABCBQNgKevnxiRqO8TL9H9v+ekU505xG4VVX6bU61/JDQI0zb5OQhCQIQaC6BWVS83+0cL7mPaTnsOKc12ko1gtRoOJ1enh2QJaXVJY8kfUKaW2q3McWu3VeA80MAAs0ksI4K9xRmd6rjmQt+svlPyQ+UFpGwYhDwSKBHkfLMI0w75WUgDQIQaBqBmVTyf6THpa2kGSpy2HFOc55GGg5SI2m2qKx1dZ5bJH9BBy863j6l+MOlGaV2GA5SO6hzTghAoJUEttbJ3pQ8jfks6d+V/dHariJhxSFwtqpqxzbLFlTCRxIL6WQRIh4CzSVwmIofI1UbBHCc0w6VGmk4SI2k2YKy7HxMkN6QbpZeluwcjZP8Eum5kh0kxz0srSi12nCQWk2c80EAAu0gMJdOuof0N+loaQdpmIQVi8Dmqq6/V70ARzU7WZF+1yG9gEO1vMRBAAKNJeD/u1ekb+UU6zTnaeT/KA5SDvBOS1pLFbLj82cpjA55bvT60m3S+ZLnv/sG2UDy7zh8KLV6qgcOkqBjPQQ82nmMdLl0prSb5A8dDAIQgEAnEfiHKjNW2l4Kn1HDFfbIkt+r9TR2DAIQaD2B+XRK932XzTm105zHeRtlOEiNItmCcg7TOTxXupqHPFLxvjk2koKNUMDTAg4OES3a4iC1CHQHn2aw6naS5PvvEul3lf3Xtf2vtLiEQQACEOgUAn64eIBkZ8gvfvuzyt+p90l+zxeDAATaQ8ALkPl/cbWc0zvNeWbLydPXJBykvhJrY36/hOanXFn2nhLcEY3Nx3hufCsNB6mVtDvzXL9XtV6V0h2LORR3tfSIxFQkQcAgAIGOIjCLauMHjV6xbvmOqhmVgUD3EnhQTT8kp/lOc55GGg5SI2k2uawrVP6jkp/Op20JRdh7jh0kPxHznMwzpFYaDlIraXfeuRZQlTyf36vLVDM/4bHz9N1qicRBAAIQgAAEIACBiIDf7/S79utHcSHoOKd5emwjDQepkTSbXNZPVb6doBOl+DeG5tb+9ZLTNpNsHpK0s+S4PaVWGg5SK2l33rn8QWbHvNpU0FDbvypwQdhhCwEIQAACEIAABHIIHK40P3z9u/SVihx2nNMabThIjSbaxPI8cnSHZKfnNckvvltvSo47Wwr2nAKOu0fyRW6l4SC1knbnneuHqpLflcuzfZR4U14G0iAAAQhAAAIQgEBEwCtOXimNrchhxzXDcJCaQbWJZc6ksn8vvSHZAbJelX4lDZGCnafAgZLzt9pwkFpNvLPO90VV510p7x2j05V+WmdVm9pAAAIQgAAEIACBHgI4SAW+Efyux7wdWH8cpA68KC2skqd/+unOzzPOuYziPV94y4x0oiEAAQhAoDgE3JH0U/xfSJ5BsKqEQaDoBHCQin4FO7D+OEgdeFFaXKWddL6J0l5SvKjIOtofI10oYRCAAAQgUGwC66v6YyQvj+5XAB6SJktXSfNLGASKSgAHqahXroPrjYPUwRenhVXbVefy+3GeDnqr9KTkL04vMjKjhEEAAhCAQHEJ+GccPBvgaGnWqBlLK3y7ZGfJMwowCBSRAA5SEa9ah9cZB6nDL1ALq+fVFL8u/VraQ1pSwiAAAQhAoPgEPGKU9S6pP/uflbwgDwaBIhLAQSriVevwOuMgdfgFonoQgAAEIACBfhAYoWO9SNSyOWX8UmkP5KSTBIFOJlAqB2lgJ5OmbhCAAAQgAAEIQKAEBEaoDXaQHs1py8NKG5GTTlLvBNZSlvOllyVPV79B8m8N5v3OoJIxCExLAAdpWh7sQQACEIAABCAAgUYTeF0FupO+QE7BCyrN+bD6CHhFwBslL3j0E+mb0j2Sfxz1DIk+ryBgECgSAabYFelqUVcIQAACEIBA3wjYOfIP0me9Y+R0L9TwNwnrO4F1dcgkabsqh35KcXY8/W4v1jwCpZpi1zxMlNwXAjhIfaFFXghAAAIQgEDxCOyoKk+QvpKq+hDtHyN5FdPFUmns1kbgEmXLWgDDJewu2UmKf0bD8VjjCOAgNY4lJVUI4CBxK0AAAhCAAATKT8ALMXik42bp/6S/SGOkV6V1JKw+AnYuv5xz6LxK8ztgy+fkIal/BErlIOFJ9+9m4GgIQAACEGgfgRV16g2lOaQnJT9F9ovZGAQ6lYCdooul3SR31sPvIvn37t6SsPoIzKDD3s85NKQ5HwYBCBSEACNIBblQVBMCEOgIArOpFudI/iFlL4t8rfSK9Lb0DQmDAAS6i8B/1NyDcpr8eaV5eqN/bwprDoFSjSA1BxGl9pUADlJfiZEfAhDoVgJeieo6ycslrxRBGKSwV7HyClYCQ3U0AABAAElEQVR+1wODAAS6h8B31VSPwC1RpckeNbIDdUaVNKIaRwAHqXEsKalCAAeJWwECEIBAbQS8StV7UtbL7H7H4zVpRgmDAAS6g4AfkFwqvShtL80i+TWSDaQ7pdHS/BLWPAI4SM1j27Ul4yB17aWn4RCAQB8JnK/8x+ccY8foA+kLOXlIggAEykdgiJp0qOQHKF6QwVNwvSDG2VJRnKNhquuPJC/i8Zx0r+Q2zSN1upXKQWKRhk6/3agfBLIJ+MvA72K8IfnLAINANxBYVI28NaehHyrNHQvn66v5t2jmlNzB8vsKGAQgUBwCnl67t3Sg5AVc3GF/WPLy3kUwO0FXSotIfgjkacQLS7tIXtRjU+l+CYNA1xBgBKlrLnVDGvppleIPUX8Z2DHyi+n+MF1QwiBQdgKXq4FH5jTSU238LsI2OXnSSXMr4i9SeNjwkcKjpPUkDAIQgEArCFymk9wjpUeL/DD0DOkZaSapU61UI0idCrnb6oWD1G1XvP72bqtD/WTbH5afl/wL4V+T/ALqi9KSEgaBMhPYU417WZo1o5E7KN5T7DwSVIv5Ce1o6SHJizt46eXPSidJnp7zDQmDAAQg0EwCq6pwTwlcNuMkdoxekvbISO+EaBykTrgKJasDDlLJLmiTmuOOnH/L4RdVyvcHk58++WVUTxPCIFBWAl6RylNPrpbmSjXyc9r36NE+qfi83WuUeKPkd5fStrsi/EBi6XQC+11HwPeHH0rZid5A8mcuBoFGEdhLBfknC/LsBCWemZehzWn+n/CsljXbXA9OXyICOEgluphNbMoBKtsfoFkO0CJK89SgtSUMAmUmsLga96BkZ+h06SjpeslPYD39Lut/REnTmEdg/YWe9dTWmf2ytMvHupeAn9q/KflHXf1+m51mj2JuJ2EQaASBfVTITb0U9EelX9RLnnYml8pBGthOkpwbAhDoE4HVlPsqyR26ava8Iv8rOR8GgTIT8JS4laXvS+6sDpfukjxNxU9is/5HlDSN+X/lWemRaWKn3blCu/xPTcukm/Z+o8YeIf1W8rRNL/7hd9aOlv4hfUvCINBfAh4VX0HyCHmWfVoJzodBoGsIMILUNZe6Xw31FLrf91LCfUr/cS95SIYABKYS2E0bO1t55g7yrXkZSCstgaXUsonSlzNaaAf9XWnejHSiIVArgZmV0aOSB2UcsKXiPUPEo96daqUaQepUyN1WLxykbrvi9bX3YB3mFW6yzKvYTZJYeSuLEPEQmJaAlwL2aJM7wlk2Sgl/yUokvtQE9lXr8j5zPQvHU+52LzUFGtcqAnaC7JD/WQqr0s6q8I8k/3zBflInGw5SJ1+dgtYNB6mgF67F1R6h83kOvFfxStsgRZwveQSJqbNpOuxDIJvAjUq6WvKXe9p2VIQfOnwyncB+VxD4p1p5Qi8tvVjph/eSh2QI1EpgI2V8TPKDm7ckjxqNlb4jdbrhIHX6FSpg/XCQCnjR2lTlnXVed9iOl9aU/LL65tJN0mvSchIGAQjUTmCEsr4g3SVtLfl/ynP9/Y6J/9e+L7XN3tZKfeOToYdOSIY+NDEZ+rq2D2r/QK0YMEfbKtU9Jz5GTfWDpzy7RYmd/mQ/r/6kdR4BLzKzkvRFaW1piFQEw0EqwlUqWB1xkAp2wdpc3fV1fn8pe8UuP2Xy0LuX/hwuYRCAQN8JeDrLyZKX0ff/lOUl8zeV2mbjkmHLTEiGPSun6NGJybCfyjHaRtufK+4JabSGk0e2rXLdceJt1Uy/YzRPRnPN31Oi1s1IJxoC3UQAB6mbrnaL2oqD1CLQJTvNbGrPYtKwkrWL5kCgXQT8Be//qdnbVYFw3lFJMliO0cMaNbroidT/+HP6zSY5Slco/b79mVIbkDVjO0iF3iddI82SOoGdpv9U0lJJ7EKgKwngIHXlZW9uo3GQmsuX0iEAAQgUioBGi7aVc/TOW1OXlp6u7hrWmE/pH2iUyS92Y80jMEJF+50Q/4zCYZJ/E+mPkt8LuVtiBTtBwCAgAqVykHiZm3saAhCAAAQg0GEEBiQDPG1rlF400utG05uWtnpVv4d704BkCtO7psfTyJgxKsy/uXWktIb0A2kF6beS3wP1u58YBCBQMgKDS9YemgMBCECgVQSW0Yk+L/nHI5+WLpX0wB+DQEMIzKAXod7LL2nKe3Kk8n5YMv9wUmsl8IEyetTIwiAAgS4gwAhSF1xkmggBCDSUwEwq7RTpEclPk+0kHSU9I31TwiDQCAIPa4ToMyrIK1pNZ2cnid6PGaDV9iYrHwYBCEAAAhAoHwHeQSrfNaVF5SVwiZrmESNPtwnml7l/KHlFq11CJFsI1EtAQ0cL6B2j9yckQ6ouM+5V7ZT+9jvZK6zVe2qOgwAEIFAPgVK9g1QPAI5pPAEcpMYzpUQINIOAf5fCP9a7VEbhP1X861J6xauM7ERDIJuAnKPd5ARN0oINh2n98YWcU3O9FlH84ZX47bOPJgUCEIBASwngILUUd3ecDAepO64zrSw+gdPVhNNymuEl1/27KXakMAj0m4Ccoy/qN4+e0ojRFDlF473V8t6Pa/W6zfpdOAVAAAKNIDBChfxZul96UvIsgy9L3WalcpB4B6nbbl/aCwEI9IeAfyPn0ZwCxivN0++G5+QhCQI1ExiWTLhwaDJ+ycnJlBU+SiZvqe3yQ5MJS8+QjL+s5kLICAEINIvA5ir4IWl16VTJS8G/IPlB2r8kT78OtqMCN0uaGdsz08AL+3xOwiAAgQwCjCBlgCEaAh1G4ALV55icOvmFei2/nDD1KQcSSRCAAARKQGAJtUGzX5MDq7Tlk4rzd8HBkgcjPPvAeb0S4lbSVyQ7VJOkX0tlsFKNIJXhgpShDThIZbiKndmGmVStT0v+vY7ZO7OKharVd1Rb/+5JFsutleZRpPklDAIQgAAEykvAD8tuyWnedkr7QNpbelPy72elzdOx7SRtnE4o4D4OUgEvWqdXGQep069Q8ern30Y5QvKHs35OpUcTtD1F8u/2YPUR8DtGD0vXSnOlivCqdmMlT7HAIAABCECg3AT+q+Z59dIs8/eFv3ffkPbMyqT44yV/pxTdcJCKfgU7sP44SB14UQpcJX9IXS89I20rzSz5g3pT6UHJH+pZIyBKwnohMELp5ugngp4i8QfpCukj6e9SPOdcuxgEINDBBPx5uYnk3zTbTfK0KQwCtRDwd+zOvWT0oj1+SLlITr7NlfZhTnpRknCQinKlClRPHKQCXawCVPWXquMr0sJV6jqb4h6R/loljajaCQxRVn8x/lPyikVewcjTGDEIQKA4BDZWVd3J9dL9D0jPSZMlP/jwgyUMAnkErlLi0TkZllZamMGRnnEQH/ZZ7Xiand9VKrLhIBX56nVo3XGQOvTCFLRaT6jeP8upu0eV/FTLH2YYBCAAgW4k4E6pf9jZL837wVGwtRXwZ6inPDEaHKiwrUZgB0W+J9kRqmbnKfIOyaNDW1XLUIn7rbaelVB0w0Eq+hXswPrjIHXgRSlolTyVzk+s8kYzFqrkWaqgbaTaEIAABPpDYIAOflz6S0Yhiyn+HWmXjHSiIWACvo8ulF6UviQNlmwjpXMl30PLSydIdoCq/YD4CMW/Lv1AKrrhIBX9CnZg/XGQOvCiFLRKfuLpofoNc+q/pNLsRLkTgEEAAhDoNgKrq8GeSjd/TsP/pLQrc9JJgoAJ2Ck4XBoveaTIzo6/Xz1yZOfI5ul1j0n3S37fzYsoedTSI1AvSH6HNThXChbWcJAKe+k6t+I4SJ17bYpYs5tV6awno27Pz6VnHcAgAAEIdCGBr6nNfk8zz/y97FEmDAK1EPDCR14IaRtpuSoHzK24f0gTJDtQlqe6HybZsSiD4SCV4Sp2WBtwkDrsghS8Oluo/hOlzaq0YzXFedj/+1XSiIIABCDQDQQ2ViO9MIOnJGfZb5TgUQAMAo0kYEdqDWlVySNJZTIcpDJdzQ5pCw5Sh1yIElVjX7XFU+1Okbwog+dHHy15CoDnQ2MQgAAEupWAV6jzy/W7ZADwdCf/3tnBGelEQwAC0xPAQZqeCTH9JICD1E+AHF6VwEaKvVQaK/k3e0ZJdpYwCEAAAt1OYG8BeEtaKwXCnbxTJE/Bm0fCIACB2giUykHyUxIMAhAoJ4Fr1CwLgwAEWk9ghE75GWmI5JezH5SwziHgdz8WkW6SLpH+I80p+R0ST73zj3f64RIGAQhAAAJtIsAIUpvAc1oIQAACDSbgFavOkfwS9qvS85XwLdouJWGdRWBdVed46UbpMsmL2Pg9EQwCEOgbgVKNIPWt6eRuFgEcpGaRpVwIQAACrSPgd1vuq8ijR8GWVMDTXe0wDQ+RbCEAAQiUiAAOUokuZqc0BQepU64E9YAABCBQP4H9dKiX0PdUrbT5N8pukM5PJ7APAQhAoAQEcJBKcBE7rQk4SJ12RahPNxPwb1mcIl0vuTO7u5S3HLCSMQj0EHhSf3+Uw+KzSvMS/EzhyoFEEgQgUEgCpXKQBhbyElBpCEAAAo0nYCfoXOkiaUbJq/55StTBkqdNLS5hEMgi4O/TJaR7szJU0rw40oicPCRBAAIQgAAEICACjCBxG0Cg/QT+pio8J30yVRU/7b9K8u+i+AkZBoEsAu8qwb85lmUjleDFG3C2swgRDwEIFJVAqUaQinoRylZvHKSyXVHaUzQCI1ThjyRPgapmdpK85O83qyUSB4EKgQu09ShklvkHnJ/OSiQeAhCAQIEJ4CAV+OJ1atVxkDr1ylCvbiHwLTX0mV4a66WAz+4lD8ndTWA1NX+C9OMqGPxu23hppyppREEAAhAoOoFSOUieC41BAALlJTCfmraq5BW0/GOVnkKGTU/Av13z8vTR08S8or0R08SwA4FpCfxHu7tKJ0nbShdLdpjWl7aQDpH+KWEQgAAEINDBBHCQOvjiUDUI9IPAbDr2aGlHyU+tPX1sFsm/GL+79JKE/Y/AaAWXkYZIXmWsmn1Kkc6HQSCPwBlKvFP6geT3kXxPPSCtLd0uYRCAAAQgAAEI1ECAKXY1QCJLzQRmUs67JS8q8DkprFa5usK3SmMkjyxh/yMwq4JvSD/9X9Q0oZW1N0kyTwwCEIAABCAAgWkJlGqK3bRNY69dBHCQ2kW+nOfdX816Vpq7SvNmUNw90slV0ro9amcB8OjRzyR/0AfzuyOefndaiGALAQhAAAIQgMA0BHCQpsHBTiMI4CA1giJlBAJjFPD0nizbSgkfSHaWsGkJ+AX616V3JDuSL0p2mo6UPFUKgwAEIAABCEBgegKlcpB4B2n6C0wMBIpMwE7PcMnvQGTZXUrwD6E632NZmbo03i/Q/1v6vDRC8rS7a6QXJAwCEIAABCAAgS4ggIPUBReZJnYVAa+Y5RGPOXJa7d/0sb03dcPfFAFzsZOEQQACEIAABCDQhQTCy9td2HSaDIFSEpisVt0kfTWndU57SmJUJAcSSRCAAAQgAAEIQAAC7SPwbZ16ijRz+6rAmUtE4LNqi1dc275Km7wK24fSLlXSiIIABCAAAQhAAAL1EOAdpHqocQwEINAz7W15cfAoj38X5d0mMRmlcveS/iFtJ10qhSWqPXr0R+lUCYMABCCQR2ApJS4qvSY9JPlBHgYBCEAAAhBoCQFGkFqCuW0n8ftAp0h+N8g/2GoHyT/e+jepmaOGq6p8LzrghRielM6VPIKEQQACEMgjsJ4S75fsEPnhirdjpLypu0rGIACBLiZQqhGkLr6OHdV0HKSOuhwNrcxsKu1ByU9fN5GGSMMkL7X9hHSH5BXlMAhAAAKdQGBzVcIPc46TRlYqtKC2+0uOz/sJASVjEIBAlxLAQerSC9/MZuMgNZNue8s+Sqd/XAorx8W1mVc7z0n7x5FdEp5V7fRvDv1O2l/6vDRAwiBQBgKD1IjNpAOlw6SvSzNJnW6zqIKvSIdkVHRnxXv0e/GMdKIhAIHuJYCDVPBrP6fqP0JaRlpYauYUJxVfk+Eg1YSpcJm8jP6b0g45Nf++0p7PSS9j0pZq1GvSWOly6UbJnS7/dtMICYNAkQn4u8Wjxl4Mxe8DXin5c+BFaUOpk82OnOua9yPS9yl9v05uBHWDAATaQgAHqS3Y+3fSlXX4CdKrkudSp+Ulj4+T/ES/HYaD1A7qzT/nYjqF77W8p62+N53HU/G6wdZXIz1Nx0/W/WEabCEFrpb8v1httC3kYwuBTiYwvyr3gnShFH+feBrtEZKdJr8b2Azz/81PpAskO2VHSitKfbGDlPmaXg44Run/6iUPyRCAQPcRwEEq2DXfV/UNDtEzCt8qXSKdJfnp9R3SS5Lz+Il2taWRFd1Uw0FqKt62FT6fzuz7avmcGqyjtMnSsJw8ZUq6X405NqNBnoL0hHRwRjrR3UHA09N2kfw57ZGYUdIvJE//6nQ7WhX0CEvs/Md19veOR0wbbWuowJelMZLrcJhkbl4UZn+pVvuNMt7eS+ZTlW5hEIAABGICOEgxjQ4Pb6v6uYNqR2iVnLoOUNp60l2S868ltdJwkFpJu7Xn8vtH++Wc0k+VPbWsG2xJNdL/X95mmZ+AP5yVSHzpCXgk9Qbpbekv0p7SodIz0mhpGamT7UVV7hs5FVxNaX4gEo8u5WSvKcmjr69Lf5fSjtkWivOolb9jarH1lckjvItlZPZDDL+jVGt5GcUQDQEIlJAADlKBLurpqqun7NT6dH5O5X1HynrCraSmGA5SU7B2RKG7qhYfSB4pStumipggfSmdUNL9DdQudw79QCLL/H6S/wex7iRwjpptB3nhVPM9Re0iyQ8cav08TxXR9F2PfPkBwLo5Z/I0OOdZKSdPX5OO0gF3SwMzDvyp4u3UDM5IT0ffrAg7qekROx//T+lZyY4SBgEIQCAmgIMU0+jwsKdnnNbHOvrL4eI+HtPf7DhI/SXY2ce7A2NHyE94vyr5RehTpUnSAVK32LJqqDuHi+Y02ItWPJmTTlJ5CXgqap7zMKvSvbjHNzsYgeu3Q079QhsXysnT16RHdcAPcw7ygz9zXT0nT5y0iHYek0ZLv5C2ljySd6/0qrSKhEEAAhBIE8BBShPp4P2rVLdHpCE11jGMIP2hxvyNyoaD1CiSnVvOlqqaX5x2B8PvCvj9io2kbjM7P4dmNNpPqO+T7FBi3UfgR2ryf3tp9slKP72XPO1Mdv1ukrJGSY9R2j0NrqA/UzydPM/GKXGTvAypNDuj+0oPSG9Kj0tHSgtIGAQgAIFqBHCQqlHp0Dg/yfOTM0/N+ExOHf1l5mkRd0h+qr+21ErDQWolbc7VTgJ+Gu3/Md/zsc2sHXd8PRWITlhMpnvCv1VTe1vA4HDlafUIf1+uwOLK/JbkVVFniA70d8xPJN/7n4viGxG8U4Xsl1PQEkrz92Cnv7+V0wSSeiGwoNI9O+Eb0jqSp3tiEGg1ARykVhPvx/n8pbSX9L7kL4jnJa/Qc6l0ZmV7m7YvSk6fKPkpZqsNB6nVxDlfOwnsrpP7xXGPFhwvnSF5atIYaSUJ604CX1ez35CG5DT/OqUdkZPeCUlrqhL+TnlJ8js7J0oegXlP2l5qtPkdI59r7oyCT1L8fRlpRBebgJ3wv0l2vMdKT1XCvt/80BeDQCsJDNXJ3Jf2ZyBWEAJ+gnam9ILkixfLztMTkp9MLiq1w3CQ2kGdc7aTgP/Xfi2dJp0g7SbFT9y1i3UZgdnU3telX2W02yMvXuSjCO/AzKJ6+kGAnRM7ST+XmjUy6v8bT9uzPiUF8zS5o6Tx0lohkm1pCAxUSy6TnpE+L/mBsG0eyU6Tr3urZ8PolFgXE8BBKvjF95ewO2dLSbM3qS3+IvQo1VU1yk/S7bR5mhEGAQhAoFsJeBTJT8MPlPxZbfOX7q7SO9IfJWx6Ah498tRDf488Kt0lfSC582zHsh7zVC2/d3Su5A73FlLohCuItZmARyM9Kjkyox4enXffgmuWAYjohhMolYPEP07D74+eAv300NMefLPUYp5WtJnk496v5QDyQAACECgpAS97/xdpXslTx/xE3B3/g6TfV8LaYFUIrKA4T62aUXpEukbySEJfbJgynyhtJ/l4T9daRNpUuk36ivSGhLWXgEePRkvfz6jGQor3awWrSfdk5CEaAo0k4D5vGLH2ZwVWcAK+oCtK7Ry9YYpdwW8iqg8BCDSUwBCVtoG0s7S55OliWGsIHKfTvCClpzIOV9z90nUSD1cFoc1mx9V9hzzzojdevAGDQCsIlGoEqRXAOuEcX1Ml/ETyl9KSlQp5tOZfkqdt+OnkR9I/pGZNu1PRmYaDlImGBAhAAAIQaBGBZXQev+flUahqZifpQ8nT7bD2EvA0yl/nVMGdVV+rTXLykASBRhLAQWokzSaXNVDlXyjZAQp6U+HFJM/Pddy1kp+YealU798ktfrpGA6SoGMQgAAEINBWAj/W2R/upQb/VvrfeslDcvMJ/E6neEByP6eabadIv4fG6Gs1OsQ1gwAOUjOoNqnM76hcOz1XS1tK35Oelp6Q/JTMc6lj20c7zu8PllYaDlIraXMuCEAAAhCoRuBQRV5ZLSGKO1rhc6N9gu0hML9O+7pkZ3VQqgqeHjlWOiAVzy4EmkkAB6mZdBtctl9i9AdIvHzwVtq3E3SplDY/iXlW+ms6ocn7OEhNBkzxEIAABCDQK4E9lGN0L7nsQB3ZSx6SW0NgbZ3GjpBXLvQiJl4c6kxponSKlDW6pCQMAg0nUCoHqez/PMN1+a+TxkW3gafUefSo2jQCx/vLYTEJgwAEIAABCHQTgYvUWK9+9tWMRntkYiOJEaQMQC2OvkXn+4R0luT3xjz7xQ+At5B2ldynwSAAgToIDK7jmCId4tGgDSWPIAUn6QsK2zFcTkqbefgL4JR0AvsQgAAEIACBkhN4Qe07WDpRmlPyd+Wi0qvSa9LvpTMkd8yxziDgEaT9O6Mq1AICECgKge+qon6acp3k39b4tfS8dK/kJyvbS8H8RXCy5PxfDpEt2n67ct52LjXeoqZyGghAAAIQ6GACXqTIv3/k78gJkjvgfsDo/f9KfE8JAgYBCExHoFRT7KZrXcki7PRcINnpCfKTML/c+PdK3B3anif5yZnzXCW12nCQWk2c80EAAhCAQDUCv1Xku5IXOfJDxkMkr263g+TvyX9KGAQgAIE0ARykNJEC7Hv06A+SX0BduFLfObQ9RfK0ATtGXg7zz9KMUqsNB6nVxDkfBCAAAQikCfj7cbyU9w7SR0pfO30g+xCAQNcTwEEq2S3gUabFpUFtbBcOUhvhc2oIQAACEOgh4IeIo3thwSp2vQAiGQJdSqBUDpIXJeh287zq3r4Qup0R7YcABCAAgfIT8IIMj/fSTKc7HwYBCECgtAQ8eoJBAAIQgAAEIAABv6Pbm/OziPJ4ajoGAQhAoLQEcJBKe2lpGAQgUEIC/sxeWdpEWq6E7aNJ7SVwuU7/CWndjGoMV/ymUrUfWs84hGgIQAACEIBAfQR4B6k+bhwFgW4isL0a658p8KIyXnbZWy+7/DkJg0CjCByngl6Q/JuAsdk5ul+6Lo4kDAEIQKBCoFTvIHFVO4MADlJnXAdqAYFOJbCXKjZB2keat1JJd1j/Kk2UtqrEsYFAfwkMUwFeyvsjyQsyHC39W/pQsnM0l4RBAAIQSBPAQUoTYb/fBHCQ+o2QAiBQWgIj1TI7RztktPBAxfvdkVky0omGQD0EvJT3kdK50t+kLSQMAhCAQBYBHKQsMsTXTQAHqW50HAiB0hPYXy28J6eVfuL/hrRdTh6SIAABCBSdgN+99O9Vnin9Xvq0hHUOgVI5SCzS0Dk3FjWBAAQgUI2AF2O4rVpCJW68tnagWLQhBxJJEIBAYQnMoZpfJV0kLSG9La0m+XPxJGmIhEGgoQT4HaSG4qSwLiQwv9r8I2lDaVbpCcnz98+T/BI9BoH+EvC7H7638szpzodBAAKNJzCzivSP6G4pzSe9IJ0vnSB5+ivWXALnqPgFpWWlp6NTeQTpQuko6ftRPEEIQKAkBJhiV8wLuY6q/br0oPQbyV+gf5c+kPxSs4ebMQj0l8C3VIDfMXInrZqNUOQkKWtp5mrHEAcBCNRGYHFle1zyCpKHzpkke2p7uPSa5JFbO0xY8whspqK9aqevQzX7rCK9oMhS1RKJaymBUk2xayk5TpZJAAcpE03HJvhL0c7RMVJ6quoyivMTRr/gjEGgvwRmVAFjpDOk9Kj/bIq7WbpRwiAAgcYSGKTi7l9B/2PvJUPPmpgMfXtiMmyKtmPfTIaeOiJJ7lP6tRLWPAL+jr2gl+IfUbpncmDtJYCD1F7+pTw7DlLxLuvBqrJ/g8ZfoNXMKz556sU81RKJg0AfCayk/C9LHq38sfQVaW/pWelhaSEJgwAEGktg23WTAe9PSIa+I8fouvHJ0K9OSIZ8RtsdFXfnuGTYa59KBkzUKddr7GkpLSJwrsJeaj7PrlLioXkZSGsJARyklmDurpPgIBXvet+iKu+XU22PKvlF0q1z8pAEgb4Q8KjlHyQ7RGF6j52krKl3SsIgAIF6CegHn/7+ajL0wwnJMI9iDIjLGaXRXI0knfNkMuR99QoPiNMIN5TAUSrt8l5K9HtJnuKOtZcADlJ7+Zfy7EVzkObWVfAT7O9KX5A8Bajb7AE1+Ae9NNpP93fqJQ/JEIAABCDQgQT2TwbdNjYZ+v7oJJmhWvX0BGwuTb2b9ONkkN85xZpDwKNzfsdyxYzit1H8BGnRjHSiW0cAB6l1rLvmTEVxkDwq4idlfmHyDcnzfj+Q/AL59lI3mYf9T8lp8PxK84uja+TkIQkCEIAABDqUwPXJkLvPTwb7XdMsGzgqGfLh5cngS7MyEN8QAmeqFD9wXDNV2pe075ka+6fi2W0PARyk9nAv9VmL4iD9VVfBjtFXJTtLNo8e/UryPOxdpG6xrdRQ//7MpzIa/HfF24EMnDKyEQ0BCEAAAp1I4KVk6HknJYP9oMszJqrZnpcnQya+mgz5c7VE4hpGwCN4J0mTpfulSyT/pIZHjg6Uppn+qH2sPQRwkNrDvdRnLYKD9GldAX84eWnraraXIt+UZq+WWNK4s9SuV6QvS2F1Mf9Ww/GSR9nWljAIQAACECggAb17tNdrydDX9ZTrQ1XfU6pnqjRjNm33Ua994vuagqdFG7arxLNpLoFPqvifS34X84fScAnrHAI4SJ1zLUpTkyI4SH8S7atyiNtBGCt101Q7t/l3kp2h96QXJTuRD0trSRgEIAABCBSUwLtJMq8WYnjnvGSw3zHy7AnPGnhe8oyJl25LBl+m1e1e0Ad/cJwUjUGgawmUykEKT7279mrS8JoJLKGcXpggy/wSpR2DkVkZShjvNnt6oZ0kj6zNKnnY/25pioRBAAIQgEBBCegD/TV5RLttlQw8SyNFpx+cTLrjimTylK8lAwfslQzeSCNLWqToo80WmvoubkFbSbUhAAEIdC6BIowgnSZ8p/aC0O/ceBoCBgEIQKBIBPwu5d6Sf9vMI8KeOnu6tJyEdTmBicngdfS7R7dN/ZHYnh+K/Ujha/WbSP59MgwCEJhKoFQjSFzUziBQBAfJCzB4isEcGchWV7xHTehQZAAiGgIQ6EgCc6pW90qeOvULaRNpR+kKye+ebCVhEEje0Q9/632j5d5KEt8zGAQgMC0BHKRpebDXAAJFcJCGqJ1+unql5KlksS2uHU8t8xNXDAIQgECRCHjJ/vuluapUej/F+f3CRaqkEQUBCEAAAv8jgIP0PxaEGkSgCA6Sm+r3kB6TXpL869ZeTcZLb74v2XGaWYpNU7OTL0nbSsvECYQhAAEIdACBJVUHj3yvllEXLx/s0SW/Z4hBAAIQgEA2ARykbDak1EmgKA6Sm+e5+ntKl0l3SudIdoDi3yHwUt9+Z8krumk2Qs8PyboTMkryaBMGAQhAoBMI7KRKvNBLRQ5Q+o295CEZAhCAQLcTKJWDNLjbrybt7zMBz8n/S0XVDrYDdZ00TNpACh0Lv5v0J+lW6dPScxIGAQhAoJ0E/IXuz7RESzrPNywZsvWUZMDIgUny9pRkyjVDk4l+COR058MgAAEIQAACEGghgSKNIPWGZR9l8MvOc1fJaIf8ZsmjThgEINAcAvr9ymQX6VjJU2B/Is0vYdMT+IyiPnoiGfwr/d7Ne1qZ7DnpMq1Ydpf2tVLZ0IvmnTp9+PjpDyUGAhCAAAQiAqUaQYraRbCNBMrkID0uju6QZdmGSpggzZaVgXgIQKBuAqvoyDGSf7T5bOlU6UnJCw3sIGHTEhiwZzLwmXFyhrRk8+5K+niqsFcrez0ZOub6ZMhkDYuvMe1h7EEAAhCAQIoADlIKCLv9J1AWB0kzU5KPpPVzkHiZcL+PtGJOHpIgAIG+E/CiKK9Jp0mzRIf7/3IvaZK0cRTf9cEXk2QmOUdv/SwZ9IFg+L1KT//19GCvWvfrhfWbSPqB0HFylnbUPgYBCEAAAtkEcJCy2ZBSJ4GyOEhuvqbyJ1vncFhCaXaQvMUgAIHGEfirirpLGpRRpN8BfDAjrSujxyXDNtM0uve1xOYKAnCV5IVl/Plk+T3J3SYkw45Tnn8rjEEAAhCAQDYBHKRsNqTUSaBMDtLFYvCvHA57K21MTjpJEIBAfQTcof9WzqFLK80df1aSrEDStLrv6H2jRyNm8yns6XTLSj3T7fRO0s/8TlKUhyAEIAABCExPoFQOkqdeYBBoJIGDVdg20h5VCvX7R7+VDqiSRhQEINA/Al6I4ZmcIkIaCzZUIGnFulfkBS04KkkGV6Je1fZ26RHJzqT+TF5UeRyPQaAdBBbQSVeVPO0TgwAEINBVBMo0guQLt4vkhRjU7+hZsOH72p4j+f0kfnBREDAINIHAaJVZ7cFEONUnFXCnf9EQ0e3bN5NkDk2fe08jSf7Mms6mpg97Vel5XKc7jggINICA34e7RfL/bNC9CvtBIwaBTiRQqhGkTgTcjXUqm4Pka+gpKsdK90kPSWdI60kYBExAD+WT1aVdpa9Li0lY/wgcocP9v+YvqRHSdpI7/n76bDtR+k9PiD8fE5CD9Evp3XHJ4E0/jlTgXf0ukt4/ul7T6x56YurCDXEy4TYS0K+Pz6mFM7aW4/rND5PBn/tv+X6namPhHS95wZWVJC+64gccfs/Qi634fxuDQKcRwEHqtCtSgvqU0UEqwWWhCU0isKLK9ZNQvxA/WvL0JYfdGWD5d0Go0+bVcS9U5CfOL0tjJLN9UfKo7joSliKgzvZhcpK01PfQ2+QUHavwuXaatH/3B4y4pWi1b3f/JBmoa3WArs2H0tu6Vk9qO17vib1gh6l9NWvome0M+X/39xml+mc0vGw/U2UzABHdNgI4SG1DX94T4yCV99rSsmkJLKfdd6SzpHhO/dra93sft0nDJKzvBGbUIR5B+rCia7T1oiljpXGSBkWSpSSsCgF1sD8pHSyn6Ew7SQp/5ezsFQGrlEBUswlUnNc3dG2+Fq7Na0kyq/YPkqM0ydes2XVoQfk76hyvSzNknMvvjj8p/TQjnWgItIsADlK7yJf4vDhIJb64NG0aAqO0d5HkKXZp8xPRVyT/Zg/WdwK/1iEeQfJI0pbSodLh0q7S7NKV0uUSBoHCEZiYDF5bTtBH2q5ZrfJK+61Gkv6fvbOAj6Pq2vikTXaLu0uLuxR3eXGnuPuHW3FvcOfF3lK0SAvFaaE4FC2FQiktXupCqbukTfL9n5Ww2czM7iYrs7vn/PJkZu69c+WZ2Zlz7rn3zgRcL4u5xRdR2N3U9d0U9e1K/HMp0li0MZBvBsxAyjfjZVCeGUhlcJGtiQ7f3YxMNtaYei+5iYgfvCIt3JcBpmI4V/mk2IE4DbeTAWViDBQVA3iPHsMIeser0ozVbUP8DLxIHbzSFEm4VoL9JEVdXyT+yRRpLNoYyDcDJWUg2TLf+b59rDxjoHwZWJema27MIB8KBhKndCaZMyDexJ+XKE6eO/tIsxdDFh5YBrhx18W697y/12IYKQ+X31s5FcX+/OjHRZCXbHmPi7Eo4XsDpTMxBoyBHDFgBlKOiC3ybDVEwe6NIr+IAaz+dOokBX1Zn7pJKdAcJZPMGRC/XkqVcovHKZ2JMVBkDNRPr3Aq4vewR90rlue7VcV+f2sY7FCgVSfVI58oei8/AuaDlxIjcrAvPUDPaxNjwBgwBgrGQBCG2C1N6+8HDOGO9PLrAfw+0LAcE2MgGwy0JhPNMbrUJzMNLdH4epPMGZDC1NvntGuIGwNM6fEhyaKCyYC+RcUco/Fec4w0N4khdnXznPB6wWxBRrXakNSaT/gTOAvsAU4BfcEUoG8k5UI0/PZRwNoXET1AC75ozmh7YGIMpGKgpIbYpWqsxeeHgUIbSCvTTD714fwBzgTbgANAd7AAaFUdE2MgGwycTyazwR5JmUlpvwWwqrKzQVKcHabHwKYkmweuc0m+D2FSdvT7NjEGio6B0Y6zCPOQhmIEvaX9xAZwY6+lOFYgfC4xvMj3V6T+DwN1amjuoDovnwJrglxIOzIdBQYBGWPSAw4GbwA9Vw4DJsaAHwNmIPmxY3HNYqDQBtL71Fo9U26r/1xEuLxJ6wATYyAbDMhTWQv04tVStTeBAWAWOAiYNJ+BDpwqI7M/uBFcAXoC8X0HMDEGipYBFmDYCENoBBjF/t1sLwVPYjTNxrv0wTjH0fycUpR8eH2lA3wI3D6zoGeJPhOwCjAxBrwYCBGhecY7eiWwcGMgUwYKaSBtRGV1Q6v32Uu+IeIBr0gLNwaawcCunKPe3u/BV+BusDowaTkDbcniPvA1kKGkIYv2woIEk+JnYILjLI4xdCX4GI/RjxhHb2AsHUvL8mFEFD+B7i3Q80GdKHp2uIm4/QWoM8vEGPBiwAwkL2YsvNkMFNJAOpVay63uJ+o9khJrYgwYAxkw8AofGmVOxAEocXyjJdSJ/UOxCKsyyMKSGgPGgDGQawYupoDBKQqR5/+dFGksurwZKCkDqbK8r6W1HgZag4UpmFDPUqsUaYopenkqexzYDNQADS14PbbPxsQYaDkD9GpvSrfryxVO/Tr1ToU8OXWtnfqrNnfCf9c4dceFnAXynpkEh4G1qYo8ERpOPA18AjT8uB6YGAOlzEA6eoD0BKUzMQaMAWMgbwwU0oOk1WmkAEg58JKPiejsFVlk4VKAtIz0CPAieBNMBX+BzYGJMdBiBpgEtAZDgCbgNXqVm00GeUS40ZZmWNCzhE/Hm7R+PNy2BWfgBmqgBWk0Qf0FIMNoHpDnfGVgYgyUMgN70jjd/1oYwkvUoXOHV6SFGwMwEALSJ21It90OWWOgkAaSGtEXvAvcPIrHEC4PUikYD3vRDvWCXQUSe8KW5LgH+AesAkyMgRYxICMIfKMhdi4ZVWA8fYiRJOPcpPAMXEIV5oCjkqqyBsf9wABgwyKTyLHDkmJAI0Q0xO5l4DZa5GzC5wO/jlSiTcqcATOQyvwGyEXzC20grUujtISoDKUDwKpABtG9QL1Kl4FSkJ9oxKMeDZFxKEXoEY94CzYG0mUAAyg0gyF2yQp3w/nznMp9SFMzOmm54oYEtpMvBpagIHmUpQC6ibx/k8FZbpEWZgyUEAN6508BGlq6N1Bn4VZA70x1LNpvABJMfBkwA8mXHotsDgOFNpBUZ/WWvgQ0rEQuUkHDTQ4DpSDtaITatIFPY3QdRvnEW1S0J10fE3TzjBg/MMDklWXwENVjIEnhcBW+27Km0rBdyzWBBeaLgUMpSMsX+3mIpCC+na8KlXg5+iD5kiXexmJu3jpU/g2gublxPUBD6/YFJsZAKgbMQErFkMVnzEAQDKR4pRdhZz2wYjygRLY70A498MM+7dmHOL0YTJoyoAUtegENsxCPGpKkYYl6oZokMKBhdXiH5jHH6MCE4Ea7C5zKnUlTN9Fx5MEwKRwD51D07ymKv4J4LbJh0jwG1JlyGRgG4kr3n+yfB7R8tEnwGFiMKq0P5EE1MQbSZaCkDCS3sabpEmHpSpMBOrWdIWBCiTVvXKw9fmOoFRdPV2LNb1FzNNzi21gO8ihuAo4DKwH1Lm4DTGIMHBOds/cBK9ZJ+XaVeqfVOaxs9yWuOHkvTArHgH7vqwO92L0kCM8FGRLqpNgXbOpV0QCGyzh6C1wPOgMtCqTnxXPgLtAdmJEECQGT2dRHRuykgNXLqmMMGANlxkCQPEilTP0AGve4RwOrCNccpQc94ks5WArKduAkcDhI7DVcimO9JO8FyaIOFik6Q4Gfgpl8Xskfa3gdHqK5bO/ok7D4STUToAm/FtTgRdqx5IkIfgMXp4rTwAUeVV2R8KngdI/4fASrUyLufYl7cKW8enoo81GpNMu4mnQTgZunWQbfDHAuMDEGjIHiZ0B6gLzE9m4r/msZmBaYgZSfS7E7xWjRiRtBZUKRy7KvcdfjgBSichINPdQX0mvBaDAdiCMZinrYnQ/GABmQbqL5BPKCHOkWWc5hLMSwP4bQ1BonPBw8Abqwst2fhM3EcDK+gnNzaKiXPOcnJlVpLY5/APKeJj4vkpLl9FCGmSbI3wlWjZUkj9d9QOEnxMKCuKmgUmPBxT6V07P4N594izIGjIHiYcAMpOK5VkVTUzOQ8nep5CGZAmQMySh6F0jB10t6Y1BOsj2NlWL4NFgl1nB5hQ4GMop6gmfAC8BPPiRSClzQZVEqeDy4G9wBdC/kVPHF2lyWxRguwzB6EfTAOLpqVnRoIkWbBIiBK6nLPPAHeBXg+IvMR/yELSMhCyIrU6qGOnl5ty4nTh0aiR5fDgMjMujUm7y+T43kuVaaxXzSWJQxYAwUBwNmIBXHdSqqWpqBlN/LtTTFifOHgXpijwA5VZTJP4gymEp19aiYlBopZ1IUn/dIEw/+gJ2gG0h7UEf1Zss4fg98BLBVIgqxhvqYGANrQEFH8Ci4HewJCimXUvhfQJ4YN9H8Hnl95QELoqxGpWT8rOdTuW1jacxA8iHJooyBImHADKQiuVDFVE0p69aLVkxXrPjr2p4m1AEN1/GSx4j4GYwCXgak5nCoF/toEFTZgorNAQ8BeZHisgw7L4MJwI+HeHrbGgP5ZOAJCusO5NU9FrwIPgXdwFFAhtPrQB09QRTV728gD9jaQJ0o6kxRB8WtQL+564C8dibGgDFQ/AyUlIGkB6+JMWAMlB8D6tWdCMb4NH0AcW2AjKCbXdJJAfov0CT2Xi7xQQmSl1BK2SVAhlJcVO8TwHBQDUyMgSAxoCF/MuK/AE8BzQ38Eqgz7TkgY0necKULoqie8sbdAX4DewM9U+S5PhQMAdeDR4CJMWAMGAPGgDHQhAHzIDWhxAJyzMD+5C9jocqnnGuI+x4cAKSEvQr2BOoN3g+oN3gG2AEEVaRA1oKdfCooI0lD70yMgSAxIK+sjCIZFKsmVWxNjmV0LASHJMUF6XBfKiNPtbzMF4GNwCbgCqAhvPptbg/SFh5aa7DgyaPgL+b0TWFu3wDN7WOs4SJpZ2IJjQFjIBcMlJQHKRcEWZ6ZM2AGUuac2RktY2BJTp8LjvHIRt7lgeCeWPxWbGUQSSFTz/B88CbYAARZpJCpviv6VHK7WBpTsHxIsqi8MxA3Lj6m5HBS6bpX5VmS8bFrUlyQDvtRmcfBdWAs0G9RGAE6gpfA+yAtYWn8XTCGWBky9G2NU3Ueq0F24Ph6FkIZS9hAemuWTysjS2QMGAO5YMAMpFywWuZ5moGU/xtgCYrcGmwG/Lwo+a9Z/kq8naI0/2bzpCJlHD0MNARtlaQ4zeHRZPZkhS0pWWAOl6MmUiI1GdxLNJ9DnjATYyBIDNxLZb4Co8Dv4HJwJLgSaHjacPAd0HyeQkoFhsqGGCzb8SPS7y0u8t7KGIp7iDQkdyWQ2FkhI1BeskrgKzyMlsYQmoDnqHN1dF5WQ3rcU8tiIH2PsdS7IdB2jAFjIN8MmIGUb8bLoDwzkPJ3kfUC1/h9eUDivZkyBG4ErUE5idr7IhAXz4ILgXgYDMTJ7qAU5Gsa0dWjIVLaPgHiwcQYCBIDmnf0AlgWqDPjZzAJDAK3ABkgr4D/gYIIRtFZGC1jQH0UoVqMlHcYj7sOFWoH9IxtC7xEnTNKo7lWvkL+V2IcDWfMb5VbQoy0jVUH6rSFW7yFGQPGQM4ZMAMp5xSXXwH/R5P1klis/Jqe1xbLOPoT/AQOAIuDFcBZYCJ4A8h7Um5yKA1+Dcgw6gvuACuDUpGdaUgNuB4kGsFagKIzoOPbWReYGANBYuAGKjMgRYV+JV7zeXIh8hYfCM4BR4BGRgwGyd0YQ3PAVXNYkW40c4AYArczRsrHhE3+3QnJ+MFWiuTBxlVOIFSdMeqo8BXy7ImB9LBfIrxIv2MgXeCXxuKMAWMgZwyYgZQzass3YzOQ8nPt5TnSvBo3Q3QDwqUonwlMSo+BDjRpOhgOdB90B+PB32AXkLGgIG6EwnYxilsnlLKTyXzZjDOxE4wBbwb0TFoIZKS4iYwWGf5ruUW2MOwUzpe3ajbQ8L5pADsoMpeoAkNoV+772rlO5X8IayTVdDIR1wtjRfOPeoAvQWLHBIcRkTL1I+gSPfT/j+H1Ab85dd54SnSYXfhyzwQWYQwYA7lkwAykXLJbpnmbgZT7C78kRWgomTxHXnInEd96RVp40TOgCdyXgK5Aw5fOBvIiZiTj+JYSitjzKIF1bH/DSPoM5W0CxzMwlPRbNjEGssWAnknquDkexL0s8nLLgJkFOoFsi34XMrzkmZKXVaI5QicBdTLcx33/Avf76+y7Cm6jdTTc7Xmncj8SyDv/JlglIXFb9j8AY4DmJaUUflv/1W/NK+Fkx1mSOs2d54T9nvFep1u4MWAMtJwBM5BazqHlkMSAGUhJhOTgcBvyrAdu3qN4cXqxqpfUxBjwZAAlrDeK2lAUtu3iiZgI0prjC4mrYXt6PLxAWy1AciF4EWjopJTodsCk+BiQUXQD0IqTE0B/IINDz6mrQLZFw5BngvPBxUAe97HgV3A72BvUTo8MZQtfyr6nYCCNweNzIgk2AvIUyRs2CPwMasE3YC2QlpDX5vy+ajGADnU7gd+klv4e/ovjSEkzMQZKmoE+dFro90VnRVd+F2+yfy/vnvYFbrQZSAW+AKVYvBlIub+qGg8vA0kKgJdoyIqGkpgYA64M8BI6nJcRvdTuc5ZQ0DoSPwVNNmPPlGuBmQfuxCkaOqieeXnJHgFScuU9PQeYFCcDmispY0NeHc3b8XuOEd1sOYMzx4ERQKs/yigbAJhiFDmeyva7v5zQOO7za9j3FOIn8Xs5OpZAht6uQEbXRWAHkLGQ541gHrgKt9ryygCDaYOYR5fwyt0zztROMAaKjAF6S9binh/M72Aa2+4YRg/SIdGHY0Y1VP2X5uj3VggxA6kQrJd4mWYg5f4CV1GEjB8pAF7yLBHveUVauDEQfRmFXvBiQr3XvKRmyJDySpPD8LbkLQW2CwgnlXMmx+rBd+19T0pb0ENxyEv+AozNz8EIOP8ePm+xOV55uSzyEs0CC0DcuIkXLI/pbDCvu1P5J9dFHiBXiS7WEKrDzbWGa4IWBHJvnI4yiIGmlfNCC7SlLv0JV/1MjIGSZmA4w16533/nvv8o+ZmoOYEymoC8zoUQM5AKwXqJl2kGUn4ucCeKUY/o+i7FdSBMCmSTSccuaS2oTBlAYf8q1cuHl9dPpFNPeb7lSQr8Gnj1Ht5N3B/5rlQm5emFL2WXl/9EjKK7UHpPhe/rYgrBWMI2zyQ/S5sxA/I6ynN0nseZ8vzUbcgwOa7LXK7Tlcnp5Nnhev0CuifHZeu4moUguDfaoxDuNS+6pHi2srZ8jIFAM8B9z1Du8HjG2WoodRPhGXkiv8059AYv0yQy9wFmIOWe45yWoJumHdgArAb85qQQnRcxAykvNEcmGr9FUehhkfH0+7PtAJ4FMo6uBibGgCcDvHjexPjp7JkA44SX1wReUhoGlW8ZS4Gn+xS6DnH1QNtACvy+g2I9kEkwKyRW8JeIVyn0sjxKo1lOOjHO9rPKwKfkJgNps1iuS7LFHmoY0qdhbZo/NJp7/Giu13zQi/3j5jmV+7B/Nff/OK5h/ymOsxTpTIwBYyCLDPD7eg8jScPoXOUV5sPyO5zGb1JTBvItZiDlm/EslNeePNQzJu+BFIRkDCXscdDopcxxvsQMpHwxHf3OkfjWZGdNfJax9D4wzxEkmPgzwIvpbF5QExnHtrRbSl5KHaQ0MkZpJbf4HIdp5bF9fMrQsDs9++QFCJzIIwB3dXC4sVvlxrF6INyPJ925bvEWlhUGviYXnDLOX6APUMdR/H2pZ+YAwMi5yJwklrqr2oJr9gqYBFigJPQL22uG/7v6HUlNjAFjIFsMqPOB5+AVfvmR5g+9q/zS5CjODKQcEZurbG8i4/gDfiT7fcE7oAfQfJNvwd9AaSaBQvT8moEE8SbGQNAZiHkyGF4U/pShRI0myjPvYicpiij4dxSoHVJqtXqdl2h4mp5z8pwHTvAOdeTFPtivYqR5ijQv+aWxuBYx0J2zZRQJmofUC1QDcS7DSN4l7H/nB2BiDBgDeWaAd8wbPAc1nNpV5GEnzZwCLXdvBpLrVQlm4NFUSwqBDKGtfKqoMfu7AfWQKf1OIJ9iBlI+2bayjIEWMIDbsS1K+k+8hLSCUDd66u7HYPqQ41peXF00xKEF2bfk1Ls4WXOMFvXI5EXC5SEIpMDfDfD3pV/lolyHpLSb5IYBLXQgI0iGqjoL3wB6L/YG5wMZSoq/EpgYA8ZAnhmgA+54npWzeA+t6VY0cRrmOrFAQ5HNQHK7KAENU2+Yhs+F06zfMqSjYzi9L3unmWc6ycxASoclS2MMBISBPtFvUJyEgfQcL6ReKO4Pgu0LXD09v4aBT8DqCXVZjP0HgYZObZMQHqhdXvya0zJtiM/zGgPqC9LdG6iKl1ZlOtAceY5kBD2c1LSOHMuzpCXjr0mKs0NjwBjIAwPVTBPQCAbePb/zztkyXqQ65ng+XswzdAHPyBPj4XnemoGUZ8JbUpx6wbplmMFXpH87w3NamtwMpJYyaOcbA6kZWJYkGoL2FNCcwzOBjIdSkrY05hsgJVfDhz8HMwEdis6eILAynmvBi/8fXu43u1WSISMH8fKvJT6+gIBbMgtrGQPiHvvf+QDISNJ9NBnIKNLxIKDfjzxJJsaAMVAABvhBLsmz8FXAd49Cg3hufqJnJ8fTMZr8PmWS69qagZRrhrOY/4fk9RuoSjPPuAcp3z2UZiCleYEsmTHQTAYO4zzWVnBGAnWaaA7iBDAW5HtILUXmVCrIfXdwLegEjgBtQOAF4+cwXvILeck/wESXlVRhLtLiHLO0bWgO8bcEvhHFXcGbqH58mOMW7D8HPgevgvhCNk+zn2nHI6eYlAoD0bmYVWegnPdAMX8fz8VjzMHctVTaVyzt4LnIIinhy/RcZP+UaYVZ2juRLjOQEtkI+L7cjPWgF/Ab/iKFQj9u9bhqCMHOIJ9iBlI+2bayyo2BHWlwDZCxUJnQeC0X3QVMB+skhNtuARlgueh9Ubj+Uu8omCyDCUxBAbiggNUql6L3p6EairmCR4PV2TgKXOwRb8ElzgA3x9oYRr/ym5zE9mmU8zvZfxswBzP0TJ/Gz9gSZ8Oal8RAWRtIa0PGckmEJB624mB30DAuMjGyAPsyfDRuejaQoTQG9AO9gYYIaKvhKOOA4jWc4BKQbzEDKd+MW3nlxIB6xNUT7iZ6RvBOtx5xN3IKGFaBQbQ1ytcR9EzvNsRnXlIB61iKResdrmF0bwEZQ8nyAAFa7XXp5Ag7Ln0G9DvECPodr8WHU5K+c8XvdVvC9Q24e0qfCWuhBwNlbSANg5ROHsQoWD2yMjT8PqSodPkWGXYyiMYC1S8RMp743Tv3gTVAtkRlbpAmbiCd6lRq8yFokokxUFAGlqV0zZ3Q6lxe7cPYeQAAQABJREFUcjQR8iKZGAPGQPTDsH9DxPfgJLAt0DBNzUvSEt//ASZlyABG0LkYQf9oDoxb85kneAiepBpukpXd4i2s5BkoKQMpcbiJ25Vbj8DdEiKWYH8rcGZCWHxXPU9xzxGdC4ESGXbHx2qkH/ZSQGPyNQchF4rRuuQro8vEGDAGCsuA5rHISzTCpxojidNzQR08c33SWZQxUA4M/E4j9Z6vBg8BdTKoI7E30CqIijcpQwYqnIoD6Ml9jWFEM9ya38aZ/w4G1NQqJ7QXo5q7u6WxMGOgVBiQ0hAffpbodfHbVw/T1gEhQF4cTTQthGgoonpR0sHlpDMPUiGukpVZ6gxoKFAt8FuIQZ0nU0udCGufMdBMBhZt5nl2WokxwNzAL/EQacSLpzAE7yctN+2ZwCJKmYGy8iCpl+BgsHHsij7AVuP534wdJ240jEVf2h4ARiVGFHC/E2WfAp4AFwFN1M6X4IVOW1x7Y9I+2xIaA8aAFwPTiPgMaC5iX5AsrQnQy/yN5Ag7NgaMgQgDeq+bGAMwUD+SntyNvKjQHCXc9WvTIzXCK42FGwOlysCDNOyIImrcc9Q17u36gf2geLaSKfy/WD1tDlIyM3ZsDLScgfZkoaFz6uBJXO5aQ21fBBNBNucfkp2JMWAMGAOlxUBsjtE8tppf3UQYXnclHqZJ420+dRNuyiSgpDxIpX7N4gaSDBApQVrC+39gHRAkMQMpSFfD6lKKDGhiuSaeawWut8H7YCbQXMFCDcOlaBNjwBgoBgZYoIBvzoSuZ/jYw2yv9jISiqEtLakjbe8JByMTv3vEah5VGEeXEbeAVey0sEchRaMCDgN3gf+CM4A6w0xyz0DZG0h7wLGWcewFvvKAbsggSNxA0o9Dk7XfBPIoaTjgu+Ag0AoUWsxAKvQVsPLLgQF5aPXyvg/cDY4EVcDEGDAGjAFXBobjdWZezbMo/3Vs+7N9XfNs2PLdn6r/vuI4UsjLRqJ8hJ+K8hEeChffsD8FTIWPUwtMxIaU/zPQoiJadbEnwKEV6Rg7lK1JbhkoawPpKLhdAGRkCDI03NCJ8CBIooEUr88J7PwK4m0Yyv51YG+wCiiEmIFUCNatTGMg9wy0pYg7wUfgE3AvWA+YGAPGQBEwgAHQHY/JKJT/7ROryweN98Yo4GOpVRq6W3Yyz3HWpe0s+x26Bq/RsUy6XrLAJKxA+WPBW2C5hLqoE+xmIN1114Rw280+A2VtIA2AT43lPx/oxR90cTOQ4nXehR3FawJq3FjSVosrnA3yKWYg5ZNtKyuZAXV8aNjZH0Bz9eRhWQ2YtIwBrY6n56U4vR3cCr4BWixGv/liEC19fin4HAwBX4ArwKLAxBgoaQYYRrYjBoA8RZrH2EQwkvYlfiHD7dZrEmkB+WZAw+kGAynpbvIkgYwGNMkhA2VrIOmFqDk8L+eQ3Gxn7WcgxcvS8LvTgRagkEt2NOgE8ilmIOWTbSsrzkAVO68BKfFPAHUMXA2k0E8HewGT5jGwA6epx7Kjy+lnEaZn6T4ucUEKkpGs4SqauyUvmOp9OxgDfgdrAhNjoGQZwDNyD3Nr5Pn1FDxMv5Dmcs8EFpEvBkZQ0Lk+hW1MnDrBGz23UPgWeaXMhkn6cNTSqLI1kDRXZya4uaUM5vH8dAwkt+rke16SGUhuV8HCcs2A5uFofPZGSQVVcCwvkowkKckmmTPwIad09zmtM3Hf+sQXOkr3QF/wFVAnUqIswcGnQIZ0vp+VifWwfWMgpwzEhtep88hT8CD1wsN0v2cCi8gXA/LM+3U6hYmXgbTDcOaVcd1uYOjkcIzbenkB2f8Cj+D++apsiZZTtgaSrmdPoGF2lTooAmmugZTvppmBlG/GrbyloWA+8Fq2XwqyFGAZSiaZMaDno7xHfi/r7YjXy1rXIYiyH5VimoGzukflViJcE6EP9Yi3YGOg6BmQ4YMCrc4OT8GIYsGG8JWeCSwiXwyMoiDpUl6yARH1u9EhyDVjYYnwWIyiS7jG22s+GfuPyVACGkVh0jwGyspAUs/hcgnYlP0p4H2gF+haIDE+vr8I4UGQNlRCvZ1BFzOQgn6FSq9+B9Akzb/z6+yID7crvdbntkXLkL2Mn819imkbS9POJ00ho+6k8I9TVKA38Rr3b2IMlCQDzEHaHYVZS1dreFYTIX434muJT/bCN0lrATln4FFKUKee1zvtEeIGYQh1AUNmOs6KyTXiOnaIGkmVuyTH2XFaDJSVgTQQSvSizxSd0qLSEsUZMAMpzkSwtotTHfWQXwCOAeoAKBU5moZMSNGYs4nXwg0mmTEg75s6kk70OU2fGJgLwj5pChklZePVFBXoRvyTKdJYtDFQ1AygML+JQv0XyvMmiQ3B87ADXoi/5XlIDLf9gjGwKiXrndYdJHaMaxjw5WDhZnwfietZw6IaB3PsKniXXibN666RFpiKgZIykLws7TgJGmc+LH6QwVYTeE2MgWJm4Ewqfy+oAiPBKmBRoJ71W4E6DYpZ/qTyK4A1gYYmuMnWBCqdSWYM6N7oAa4CrwENZUwUPXevA2+C5LjEdIXcl2F8IJCx53Wv6/54BpgYA0FkQIqxFprZHrQG6vB9D9SAtGWqU3PyMk7oOX4IGkr3eb1Tz/OyYt0Kp35n9rsOcWouSTszS5hLBsaR+b7gDaB3tvRXdULtDPSuO3mAU6l5ta1+duZ/wNZD6vGMt7rdI9KCjQFjIM8MmAcpz4SnKO484vUSvRSoR0Sil+1xYBoolWFFUhjkBXATDRnRy+Uot0gLS8mAXsgyPDVMbe2E1Guwr49s/wO0H1RZhYrNBmd7VPAUwjVHSQa2iTEQNAY2oEI/AXVA9AWfA93Pw8AOIGNhON0ueJHuxsPwLNvb8CCpg8AkeAzIK38S6AyeAnqPR4bTzXUq98I7tKDaZ3EZru0Jmp/EOSaZMyB9SR1qO2Z+qp1hDLgzYAaSOy+FCJViOwuc41H4noTXgfYe8cUUvA2VnQNkJMUVXXk3tHDD30DeDzpOTZrJQNvVHKffVU7ruredyhm96b28wWld2y7aky0FLuhyLhVcAOTtWjJWWQ1duRKoA8F6zmOk2CZQDKxMbcaBnmClhJrpHtaQ0Jlg44Rw2y0TBrjwK2Ag1WLs7uHVZAzgp0nT2yvewn0ZKGsDSUNCvk2BL4h/GzwEdgEmqRkwAyk1R/lKoaF1ernKY+Ql6o282yuyyMJlJMmTpF4feTVkMKnX9R5QBUyayQDj3A/hRTtjphMa+YVT1acPmOaEhhE2m15KeSOLQU6gkuOBDKX4dgL7pwITYyCIDHShUgOA1/PrHeI01M6kDBnAAOoBfuBhtlhy8zGcdub5rDlKByXH2XFaDJS1gfQhFM0AUqaE6WAsqI0dx8Pj24WEHw9M/BkwA8mfn3zG3k5hus/95BEi5V0pJdmCxhwDNO9k6VJqWCHawvCb9rxo52EIVVc3NrYrGL5xGXELeBnvWoi6NaNMKZq7gWPB7kAvQRNjIKgMTKJiJ/lUTveydJO4V9QnqUWVGgMosMtjIP0Jfub5fCTjLlfFINqAZ/L1YDbPbnXumzSPgbI2kOJDcl6Au7YJ/OkFqgfSRKCJ7YuAXcBgIONpQ2DizYAZSN7c5DtGw4fkUfGTl4nUUA0TY8CVAV607wDPlZB4OT/D6ldfup5sgcaAMdBcBqR7qIN2O58MNOxOaUwv8SGplKPo2V+W5+/jPKNn0WHFh2LD9RwPwzjSCBKT5jNQ1gbSd/Cm3nWveQmHEqcHz+ZAsjrQsQwAE28GzEDy5ibfMVtSoOYYyaPiJisQKC+qvC0mxkATBl5hxSxevPP9vsqO92hH0tRNtl7sJvxZQHAYmOY4y9DLvumsxnN5glNB95pQXaeDe1QkdGv+Sy9Z3ieNRZUBA0P4zALeo/UYV75aGTQ3H00sWwNJPTMah36+D8siRx6jxDR/cvyMzzkWFTUg9cBuMibWyCkIA69S6h+gbVLpGnqm+Uca3946Kc4OjYEIA1Iq1SOJYhnvKGrCzFzuLaVh265JpAUYAwVmQPcu9+dHGPFMaI/3sIe+ZxWw/xS4aukUTx9F5GP2XmkfJ+Jbr0gLNwaMgWYzUFIGkt9E9GSG5hEwFcgr5CWywpUnwzobRKseaWUsE2OgWBg4g4qOBr+CruAa8D9Ah5OzLDgMqCPAxBhowgBWNDZSvbyMnkN4KpxK4uprmCzxT5MMLMAYKCADeDd34SX+Dfcnnpi6XeY685evd+q2ZOBI/0qn1YcYTycWsHrpFN2JRJrfdx9I1D008qUj0DCqq4GJMWAMGANZY+AFcpL7eluXHOX96A3kCYkrBnvGjq9ja+LNgA2x8+amUDF6mWoYnXojURYiS8aezVY9JCbGgC8DzDF6GnzXp7GCFjmnmk4keuU/oXe+1Bb68OXEIoPPAD1AYeZijASd3WpL+KXct7PpAV3VLT5AYXtTF0awOiPAk0Dt+Q1QdecEYGIMGAPZZ6CkPEiZ0kMvUmQJZPWeaynvO4F6a54CE4CMo9uARKvXKd0csDIw8WbADCRvbizGGCg6BqRAYgSNR5l8ix6lleINwK20HIbTi4RPxSW/TjzctsZAEBjAO3QE9+ZMXuaLe9Sngvv3N9Jc6xEfpOBlqMyl4CWgji511AbdsKOKJsZA0TJQ1gaSrtoq4COwAMggimMc+xcA9bxL7gL9wU46MPFlwAwkX3os0hgoPgZQNjdEmRyIMlkjbxL4hv15UjBZLUmdTSbGQKAY4J69GcO+j1+l8CJ14R7u4ZfG4oyBTBhgoYT1eTZ24r7qJu8l9+FRWLStM8nD0gaCgbI3kOJXIczOtkAr120KRIxJ8xgwA6l5vNlZxkCgGahmOB0T2/fi5X81uJaV7fZD+0ycFxHo+lvlyosB7tEbUVC/8ms1SqyGj3bzS2NxxkC6DHDP3QQWck/9wL33JPtvgJkc/8giNm3TzcfSBYIBM5ACcRlKqxJmIJXW9bTWGAPGgDFQdAxgwO+Lcjo/cVhoYiN+oSMUD9NoPKAXJYbbvjHQHAZ0H3G/zcFj1GhZ9pmOs4LmaWIk/TY6+l3N5mRv5+SfgbIykDSGd0UQ7/FcLnasMD9owQaT9BkwAyl9riylMWAMGAPGQA4YqMbjiVKqYaG9ZAwlF4FC+xCK64QpjrNUcpwdGwOZMDCez5pwn03jnjrX7byJjrME99o4vEqaR2ZSHAyUlYE0kGuiOUbbxK7NsNixwvzQKZbeNukxYAZSejxZKmPAGDAGjIEcMhCdDxIeK0MJ5fU0lv3eiR7+Y1BWP0ahncnx7jks3rIuEwb0IW15j7RyoleTue/u0X3nFW/hgWOgpAykuGfIi2XdmNy/ke8fKc17QJ6jVPJrqgQWbwwYA8aAMWAMGAPBYqCNM/9PhthtFXLCN1U4FVpsaaVWTv30eqe+d51TsVUbZ6F0AhNjoEUMtHIqVqp3Kias5zjzvTKqcOpH0RN/gFe8hRsDxkDpM2AepNK/xtZCY8AYMAaKjgG3oXZF1wircOAYiC1eM19D7bwqhwfzQTxI73vFW3jgGCgpDxIfzG62LMKZm4HtYzl43uTNLsFONAaMAWPAGDAGjIGCMbCJ49QUrHArOKsMYHC0B6eDUxi+tmFWM88wszHOQlZLrJi+nBNyXfCDhRpWxIN5Sr1T93qGWVtyY6BgDKxJyfroWh3QPKQvgeRNcBvwHE+qRCauDJgHyZUWCzQGjAFjwBgwBoyBljDAvLL1mFPGd9jC9Sx6MJztaO2Dd71WLGxJeemei5F2EvOQFmCwnVfNAiHx8/iI9rrUdwD47nvHqYqH2zbwDJSUBylTtvWR2ElAhpHmGY0AcQPpLfYV/jNoA0zSZ8AMpPS5spTGgDFgDBgDxoAxkAYDfEtoTQyhfzBEerO/VvwUjJPNMUD6gT8KuSohxtHZ1G1W1GgLvU19+nK8kOMPZzjO8vH62rYoGChrA+lVLtFssEvsUr3BNm4gtWZfHiQZSecAk/QZMAMpfa4sZfoMaJl+LZH6EpDX9zqwKjAxBowBY8AYKAMGMDhe1sd/+/z7uZaGVk9wnMWJG6LV4hoCC7Cj4XQYSueA+zCO+HBsZVzHLEBtrMgWMFDWBhIdDU7iDynRQBKncoVOA111YJI2A2YgpU2VJUyTgb1JNxmMAE+CzuA3oA6OE4CJMWAMGAN5YUDzXVB+H0QZ/xzPQB+O72UY1dp5KbyMC9ECCBgc81lSez8vGqIenPBYr3gLNwYyYKCkDKSGMZ9pELAkadQj/YdP2gXEsehNJJ1PMosyBoyBHDKwEXn3BL3BF0C9cTKYBgN1XjwP9gAmxoAxYAzklAEU8PNQNHj2tNqaZZs/rXPqv6hwnN1aO6FfMZROymnhZZ75Mk5oDRZCCC10Fuqbll7yExGrjnYcLbxlYgwYA81k4G/O65JwbrIHSUaUPEh3JaSx3dQMmAcpNUeWIn0GNJxOHRULgYyk88HZoAdQ2I/gW2BiDBgDxkDOGJDnQvNJMJJOTS6EsIuIW6AP0SbH2XF2GJjtOKvgsavHEN3UK0cWcDiI64BDz8FuNTEGWsRASXmQMmXiGU6QgnUhWBwkGkhLc/wWqAd7AZP0GTADKX2uLGVqBuaQRL/Tk1ySypOkD/Ppd1oUE2CnOM5SvMQ3oOdFHuygyYpUaH1gnzkI2pWx+hScAea/9GdY3SNeFSH+BRT4j7ziLbzlDMDxLxhId3vlRHwPDCR1pJWU8BJcA6tvne9tFbx8XteyNpBkBI0CUq6mA4a4Ohq7KsNI8x0U3hWYZMaAGUiZ8WWpvRnQMAn9Dnt5J4nMI1SaDX3SFDyKl/rmWsmIl3etekHZ1qFsfRmQHueDIGggEI9CDdAiNu2AiTFQ9gyoQ0O/WzxF23qRgYdpb37XC/q4LCDgdY6FZ8YAz9EjxDHbo5LP5Hl6ieK4RtslxxXpcUXUM9mwjLneG9MJe2ii4yxRpG0qpmqXtYGkC6VeZw2zi/dCxxUEGUgXAa1mZ5IZA2YgZcaXpfZmgOH+kW+UefYYEi/Pkn63G4BACkbQ7rzYZoM3taLRLMdZWS9xejufJayGl32HAlZcHnR56B4AWwB9/mAf8DmYBDYCJsZAWTPAktLtZCCxbetFBL/pLZRmquOo89UkRwzA8ZU8N9XR9BHba8GNPEv7sZ3Hs/TEHBWb92xp03O0aTrtvBzv0bp4kVanfcdjCA4h7ieUVE0DMckdA2VvIMWplSG0NtD44VXjgbZtFgNmIDWLNjvJhYE2hMn4+R1UucQrSENaAmsgabIwL7gxXkNzeAHeoJdggb6RIa+bjKOTQbLomagPZv8AbDx/Mjt2XFYMDOGj8fxO5zA89hCvhqO86kOh6K0muWZAxijP1McwFL5h+xXHD2gIWq7LzVf+MvR0v9GuLdnflO3Z4EJ1tjHcaVna/Tvtfjxf9SnTcsrKQLqUi3wgsPH1ub3bzUDKEr8xz8MNPCBv18u3TN3q2BiRxVJ6sl0pgVr1nj0J6Fhz6NgN5qpFXLfjeNFNHec4i1LHJsIKFK150Q0Hej7lW/5LgV/6FLoacbVgR580FmUMlAUDKKXdpJD3cRlCN5wPyhM3mN/xo2VBRkIjJzCHm+fcCXpP8ay7ca5T+R+irVMlgaNMd7mXvsYg6kzn2ruAoZ3hv3R/wS9DCEO/Yqhfxv5c5oWYPpspuemnLysDaSC8qKdZw+k+BVeD9sB+yJCQRTEDqYVkovGvxgOR+SmRh+E3PCA1d2US24m8hA5vYfbFdvrNVBj7IrKst367fcHngEWNHPSSiHfpWbaBFK7XXVy39/wqxwvvWcEvTY7i0PUc8esnvxF5nl8CizMGyoEBDXHitzwevEuPTLt4m1FW1yesD8/sEQXyBMerkvctbWfVuPA/vJ+msP2I59jX7New7QdHazajQq05R0OOHwZaSOsa0BaUlcDhbN1P8Pgd75BN4o3nI7QrEPY88TPhW3Pito7H2TbrDJSUgaT5Cn5yLZFagUbDdfYAd4EBACPc6Q5OBasAE2OgYAyoN67SCX2sCix0atYNOTU7Vjnz9/3TqWHoZ/2j3OSv0kO3V8EqmP+CNf9Iv1H9vq8D7wJ1cNwIZDgtAq4CQZU6KlaZonKKl6cm36Iyg1q3jLhAidAwFH25vjd4DeXikjL1uGbEmyVOnwFcwGNqnfm71Dv1y/KMHoai+if32VA0+j+Uy0Jn/q64tTVvryyEEQ67tnbq3+RbUE+NcGpW4T21D++rnRc4NWtXOBVzWjvhT6ewamcGZLQjLQu1OS8A7ctY0hzTP8FloJykdQWjDmY5NfuEnZpf4g1fwnEmwvEpHH8ZCyvEeyNeHduWKAPL0K5DwX2gP9A4/PoYBrFV+L6gDTDJjAHzIGXGV6PUKHfX8dId5aXcEfcIL2b16peT6CWrl6ZeBqxxEFl1Ur9XLeca6DmD8vhxTWdN81jWOzq3Ifw3yv05tCXfcgcF/uhT6PrEiWd52gMr8HsjqOW38QV838P2MXpXR4Nx8LpdYCtuFStaBrivtgGaF3IW2LIFDUHnjXTwfMJWo1zeBMcB9ONgC++hgfzWnnCrJT1aixE3lN/jLW7xLmGLESZDSJ2DKyTFy0jS6IHTk8JL9lDvDNDXq4HEMXc1XIdXcw2vNBbeYgZC5KD3344tzqnIM9BDan8gheEzwH0XIQYvsSOF3yR9BsxASp+rJil56Qzg4Xddk4hYgB6Icq3z4tnEK00Jh69E2w4C6txoWwzt7IOHhmv6B+ih+UbJdUaJeJTrOd7LIE5On+XjNclPz7qrXPKlwzwylFHeusAKyumZ/F60etVhiZWU4QnnTxM3ibGYNjIgkRzbDwoDG1ORkTHcxfYSIINDnUAfABkNgRQtiKD3EEPs1vOqIPGX8xts8H54pYuFX8l2NFjcI90VhPOYdKS0lrzw3KoBC7V0fHJjYzrAGPHP82/75Hg7zhoDZiAlUbkWx8eDzmA6kPVYDUzSZ8AMpPS5apKSh94ElL2jm0QkBEgh1FfdE4JsN8AMcD31DaSJKAv92D+Ol9o2bPmeR/hjruUMDVUpYPV1r9WAV8FBYFtwBvgVDAOrg0CKDE441JwQKVdNRPFw/iN8/7dJpAUYA4VlQEOD9fuSxyh5pIr0kL/AcyCQwjNrD55ddVSuwquCGE+H6PnmFZ8UriFjtyaFJR7KcFoAdk8MTGdfnVRYnCtjfYnzopDocy3UE/6Yz1X1IMPq92S7g551YAL4CshAXb8oGlSclSx7A0kPovOAHlJ4hSMGkYwi9VS8BE4DKwCT9BkwAyl9rpqkVI8bXoWOTSJiAZqkqQcjD8utvNJYePAYoNdvda6tPBpTdf3YzuT4JZ8X3Dq0YgvAtIacyzaU8A6gYzjyDNSzUEbFsiCwwm9gG3FJT5ZnPfktXQzP5TYkNbDXzCrWwMD57Ol3tlhDSOMdDeuRAeLpoWmcPL9HdPBsrN+enmteJfP7PJ/fnwy9dASnr3NWioTi69gUaRqiqRuLHUW+Ncdwtcgzt5btpxh3OzUkCugO9WYhhvDH8NyBfX3jSXXnvR8ewvYKjqvZHx7Q6pdKtcrOQGrDlVPP+4NAizXIGBLUM/EFuB5IWdCEcJPmMWAGUvN4i5zFA/FuHog/f+/x3R8ejDfygBxTbfdohK9i/Mdb3kspUnPOBCNB/Nkk7w7OEG9FhLhsiXqDF81WZrnOR15Ufg8y6jyF39PR/F4meCawCGOgMAy8TrFdUhQtD1Mh5iY2VEvPKgyK3fit7SuDoyECzxEK+jB+X7clhDXs8sCS93YARtJDDYH+O58TfadPkqWIWwh28UnTEKWOJ37342VcyMjgeAN5vTjWx1cXEKaRQoGVaH1Ds6nnHdW86/vgBRse8zSqPbRBHxg/IbANKI2KlZWB9ATXjN94g+IxlP3O4HCQj15aiikLMQOpBZc55iFi0n7oZbS6RuOxeSCeVAwP9xY0v9xPvRcC9Iy6Fsi7vTTQGPSvwd+gHTCJMcDvYUOUoPq5Ua5ceeH3chO/pf6ukRZoDBSOgY8o2tW4SKjSd+w3DB+lJ2Ad7vnj9R4Amyaky/ruL8z1oYx7+P3MBXgvQvP1WwNa4rytCiSeYcKhhRhBGpLbIOPoZOE39wJpJ8xOf/7fpWQgD5GeeW5yA4FknXLVTZ2L8Rb6gbr1kmGhgETBsOtI3BwetIFe4ACjdH/qOZ22/ArXd4NqOMUDFrkeekeY5JaBsjKQBsJlPXgbtM8tr2WduxlILbz8PAg3V+8cD0PNW+nGvr4YPpAHI+ORw5e0MHs7PZgM7Em1aoG2yVJFwCcxJMeV9TG/i5/4TTzpRoKG3vEbGgeucIu3MGOggAw8Rtm9fcrXaBfN3+kQ7TQLvcV9LANFc+5iE/TDX2A0re2TR7OiqvFY8K5hufzwWN5FRw9hwRNlhCG0LWF9wN8YSWvGws4j7Tx+h4P4HXZhK8PoH/ZHkb7RMHC1g7CTSX+tjCoMlESPlNo7GKgzKNFwqeBY0yAWgONASsFTtCtlLEzKv9F5em7QtlsaBQbwYBYfR6ctneD0A3EPrw9LPwhgVUuxSmVlID3HFdRwFRlJ+rF9Aa4HGlKnH6FJdhgwAykLPA7Hna6XCA/yrqAHD8mbcvEyzEJVLYvsMPAy2fTwyUo9xnp2reeTptii1FGlnmENw5ERsy7ISFCGduG3oYnM99P93DB0ESViI34334OBxTQ5O6PGW+JiZmBnKq8OkZ08GnET4RMeREHmHv4V9Oce3zqeNjaETErz3xgCq8fDs7GlnP/jNzXd7X3TB48MSvrnxPeKlyWPEsc3UMeXwLOcf1byb474q8Ac6qthb33ZYuRFhondUf3vcPFVyfMrMB9QlPMGGAGwE9JfTZj6XUoZP3GOp/B8uJfy/QxUz3MtomwYKCsDSVdVy3kfDrqAEUAKhzARdAengJWBSfMZMAOp+dzZmeXLwG80XT2lfjKZyCP9EhRJ3CLUsxuoAxpGJEXoZ7AQ3AVagbSFoSj7oHCNRuGZhWLUD/zMfh1h79IFv3zaGVlCYyC/DMiLNAUcB+JDwZZk/zag38KRKPJ3ofAP5Yev8Eaiearc69+AFxtFtPBAeapcr2zolNiJ31ctHqEVvdIkhpP2+uhvs+pkwhs6oynjMMInyyuSmJ79vYE4UMfJ+WAlkLakbyCF3007U0tYjgyUnYGUfJE3JOBS8D6gIyRiLOml/SPQA2JPIJJM0mfADKT0ubKUxkCcgUHs+A2flGKBvh/5BlT8nGLdvkbFh4OGHvFYQw5kOxXcHjtOe0NmbehVPxSF6xoUJFauq5J3ysQYCDID6gioBtI99NseCjTKZQw4DDDUJTyGe/kc7bsJ9/wB3PPzxmVxcRXymybjxa08hfXBmCMNHRCpP0+Ad2sN0s4nv2Pc8iOPPZQXbdzCLb45YaoXeS5k/pM8Uq6CETiQOt3qGmmBxkCUgbI3kBJvBPVqHgDuA+rV1DA8eZc6AZP0GTADKX2uLKUxEGfgCXY+jh+4bPcgTENyit3DrU4nPVs1ZNBNDiVQ8W3dIi3MGChBBpahTTJIzgD6fVQB9SC0wUDSJx2217GbMPZsZaXRqmdu8c0JI79xGA8neZ2Ly2upWL228UoTD492VoSHxI/dthgrX1Nexp0ibnnFwlIt0nApBtRcrNI1ffKwKGOgpAykjIZluFz7FQhbCigfjYHVS9rEGDAGjIF8MKDhJLsBt95iDRPrDLqD8aCYpQOV/wj87NGIXoSPAgd7xFtwnhmgR343FEo+Whn+h+1ktn1QaI/NczVKubipNK4neAb0ARHdY62IHlJfU+e0Wo4wV6lyQpG4Wme+PFBZkXqn/kuUoKO8MlvcqSKufvoQZ8EgrzT/hte1rXDqf6OBS3PP3IYx9Cv30AwMpyEYfg/Migyfq/gV93g2O0Tq65yKExjNt/3OTugryj08OmercjfKf5b63MswoTPpEddzxsQYMAaSGJARtCW4ALwE9EOpj0HG0WfgBrAjqAQm6TNgHqT0ubKUxkAiA6dzIOWoB9Bcyd3B5WAs0FLVTeYhEFZsouF1j6So9IfE35EijUXngQGMoStRaFnKOdQdRVNLTB+BcvswYXMIe44qoNua5IoB+H9f3Hvlz/W4g/hfveKbE47hshXXdwHbc5PPp7zNiMNIDl2fHOd2TLrrqJ9Wmhwmo4j2XIaxcgh5X6hwjlmVr+pzjtVBlFVheJ8+zq3vHiV+KJZV+Cp3zmpBllmpMlBSHqRUF2knEtwEPgDqbYkbRHQmOAOBhtbtDxpWQmLfJHMGzEDKnDM7wxiIM7ADO2+DmUBD6v4AUkY0BLgU5H80Ql4iP1GbL/ZLYHG5Z4DFL/ZGuVwooyi5NBTa9sRNQ+ntmBxnx9ljAGV+R3iWsXJecq5cFy1yoA+GHp0c19JjyjtN5YLe7J9FGcdzrR/lWIbxi9VpLqTCuTK2mK8U6pu8sl2f6FymXoqX0dTSOnudr3KYj7RKcvle6S3cGIgxUFYGkoyguFE0gv2ngFaP0dA6k+wxYAZS9ri0nMqbAXm6S032o0HzwboeDdubcBmG63jEW3CeGKB3/2OU4ae9ikNhvlgegOo0lWWvfCzcnwGMjFMxIvQNvC/YXgPnV7DlO0WRD4Ze539282Mpdwuu/8uU9zdlaWilhqtlNLQSI3s/zsUDGR6GEbReYm0wWlYl/9j3/apOSYyzfWMgAAyUlYF0J4TLZez1Yg7A9SiJKpiBVBKX0RphDOSMgffI+TewQVIJu3A8ATyYFG6HBWAAxXYuSu1BXkUzhIkVyiILBDRSfL3SW3jzGeA6rI+R8QgGxbeA73uFn8KA2ab5OfqfOZwFIlQe90CN7gMwTdeasM/mZaBDYVDdynky7GTQzQOvEKZhgd3YZ1n+8Fds32T7hH+NLNYYyDsDZWUg5Z3dMi3QDKQyvfDWbGMgTQY0l+odoPlWH4FnwNdAw527AJv3CQmFlGq8QiiuCxnitYdXPaY7zrJSmlF4N/NKk4fwNpShIYCdwLVgd2DzoiChudInMvRN3sPwCAyzg19xnNbKi+u8Cdf7PTARI2ntdPLnnHu4j3orrYxtDKNnOP8Dts8Td3Q195nCdJxOfpam+BjQQhwY8xqmeQv31MXcB8kdY0FtlBlIQb0yRVwvM5CK+OJZ1Y2BPDKwB2Vp7qcm+98G2gOTgDCA0qoP7mr+m6ug6BxC/NxxWfwGj2tB3oF7EsXUksic4s/ZfgtkdH8D2gKTZjCAMnse13XKXJdlsGUsYeB8LEMpnazJi+GB4Qnfx5YudzlHS3L/RnlXu8RZUJEzwLXXcNA5bMeAT2LXmu9ehZ8c4jjhgDfPDKSAX6BirJ4ZSMG8av+hWloqWgsAaF6Bel2tpxUSTIwBY6ApAygx+l7MJDdFWUYRyg6rk4Xk/SuEbEuhODIiwzETF1Zag7BPwDCwDDDJkAGu6bf09qvDwlUwerbjvqjDM7Cya4KEwOg3k0KTSC8PXxMhr3OJm8twzdWaRFpAUTOAQXQ515ZFPSLzyxp0DbzSuxA3mvvs5YA30AykgF+gYqyeGUjBumoagkLHX6RnVcbR/UAPJubIOl+B5YGJMWAMGAONGIgPtZIyg8J8rIwieQLmOpV7odwMwIAaMsNxlmt0Uv4O+lJUd4/iFiVcKyHe6RFvwT4MoNRO43rrw7WuEvUiaWW6yt1cEyQFktfh5MlKfOHOWLRafKVC89cIv5NwFnCoOivpFDsscgZYgnWFmHF0mltTuPab657gWaKO26CKGUhBvTJFXC8zkIJ18eQtGgWS5wmox+4H8AVo6N1h38QYMAaMgQgDGgaDMnOvlB0MpXq2WrIZpTb0IsZRoTpX9OyqB5v7XKYLifvLJ96iPBjgOo+N9fq7ppiGZ073Amm2dk3gEogivCf3zODYPVQbPT/8F/eWpyHmko0FFQkD3BssEx/+m+p66hY8R3rJaA5wk8xACvDFKdaqmYEUnCu3EVXRxHd9A8xNVieQzjznULdICzMGjAFjQAzIe4TSs4OGx2hxhgKzsgPly0Dym8OwD/E1Ba5nURYv4xflNbKwglsDuA/OIX6Kz7wit9MiYcxbW08Lf2AY6d1kUqIMcH/chPHzuV/zYh0v7/ilKXCcGUgFvgClWLwZSMG5qh2pys8pqvMG8V1SpLFoY8AYMAaCwoCGaclA0tZLTidirFekhXszgOKq4U/zUXD1/mgk8hoRpyW/r2wUYQfGQAID3Cfncf8MTQhqsosh/hLo2iQiOAElZSC1Cg6vVhNjIBAMaAgMnb++IiWiUENlfCtmkcaAMWAMuDAgxetPcLZLnII0rEfzWt7VgUlmDISdmkEMOzitwqm/C0PoU5Tdi8AZKLNPVzgVfbFMX69y5t+XWa6W2oWBChmjmtOHZ219l/iiDapzFnzA/dNObXNrBBOgV+FHejD3kv1G3QiysJJlwDxIwbm051CVkSmq8xHxD6RIY9HGgDFgDASJAQ0LXgjOTKqUht3JIz4VtE2Ks8MMGEB53xAvwBMYRr/IG4DnqJeWds8gC0vqwQDcHgunIzUXC14XaAvPgxh+uLvHKXkN1vxC6ngYOAHjeKvmFE77+NBw+G/O3ybxfIyjVWlrf/BNNd/BSowL2H5JeZACxm3ZVscMpOBc+lWpCgsHOSd4VGlbwmvBjh7xFmwMGANFyABu40VRblg9LHw5CspZLNW9VhE2I1WVzyXBfDAQPAKeAmPAeLATMAkWA5q7dhy4ApwMVgJlJxgOF0eNolCnWbGl0nlJr014F4VjhB5UKFK0KEvUsJHRFprB82McW75bFBqYqaGkOWqc9xzna1GO9zn/QfZfAbMI78tKdysWqp1plmsGUppEWbL0GTADKX2u8pHyGgqh08Y5CWjoSVz2ZkeKRNd4gG2NAWOg+BnAMDoKhWQCishMFJHvUXjoqZaSE35qtOMsUvwtbNSCdhx1Aq+BF8GFYAlgEiwGNJ8Je8CZBPoDvXvUeXczCLIXgeplT2QI8VuswViQgdhE+O3exm/3nwmOs3iTyBwHVHMdKPtdnhOjMNIO1LGKZBWnNXiOdI8aNlXtFZaJ4BXbmfY+xPlv6hlEG4+oLo5rbgZSJhfa0qbFgBlIadGU10RXURqdyJFJy5+x/QvIc/QwqAImxoAxUAQMMG5saZSNC1BYnomi6gKFxauO8tEBRWQhuHG447SJh6Ok7IZyMoLwdwhL7CiJJ7GtMZArBq4mY/TsyHDI1rFCdA8eBTQUstBDvFUXDR2UF/IFcAvYBGRd+P114nf7o1fG8uCQZgq/4+O80uQqnOfKKZQ9U0acWxnUuweQcVsuYgZSuVzpPLbTDKQ8kp1BURrOcAZQb+v5wPUhSLiJMWAMBJCBeU7lvigwk+jl1VfoXxDYH6MwxUWVq/A4lCv1yjcReoVZYjk0Vz24schKtqeCHuBj8DTYH5gYA9liYHUykqfIa5j3XsSps24zUAhZmUL7AhlwvcBT4FugOt0NstqZwO/vFToq/ke+nsJv+mN+o7d6JshRhMrFSHrQK3su4rqkqaduG3qlKbFwM5BK7IIGoTlmIAXhKlgdjAFjoGQYQHHZImbc3P19gtdX+ygsdytunlN1Ltt5fsNzMKq6SkmDGCmumrujHvxngBSy10ANeB00eJ/YNzEGmsvAhZw4NMXJMlBuS5EmF9HqIOAn5PQDqyUVsB/H08H1SeEtOuT395zglwnx/fiNXueXJhdxGG4j5UXyy5t6TaejRQuklIOYgVQOVznPbTQDKc+EW3HGgDFQ2gygmPQGb3q1UnFgEMrVH15pFE4P8BWk0TCZAeALsBxIlI05GAXUk25iDLSUgfvJQJ4ZP3mSyG5+CXIUdxr5qoNgBY/85fXS0PTk34hH8tTBGCD/x2/wn3EsouKWmsLa8jtmgYTK3dzicxnGc+FnjKRLvcrQkF3VjaW79/RKU2LhZiCV2AUNQnPMQArCVbA6GAPGQEkwEB06F6phGN3eXg0ibp+oYhWaUu0zARoF7b5hTugn8lHv+PIe+e1COJ/CcdbziLdgYyBdBuSB+S6eWPcyY9nWSDIQ3iZe82HzLfKUPuFTaCviJoFjfdJkFKV2Rz01oW59HEcerAaZyOIixH0BvmoIzOMO5T4i75VXkTw7TuYZMyvp2nklL4VwM5BK4SoGrA1mIAXsglh1jAFjoHgZYAnKVTT2n6Et63u1QnFKgwIzP2GOUaPko1nBjjSj73cq5UFK1WP/J2kuaJSBHRgDmTOwDafU3uS0PoR7U17O+bH7lIVEwh+86rQ+gHh5aQ7KPOsWnyFDRAacn6gz4WK/BJnGYWi0p+0TMEa0dPZF/F61sMrVGCgjCPsdA1LDX/MuMe/VTA3ZpfBGc6+o55bUcTLQHOZyETOQyuVK57GdZiDlkWwryhgwBkqbASZJVKGYzMMIOtCrpYpTGpSbu1C+JqLQbJuYdrzjLEZ8T5Sw4Us6znvE3ZsY77Kv4Xc3uoRbkDGQEQMHOBV9pvEtnKlO+HM8nftplTQN05rOh2fnEH600+pnMmykkGdUQPMT9+DUrj6ny8MzDRzpk6ZZUbP4/hG/0QcwiP7gdzmF7U9sb5pY4CXqtdgL9ZhBfQawvZY6asVMfcuIpclDz1f7eKebRUSwTzIDKdjXpyhrZwZSUV42q7QxYAwElQEUlNcwfD6ifm6KZAVxHyvNK47TGkXmGfa11HdPDKZbMIo6Ez+e7VCONySPR8G7Pm3V0KJ/wMk+aZodNYFvvGDQHYLy9X9sD5Lx1uzM7MRAM6AhdfOZ/P+qU4kDM7JSXHe2NwMZJtMfclqP4X6dihWyDMf5lmMoEFvFWcOj4HMJnwGW8ogvyWA8WKvxnLiX6/Id+FnPFX6nB5dkY/0bZQaSPz8W2wwGzEBqBml2ijFgDBgDXgygoKyHojIdheXpxF5m7StMcUoTP59J3rtjED2BYfQJcW9gjJyvIXaxeM0xqgXbxNMnbaUYzgTLJoW3+JB6XKS6glnU+0+2s8FUws9pTuZSwGm3hm9dS1svp907NScfOyc3DKBoH821mS6jmBI6gBfAp+AlcGK1g2vCCY/i+l/Icb5FnQ19wC9g46TC1TmgoX8XJIXbYfkwYAZSkV9r9bq0AxuA1UAQeuLMQOJCmBgDxoAxkE0GUCK3Q5kcLoUTY+CDKGQ0hYcrLsOy1IMvL9H+CedpSJEUwvngvITwrOxS7+vBHBlDaKRSPhwZOFKOCZ8nAyeTgjCGdqXt+vjtbIytvuBH9msJ+5Je8ILM48ik/uWQFgPpTt2nfm3luj0PdD8WQuQd6gnUYdAPaMW9YUDGUUb3I+lNSosBM5CK8Hq2p85PATplnHoXDCXscbACKISYgVQI1q1MY8AYKHkGokOWQkejeN4Vw9EKa0bDZQw9ABYADX/6FkwB00GzvDmc5ymad4LxUkOdj3JLRPhJMpLSNWwwqrYiPcZW+H/yosXzRKttR9jnYAiNCfzQqGrmdND2I6nvk7Tnddp1P8jU2I03P3Bb2iYD6UO/imEc6aPHz/ilyUPc9pRxI9Cy5PJmrQpMypsBM5CK7PrfRH3jRtFI9vuCd0AP8B7QS+5voDSTwAkg32IGUr4Zt/KMAWPAGGgeA2tw2hngKnAsWBpkXVD+mfAdGuSXMfF/Yih09EsTjyPdl6R/OX6cuB3PSAri/0I5vz0xPNX+ZMdZEmX+CvAe539F/l1ZTGCvVOc1N342qxNSxrdwMwu8QpkPU7aGRMoL9vgrzCdrbt5BOU/GH+2ZIW7d6vR9ZAGSMPOQqs53i7cwY6CADJiBVEDyMy36aE6Q4SNDaCufkzWudjfQHyh9vsdkm4EE6SbGgDFgDBgDUQZQ+J/CGND8E09BkX6VdI96JohFYFisiiFRj1K9pVda8rkY4FxLT8irPXmO5RyWWq66n7poOCALY4QWUu9nsm2sKD/y/R58M4sVzRJrqXlU1GUixsU9ieHFuP9LdI7RUF175op1hN8vwDC1G26vg+sH1dZi8PYVI/9W5xYxYAZSi+jL78ndKU7D59IdTrEMaWeALiCfYgZSPtm2sowBYyBTBipiPdrqTDLJAwNRoyOszj1PQVHuk47Xh7x2IG2939DC2IdzazwLS4jQCmrkNw6lvXtynpS1DYr8JOp1a8IpLd4lPw0pnMZKGCsos2qG2iUOFcSYOJj4BQw5XK05hU1gUYQ+SR8ibU4+mZwjz508QsnnaGlv2qJVFfkGUugV2n69DCb2tUAH3rLWpySfk+1jcVtdXktU+1Fozz8/dv6NMwPpXy4CvzeYGnbLsJZfkf7tDM9paXIzkFrKoJ1vDBgDWWdgruOshWLWDaVsphRstlpJ7SXmx6yb9cIsw0YMoPAfAN9zveYY6doQX6Pv4zQ60eVA10vXT+e4REeCMGxOk9HjFZ8YTrk3ytvkptwrHQr9Mar71CwOP9R9B7pST82legdgPETuycnUpTOG04oc49GqOj2xrn77MgKoq+b8jIvlhfcr/Bmc/sfvvJbEyaCk7jdQDotlROpfR7v6UY/D4vkS9zlp9F2d18GcWDp90Lg3+xoq+XMujDlxKC4pc3K8TPbfEefxupXTNhfPP103fo9r87vWUN1S63AyA6mIfiAfUtffQJMeGo82xD1I93rE5yrYDKRcMWv5GgPGQLMYQCnaFuWI5aTDn6OYMSm+qj3bDihOmvPBqnC2PHSziE3/pAoU4a/BNwxrWC7xNBTZFQj/nmvxaWK43z7XcQjX7w6PNJQVUbyf9ohvFEzaL8jL00MkJZB7ZCZG3qGNTmzBAW39mDxfAfKq6DszB0pxpx4nwcVA4kcTrlX5NDcspbCyxrKcN5i2MHyt6mywteZPcazFHzCUqi5ImUmGCbA+F6XMr6kr3rfwJZSBt03Ly2vYXGRBjps53oP9BSjn7ZQ9yvR6C53Wh8x0QpvoWPUmfjrtPlbH2RIZA+JQXEY5rdpKHFOWhk3KOOuQrbKKIR+uSVaff9FrX3UfXE6FZzqbImAuWbhjdel46sxAKoabO1bHE9nWg15g+1iY20ZW/K5ACzYsBDuDfIoZSPlk28oyBowBXwbUy82Lm7kloa7VTV/eUqYf5wU/Ri9934wsskUMMHdIixJI6Z8E51qQ4DK2j3I8hfD+MpTSLQAF9wjOW4Di12h4lrxA5PkIcdOlJKeTH2VjWFRd5JeWPEcml+WXPlUcZfZQ/cH1yWl1v8LNB8Rp1b/jk+PdjsnvZTDQbS6PDATykpHkOWfLLc9UYbqGYFjyHCqdx7C6/aNlagnv8JdRwyn0U1SRDtVpS33/xGjRN6xeI81jqcrLJJ68vxGH4jL5PMrT/LJZ3I+rJseV4rE4gN+sPf+ii6CE+pPncO6pk/mdrSmvLscd4ZVOqNCL8FgK3iQzkIroB6EbriPgdx0xlMaw7Qd6g5di22/Y8p6PxC9gewnIt5iBlG/GrTxjwBjwZAAF8The3NM0BMkt0Wg+oIoyNZGX/Wlu8RaWPQZ+cdD68XBwPXqjSP3A9m2Oz2zOECvOu5Dza8gHZa3qASnZUgR1LVHItVBRWkIeb3HeE16JY14O5tBU6gO7WRHqrKGetRgIG7hlON+pvIZ4DInKfd3iE8M0TymWdufE8MR9OGFlvuwtpS0lmTLnylBNLCdxn/KeXeiEtEDDd6TFmA13ob3rVdNJgVLdlnPvJhzDTQs3+C/gkZhvqn0425F8a6W4e6SVN/Nn0nTyiC+p4Gw///itPcg1G4onePlkoihrU3idSRqtjFnsYgZSEV7BtamzDKKxQB6lRMh4osPAuQ9oTGg2RN+S+C/Q6kLp4BPSqU6LARNjwBgoAgZ4oW2JEnUlL7g72D9L4/eLoNppVZH2PMBL+22/xMSrF/t/fmksLngMqOeae/Z2rl9PoFXwOk7NcK4Q5x/LubPJax23Fur+Id/hWnnOLb45YZQnA/Ev8tWQuO0S8kB5rzqd+LlAq+ql7OSk/oeTlrUmvIV8WNUvNNg7RWYx1DGyUIY6F7zOpF6au8V8v1At+ze7pSOf8xQP7naLb06YOKOtg/zOpdz7KfMdvzSlEkdbs/b8kzcK3mbqN+PFD3G8Q0I4c4teSspAqiz6y5FeA4aRLO5217cFZMC0ASxcE/nIH5usShW5SVnSzZKOqE4mxoAxUAQMyKuytBPSXI2j6p36Qa2cin8YHXFKGyf0UI1Tf3XIWaBOkWKXVjSg1q8R9OhoOLLSmRQRA7z4/nKcmutbUuWwU8NcoPCprZiPNtepPX0RZ2Ef5affxpIsQMDQjYtqndqDjklxD2VWhwrutbqenLNChVPRD4XyF7Y4ZpyN6F9ctt6puJbtqRync08qTR3wkTru74qsGXgVTj151ddjVPqV2/Cb47mCw6Gp0M5p8MtfpFO1aYLmhYiPhrLdsqDchfCdNT7cyghQWBp8pPf8W9MJsaBNxeI1zvxPvdpX59R9Uum0upL4bF9XryIt3BhIyYB+7FqNaemUKXObwIbY5ZZfy90YyBYDFSiGH6Kc8YHORvMT1It9Fj2F89mena3CCpUPbTiVdk4cHu1IalINzVshnonmVec0ibSAsmBA9waehye45/Fm6F6IDMGax/5ohoUdkG0SEnvZ2d+Eci5je5t+d/LeznKclagLc5Qq90hVNkPJtCABc3qq2nulJa/XaVN3r/hMwzXXiTxr/LiBz85Ac19YdCK0kPbdouGKKkvGJ3W+nHAtUvEdaZ7LtA5e6cUZeS4Qh15pKO97XQOv+FIKz+bzD8420r0Gtyt7cRRb1n0+8TKQilnkFKgHOxZzI8qp7vLkdAFdExotD9JjgM6cyMVUz4ncy5eDQogZSIVg3co0BjJkgJfdkSgSc6RguZ3Ki1VzPDzn7ridE8QwfROGl/p42vOAW/2kKNHOSVL63OItrHwY4LewJvfJKeACFL19NWcqF63Xb457Th0QTYzyarxGxDFcMDRI++mUz/39LsbIV26dABgxWr0Nwy+7KzVSv67gZ7ffDe1iCF70u0fUTd+3YlGNyMp8MkCZI6bvIkXm/Z1BHj1knKbTznTSiDNxRxmvaD/5HHGuunk995LTF/txNp9/faIrOrKoivccI+IYfRD+qth5o/5mIBXRRVyeuo4Bsmg/j9Vbw99+iIXJMOL+dV4FI2Nhj7Ft8oAgLJdSrgaSeD4ZfALGgj/BU8B1Ei7hJsZAQRlAidC3WJ7zqkTUsxJZgreDV5piCde3YFCK+AaLvsVSueucyMT2yp2lnBE2T6tuZdoWFM9DOFffcmE5Yc0lCb2IcrBtpvlY+vJkQEom948WKcDTUrWN7kkZZdxPfQifjFGxabrM6FzykbfmR847nOM12G4GND+rBnTyyKvCIzxl8FRGq1AeKwCG/qCc42VcssXDELoO8I2xcGf9rtifJ4+D5nDx29uRNEfpNyjjM6q8a1XDqlNTFphBAsrQYgGTxaU4jfJTtY3qRLhW9Dsjg+yKPmk2n39wezO8/s31bpdMDNd1N/jVMupHJscV4bEZSEV00dT7KePoGhCO1btjLEy9L4kuT13Yh2Jx+7DNp5SjgVQFwT0B7wHnQXACOA9onC7PEecIYGIMBIoBlIWveJn5zt9A+fmJdBcHquLNrAxKkRai+FAKElt9KFa92Z8QvnWmWcLJY5zPCmrhpzj/ZHAmx28pb/YvyDQ/S1+eDKC8781vjFXe4t+SiX8XyVk7U0Y0NI+8nuYenB3Pj+NfUVaPScxLhozuW9KMJ62W3B7D8cM6PzFdOvuTHWdJnUs+fEss2gaO6Syokh7gVEe9OXwkNvzB6KQFHejNraR+dCqEhw/3GP6aTh280jCkZm3q9RpgGF+8bqHvxLnXOaUczjXJyvMvNiT5fXidBK4mX7yFlbtxn93L8TyOpb2kkHIAAEAASURBVKuWgpiBVERX8RvqOgwkeoTe4JiOHNePxyrdKHA3yKeUo4F0DwSPA+u5EM1k24iR5BbnktyCjIH8MMDL7A2Uky5epVXzrEGxmMiL73ivNMUYrvkPKE/rSrlrTv1RAC6AOy1lu0Py+XB1EnEYYOkvM52chx2XHwPTmZuje5KXyKItbb1WGiOvtd0MHu7Z7bg/GSIV6sv+Kdyne7A9i2N9o2gs9++GzSlfSjOG11qz+dZV8vmqi4wgyviD7SV4Xg+izPM55ptY4X/Y3yL5nGwei1NxK46zmW+x5tXS55/aLeOWa8d3zEJ/slVnUx37/bl/ji1WXlzqbQaSCylBDepPxV5PqtyrHP+UFJZ42I8DGVH5lHIzkJaAXJ6/zlE+JH9O3OM+8RZlDOSdARQTeT0meykOvOyOJn4eitYKea9ccAvUwhZjweVeVURReJ74973iLdwYKAQDMhS4L/EWhZ6ubtzR6mi4G7/1nsQN1lC4bNePNciX4XlyB/n/Tjkafsf3kaoe1NC7bJdl+eWXAXn/ZCDnt9S8lGYGUl5ozk4hXchmBlguIbuL2NcQLjcFRg8eLV3bCeRTys1A2gtya4DfA+JC4n/L50WwsoyBVAzopYbCoiF0Xyb3NqtnGUVmKkrNzanyKaf4efREo2TW89Bt69Xu2NwkOtNNjIHgMBDtEAlPSB7qFq8hysXy/ObncP8eHA+zrTFQxgyUlIGUOPSsFK+pJvxr7tFAsGusgU+z/QHQ6eOsGgvTZkvwBZCBlG8PEkWWlWhIBHqTs8Cn1eif3h/U8znPooyBnDGwDffsQqfmQKY2LsJ3j4aiHOlDm48CPJ6tPuW7SM/f6dSYgZRwBSqckH7vzvxoZ1VCzL+7rZ1a/d7bVCf10v+bwvaMgUIw0GpHftMfrxHtVG1SAcabTmJl5n5842iHJpEWYAwYA0XNQKkbSHT4OueC5YGGbGlo3aNAnondwQjwK/gH/AjWBfIwDQYmuWNA/GuY3cY+RWxPnNKZGAOBYgBtf+wdTs12fO3xdD6eOBXlaCWUqH5gaz4Se0m1/4cgA9WWfFRmulPDPND6mjZO2EeJbLV9PatYGnf5uCJWRvoM1GuUA7a9r6izz280hO/JFmkMGAPGQCEZWInC7wRagEEeIt7FjcCwXuclsCkohJTbEDtx/CV4G1ToIEk24ZhVRp1GKwklpbFDY8AYKBIGGJbYDXyvyfDJVWZc3SoMwfsHXJkcZ8fGQCEZ4J68HO/wX9Uens3heD3xImt58ZMKWU8r2xgICAMlNcQuIJzmtRqaTLka2A7IIFoaFFrK0UDSyj9aTfAdEDdM27B/IpgAXgZuxhPBJsaAMVBMDNADtRKK5kiMJK0EJk9SRR9WddLcDcKZfB7+8hcmvRdTm6yupc+A7lsMoFkYSpe5tRbD6B7ixvPCWtwt3sKMgTJjwAykMrvg+WhuORpI4lVG0mdAHj15jGqBJmrfAmTImhgDxkCJMBD1FIV6onDyHZnQPLAA6LtIncdlYanmEqHJmhEwBjCCTuA+1cdp/8f+JjKGMPLbyytK+Hx9VDVgVbbqGAOFYsAMpEIxX8LllquBFL+ka7FzANgNMMXDxBgoLQbkLfne5ilELiqG0qoolfvpS/W4kIPgwS+tm81ak3UGuFf3wiDSN4j4fk3DB1S/xlDSSBQTY8AYiDJgBpLdCVlnoNwNpKwTahkaA0FgAAXqZBSrH+hprgX6MOAgws6mbjZ8NAgXyOpgDGTAAMMcVuf3uzVD71bO4LSSTaoOjrmO085tbmHJNtoa5seAGUh+7FhcsxjIuYE0Ds+MHuyC9ptVSzvJGDAG0maAITlPYBTNYVjOXXwjaXewK/s3EzYDQ6lHtcfE77QLsIRlxQCK6FrcQzuybVtWDbfGBo4BDSvkGfZd3JvGM20ux90xIFkR3aSMGTADqYwvfq6anjMDKWoYhR+WopbwMJuDofSQGUq5upyWb7kzwO/rNH5zs9lum8yF5jEQNxUD6tLkODs2BpIZQBndW57Hf5/f4XqOGe5VuXtyWjtuHgP8JjcCh2konS244M8hz7RzeH5F5mTp+SaDPbrYSqgv9+g/7K/vn4PFljADZiCV8MUtVNNyYiDp69+8SPuhiA3l4X/UZMdZUtC+whSnNIVqtJVrDJQqA/y2BvM7u9WrfSgSWj5Ynx0wMQY8GeAeOi6mjD4ixfMXVvojbEPunS6EL2C/g+fJFpGSART8LfmtxjwhoWlwWgPk9b31FVsoqAl/ugd138HbGcmRmmdJ3NvikzgbQpxMUHkcm4FUHtc5r63MiYGkhzyK2Gg+Ub9icmsUpjilSY6zY2PAGGg+A+p04LdFL39kOWvXjPjdbaQ0WtnNNYEFlj0DPKNXQOGcwX1ypRsZxN0IpkxznGXc4i3MnwEZR/DHEt6hV/jSqz4S78QMUIzS8AQUfX0b0SSBATi7H176JgQ12sWbtCZ81pJu+0YRdlAuDJiBVC5XOo/tzIWBVMFDfjwPqnO82qE4pSHeenu8SLJwYyBDBiY6zhL8rmQgbe11qhQypdGkb680Fl7eDHD/XISnaISXJyPaYx8eRzq9P0wyZABF/wfQw+00OjA2RdGfx9Y8dAkE8cz6FE70GQ5PgdPfuCfP80zQsogdOf028Di4AWwMTILDQEkZSK2Cw6vVJJsMqPeR/Faqdyq+9Mo3FrcSaZf3SmPhxoAxkBkD/PBm1jvOsAqn1X+8zmzlVClu4j2OM84rjYWXOwOtNuMTcX2PiX4frgkZezrOQuL7sdYH6bIvzMfZEwPtUQyFnmyfihkLJdGZRls2r3Aqtqp1aq5xYy7s1PzM+7EbCtJpbvFlHMajzUmlN7YmTV2WOdKHeF8H0mf0OZAlwOFgMHgQqEwTYyCrDKS60bNamGWWPwYWOM58lVbh1HvOMYrHkbYmfzWzkoyB0mcALbIzyuvVDDlZK7m1sxlWh/F0U51T36U6+4pEcnF2XLwMzOc+8nx+R5tVsUi9Ux951mermcMdpw1egJcrnVYf8Y5oR/5D2S6JstANQ+mLGaXRobYBfE2E3BHevNV9hzWgj5mbxBjgmdWfe3J/L0LwjK9DvIYr8tm3rMqL5LY52BLIQDoBbAP2ASeBu4CJMWAMlCADuRhih9UT+sXPHa44pSlBPq1JxkBBGegTmbAcfpchKf8w3OQcrfSk4XTss7pdeLQUTft2SEEvUeAL5/l8PN6baRjUq7K9nmf1t9w3o9j24/ga3U9sZ5Euq8PA5C3SPUq+UkgbJHr/hgbo3iUQPbh4hcUGDoS72V7DF9UyOLgSrgcUbyuzX3OeY+3gbR73wKXJucuwhrNPYvdHcnRLjvfmZHXiyqh1kwMIxJvatDPKLbGF5ZSBkhpil1OmLPO0GciRgVR1Kg8zlveu3Dm5JgpTHArbKclxdmwMGAMtZyBqJGkifXgiqI8iNAXF8w4pEy0oQcNJlgU2AqAFJAb9VHquQgud8Aie0zNROrW9kef1yWw7cTyKLQs4hP7UfZattnBvsnhIqI73w05ueWIkrUH8HAyMQ93iiyVsGgtb0I4a2nuYV50xjvrD93+94ss1HM5OgDtWsgt1Ywn6fTjeHJzIMR/BDo/EiFozE26ihlXoas7/mXzn63nJ/svKN5bPo2zfSZEn/U3ORSnSWHTuGTADKfccl10JOTGQxCIPrEf00GH7qF5qgvZjYQ+XHdPWYGMgzwyol5qhJ2trYYYWKrNSGHoBDamqB0wfdJ4DGSkkpDcpAgZ036Ao/sGzeh4YiLJ+dvQDnVXnxpRJevJDg2hK1rw5vBs6kqfvqALq8gbpuhQBhb5VhM/7UcbH8k5cLzkhyvkdtHNmpsp+cj7ZOJbXZp7T+hCeH+tnI79s5IEBvSPcfQhHC+IdP9wTnWNzn9MuYorjLMX91p88xpHXNbq/4V6e07fBfPaPIjPNPXokRaYfEH9HijQWnXsGzEDKPcdlV0LODCQxyUPmCB5en/HAmSloX2Flx7I12BgoXgY07h9dyekJNKRkM3Ak6AtYOC9yzMakVBjgGd2B5/UslM5NeGY/DEZKaWQ7XJ4NrGSttDYXBV/3Q1aEMjEMwh/6ZUb56nR7zS9NMcTJQ0c7eoFZahOcnsZWBqKGMM5EWfeca5OP9i10QseAydQFj16DB3pGbe5WiMu4WerwkTcu4xNjJ8B1dxnkboYV7b4KzGWikTqB0vEgXZhpPWY5zsoYe3tw7be3Ic+Zsuea3gwkV1ossCUM5NRAaknF7FxjwBgoOAPLUgM6W117SDXcDmeD8yuwlZwgoVQEpe1BFMS3/dqD4vwRRk3WJqhT5jkYCSNTlUm6B/zSFFFcBfwxZCz8Ae3G8AwNlrEkr00h2zDPqeoow4ghlsxXrPo/jOENMZY0jE0eRQym0D2FrF82yo4N19Rwzl288qO93wx0KuVB0hykDT3SHUh4RnOQuL5t4fCdGJe1UQM0MmS1kzy3HuVYcGoGzEBKzZGlyJABM5AyJMySGwNlxEBH2spQfc+5JssRJ++SFAWTEmEARf1JFMRufs1BwXtNCr1fmkziYgtC6Ps/x7udh7K+LWWiUFbu6BZfymF4OVaEl5NQpi9ne2xLPCd+PM1wnOXgeCEY4JaO8PdBnYwmt/hiCYPDo2nHJL/6En8tv4FvSSPP+V9AnvNE2YuDySBtg1HGL9eQb0SGP+N+3qGauZz6dh37zNmOzn8iv6wNWyWvchIzkMrpaueprWYg5YloK8YYKEIGulPnJ1PUWyuL3ZQijUUXEQNSxOUx8KpyNYodSt4IFLsLvNI0J1xKKdDqeCdyfoOiyHeR9qJOf1Onrs3Jt1jPqYZnuKiGE+aCaVXK0Pfsa+ibhqtfku12LXSqHibvWi8DjPWzq4ivAW9ku+x85qf7Cz7H+JUJv5fC94+kWRy8BmrBl+Al8EPsWAtppO31ocz3QB8ND+S8RkKdNobX2WxdOwgaJbYDNwbMQHJjxcJaxIAZSC2iz042BkqaASkDj6do4WfEV6dIY9FFxABDkFZDWZuLAXSmW7VlGBGvOUorusW3JIx8r1bZUmClTKKoDuG4lu0jUtBbknc2ztW8K9r/IMrz8yizt4Bkz0I2ionkQTkP0PaplHE0ARGDUcOwCD+LcFaJDV2VtcLIiDYxByo8wS9P0gwR/NIEPQ7+tqCd9VrAxquucPs67XwhIX4H9m8FWiTkerAxSFuiv6lwPWVvy75WZNTqec9yXz/G9T1B9zb7GKjhT9LO1BImMmAGUiIbtp8VBsxAygqNlokxUJIMXEmrpAx5Leu9FHGMjnIOBSYlxACK3PkocawUFroh7lHQECyUuZsJW0j8Gblqriawk/+ZlFXN9gIU2XVyVVa6+dL25VFgteCQVvbrjXL7NPiGfYy3qgeqvX8j6RbRKB1t30x5s2DD3o0iYgfE4wUJzZPi7RbfnDCU86/IU8PGPIU2a77U754JiiSCNmhBjJ7VLtcNj+V/xD3DOXfNVnO4jvuQJwudVJ3Lls6H0K+gK/uvgansM8er8jKuwfhslVlm+ZiBVGYXPB/NNQMpHyxbGcZAcTKwItVGN3Suc6m+erSfBRqfX/CefepgkmUGUMJZ9jg8FgUOZTE0FWhVs9GEH5nlohqy0/AjlMgzKOddlMbBbD8Fl6M1LtaQKM871SjR1KUv+EGT7BOLjw7/i3h5bkkMb+k+HN+qMv3ywWAbClcX+qXJJI4yb9c1xiB19axMYWls4jGOG3lWMikiMGlp64a0heGK4Y8wTHYa7jhtYl6eKwmfQ/w92aysjC3y1e9oAdfsrMS8Y7y+SdwUrunIxDjbT5sBM5DSpsoSpsuAGUjpMmXpjIHyZOAImq2VnDTcZBcgBXFfoCWZpwNWwzUpVQZeiQ7p2gGF8XAUu+10nKu2ylMlowBFkR51LS9edSHl3oUSO4bjIYXyJFGH46jTTFylq7i1nfgjiZ8vz5dbfHPC4KEbbX7S71zK7AVH9/ulySQOV3GYPDXfabT2k86tIA6DNbSQdq6UFFeUh7qfaE9vgOESX848PBZOpRdlVWTgR8txX6b+l+jS78wtCw3OasHlk5kZSOVzrfPWUjOQ8ka1FWQMFC0DO1BzOvcjE5Xr2c4Hb4L1gYkxkBUGUCDfRkEclGxoRJXL8PvE/VKIeUiUq2/mPO/TSIwHLSJRdapPmoyiMI4egY9efidRp+9Ic71fmkzjZAjHFHmU9ar/Abx5VQ+w1PcUwus4PjfTPIOePjp8smp72r4RdW1YHCSb9Ya3LWNG2D8YZusm5038efAr7xy2qUkzGDADqRmk2Sn+DJiB5M+PxRoDxsC/DCzBbjuwyL9BtmcMtJwBFEQt480S0qGN3XKTd4l4LVhwolt8LsNQbD+mXE3Q9xQU22+p31WeCTKMYDGIg8lvLsO+Vnc7lfpE5iiJN7f4loThKduasn8FMc+KDKPQsAWO85+W5FvO5+rjv7qeQB8InsH1uxccwfVjie9ImIbePcq9NqGceWpB281AagF5dqo7A2YgufNiocaAMWAMGAN5YgAlUat6/eBXHPEvgaf90uQijjKfU9leeVczR0mKLQpvNo23CrxIX1Lud8lD2vQ9HcJ/h7PXveqUrXDNj8lWXuWcD/fGpvIgyeDFEDqdaxtZEIMwho/qvq5qz/W8hv0fy5mnFrTdDKQWkGenujNgBpI7LxZqDBgDxoAxkCcGUCBvQ1n8yK84lEp62EOv+qXJRRx1O4xy5zI0ynXxgpgXYLaGamWzfC2jjsIsz9R0ts9QD1b1C3XjmCW+wx9Ndpwls1me5ZVbBrh2f3KvPOBWioaRcn8P59raN+XcCEodZgZSao4sRYYMmIGUIWGW3BgwBowBYyC7DKA4nobSP95vEQgUzK8xEu7Ibsn/3959wMtRlf8fP5vcuxuKlCBdujSR3ouAgPxVBKlSVPBnRwULIqAgVxQRsYHSFZDeBEQQkBIE6Z0QWoBQAwRISELKrfv/Pnd3YLKZ2Xvv7szulM+8Xk92dsqZM++z2TvPzsyZ4ZWmut2k7T+j7a/rX0Pv99VB7SzN/7F/elTj5qFtfEnbvlTb0HOhihfqvXWcEsu9MlHVm3LmF6heZtenz8uRuqGzw1tClzQup7a9TQnSxLec+5A3ndcRCZAgjYiLhYcjQII0HCWWQQABBBCITaB6j5HOlJR+ELQR3ZPzWR1Y9is5+HjQ/Lin2YGrtv8Pq4OSFDurc40d0Oq1WzFPN/jWI5nq+QUlfb9T/NGSP91YsnDcdcxL+dZltnzVDbqdUSz9qLbr9XY5WNKjeu2h+K3a/GTF16c5t5i/PppnCbW6zC+9rtd/WdKr17n6TN2flP3w1zdF4yRIKWqstFSVBCktLUU9EciZgD2wUQdBerp88Uo7GLKHLeaMIFe7qwNKu2F98OG03i/pE9XdtB1oavp7Org8vt0gqot1JnG0XpX4lL6ve0pW8NdJ0zfU9Oe1zHSFdSF9jQ6C31Ko9zI+v36rkY5XkujSDTJVhwalO/R6hRILuxfLktSjRlpelMvrs7m26mIdW7yntrY66rlGg0nQO5r3ef+2bD/0Ofma4vea90t9LnbWfM4I+pFGPk6CNHIz1hhCgARpCCBmI4BAawWqzwyxByfawfL1OhiyLo/1a2uxR3Gdd/Dc2lqxtVYI6IBRv7APHlh2q91fVHvrfpviDE37USu238w2dAZgRdX1HR0oX+C/P8iSPO3XSZo3RwfFGzWzjbyu2zX4sN7BTise19nE1f0Olc9McbY+L4FnH/3LxjFu94rp82kPVL5aD4Yb623DuqTXtGMV+h7r2NabzmssAiRIsbDmu1ASpHy3P3uPQOIEdIB5qQ52nteBz8f8ldOB0Rqa96wOOK7xT2c8WwJ2iVrl7GHnQWrzz6Tl8jR9Ns9V3NWlg/mgFtG8y3QgfVvQPKbVF9B3wf76fz9TZ+yWD1pSiaedZZxZe0lb0LJRT9O2dTax+Lh9boPK1nfZWZr/UNA8pkUmQIIUGSUFeQIkSJ4Erwgg0HYBHWzYJUy6z6Nzg6DKWNKk+brRuWOboPlMQ6BdAvpc2nOa9gvbvj6zW2qZgXYcxIfVKWi6XQKm/ThBB/XPqL6zdID/gv4/nlz7AN+gdeOapnpcrvqcE1a+3f9T9d87bJm4psvnRfl8K6z8yndWqWxnGMOWYXrTAplKkAJ/YWmaiAIQQAABBFIrUHaFXcrO3Vd0vY8G7UTJ9Typy/XvHHCjdgmazzQE2iEw2bkF9blcrODKz4dtv9v1vaBlCgu64rJhy7R7uroyX21BV3pEN8Sop7zCqf2usI9zAydpfNuSKz0W9sNF3PXW98JyqtP7tjPUpbrq+tFXXOWh1Z90rk/fGy8XtFzcdaktX22+3IArq22Dh5ddz2C9R7vOltctuEZMTboACVLSW4j6IYBAqgXsoE0HNJspNk/LfTs6wFlSB0Kv1oMvu/IrWmapesswD4FWCujIV1d/lWfoQH6VsO0WXefKWqY81/W8GbZMO6d36dLAUer4QP+3nn7T9WxQdN2njHHd/9aPFaff5Xo21f+7W7TI1ZOcG9PqeioJeV22K9sllzqT9PAC6vhitCtNXMYV39X7y3R2ZhXVewXVUbcwtnZQvd4YpbqFbXUFVxqc1+96W163sDoxHQEEhhbgEruhjVgCgVQJVBOjk3XJiT1QslyJot30fpb/5vEk7pTqbE+TDzx75NVX8+/TZStd3nteEUiCgD6XF+j/2H9VFx2rzz9U598x/5xkTKk+p2euLqVbOqhGdi+Y/n++rR9cDgqaH+c0bfPLle+zYp/GrQvtDe1+JNX5/8ncerRTRx7F2f5OEuKsj79sbf8vatuHxvmebRQw/zH/NMYjFyiqRJ1EdFtGXjIF5laABCm3Tc+OZ1Gg0i1y8S790X5BScRe1iOcXYaiX1531R/xpxWPJvmmd9VzTR3o9Fe7vp2viXQfx3aaP6B9W3e+mUxAoI0CuuRrVX02dUajdLb9SOFVxQ6c9Xk9TvP0I0Xn5t70pL2qjr/Ujymqbvig7w/rQOWs8CXimaO62b2HA9r+JJ0tWsm/Fc37vOb19rmSvuqCk1P/8lGPz3JuWbm9qbpd4j9T36XTbZp+uOrWp++znaLeLuXNI0CCNA8Hb6IQIEGKQpEyEEiIgP4Y/1x/lF8LuqHabr7Wwc3zOkj7fUKqG1gN1e932o+pSpY+51/Afi3Wvr2lffiLfzrj8QnYQb/a4xAdhP5ar9/TwenK8W0t/SXLaAt9Rl+xz6k+w/acnks0/mrQ5zlpe6s2/q3qeX29eml/zlH8vd4yccyT6x9Ut3v1f/92vc6V6Y2qx/mKR/Tezir9Sa/91hFGHNsfqkxtf337blUdpimuUr0u0nvrpn6GXPcdan3mNy1AgtQ0IQXUCpAg1YrwHoEUC+iP8sv6Y31I2C5o3oH6oz31cudGhy3T7uld+uVVBxW/UT3tgZATdTB0kw44rHtvOxD6g/0i3+46Zn37ZmzWFXOztzYoPWdtYm1jbZR1g0b3z87Yyu4r8jpNcabGD7YfJxotr1XrqZ56UG9pSlh31apHQf8P7cGsP2lVnbztqF7j9Ln7hb2vXFbX+TvV5W+qy8/0Q8oaNl3vnzJrG2/HUH3e1QFqc11yZ117lw7VM5KWbEddcrhNEqQcNnrcu5yaBMkO6PQFub++BM/Xl+W/9eVzup6V8cm4gSgfgbQI2P1F+r9R1kHChmF1rlwGVCrr+v0VwpZJynQ7W6F9+Z7+39vZi0Os7kmpW9brYQd5+iy9ZQej/n21s3o6KJ2q9vidfzrj6Reofn+85SUitXukNv+O2n62LilreW9s+izeonodX1sn/3sdGzyrOoZ2t+1flvHMCZAgZa5J279DqUiQ9IW8rL78HtCX8wy9XqgvyhM1fq1CvygXL7FfbtpPSQ0QaK/AJPUuZQmSLjPZOqwm+r/zcVvGnv4etgzT8y2gz8i6+m4dsPu9giSUNO2s+bpPrLRm0HympVdAbbqb2tbO3J5pZ2a6dKbQfqjQZ8Iuv7MzuF9tx95p+/ZcpofDtq26rm7fa6pf6I9DYesyPRMCJEiZaMZk7UTiEyQ7c2TJkeLu2oM6fRmury/FV+1sUrJYqQ0C7RHQ/5MH9f8i9Nd9HeQcrf8v+k2BAYFgAR2MdulzdG/w3MpUzX9Un6Uj6y3DvOYF7NI8tcdx8ta9NqXJer3f3K3zleZLDy7BEuNK+3o9YFriUXxGScg89wQGrx3PVCVpK2q/58jgx7VbqFzSWLpd32u3187jfW4ESJBy09St29HEJ0j647CfvhhnhHU9qi/z7TVfv2a61VrHxpYQSKaA/r/srf8P3br8dMfaGipx0g3kxVl6/XrtPN4j4AnoYPhvivO990Gv+hxdrgPSU4PmMS0aAf1fXkvGuqdw8P67I/R+f7kfU532lC6T/Ug0WwoupXI5bscn7ExS8BKtnar931f73yOPy1QnPQ+pc2PFQXo/QSaT0nDZcGvFcrU1EqRcNXdrdjbxCZK+/P6uuKgeh74cn9MX5XfqLcM8BPIioAOJE3QgYZfJnK3xvRR7aPxUTZur19Py4pCm/Zzq3KJqp3Xtl/J211v1UAcZQ3b3fLeW62p3XbO6/Qed69TfPesQ4ZraS8itK2n9P75D8+/W/heyahC0X/o7v6k+m/+WS7de7RlvUzTt5BnOLRG0PNNyI0CClJumbt2OJj5B0hfhdfpDfFI9EvtjoeV+Xm8Z5iGQJwH7hVUHDzfp/8VUhbqeLd2m/0d75skgDfuqhGgVtc/Vit7qAZ9dzvSs2mrfdtVfZ+U/ofr0qQ4fC6qDDkg30Px+O1gNms+05gVkf4CMp1niHFSanT3S/J6gM8VBy2dtWpfujZqiB9dmbb/Yn4YFSJAapmPFMIHEJ0jVX76vC9uBLn1R6sDiDf2xPihsGaYjgAACSRPQQfBaOsh9W99f4+xS4enOjbXLmTRdD+ws9iiOirHO6rK5c1PFl7W9PWsvYda2r1GiZvedrOGvg5b9mL6TX9C8S/3TGY9WQMZnqA2uqFeq/TCo9hjs+rrecsxDIAcCJEg5aORW72LiEyS7YVR/KKz3nMDeaTT965r/nk6xf7jVeGwPAQQQaFRASYbdcP9P64imtgwd+O6ueXaWZqPaec2+V5lKjIrjVf6ADrJf1qvOMNp3bOk06wnRyrfLuDTtOoUlav/SvFP0er1CZ7qKV8fZSUCz+5eF9dU+5yv+Vm9f1A5DXl1Rb33mIZAhARKkDDVmUnYl8QmSQekPxYX6lXWyLifYwYPr0pmjanJk91Uc6k3nFQEEEEi6gL67NtEB7oAusVsprK76zrOHs54RNr+R6ZZwabvqqKN4vu95NoXKwzdLL9o2u/Td6pVtXXqrDnomUvEfev2z/zvYW4bX6AXk/VO10fiwksfpQb5qq9fVnl8NW4bpCORIgAQpR43dql1NRYI0welnzMpN5vpFtfS84k79cXhTf0Te0x+IQ1qFxXYQQCBZAnYzu862fEnfCXpyffEifSccY71vJauW89fGDmztu2z+OR9M0b4cpX2654MpzY+pPHUDX7w4qKTq/VB61lznV4LmM214ApVOFDoPlvO5ivP1t+pHtY+oGKokS5zV/t1qi8BLxzXvJ4pp1g34UGUxH4EcCJAg5aCRW72LqUiQPBQ78NEfjG/rD8PRev0yPdd4MrwikD8BJUbqBrn4jB0o6vWyapJkz+fRZWGlw5Isou+vA1VHPcIlfNB+HGs/BoUvMbI58lpb2yzre3S1sDVVrz9qmVvD5jO9voAuCd9WfvrxrvSaJUeKcywRVlvOkP/e9deed67WO1Tr2SWNR9v9aTZX94oto3IGH9qq1/3mXYN3CORWgAQpt00f346nKkGKj4GSEUAgTQLTnFtMB5Av6eDxn7U9fenA0XoA0/NSgn99T8J+qvODNS1ZUR03CKuPDq4f0L7U7cEzbN2g6drmbnLRsXb4YImbuYYvwZwwAevQQr4z5fdnf9fcXYMdCRWP1DwlOx3bhK0fNL3yWS69pnUHrOzKZ6b0vLa1S9DyTEMgpwIkSDlt+Dh3mwQpTl3KRgCBWAR04NilA9GJXqcCtRvRweQROph8w+7VqJ2XlPeqozo/KD7wjnOL1NZJdT9c8+foUquVa+c1+t56ylOZvWFmVq5Mf6A6PdHoNvK8ntwuUbvdEmag+TqbNPjsorBFAqdbJx5KXDdVUvS5akKdq2cfBaIwEYF5BUiQ5vXgXQQCJEgRIFIEAgi0VkAHmg/qYP+nYVu1M0ya36+kYMuwZdo9XfelLKn9mKCk5AUd+H7Xzi4o8dtD9b5K0aPxL0RZx8nOLahy7b7NA0PKVdffxfs0/+SQ+UyuIyDbmWqzvcIWkas65iiVuTQ8TCjZ0+3eMvvBQtfFLpDsmuaydiRIuWz2eHeaBCleX0pHAIEYBHSg+YoORr9Ur2gdsL6rZT5fb5l2z7ODLtXxV0qSJqm+1cuoilfrYDry7r1tX7WNYxRTVf7GNftuz0X6nebN0EHgijXzeDuEQCX5HLxkcrOwRXX/0NKWIKm91wpbhunJE9D/iy3UbnpWmf3gUirrtVtxtV1Smbza5rZGJEi5bfr4dpwEKT5bSkYAgZgEdKbjHh1ohj4kU2dnltJBzEBAIhBTjZovthWXA3YNPh6heK5sdI9W8UIlZtYRwDEaf0yv09Wt907N70k+S5DfO/pMHhC29zpDuLWW6a+9Zy5seaa3X0DtuafazP6vXGBneK13Qev6XonSf+z/i75fNml/LamBBEiQ+BhELkCCFDkpBSKAQNwCOkD5seK1sINNHdicaJeudfme6RN3ndJUvn79/owO+tTzX/ExhSWbv/E9FylNu5KYuurzdrYs7w9LdHVAfbUdWCemwlSkrkD1R5YZaregS3ntctTz1ObP2aMG6hbEzFYIkCC1Qjln2yBBylmDs7sIZEFgsu6n0QHKE4q77Fddb5/s4FQHNPaMmD67qd2bzisCcQvMdm55JUD2fL4r/PcZveHcQjqQtoftzlIiul7c9aD8aATUloer3SZ2hfzIYj/OWJvqe2a3aLZIKU0IZCpBSmzPQk00EKsigAACCLRAYDnnZs9yPZ/qdKXLOlzxuR7n7i+4gnVhrXt3yqUB5740xnVf14KqsIkcCegyq20H3KhP67M2tuDKL/a7nivHOPecESzo3Gvdrryjupi7fAFXfKXXFe7V5D59Hu2+JJ2QGPhMyfU9bsuOZNBlXJuWXWFXbXMpbfM1fbavLrkeehocCWIDy5ZdWd8lhdu61HBBq491TpfYFR5Qm2g5d23QMkxDoBGBUY2sxDoIIIAAAgiYwELOvV503dvq+GUnHZTeNODK48tu4CglTqvqAPJSlBCISqDSK2Lp3zqZcKsSla2U9Cxadu6A0a74tM4K/UrbGex62xKXu1zPev2usK8+j3cpHtTR9TffcN1rdLq+O0ZSH+stTWdIL9b27lXhO1a3uZsOnnRZZOlUO1s6kvJYdsQClhgNdaw6SgsEJlAj3horIIBAogS4xC5RzUFlEEAAAQQSJlDQ5Vbj7JLO2p7L9H5XXWZl96n8LOo6q8zLlQi9qDNIG/rLtrNYqs8UzTvFP53xaAXk+0PFpLBEdIZzS6iN5ugz8Nlot0xpDQhk6hK7BvafVWIQIEGKAZUiEUAAAQSyIaAzRHvpQHhWWPfnmr+/HSjbTf1R7bH1mKYy+8LuWZrjOnbQ/H4dnK8Z1TYpZ14BXa87VsZT1Qa/nneOrqHUw3s1Twls8Ukbr53P+5YLkCC1nDz7GyRByn4bs4cIIIBArgWso4TJg7cJjZxBB8EXKC6ss6adYXpTZ3q+XGeZEc3SQflJKvOWeiupTuO1zI/rLcO85gTUpfenlQjNUfxTyehn1C7rKvaS/d2yf8veN7cF1o5IIFMJ0lDXdUZkRjEIIIAAAgggkDeBLt0/okukDtXB7LNLuNJ7S7rSLI1PUCJjPwwO3jM0HBPdA7Ss7jeaVGfZsm7of9GWq7PMiGapcstpmy/UW0nLTNI9d5Fts9628jpvjOu7UTcYba79L4x25WtGucLjOng9T+8n9rnujXXP2fi82rDf8QmQIMVnS8kIIIAAAgjkVsAue/qZK/5DPYx1KZE4V4nEZootNH65Epk/KFH6u3D0duhByc/rWnCVOksWVOZKtlydZUY4a8htOiVQqxTcqAi3OcIqtmnxrsHEt3MDXWb4SX8X/3FVR0nQ452uZ7f/uZ6FZrvuJY53PYsWXc9BCzj3clzbpFwEEGi/AJfYtb8NqAECCCCAQIQCuvzpcF0W9Y4ui1qjtlidQVpf82ZWzyTVzp7vvS6j2lvLz9JzjlaYb6YmaP5+mh/XPUiBl3BZcqBt5u4eJLXZ19W2ryvKtv/2ape7afo8HVkEtRPTMi2QqUvsMt1SKdo5EqQUNRZVRQABBBAYUsDuCXpVl9f9IGxJHVwfa5fbhc2vmV5QWbdr+fFKuFb3z9P7z6ks68XuaP/0KMZVpvViN0kH/xv4y1MHDp/Q/umep9Kf/dOzPq5E9Jcy0f1ApR+rQ4wltb8FTVvHnBS6fLJzi6wbsH+hAiRIoTTMaFSABKlROdZDAAEEEEicwCzdv2NnFpS8hPbwpoPpzW2ZycPsuOFd5xbX8jfoQLxXr7cpWbpY8ZjeW09zxwvh/cv17PI+S5w0/Tibp9hHNzDpebIjG6xu2sYl2ka/kqH/afwixf16P6D3p43L0XOQ1F4b235bpwlBinL5m+IZepQL0snFNBKkXDRza3eSBKm13mwNAQQQQCBGAV0Kt3w1QZrnbI9/kzrg3sSWmeLcwv7pQ43r7M12SnhOUIJypg7Yj6o9o6R56+hAfYLmzVb54xQ3a3y6ln/ZzvwMVX7QfNV1M5X7S5Vxlsr6ucYDL7sLWjcr0ywhlOVNYftTfSZRr116GLYM0zMtQIKU6eZtz86RILXHna0igAACCMQg0KWb+HUw/YYSi4PDileicaQSmWfD5jcyvXrm6k2VfaUdsHtlWBfjOsA/VdNn5TG58RyaeZXffy05rFeG2vMJtfl36y3DvMwKkCBltmnbt2MkSO2zZ8sIIIAAAjEI2MG0kqTXgzpW0FmfNTR/mg66D41y0yrvLB2kPxB26Zu2eU29syBR1iVrZZmbksvf1tsv+dv9Wl+rtwzzMitAgpTypl1c9V9ZYddFL69YSNHugQSp3S3A9hFAAAEEIhV40LlOHVTfYkmSnUmyS+EUa+og+vtKVN6xZKVLZ5qi3KiVq4P4L+pSuq01fqW2pcvqSq8p/q1tqzOHjm00vX+qc4tGud08lCW3Y5R8Ph12j5HaeEM5l+W/Vh482Mf5BEiQ5iNJ/gTrevKvCl3qbI8tmC+e17QzFdYjSzsGEqR2qLNNBBBAwCdgZx3sEq2R3hPjK4LRGoFKkjR4JukNO3iuxqt6PTzsQLumiGG/nawOFax8HaifooP5Ph3MX6bxg3TAfoASpb9qWk+fK51ty3AQP2zW9xe0XutkqLN+nX/QxPc7xLAF7HJGeT+q+Ve/vwIjeRMgQUpZi9v1sl5S9JLG71Zcp7hUcYPiPoU95M2WeVtxgKLVAwlSq8XZHgIIIFAVeM+5pXUArQNn6yp68Nku6qGseLd669oJpGgEunSmyDpusARUJc5zcB3NFiqlqA1n91V6tduzttzqWSXrorrsvz+pdjnehwuoA4Yd7P+J/r+oR7/ObyjR/LzeHy1TnSUsPjTdubHhazMn4wIkSClq4H1UV0t8LBHaqE697ct6W8UDClt+K0UrBxKkVmqzLQQQQKAqMMe5FXVw94oO7h7Wwd7edhmYDqS30gHg6Trw01mIzm+DlR4BtaU6aCi9ElZjtekDCjU7Q6MCwltF/z90r1dpkizftf87Mj98UgPdqDdaB9ZLpAAJUiKbJbhSF2myXT5XCp4931S7P0k/LLkz5psT7wQSpHh9KR0BBBAIFNBB3u06uLt1YsDfCSVHX9EBYK8Sp7UDV2ZiogS6BnvOs2ckFWerXU+Z4JwdsA0OXZV5R1h7qr3LQR1HVBflBQEEGhMgQWrMrS1rjddWLxzhlv+n5f81wnWaXZwEqVlB1kcAAQRGKKDEZz07WNZZozXCVtWB9n8Vfw6bz/TkCFiSa+2pxPZgvdqZpNd0duPvar+/Kp5TcjTTLgsbqs2Ts0fUBIFUCWQqQYq095gENqPdW7SxonOYdbMzSOspnh7m8iyGAAIIIJBSgYIrb6Rrql8a47pDn8WjZf6jK6/rXaKd0r3PXrVXd65b7akrvUaNmeG6Vy+7geO1l5pULuk6+jPmup7Vyq7wjt7PfsV12z3JDAgggEAuBb6ovdaXo7tWsXkdAbsHyZ6ubR029Cm2VrRy4AxSK7XZVmwCk9WLlP1CW/nVtnipfrE9RterrxzbBikYgSYE7BI6nVl4sV4R+gwfrc/zXfWWYV5yBNReP9MZosnW8UZtrSoPiy2OV5ufVTuP9wgg0LRAps4gNa2R8AIs8fmhQh3nDCZKr+r1XsX1ikuqr/foVcd1g/N79fp9RasHEqRWi7O9yAV0sLmxDjzsmSNv6oDyfI2frtfHdcDSrXnfiXyDFIhAkwK6xG7d6uVWa4YVpc/xHYpTwuYzPVkCOn00Rt8796jNnrPnHlk3412D9x91bKfpD2n6RHpaS1abUZvMCJAgpbApV1WdLSF6TWFnlPxhyZMuXXa/U6ygiGqw5MwuYRxOfFPLWZ2S8NBaVYMBgZEJ6D/RsjrQfMsSI/3asKB/bSVH/6ckyW5038s/nXEEkiCgz+1tinF2YF1bH312v1b97K5VO4/3yRWonCka7IWwR+3Xp7DXfn0/XTazfc87TC4YNUMgGgESpGgc21bKItqyJUKrK+J6kvZqKtvORvkTseGMkyAJjSF9AjqQPFkHHw+HPfhRydGv9MvtC9oz++GAAYHECFhvZvpsvqTP72P6nO6rWEvdfH9C086yg2t9tu0MP0MKBabqb7zacns9u2dHJUZLpXAXqDICaRLIVIKU94OVlfTJs0srpiieUeh2iUgGc7V7nuzDMpzhc1rocMXCCjujxYBAqgR0MKnu9Ad+V3S9pwdVXAehH+nUs0kGXHmdkut5MmgZpiHQLgE7q1BypV+qQ4b9lMPrh7NyWTfz39Xv+o9dwPXd1q56sV0EEEAgRQJ2zNutsGeJ2u0rDAkW+JbqdrFigZo6rqv33kNhvTM772raEYrRNcu24i33ILVCmW3EJqBf2mfoev9d62ygoGUG7NfcOsswC4G2CnTpkmi7uV9PGa39m9HWerFxBBBAIAUCliDZMfWWKahr7qt4TrWx/JfS2eV1lgxZI1qSZA+FtSTKOnCwaX9QtHogQWq1ONuLVECXJ03QfRyHhRWq5Gl1zdfzZpxdfsqAAAIIIIAAAtkSIEFKUXsGJUgXqf6WCH2vZj/sxnJv3k418+J+S4IUtzDlxyqg+zaOs8vs7ObooA1p3tlKoh4Jmsc0BBBAAAEEEEi9AAlSipowKEGapPrb846CBrus4m3Fr4NmxjiNBClGXIqOX8BuhlYSNNF6BLP7jbwt6j/bGCVPv9bldepFquMT3nReEUAAAQQQQCBTAplKkDoy1TTD2xnrxe7WkEWtk4anFR8Pmc9kBBAIEBjr3PQ5rnvH0epGt9MVJ/Xo8tWCK6jDkfLGuum9p9+53ce4vjsDVmUSAggggAACCCCQKIE8JkgPqQWsk4agYQlN3FRxXtBMpiEQt4DOsmxZdqP3V29aq+o60GlKMG5+3PVeskml2/i4N99U+Tr9+rJzPVupS93tO9yordVjnT1X5pxprvvaZeidsSlbVkYAAQQQQAABBKIS8C6xsy687f6iHym6FPpB2+2m8A8r6o09TNbuTzrAP6MF41xi1wLkJG/Cnh+kS9TsuSv9ukztRl2WdpLu2Tlf76fpdbxOba6U5PpTNwQQQAABBBDItUCmLrHLekvurR28SvGCwhIff+jX7veHXTTmPdj1Lo23+vlQJEjvN0U+R5QQnaBk6G09lHILv8B058YqYbrVeomb6FzJP49xBBBAAAEEEEAgIQIkSAlpiJFWw7r63k7xfcW5ivMU3mBnk2YozlRYb3atHkiQWi2eoO3Zc1esEwMlSbsHVWvq4NPgS28pebLnejEggAACCCCAAAJJEyBBSlqLRFAf672uM4JyGi2CBKlRuQysp8ToizpLNEW7EnrmUpffnaYk6poM7C67gAACCCCAAALZE8hUgjQqe+3T0B5Z73V2iR0DAi0XUG9vS5Rd+XVt2C4BDRzUacPkspYLnMlEBBBAAAEEEEAAgcgESJAio6QgBBoTUHL0sk4drTLBOfv1JXBQ5rSW8if/fXOByzERAQQQQAABBBBAoDkBEqTm/FgbgaYFprueW1RI7xqu9L2gwua60upKoPZWkqTO7hgQQAABBBBAAAEEEMi+APcgZb+N6+6hOmA4yDpq0L1Gh1qX397C1qudpk3SvOu8abwigAACCCCAAAIJE8jUPUgJs81tdUiQctv0H+y4kqGvKRGarg4b1GNd6Q517f2M3g/o9bzJ7eld8YPKMYYAAggggAACCIQLZCpB6gjfT+YggEArBYqu92/v6rldC7jiZ3Xt66q6N2lavxt18xjXbQ86ZkAAAQQQQAABBBBogQAJUguQ2QQCwxVYzLlpzvVcNNzlWQ4BBBBAAAEEEEAgWgE6aYjWk9IQQAABBBBAAAEEEEAgxQIkSCluvKxUfZxzHbOdW2G6c2Ozsk/sBwIIIIAAAggMT+BB5zrtOECXUOhCCgYEEECgIpDLThp0v83i6ozgL+qI4F11TFC2UIcE47td8Qt8MBBAAAEEEEAg2wIznVtKxwF/1XHATN9xwEN6vMWu2d7zTO5dpjpp4AxSJj+jyd8pfSkuuaAr3quHn+4w4NzB/a57tbIb2EjP+rlOH8oLlCQdl/y9oIYIIIAAAggg0IiAzhh9pORKD+g4YGMdB3ylehywqd7fMdqVr1LCdFgj5bIOAghkRyB3Z5D0a9EVOlv04BTnFq5txrmu49Oa39/rOrarncd7BBBAAAEEEEi/gBKgm3X26L+TnBtTuzf6kXQfOw7Q4y82rJ3H+8QKZOoMUmKVc1axXCVIs5xbVl98A0qAtg5rZyVPl1oSFTaf6QgggAACCCCQTgFdQremXVKnROjjYXug+TfY5Xdh85meOIFMJUhcYpe4z1f2KzTalewXoTmdru/u8L0t31x2hY3C5zMHAQQQQAABBNIoUHBl+/v+Rsn1PFGn/rfocjvOINUBYlZ8AjwHKT5bSg4V6NflxqMKobMrMyx51y1JDAgggAACrRbQGf5ty2703jqQXUE/Vr2lB1dfr4PZa1UPvpdb3RjZ3J59job6kd6OE/i8ZbP9E79XQ304E78DVDB9An2u7xHVulTvHqOCK3xa34vq+ZMBAQQQQKBVAhP13axLnC/RsettOjr9qBKjl5QkjdXBwiW63On2Gc4tEVdddNnV57TtixT36PKqf2t7P3jDuYXi2h7ltk+g7Hrs77t6sKt7j5GOAwocB7SvmdgyAm0XyNU9SKZd/SP4eNAzD3RN8h7VThq2bHvLUAEEEEAgRwJKSs5WcvKqDlzX9++2PaNG39uPWJKk6UNdAeBfdcjxCc4V9Z3/D0W3/W3Q65Ha/h8r9ShN0t+EtYcshAVSJ6B2vs6S4aAkWO1/kOb31btHKXU7nP0KZ+oepOw3Vzr2MHcJUuUZSMXH9cf2eX0Rfl1fguvpjNIn9P4UfSn2Ko5IR9NRSwQQQCAbAvoeXkvfvdaBzjZBezTHuRU1f07Uz6jR976eh1d6Vdv/mH+7k51bUNu7WvMn2bh/HuPpF3jPuWXUthOVJD2l44AD1f7r6rO3vaadpXbv07SD07+XudoDEqRcNXdrdjZ3CZKxvuXch/SFeKL+ML6p0INiiwP6orxXf3x3aQ07W0EAAQQQ8AR0YPpDfQfrhE74oO/pq7Tc6eFLjGyOPQvHDob1eIdPBa1ZSZJKr2mbhwbNZ1q6BSo/lnb+SZ+Bt6vHAerau3THHNexQ7r3LJe1J0HKZbPHu9O5TJD8pPYlOSngWQj+ZRhHAAEEEIhPQD9Y/VoHqf+ptwUdvP5ZB7NX1ltmJPPszIG2qTwofNA27cqCf4UvwZwMCBSmOzfW7oHLwL7kdRcylSDRSUNeP8YJ2+/FnJu2inNzE1YtqoMAAgjkRkCdMbysLsPWqLfDuvloTXXc8Eq9ZUY2b9RiKk8XFIQPqtcU9aSnPxMMGRYoL+rc1NWd687wPrJrKRIgQUpRY1FVBBBAAAEE4hLoc73/UjKyjM4k7Re0DZ3t2US9i+6oZa4Imt/IND3z4XklXR/VKaR69xitp+0+30j5rIMAAgggkF6B3F9il96mo+YIIIBAdgR0KdtPFe8pSdrfv1d287xdCqd7lP7un97suE5FLaBy39A2jw0qS0nZ+prXq3uUdg6azzQEEEiMQKYusUuMas4rQoKU8w8Au48AAggkRaCaJM3VvT8vK3m5VUnRM5pmN8+fZl1yR11PJWN7qnzr0vkXvi6fC9ZhjyVP2v7FUW+T8hBAIHIBEqTISSmQBInPAAIIIIBAYgRmObeszt58Q0nLcXo9RDeIfjTOymk7ev5d6XUlSnOsJz2Nv6XxXm3793pSaGec26ZsBBCIRIAEKRJGCvELkCD5NRhHAAEEEMidgPVkqkvpPq2k6DtKmPa35+TkDoEdRiC9AplKkDrS2w7UHAEEEEAAAQSyIlDpybTvxqzsD/uBAALpFaAXu/S2HTVHAAEEEEAAAQQQQACBiAVIkCIGpTgEEEAAAQQQQAABBBBIrwAJUnrbjpojgAACCCCAAAIIIIBAxAIkSBGDUhwCCCCAAAIIIIAAAgikV4AEKb1tR80RQAABBBBAAAEEEEAgYgESpIhBKQ4BBBBAAAEEEEAAAQTSK0CClN62o+YIIIAAAggggAACCCAQsQAJUsSgFIcAAggggAACCCCAAALpFSBBSm/bUXMEEEAAAQQQQAABBBCIWIAEKWJQikMAAQQQQAABBBBAAIH0CpAgpbftqDkCCCCAAAIIIIAAAghELECCFDEoxSGAAAIIIIAAAggggEB6BUiQ0tt21BwBBBBAAAEEEEAAAQQiFiBBihiU4hBAAAEEEEAAAQQQQCC9AiRI6W07ao4AAggggAACCCCAAAIRC5AgRQxKcQgggAACCCCAAAIIIJBeARKk9LYdNUcAAQQQQAABBBBAAIGIBUiQIgalOAQQQAABBBBAAAEEEEivAAlSetuOmiOAAAIIIIAAAggggEDEAiRIEYNSHAIIIIAAAggggAACCKRXgAQpvW1HzRFAAAEEEEAAAQQQQCBiARKkiEEpDgEEEEAAAQQQQAABBNIrQIKU3raj5ggggAACCCCAAAIIIBCxAAlSxKAUhwACCCCAAAIIIIAAAukVIEFKb9tRcwQQQAABBBBAAAEEEIhYgAQpYlCKQwABBBBAAAEEEEAAgfQKdKS36tQcAQQQSLbAbOeWH+2K3xzlCpuqpoUBV35kwPWcvYBzk5Jdc2qHAAIIIIBAfgU4g5TftmfPEUAgRoFuV9yn0xWfLTi3hxKjCYrHNb5zhys+3eM6vxLjpikaAQQQQAABBBBIvcA3tAdlxUKp3xN2AAEEnBKgTXtdsUdxhDiUF30waN7Bmt43x3Xs8MFUxhBAAAEEEEi1QFG1t2PZLVO9F1Q+UQIkSIlqDiqDQHMCva50Y48rXhpWSo8rnan594TNZ3qyBaY4t7Aun1xhonOlZNeU2iGAAAItEyBBahl1fjZEgpSftmZPMy4wzrkOO3s013XsHLarOou0uZYZmOopxnH1AAAiuUlEQVTcomHLMD15Ar2uYyslt7er7fqVBJf1OleJ7mVznFslebWlRggggEBLBTKVIHEPUks/O2wMAQSyLrChcx/SVXWdBTfqjbB97Xe9mlcoqLOGxcOWYXqyBHRP2RecG/VfXUHyknMD2/W77tX6XWFPtePSuq/sQc1fL1k1pjYIIIAAAgikW4AzSOluP2qPgF+goDML03TAvL9/on98rit91s4+qCu7Mf7pjCdTYJZzy6m9Zums0Y9ra9ilrMkup1RMuNy50bXzeY8AAgjkRCBTZ5By0maJ300SpMQ3ERVEYPgC1XuMHp7gnP3BmGewg2jNv8MOqueZwZvECig5OtoSIFVwng43vArPcO7DWqa73mWV3rK8IoAAAhkVyFSCxCV2Gf2UslsIINA+gR7X/fOCKyy1hitdq/tTVvRqojMRy+7hilfoKHvtftdjPdwxpENgI+VGt6qq1kPTfMMizr2tGY+MdqO0HAMCCCCAQNoFSJDS3oLUHwEEEiewsHNv6h6VbcuuvJjuT5mksw/jFY8VXfEVHUivqmcibaf7j3QvC0NKBCwxCjx75Ku//T0NTKB8yzCKAAIIIJACARKkFDQSVUQAgfQJ6OaiF4quZwvd0L+Njq3PVpyj8R1+7Xo2KrmeJ9O3R7mu8UPKfT7VpfuNghTec25pZU8b9LmBB4PmMw0BBBBAAAEERi7APUgjN2MNBBBAoCUClgDpHqOZimNqNziu0q371XaGsCskgapdh/cIIIBABgUydQ9SBtsnlbtEgpTKZqPSCCCQFwH1Sri7dcSguFydMXxK79dR7KXE6F71bvemxtfOiwX7iQACCAQIkCAFoDCpOQESpOb8WBsBBBCIXUAP+N1YydANSpJ6qw+KnakE6bzZzn0k9o2zAQQQQCDZAiRIyW6fVNaOBCmVzUalEUAgjwK60ajTuvbu4pK6PDY/+4wAAsECmUqQOoL3kakIIIAAAgggECSwiXO9mv520DymIYAAAgikXyCPCdLiarZFFSWF7r117yr0eBIGBBBAAAEEEEAAAQQQyLtAYJelGUTZUPv0V8UUxVTFJMXTilcVliQ9rzhTsaSCAQEEEEAAAQQQQAABBHIqkIczSD9X2/6i2r4v6/UehSVJlhjZmaSxCnvS/TcVeykOVVysYEAAAQQQQAABBBBAAAEEMiWwj/bGnmx+g2KjOntmT0jfVvGAwpbfStHKgU4aWqnNthBAAAEEEEAAAQSiFMhUJw1RwiSxrItUKbt8zu43Gs5g9yepcyJ3xnAWjnAZEqQIMSkKAQQQQAABBBBAoKUCmUqQsn4P0nr6aNgldd3D/IhM03KPK5Yf5vIshgACCCCAAAIIIIAAAhkSyHqC9LraamNF5zDbzM4gWVJlHTgwIIAAAggggAACCCCAQM4Esp4g/V3tuZbiH4rN67St3YP0CcWNigUV1ygYEEAAAQQQQAABBBBAIGcCWe/FznqjW0rxK8WuitcU1rX3Owq712gRxVjFSoplFX2KwxR3KRgQQAABBBBAAAEEEEAgZwJZT5CsR7o/Kv6pOF5hPdXVnkmarWmTFb9XnKx4RdHsMEYF/J/CblgbzrDlcBZiGQQQQAABBBBAAAEEEIhXIOsJkqf3gkb2r76xs0b2/CNLYuzBsdMVUQ8fVoFfVQz33ierkw29lRf+RQABBBBAAAEEEEAAAQTaI7CkNmv3KbXzfiw7g2Rnu4Z7xkmLMiCAAAIIIIAAAgggkAgBO4a1Y9lMXBXVzqQgEa2pSvxY8ZRisaRUiHoggAACCCCAAAIIIIBAewSyfomdddm90BC03jOPNtVy1nGDDXYfknXmwIAAAggggAACCCCAAAIIZEbgUe2Jne4baRzbYgEusWsxOJtDAAEEEEAAAQQQiEwgU5fYZf0M0hlqduvFzjpkuFZhl9LVDp/UhM0UpyjmVGfSzXcVghcEEEAAAQQQQAABBBDIlsA62p3HFNad9yEKeyisfzhRb+wMkz0PqV0DZ5DaJc92EUAAAQQQQAABBJoVyNQZpDx00jBBLW5niE5T2HOOblJ49x1plAEBBBBAAAEEEEAAAQQQqAjkIUGyPe1WWG91OynWVoxX7KdgQAABBBBAAAEEEEAAAQTeF8hLguTt8G0asZ7tblZcorhYsbiCAQEEEEAAAQQQQAABBBDItcCXtffTFV4Pd9yDlOuPAzuPAAIIIIAAAggg0KAA9yA1CJe01S5QhdZXXKm4XdGrYEAAAQQQQAABBBBAAIEcC2S9m++hmvZFLbDPUAsxHwEEEEAAAQQQQAABBPIhkLd7kPLRquwlAggggAACCCCAAAIINCRAgtQQGyshgAACCCCAAAIIIIBAFgVIkLLYquwTAggggAACCCCAAAIINCRAgtQQGyshgAACCCCAAAIIIIBAFgVIkLLYquwTAggggAACCCCAAAIINCRAgtQQGyshgAACCCCAAAIIIIBAFgVIkLLYquwTAggggAACCCCAAAIINCRAgtQQGyshgAACCCCAAAIIIIBAFgVIkLLYquwTAggggAACCCCAAAIINCRAgtQQGyshgAACCCCAAAIIIIBAFgVIkLLYquwTAggggAACCCCAAAIINCRAgtQQGyshgAACCCCAAAIIIIBAFgVIkLLYquwTAggggAACCCCAAAIINCRAgtQQGyshgAACCCCAAAIIIIBAFgVIkLLYquwTAggggAACCCCAAAIINCRAgtQQGyshgAACCCCAAAIIIIBAFgVIkLLYquwTAggggAACCCCAAAIINCRAgtQQGyshgAACCCCAAAIIIIBAFgVIkLLYquwTAggggAACCCCAAAIINCRAgtQQGyshgAACCCCAAAIIIIBAFgVIkLLYquwTAggggAACCCCAAAIINCRAgtQQGyshgAACCCCAAAIIIIBAFgVIkLLYquwTAggggAACCCCAAAIINCRAgtQQGyshgAACCCCAAAIIIIBAFgVIkLLYquwTAggggAACCCCAAAIINCTQ0dBarIQAAggggAACCOREYIZzHy654o4FV1i67MqvzXI9t4x1bnpOdp/dRAABBNoisKW2WlYU27J1NooAAggggAACQQKFXlc8WjFH8XaPKz6m13cVM3pc53eDVmAaAjkVsGNYO5a1Y1oGBCIRIEGKhJFCEEAAAQQQiE6g2xV/q2Roul7373Ju8LaEcc51KDn6tqYraSodFt3WKAmBVAuQIKW6+ZJZeRKkZLYLtUIAAQQQyKmAkqJ1lAT1z3UdOwcRKEk60JKkWc4tFzSfaQjkTCBTCRKdNOTs08vuIoAAAggggMCwBPbV9UIPjHF9/wlauuh6zy+7wuudrnOPoPlMQwCB9AqQIKW37ag5AggggAACCMQkUHBuVecK4+sVX3DlJzRfyzEggECWBEiQstSa7AsCCCCAAAIIRCRQmKYEaOl6hekM09Lq2W5avWWYhwAC6RMgQUpfm1FjBBBAAAEEEIhZYMC5m7WJncLuMbJ7lHSWaRN1+x14CV7M1aN4BBBAIPMCdNKQ+SZmBxFAAAEEUiZQULfedyvunenckv66z3FuRU1/Up00XOOfzjgCORbIVCcNPCg2x59kdh0BBBBAAAEEQgXKPa5nz6IrXj/GFZ/tcYUrdMndS7qsbnWdOdpb9yfdP9N1HxS6NjMQQCC1Alxil9qmo+IIIIAAAgggEKfAws69cZfr2VyX0f1QydES6rXuM9reGF1+99VO173jWOemx7l9ykYAAQTyLMAldnluffYdAQQQQAABBBBIt0CmLrHjDFK6P4zUHgEEEEAAAQQQQAABBCIUIEGKEJOiEEAAAQQQQAABBBBAIN0CJEjpbj9qjwACCCCAAAIIIIAAAhEKkCBFiElRCCCAAAIIIIAAAgggkG4BEqR0tx+1RwABBBBAAAEEEEAAgQgFSJAixKQoBBBAAAEEEEAAAQQQSLcACVK624/aI4AAAggggAACCCCAQIQCJEgRYlIUAggggAACCCCAAAIIpFuABCnd7UftEUAAAQQQQAABBBBAIEIBEqQIMSkKAQQQQAABBBBAAAEE0i1AgpTu9qP2CCCAAAIIIIAAAgggEKEACVKEmBSFAAIIIIAAAggggAAC6RYgQUp3+1F7BBBAAAEEEEAAAQQQiFCABClCTIpCAAEEEEAAAQQQQACBdAuQIKW7/ag9AggggAACCCCAAAIIRCjQEWFZFNW8QLGJIkZrXRLeJgBZFQEEEEAAAQQyI9CbmT1Jx440cwybuD0kQUpGk3j/iWcmozrUAgEEEEAAAQQQQACBEQv0jHiNBK5QSGCd8lqlTbTjnQ3u/Ce13lGKHzW4Pqs1L7CpithbcUTzRVFCgwJbab1dFD9rcH1Wa15gOxWxg+LY5ouihAYFdtR6WyiOb3B9Vmte4NMqYn3Fic0XRQkNCuyq9VZSfLvB9VmtMQFLjh5qbFXWQiB6gT1V5DvRF0uJIxA4QMu+NoLlWTR6gf9TkS9EXywljkDgYC375AiWZ9HoBX6oIh+OvlhKHIGA/WB59wiWZ9HoBbpU5Ljoi6XEvAhwz0peWpr9RAABBBBAAAEEEEAAgSEFSJCGJGIBBBBAAAEEEEAAAQQQyIsACVJeWpr9RAABBBBAAAEEEEAAgSEFSJCGJGIBBBBAAAEEEEAAAQQQyIsACVJeWpr9RAABBBBAAAEEEEAAgSEFSJCGJGIBBBBAAAEEEEAAAQQQyIsACVJeWpr9RAABBBBAAAEEEEAAgSEFSJCGJGIBBBBAAAEEEEAAAQQQyIsACVJeWpr9RAABBBBAAAEEEEAAgSEFSJCGJErFAj2qpQVD+wTMv7d9m2fLVX/+H7T3o2D/B2iD9raB+dMG7W8D/h60tw34LmqvP1tHIBECo1WLVRJRk/xWokO7vlJ+dz8Re96pWqyYiJrktxIl7foK+d39ROz5GNVi+UTUJL+VWFC7vlx+dz8Re76QarFMImpCJRBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEE6gmMrjeTeakQ+IhquZ3CXqcoehUM8Qvsrk3Y/5+3QjZl87ZUbKboU0xVMDQvsKCK2EixtWIxxQxFtyJooA2CVJqf9iEVYZ/tDRXTFe8pwgbaIEwmuunLqaidFPb9PyegWNogAKXJSYto/WUU9h1UG52aNlvhH2gDv0Z042a9gcL+HiygeFNRVgQNtEGQCtMQyKjAL7RflhDZF4KFHYj/RMEQr8A3VLx5HxaymdU1/anqMl7bTND7FUKWZ/LwBA7UYt4fQM/VEqRDA1anDQJQIpi0v8qwHwU8f3u9W7GUonagDWpFon9vB33mb+1gSWvtQBvUikTz/jQV4/8/4B+/uGYTtEENSERvP6dypin89g/qvXnXDrRBrQjvEciwwKe0b/bFcJXCfsndTHGjwqYdomCIR+DzKrZHYc5BCVJB0+9Q2IH7lxQfVXxDMVvxkmIhBcPIBezzPqCYpDhK8XGFJUZPK6wtvqzwBtrAk4j2dVsVZz/CTFTYZ9ra4FiFnbWwaSWFN9AGnkS8rz9X8fb5t6hNkGiD+OwtKZ2p+GNA2Pe+N9AGnkS0r7uqOPt7MF6xh8KOgU5X2PeTTetUeANt4EnwikAOBOwyo0mKVxX2C6I3FDVi019R+Kd783ltXGAJrXqhwg5E5lZfD9Nr7XCwJtgy36qZYQeUQdNrFuNtiMC4qt/ONfM3rU63M3TeQBt4EtG+Xqfi7DO8S02x51anWxLrDbSBJxHfq/0oZlcQ2KV11i61CRJtIJQYhlEq0y4rte+koQbaYCihxuY/oNXsR8jVa1a/TO/t/8L2vum0gQ+DUQSyLvAZ7aB9CfwmYEePr86rPYgJWJRJIxC4r+p6uV4PrI4HJUi2nCVQdl26f7Br1u2XdvtiZxiZgB2Q3K+wJCgo8bezSPbLoTePNhBGDIMl+Scq7BdZ/2Bn7+z7yH+pI23gF4p+fCEVaWft7lScpDD/LRT+gTbwa0Q3vqaKMm9zH2qgDYYSGvn87bSK+R8ZsKpdxr6jYinfPNrAh8EoAlkXOFY7aF8QewbsqF0CZvNsGYboBE5TUXYjtA27Kcy4NkHq1LRuxeOKoOERTbTL82w5hmgExqgY6yjguWpxtEE0rsMtxZKlqxT2/2Gd6kq0QRUixpezVLb9gr6Kwn4oM39/gkQbCCSmYV+Va977KbZS2CXtBykscfIPtIFfI7rxH6ko89+oWuSiet1asWT1vf+FNvBrMD4igY4RLc3CSRFYulqRdwIqNLU6bfmAeUxqXOA7w1h1cS1jlzkGtYutbm1jX9j2RT5ZwdC8wBEqYhHFGdWiaIPmTYdTwse0kB0g2o3S6ysOV9gZPhtog4pDXP/aj2DfUHxNMSlkI7RBCEwEk63XNBuOU6w+OFb5x+6JOVnxE4Wd0aYNhBDD8JFqmdP0+i/FZxV2lYEN9mPNNxXe32DawFQYGhIgQWqIre0r2QGhDW9XXub51w7CbbBLMBhaK1CvXawmtE207fEFFWc3qdulRl0KG2iDikPc//5AG7CDdBvs7N1Ng2OVf2gDH0bEo8uovL8q/qk4p07ZtEEdnCZnbVhd/w29fl8xXrGuwi65+6HCvud/paANhBDD4P34+w+VbZdVW0Jk94Ttr9hTYf9HtlHYWSbaQAgMjQl4WXdja7NWuwTmVjcc1H72hWFDf+WFf1soUK9drBq0TXSN8RUVdaHiLYX9om73d9lAG1Qc4v7Xfj23AxHrjMTMH1bYgYoNtEHFIY5/LSmyMxVechq2DdogTKb56cerCDt7t7PiBsWr1ded9DpdcbTCfqCkDYQQw+AlPXZ59eaKvykuU+yuuFNhlz3aj2c20AYVB/5tQCDoALuBYlilxQKTq9sbG7Bdb5p9UTO0VsB+UbRfrbw2qN26N522qZUZ2Xs7a3Suwg5MtlU8pfAG2sCTiPfV7N9U2L0w+yk6FIcobKANKg5R//tdFfgZxaGKWYoFq9GpVxvsgNGm2X1htIEQYhrsINwSVe/g29uMmd+sKCnsElTaQAgxDK9XyzxVr7VtcGl1ntejI20QQwPkpUj7o8aQPoHhJEivpW+3Ul/jPu3BFIWXCNXukE2frXi3dgbvhyVgB35/UtgB4gOKXRV2kO4faAO/RmvG7d6j+xT2a+6KipcV/D8QQsTDXtXyvIPA2uLHVSespddnFLRBrVD87+2Mtg12loPvokGKyP+xH2dsqP3ut2m32D8alqy80AZVB14aECBBagAtAat4v5hvp7pcXVMfm2bD/ZUX/m2xgLXNNooPK/z3iNkX9tqKexRc/iiEEQ52ttsupfiK4hrFFxWWbAYNtEGQSnPTFtbqjyos+dkhoKiB6jS7F8AG2qDiEOW/9l3/RECBW2vaRoorFPaL+TSFDbRBxSHKfz+kwm5XdCvse9773Gt0cLDk1AZLUG2gDSoOUf5rpjbYZ/7KwbEP/lm2Omo/oHkDbeBJ8IpATgQe137aqWbvelzb7UUV9gfyEQXJrxBiGnZTuWVFbTfftrk9q/N+Ym98w5Eat3X29k1jdPgCB2tR87tKMXqI1WiDIYAanP2Q1rPkfsOa9besTrfvHW+gDTyJ+F9/o03Y/40tajZFG9SARPTWOmUwb+8+F69YS1QtYbrVm6BX2sCHEdFoUeXYDzV2lczyNWXajwTWNhv7ptMGPgxGEciDwP7aSfsisIMWO+jeR/Gwwk7rb6RgiE+gXoJkZzqeVNiB5C8VOyl+VX1vB/cMIxdYQqvYr+L2ebeDDzuDFBR2lsMG2qDiEPW/9ot5r8Iu3TpRsaPicIXdU9et8CdOtIFAWjSEJUi0QTwNYJ97+363KwR+r7DvePtBbKbiHcV6Cm+gDTyJaF8PUnGWjNrf2m8rdlZcpLC/EScp/ANt4NdgHIGcCHxR+zlVYV8KFjb+NQVDvAK7qXjzPixkMx/W9BsU9gXutc1NGl9GwTBygc9rFc+x3uvivqJpAx9GhKN2MPi0wt8Odtno+gHboA0CUGKYFJYg2aZogxjAVeRnFc8qvP8H9sPknQp7cG/tQBvUikTz3trgJYXXBnZv9m8Vdq9q7UAb1IrwHoEcCNiXwUcV6yhKOdjfNO3ih1RZO9VPYtS+VqMN4rG3S1s2VSw2jOJpg2EgxbwIbRAP8LIq1q7YWHAYxdMGw0BqYBH7+7rWMNejDYYJxWIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAAC2RcoZH8X2UMEEEAAgRYJfErbWXiIbU3T/Nury2yl16UV1yr6q9OifvmQCtxJ8YLisWrhW+h1WcV1it7qtLCXzTRjecX1ih7F4ortFc8qJihsqF2mMpV/EUAAAQQQQAABBBBAINcCE7X35SHiQZ/QjdVlF/BNi3p0neo2TvUVfE112mK+aWGjV1SXXbK6gCVXto8nVt/bS+0yNu3jiotshAEBBBBAIF0CHemqLrVFAAEEEEiBwDdVRzvbEjS8EzQxxmnvqWw7+/NEg9t4WOtZAhe2P1Zs0DJXa/oYm8mAAAIIIJAuARKkdLUXtUUAAQTSIHCBKjk3IRV9SfX4XBN1OWEY6w5nmWEUwyIIIIAAAkkQIEFKQitQBwQQQAABv4D9bdpFsYGipHhU8S/FHIU37KcRm2eX6b3pTdTrIoo9FN2KyxSLKj6veFpxn6J22EETPqmwsv+nuEPhH7bTm5UVVlZY0udfpqjlbPtWj07FQYpJCrvXaQ3FzYrJCv9g9wN/STFFcZN/BuMIIIAAAggggAACCCCQXgHvHqThXlpmyU1ZsYBvl1fVuCUyNn264u3q+JN6XU/hDYdrxJaxDh78w4V6Y9N/UJ1Y7x6kc6vLvqlXu4TO1jtHYYmXN9TeX7SFZthyJ3oL6NW/zOp6P6CwZSxs/BLFftX3J+i1dtheE2zZY2tn8B4BBBBAAAEEEEAAAQTSK+AlSJZEbBgQljz4h9oEyc6kPKCwHu3sjIq9t+FTCrt36RmFnaGxYZTiNoUlFgcobLBXe29nm7x16yVIU7XcTgobFlJYImPrH6bwBn/yY9OGSpC89cziFe+NXi1ptB78XlJ4ddPo4GBJmSVSq1Te8i8CCCCAAAIIIIAAAghkQcBLkCzJCIrba3ayNkHar7qeJTi1w3GaYGV+yzdjBY1b0vGWwhKydxWvKj6s8IZ6CdJ3vYWqrwvq1S5zs7AEzIaoEiQr63SF7cN29qY62DZnKMZ5E3hFAAEEEGivQEd7N8/WEUAAAQQyKPAr7VNvwH7Z2ZN6g52dscHODPkvp7NpdomdDZsozhwcq5yhOVjjdubnboWdXdpdYZflDWe4tGah2Xr/H8UXFSspJimiHM5VYd9W2Nmx/1YLtvras5r+Xn3PCwIIIIBAmwVIkNrcAGweAQQQyKDA8dqnuQ3sl3cJ3h/qrPvRmnmW5NhZpe0VVyluVwxnmKWFgrocf7W68qp6jTpBul9lWqK3t+J7CutI4kCF1eVKBQMCCCCAQAIESJAS0AhUAQEEEEBgUMBLquwMjnWcEDTY5Wj+YVO92UZRVuymsPcPKIYavHuZapdbqDphuGehatcf6r2dRTpJsYvCznrtpLhQ8Z6CAQEEEEAgAQLeNdYJqApVQAABBBDIucCz1f23JOjWmnhI7wuKNxTeYPfvWHJhl/PtquirvrfpQw2dWmDFgIU+Vp32fMC8KCbZM6KsnnsprPvx0YrzFAwIIIAAAgkRIEFKSENQDQQQQACBwS677UzQTxWWOPiHv+jNzYotfRPtUrw1FLb89Ypjqu/rXaKnRd4fDn1/rDJiZ58+qbCymj2jY0mbdzZKo+8PdmbsBoWdQbIk6UWFdz+SRhkQQAABBBBAAAEEEEAgKwITtSOW4IwZ5g7dWF1+Ad/y51Sn/U+v+yrsoavWgYGV+0+FN9gZI5t2p8L7sc+Sqnur022+DesobLlT7U11uEavlsDYw2FPU3xa8V3FVIV11LCWwhuu0Iitv2R1gnUkYe9PrL63l9plbNrtClvuXMVXFf7B9snmWfzCP4NxBBBAAAEEEEAAAQQQyI5AFAmSJTuHK6zLbi+JGNC4dWKwjMKGpRR2JsaSGa9jB40ODnaJnN3LZPNtubAEycrfXmHLedt5TOPrKfxDbfIz3ARpOxXilf2Ev0CN2+V9UxS2X6sqGBBAAAEEEEAAAQQQQACBIQXsHqH1FYsMuWRzC9hleks3V0To2lZu7Rm1Dk17XXG7ggEBBBBAAAEEEEAAAQQQyLXA/tp7O2v1xVwrsPMIIIAAAggggAACCCCQa4ETtPdnKKwDiKcUdqkdAwIIIIAAAggggAACCCCQSwG7x8nOHL2oqL13SpMYEEAAAQQQQAABBBBAAIH8CCysXV0tP7vLniKAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIBA6wT+P8pmGTuSl2m0AAAAAElFTkSuQmCC",
"image/svg+xml": [
"\n",
"\n"
],
"text/plain": [
"Plot with title “Flexibility and Weight grouped by Gender”"
]
},
"metadata": {
"image/svg+xml": {
"isolated": true
}
},
"output_type": "display_data"
}
],
"source": [
"plot(df$FLEXPRE, df$BAWPRE, col=df$GENDER,\n",
" xlab=\"Flexibility\", ylab=\"Weight\", \n",
" main=\"Flexibility and Weight grouped by Gender\")\n",
"legend(0, 100, c(\"Male\", \"Female\"), pch=1, col=1:2)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Comments\n",
"\n",
"It looks like there is a pretty good probablility that we can guess the gender from the body weight and flexibilty alone. The k-nearest neighbor does this guessing in a very simple fashion - Given any point in the data set, it looks for the nearest k neighboring points, and simply uses the majority gender among these neighbors as the guess. In the sections below, we'll implement a supervised learnign pipeline using k-nearest neighbors."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Work!\n",
"----\n",
"\n",
"Review questions to make sure you are up to speed with basic data manipulation and plotting."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"**Q1**. Tabulate the median value of FLEXPRE and BAWPRE by gender."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"\n",
"\n",
"\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"**Q2**. Tabluate the average change in weight from the beginnig to the end of the semester by gender."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"\n",
"\n",
"\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"**Q3**. Identify from the plot above the IDs of 3 individuals for whom you expect k-nearest neighbors to make the wrong gender prediction. HInt: Make a scatterplot but add the IDs as labels for each point, using a small x-offset of 2.5 so that labels are immediately to the right of each point."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"\n",
"\n",
"\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Splitting data into training and test data sets\n",
"----\n",
"\n",
"We will use 3/4 of the data to train the algorithm and 1/4 to test how good it is. The reason for doing this is that if we train on the full data set, the algorithm has \"seen\" its test points before, and hence will seem more accurate than it really is with respect to new data samples. 'Holding out\" some of the data for testing that is not used for training the algorithm allows us to honestly evaluate the \"out of sample\" error accurately."
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"set.seed(123) # set ranodm number seed for reproducibility\n",
"size <- floor(0.75 * nrow(df)) # desired size of training set\n",
"df <- df[sample(nrow(df), replace = FALSE),] # shuffle rows randomly\n",
"df.train <- df[1:size, ] # take first size rows of shuffled data frame as training set\n",
"df.test <- df[(size+1):nrow(df), ] # take the remaining rows as the test set\n",
"x.train <- df.train[,c(\"FLEXPRE\", \"BAWPRE\")]\n",
"y.train <- df.train[,\"GENDER\"]\n",
"x.test <- df.test[,c(\"FLEXPRE\", \"BAWPRE\")]\n",
"y.test <- df.test[,\"GENDER\"]"
]
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/plain": [
" ID GENDER FLEXPRE BAWPRE \n",
" 7 : 2 Male :61 Min. : 1.00 Min. :35.20 \n",
" 8 : 2 Female:75 1st Qu.:24.00 1st Qu.:57.70 \n",
" 9 : 2 Median :42.00 Median :65.40 \n",
" 10 : 2 Mean :38.49 Mean :67.34 \n",
" 11 : 2 3rd Qu.:52.00 3rd Qu.:74.88 \n",
" 12 : 2 Max. :67.00 Max. :98.50 \n",
" (Other):124 "
]
},
"execution_count": 8,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"summary(df.train)"
]
},
{
"cell_type": "code",
"execution_count": 9,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/plain": [
" ID GENDER FLEXPRE BAWPRE \n",
" 48 : 2 Male :21 Min. : 2.00 Min. :41.90 \n",
" 49 : 2 Female:25 1st Qu.:31.25 1st Qu.:58.10 \n",
" 51 : 2 Median :42.00 Median :64.60 \n",
" 81 : 2 Mean :39.54 Mean :65.97 \n",
" 0 : 1 3rd Qu.:51.00 3rd Qu.:73.15 \n",
" 2 : 1 Max. :65.00 Max. :90.20 \n",
" (Other):36 "
]
},
"execution_count": 9,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"summary(df.test)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Train knn on training set\n",
"----"
]
},
{
"cell_type": "code",
"execution_count": 10,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"library(class)\n",
"y.pred <- knn(x.train, x.test, cl=y.train, k=3)"
]
},
{
"cell_type": "code",
"execution_count": 11,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/html": [
"\n",
"\t