{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "**1**. \n", "\n", "Convert this string\n", "\n", "`123-456-789`\n", "\n", "into this string\n", "\n", "`321:654:987`" ] }, { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [], "source": [ "s = '123-456-789'" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Method 1" ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "'321:654:987'" ] }, "execution_count": 2, "metadata": {}, "output_type": "execute_result" } ], "source": [ "':'.join(item[::-1] for item in s.split('-'))" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Method 2" ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "'321:654:987'" ] }, "execution_count": 3, "metadata": {}, "output_type": "execute_result" } ], "source": [ "s.translate(str.maketrans('123456789-', '321654987:'))" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "**2**.\n", "\n", "Read the DNA sequence in the file `dan.fasta` and find the longest run of a single nucleotide. For example, the longest run in `GATTACA` is T with a length of 2. Ignore lines beginning with `>`." ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [], "source": [ "lines = []\n", "with open('dna.fasta') as f:\n", " for line in f:\n", " if not line.startswith('>'):\n", " lines.append(line.strip())\n", "dna = ''.join(lines)" ] }, { "cell_type": "code", "execution_count": 5, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "'ATGAATAAAATATACTACATAATCTTTTTAAGCGCCCAGTGCCTTGTGCACATTGGGAAGTGCGGGCGAAACCATAAGCCGAGCAGGCTGACCCGTAGCGCCAACAACGTTCTACTGGAAAAGGGGCCTACCGTTGAGAGAAGCACACGAATGAGTAACCCCTGGAAAGCGTTCATGGAAAAATACGACATCGAAAGAACACACAGTTCTGGGGTTCGAGTGGATTTAGGGGAAGATGCAGAAGTGGAAAATGCAAAGTACAGAATTCCAGCTGGAAGATGTCCTGTTTTTGGAAAGGGTATCGTCATAGAGAATTCCGCTGTTAGCTTCTTAACCCCTGTGGCTACAGGAGATCAGAGGCTGAAGGATGGAGGTTTCGCCTTCCCCAAAGCGGATGACCATATCTCCCCCATGACATTAGCGAACCTTAAGGAAAGGTATAAAGACAATGTAGAGATGATGAAGTTAAACGATATAGCTTTGTGCAGAACCCACGCAGCTAGCTTTGTCATGGCAGGGGATCAAAATTCGTCCTACAGACACCCAGCTGTATACGACGAAAAGGAAAAAACATGCCACATGTTGTATTTATCAGCGCAGGAAAATATGGGTCCGAGGTACTGCAGCTCAGATGCACAAAATAGAGATGCCGTGTTCTGCTTCAAGCCAGATAAAAATGTAGATTTTGAAAACCTGGTGTATTTGAGCAAAAATGTGCGTAATGATTGGGATAAAAAATGTCCCCGTAAAAATTTAGGAAACGCCAAGTTCGGATTATGGGTGGATGGGAACTGCGAAGAAATTCCATACGTTAAAGAAGTGGAGGCAAAGGATCTGCGCGAATGCAACCGAATCGTTTTCGAAGCGAGTGCCTCAGATCAACCAACTCAGTATGAAGAAGAAATGACGGATTATCAAAAAATACAACAAGGGTTTAGACAAAACAACCGAGAGATGATTAAAAGTGCCTTTCTTCCAGTGGGTGCATTCAACTCGGATAATTTCAAAAGTAAAGGAAGAGGATTTAACTGGGCAAATTTCGATTCTGTAAAAAAGAAGTGTTACATTTTTAATACCAAACCGACTTGCCTCATTAATGACAAAAATTTTATTGCAACAACGGCGTTATCTCACCCACAAGAAGTAGACCGGGATTTCCCCTGCAGCATATATAAAGACGAAATTGAAAGAGAAATTAGGAAACAATCGAGGAACATGAATCTGTACAGTGTTGATGGGGAACGCATTGTCCTGCCGAGGATATTTATCTCCAACGATAAGGAGAGTATCAAATGTCCCTGCGAACCTGAGCACATTTCCAACAGTACCTGCAACTTTTACGTTTGTAACTGTGTAGAGAAAAGGGCGGAAATTAAGGAAAATAACCAAGTTGTTATAAAGGAAGAATTTAGGGATTATTACGAAAATGGGGAGGAAAAATCGAACAAGCAGATGCTACTAATCATTATCGGAATAACTGGTGGCGTGTGCGTCGTCGCGCTGGCCTCTATGGCCTACTTCAAGAAGAAGGCTAACAATGATAAGTATGACAAGATGGACCAGGCAGAGGGGTACGGGAAGCCCACCACCAGGAAGGACGAGATGCTCGACCCCGAGGCCTCCTTCTGGGGCGAGGACAAGCGGGCCTCCCACACCACGCCCGTGCTGATGGAGAAGCCGTACTACTGA'" ] }, "execution_count": 5, "metadata": {}, "output_type": "execute_result" } ], "source": [ "dna" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Method 1\n", "\n", "Using a finite state machine with two states (INCR and RESET)" ] }, { "cell_type": "code", "execution_count": 6, "metadata": {}, "outputs": [], "source": [ "best = 0\n", "nuc = dna[0]\n", "count = 1\n", "best_nuc = None\n", "for x in dna[1:]:\n", " # INCR\n", " if x == nuc:\n", " count += 1\n", " # RESET\n", " else:\n", " if count > best:\n", " best = count\n", " best_nuc = nuc\n", " nuc = x\n", " count =1" ] }, { "cell_type": "code", "execution_count": 7, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "('A', 6)" ] }, "execution_count": 7, "metadata": {}, "output_type": "execute_result" } ], "source": [ "best_nuc, best" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Method 2\n", "\n", "Using regular expressions" ] }, { "cell_type": "code", "execution_count": 8, "metadata": {}, "outputs": [], "source": [ "import re" ] }, { "cell_type": "code", "execution_count": 9, "metadata": {}, "outputs": [], "source": [ "runs = re.findall('(A+|T+|C+|G+)', dna)" ] }, { "cell_type": "code", "execution_count": 10, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "'AAAAAA'" ] }, "execution_count": 10, "metadata": {}, "output_type": "execute_result" } ], "source": [ "max(runs, key=len)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.7.0" } }, "nbformat": 4, "nbformat_minor": 2 }