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We provide some new tools 
to evaluate trading strate-
gies. When it is known that 
many strategies and com-

binations of strategies have been tried, we 
need to adjust our evaluation method for 
these multiple tests. Sharpe ratios and other 
statistics will be overstated. Our methods 
are simple to implement and allow for the 
real-time evaluation of candidate trading 
strategies.

Consider the following trading strategy 
detailed in Exhibit 1.1 Although there is a 
minor drawdown in the first year, the strategy 
is consistently profitable through 2014. Indeed, 
the drawdowns throughout the history are 
minimal. The strategy even does well during 
the f inancial crisis. Overall, this strategy 
appears very attractive and many investment 
managers would pursue this strategy.

Our research (see Harvey and Liu 
[2014a] and Harvey et al. [2014]) offers some 
tools to evaluate strategies such as the one 
presented in Exhibit 1. It turns out that simply 
looking at average profitability, consistency, 
and size of drawdowns is not suff icient to 
give a strategy a passing grade.

TESTING IN OTHER FIELDS 
OF SCIENCE

Before presenting our method, it is 
important to take a step back and determine 

whether there is anything we can learn in 
finance from other scientific fields. Although 
the advent of machine learning is relatively 
new to investment management, similar 
situations involving a large number of tests 
have been around for many years in other sci-
ences. It makes sense that there may be some 
insights outside of finance that are relevant 
to finance.

Our first example is the widely heralded 
discovery of the Higgs Boson in 2012. The 
particle was first theorized in 1964—the same 
year as William Sharpe’s paper on the capital 
asset pricing model (CAPM) was published.2 
The first tests of the CAPM were published 
eight years later3 and Sharpe was awarded a 
Nobel Prize in 1990. For Peter Higgs, it was 
a much longer road. It took years to complete 
the Large Hadron Collider (LHC) at a cost 
of about $5 billion.4 The Higgs Boson was 
declared “discovered” on July 4, 2012, and 
Nobel Prizes were awarded in 2013.5

So why is this relevant for finance? It 
has to do with the testing method. Scientists 
knew that the particle was rare and that it 
decays very quickly. The idea of the LHC 
is to have beams of particles collide. Theo-
retically, you would expect to see the Higgs 
Boson in one in ten billion collisions within 
the LHC.6 The Boson quickly decays and 
key is measuring the decay signature. Over 
a quadrillion collisions were conducted and 
a massive amount of data was collected. The 
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problem is that each of the so-called decay signatures 
can also be produced by normal events from known 
processes.

To declare a discovery, scientists agreed to what 
appeared to be a very tough standard. The observed 
occurrences of the candidate particle (Higgs Boson) had 
to be five standard deviations different from a world 
where there was no new particle. Five standard devia-
tions is generally considered a tough standard. Yet in 
finance, we routinely accept discoveries where the t-sta-
tistic exceeds two—not five. Indeed, there is a hedge 
fund called Two Sigma.

Particle physics is not alone in having a tougher 
hurdle to clear. Consider the research done in bioge-
netics. In genetic association studies, researchers try to 
link a certain disease to human genes and they do this by 
testing the causal effect between the disease and a gene. 
Given that there are more than 20,000 human genes that 
are expressive, multiple testing is a real issue. To make it 
even more challenging, a disease is often not caused by 

a single gene but the interactions among several genes. 
Counting all the possibilities, the total number of tests 
can easily exceed a million. Given this large number of 
tests, a tougher standard must be applied. With the con-
ventional thresholds, a large percentage of studies that 
document significant associations are not replicable.7

To give an example, a recent study in Nature claims 
to find two genetic linkages for Parkinson’s disease.8 
About a half a million genetic sequences are tested for the 
potential association with the disease. Given this large 
number of tests, tens of thousands of genetic sequences 
will appear to affect the disease under conventional stan-
dards. We need a tougher standard to lower the possi-
bility of false discoveries. Indeed, the identified gene loci 
from the tests have t-statistics that exceed 5.3.

There are many more examples such as the search 
for exoplanets. However, there is a common theme in 
these examples. A higher threshold is required because 
the number of tests is large. For the Higgs Boson, there 
were potentially trillions of tests. For research in bioge-

E X H I B I T  1
A Candidate Trading Strategy

Source: AHL Research.
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netics, there are millions of combinations. With multiple 
tests, there is a chance of a f luke finding.

REVALUATING THE CANDIDATE STRATEGY

Let’s return to the candidate trading strategy 
detailed in Exhibit 1. This strategy has a Sharpe ratio of 
0.92. There is a simple formula to translate the Sharpe 
ratio into a t-statistic:9

T-statistic SharpeRatio Number of years= ×

In this case, the t-statistic is 2.91. This means that 
the observed profitability is about three standard devia-
tions from the null hypothesis of zero profitability. A 
three-sigma event (assuming a normal distribution) hap-
pens only 1% of the time. This means that the chance 
that our trading strategy is a false discovery is less than 
1%.

However, we are making a fundamental mistake 
with the statistical analysis. The statement about the false 
discovery percentage is conditional on an independent 
test. This means there is a single test. That is unlikely to 
be the case in our trading strategy and it was certainly 
not the case with the research conducted at the LHC, 
where there were trillions of tests. With multiple tests, 
we need to adjust our hurdles for establishing statistical 
significance. This is the reason why the researchers at 
LHC used a f ive-sigma rule. This is the reason why 
biomedical researchers routinely look for four-sigma 
events.

Multiple testing is also salient in finance—yet little 
has been done to adjust the way that we conduct our tests. 
Exhibit 2 completes the trading strategy example.10

Each of the trading strategies in Exhibit 2 was ran-
domly generated at the daily frequency. We assumed an 
annual volatility of 15% (about the same as the S&P 500) 
and a mean return of zero. The candidate trading strategy 

E X H I B I T  2
200 Randomly Generated Trading Strategies

Source: AHL Research.
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highlighted in Exhibit 1 is the best strategy in Exhibit 2 
(dark red curve).

To be clear, all of the strategies in Exhibit 2 
are based on random numbers—not actual returns. 
Although the candidate trading strategy in Exhibit 1 
seemed very attractive, it was simply a f luke. Yet the 
usual tools of statistical analysis would have declared this 
strategy  “significant.” The techniques we will offer in 
this article will declare the candidate strategy, with the 
Sharpe ratio of 0.92, insignificant.

It is crucial to correct for multiple testing. Con-
sider a simple example that has some similarities to this 
example. Suppose we are interested in predicting Y. We 
propose a candidate variable X. We run a regression and 
get a t-statistic of 2.0. Assuming that no one else had 
tried to predict Y before, this qualifies as an independent 
test and X would be declared significant at the 5% level. 
Now let’s change the problem. Suppose we still want 
to predict Y. However, now we have 20 different X 
variables, X

1
, X

2
,…,X

20
. Suppose one of these variables 

achieves a t-statistic of 2.0. Is it really a true predictor? 
Probably not. By random chance, when you try so many 
variables, one might work.

Here is another classic example of multiple tests. 
Suppose you receive a promotional email from an invest-
ment manager promoting a stock. The email asks you to 
judge the record of recommendations in real time. Only 
a single stock is recommended and the recommendation 
is either long or short. You get an email every week for 
10 weeks. Each week the manager is correct. The track 
record is amazing because the probability of such an 
occurrence is very small (0.510 = 0.000976). Conven-
tional statistics would say there is a very small chance 
(0.00976% this is a false discovery, that is, the manager 
is no good). You hire the manager.

Later you find out the strategy. The manager ran-
domly picks a stock and initially sends out 100,000 emails 
with 50% saying long and 50% saying short. If the stock 
goes up in value, the next week’s mailing list is trimmed 
to 50,000 (only sending to the long recommendations). 
Every week the list is reduced by 50%. By the end of the 
tenth week, 97 people would have received this amazing 
track record of 10 correct picks in a row.

If these 97 people had realized how the promo-
tion was organized, then getting 10 in a row would be 
expected. Indeed, you get the 97 people by multiplying 
100,000 × 0.510. There is no skill here. It is random.

There are many obvious applications. One that is 
immediate is in the evaluation of fund managers. With 
more than 10,000 managers, you expect some to ran-
domly outperform year after year.11 Indeed, if managers 
were randomly choosing strategies, you would expect 
at least 300 of them to have five consecutive years of 
outperformance.

Our research offers some guidance on handling 
these multiple-testing problems.

TWO VIEWS OF MULTIPLE TESTING

There are two main approaches to the multiple-
testing problem in statistics. They are known as the 
family-wise error rate (FWER) and the false discovery 
rate (FDR). The distinction between the two is very 
intuitive.

In the family-wise error rate, it is unacceptable to 
make a single false discovery. This is a very severe rule 
but completely appropriate for certain situations. With 
the FWER, one false discovery is unacceptable in 100 
tests and equally as unacceptable in 1,000,000 tests. In 
contrast, the false discovery rate views unacceptable in 
terms of a proportion. For example, if one false discovery 
were unacceptable for 100 tests, then 10 are unaccept-
able for 1,000 tests. The FDR is much less severe than 
the FWER.

Which is the more appropriate method? It depends 
on the application. For instance, the Mars One founda-
tion is planning a one-way manned trip to Mars in 2024 
and has plans for many additional landings.12 It is unac-
ceptable to have any critical part fail during the mission. 
A critical failure is an example of a false discovery (we 
thought the part was good but it was not—just as we 
thought the investment manager was good but she was 
not).

The best-known FWER test is called the Bonfer-
roni test. It is also the simplest test to implement. Suppose 
we start with a two-sigma rule for a single (independent) 
test. This would imply a t-ratio of 2.0. The interpreta-
tion is that the chance of the single false discovery is only 
5% (remember a single false discovery is unacceptable). 
Equivalently, we can say that we have 95% confidence 
that we are not making a false discovery.

Now consider increasing the number of tests to 10. 
The Bonferroni method adjusts for the multiple tests. 
Given the chance that one test could randomly show up 
as significant, the Bonferroni requires the confidence 
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level to increase. Instead of 5%, you take the 5% and 
divide by the number of tests, that is, 5%/10 = 0.5%. 
Again equivalently, you need to be 99.5% confident 
with 10 tests that you are not making a single false dis-
covery. In terms of the t-statistic, the Bonferroni requires 
a statistic of at least 2.8 for 10 tests. For 1,000 tests, the 
statistic must exceed 4.1.

However, there are three issues with the Bonfer-
roni test. First, there is the general issue about the FWER 
error rate versus FDR. Evaluating a trading strategy is 
not a mission to Mars. Being wrong could cost you your 
job and money will be lost—but it is unlikely a matter of 
life and death. However, reasonable people may disagree 
with this view.

The second issue is related to correlation among 
the tests. There is a big difference between trying 10 
variables that are all highly correlated and 10 variables 
that are completely uncorrelated. Indeed, at the extreme, 
if the 10 tests were perfectly correlated, this is equivalent 
to a single, independent test.

The third issue is that the Bonferroni test omits 
important information. Since the work of Holm [1979], 
it has been known that there is information in the indi-
vidual collection of test statistics and it can be used to 
sharpen the test.13 The Bonferroni test ignores all of this 
information and derives a hurdle rate from the original 
level of signif icance divided by the total number of 
tests.

Let’s first tackle the last issue. Holm [1979] pro-
vides a way to deal with the information in the test 
statistics. Again, suppose we have 10 tests. We know 
that the hurdle for the Bonferroni method would be 
0.005 or 0.5%.

The Holm method begins by sorting the tests 
from the lowest p-value (most significant) to the highest 
(least significant). Let’s call the first k = 1 and the last 
k = 10. Starting from the first test, the Holm function 
is evaluated.

 
= α

p
M k+ −1k  

where α is the level of significance (0.05) in our case 
and M is the total number of tests.

Suppose the most significant test in our example 
has a p-value of 0.001. Calculating the Holm function, 
we get 0.05/(10 + 1 − 1) = 0.005. The Holm function 
gives the hurdle (observed p-value must be lower than 

the hurdle). Given the first test has a p-value of 0.001, 
it passes the test. Notice the hurdle for the first test is 
identical to the Bonferroni. However, in contrast to the 
Bonferroni, which has a single threshold for all tests, the 
other tests will have a different hurdle under Holm; for 
example, the second test would be 0.05/(10 + 1 − 2) = 
0.0055.

Starting from the first test, we sequentially com-
pare the p-values with their hurdles. When we first come 
across the test such that its p-value fails to meet the 
hurdle, we reject this test and all others with higher 
p-values.

The Holm test captures the information in the 
distribution of the test statistics. The Holm test is less 
stringent than the Bonferroni because the hurdles are 
relaxed after the first test. However, the Holm still fits 
into the category of the FWER. Next, we explore the 
other approach.

As mentioned earlier, the false discovery rate 
approach allows an expected proportional error rate 
(see Benjamini and Hochberg [1995] and Benjamini 
and Yekutieli [2001]). As such, it is less stringent than 
both the Bonferroni and the Holm test. It is also easy 
to implement. Again, we sort the tests. The BHY for-
mula is

 
= × α

( )
p

k
M c×k  

where c(M) is a simple function that is increasing in M 
and equals 2.93 when M = 10.14 In contrast to the Holm 
test, we start from the last test (least signif icant) and 
evaluate the BHY formula.

For the last test, k = M = 10, the BHY hurdle is 
0.05/c(10) = 0.05/2.93 = 0.0171. For the second last test, 
k = M − 1 = 9, the BHY hurdle is 9 × 0.05/10 × 2.93 = 
0.0154. Notice that these hurdles are larger and thus 
more lenient that the Bonferroni implied hurdle (that 
is, 0.0050).

Starting from the last test, we sequentially com-
pare the p-values with their thresholds. When we first 
come across the test such that its p-value falls below its 
threshold, we declare this test significant and all tests 
that have a lower p-value.

Similar to the Holm test, BHY also relies on the 
distribution of test statistics. However, in contrast to 
the Holm test that begins with the most signif icant 
test, the BHY approach starts with the least significant 
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test.15 There are usually more discoveries with BHY. 
The reason is that BHY allows for an expected propor-
tion of false discoveries, which is less demanding than 
the absolute occurrence of false discoveries under the 
FWER approaches. We believe the BHY approach is the 
most appropriate for evaluating trading strategies.

FALSE DISCOVERIES AND MISSED 
DISCOVERIES

So far, we have discussed false discoveries, which 
are trading strategies that appear to be profitable—but 
they are not. Multiple testing adjusts the hurdle for sig-
nificance because some tests will appear significant by 
chance. The downside of doing this is that some truly 
significant strategies might be overlooked because they 
did not pass the more stringent hurdle.

This is the classic tension between Type I errors 
and Type II errors. The Type I error is the false discovery 
(investing in an unprofitable trading strategy). The Type 
II error is missing a truly profitable trading strategy. 
Inevitably there is a tradeoff between these two errors. 
In addition, in a multiple testing setting it is not obvious 
how to jointly optimize these two types of errors.

Our view is the following. Making the mistake of 
using the single test criteria for multiple tests induces a 
very large number of false discoveries (large amount of 
Type I error). When we increase the hurdle, we greatly 
reduce the Type I error at minimal cost to the Type II 
(missing discoveries). Exhibit 3 illustrates this point.

The first panel denotes the mistake of using single 
test methods. There are two distributions. The first is 
the distribution of strategies that don’t work. It has an 
average return of zero. The second is the distribution 
of truly profitable strategies, which has a mean return 
greater than zero. Notice that there is a large amount 
of Type I error (false discoveries). The second panel 
shows what happens when we increase the threshold. 
Notice the number of false discoveries is dramatically 
reduced. However, the increase in missed discoveries 
is minimal.

HAIRCUTTING SHARPE RATIOS

Harvey and Liu [2014a] provide a method for 
adjusting Sharpe ratios to take into account multiple 
testing. Sharpe ratios based on historical back tests are 
often inf lated because of multiple testing. Researchers 

E X H I B I T  3
False Trading Strategies, True Trading Strategies
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explore many strategies and often choose to present the 
one with the largest Sharpe ratio. But the Sharpe ratio 
for this strategy no longer represents its true expected 
profitability. With a large number of tests, it is very 
likely that the selected strategy will appear to be highly 
profitable just by chance. To take this into account, we 
need to haircut the reported Sharpe ratio. In addition, 
the haircut needs to be larger if there are more tests 
tried.

Take the candidate strategy in Exhibit 1 as an 
example. It has a Sharpe ratio of 0.92 and a corre-
sponding t-statistic of 2.91. The p-value is 0.4%; hence, 
if there were only one test, the strategy would look 
very attractive because there is only a 0.4% chance it 
is a f luke. However, with 200 tests tried, the story is 
completely different. Using the Bonferroni multiple-
testing method, we need to adjust the p-value cutoff to 
0.05/200 = 0.00025. Hence, we would need to observe 
a t-statistic of at least 3.66 to declare the strategy a true 
discovery with 95% confidence. The observed t-statistic, 
2.92 is well below 3.66—hence, we would pass on this 
strategy.

There is an equivalent way of looking at the Bon-
ferroni test. To declare a strategy true, its p-value must 
be less than some predetermined threshold such as 5% 

(or 95% confidence that the identified strategy is not 
false):

p-value of test < threshold

Bonferroni divides the threshold (0.05) by the 
number of tests, our case 200:

p-value of test < 0.05/200.

Equivalently, we could multiply the p-value of the 
individual test by 200 and check each test to identify 
which ones are less than 0.05, i.e.

(p-value of test) × 200 < 0.05

In our case, the original p-value is 0.004 and when 
multiply by 200 the adjusted p-value is 0.80 and the 
corresponding t-statistic is 0.25. This high p-value is sig-
nificantly greater than the threshold, 0.05. Our method 
asks how large the Sharpe ratio should be in order to 
generate a t-statistic of 0.25. The answer is 0.08. There-
fore, knowing that 200 tests have been tried and under 
Bonferroni’s test, we successfully declare the candidate 
strategy with the original Sharpe ratio of 0.92 as insig-
nificant—the Sharpe ratio that adjusts for multiple tests 

E X H I B I T  3  (continued)
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is only 0.08. The corresponding haircut is large, 91% 
(= (0.92 – 0.08)/0.92).

Turning to the other two approaches, the Holm 
test makes the same adjustment as Bonferroni since the 
t-statistic for the candidate strategy is the smallest among 
the 200 strategies. Not surprisingly, BHY also strongly 
rejects the candidate strategy.

The fact that each of the multiple-testing methods 
rejects the candidate strategy is a good outcome because 
we know all of these 200 strategies are just random num-
bers. A proper test also depends on the correlation among 
test statistics, as we discussed previously. This is not an 
issue in the 200 strategies because we did not impose any 
correlation structure on the random variables. Harvey 
and Liu [2014b] explicitly take the correlation among 
tests into account and provide multiple-testing-adjusted 
Sharpe ratios using a variety of methods.

AN EXAMPLE WITH STANDARD 
AND POOR’S CAPITAL IQ

To see how our method works on a real data set of 
strategy returns, we use the S&P Capital IQ database. It 
includes detailed information on the time-series of 484 
strategies for the U.S. equity market. Additionally, these 
strategies are catalogued into eight groups based on the 
types of risks to which they are exposed. We choose the 
most profitable strategy from each of the three catego-
ries: price momentum, analyst expectations, and capital 
efficiency. These trading strategies are before costs and, 
as such, the Sharpe ratios will be overstated.

The top performers in the three categories gen-
erate Sharpe ratios of 0.83, 0.37, and 0.67, respectively. 
The corresponding t-statistics are 3.93, 1.14, and 3.17 
and their p-values (under independent testing) are 
0.00008, 0.2543, and 0.0015.16 We use the BHY meth-
od—our recommended method—to adjust the three 
p-values based on the p-values for the 484 strategies 
(we assume the total number of tried strategies is 484, 
that is, there are no missing tests). The three BHY-
adjusted p-values are 0.0134, 0.9995, and 0.1093 and 
their associated t-statistics are 2.47, 0.00 and 1.60. The 
adjusted Sharpe ratios are 0.52, 0.00 and 0.34, respec-
tively. Therefore, by applying the BHY method, we 
haircut the Sharpe ratios of the three top performers by 
37% (=(0.83 – 0.52)/0.83), 100% (=(0.42 – 0)/0.42), 
and 49% (=(0.67 – 0.34)/0.67).17

IN-SAMPLE AND OUT-OF-SAMPLE

Until now, we evaluate trading strategies from an 
in-sample (IS) testing perspective, that is, we use all the 
information in the history of returns to make a judg-
ment. Alternatively, one can divide the history into two 
subsamples—one in-sample period and the other out-
of-sample (OOS) period—and use OOS observations to 
evaluate decisions made based on the IS period.

There are a number of immediate issues. First, 
often the OOS period is not really out-of-sample because 
the researcher knows what has happened in that period. 
Second, in dicing up the data, we run into the possibility 
that, with fewer observations in the in-sample period, 
we might not have enough power to identify true strate-
gies. That is, some profitable trading strategies do not 
make it to the OOS stage. Finally, with few observa-
tions in the OOS period, some true strategies from the 
IS period may not pass the test in the OOS period and 
be mistakenly discarded.

Indeed, for the three strategies in the Capital 
IQ data, if we use the recent f ive years as the OOS 
period for the OOS approach, the OOS Sharpe ratios 
are 0.64, −0.30, and 0.18, respectively. We see that the 
third strategy has a small Sharpe ratio and is insignifi-
cant (p-value = 0.53) for this f ive-year OOS period, 
although it is borderline significant for the full sample 
(p-value = 0.11), even after multiple-testing adjustment. 
The problem is that with only 60 monthly observations 
in the OOS period, a true strategy will have a good 
chance to fail the OOS test.

Recent research by López de Prado and his coau-
thors pursues the out-of-sample route and develops a 
concept called the probability of backtest overfitting 
(PBO) to gauge the extent of backtest overfitting (see 
Bailey et al. [2013a, b] and López de Prado [2013]). 
In particular, the PBO measures how likely it is for a 
superior strategy that is fit IS to underperform in the 
OOS period. It succinctly captures the degree of backtest 
overfitting from a probabilistic perspective and should 
be useful in a variety of situations.

To see the differences between the IS and OOS 
approach, we again take the 200 strategy returns in 
Exhibit 2 as an example. One way to do OOS testing 
is to divide the entire sample in half and evaluate the 
performances of these 200 strategies based on the first 
half of the sample (IS), that is, the first five years. The 
evaluation is then put into further scrutiny based on the 
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second half of the sample (OOS). The idea is that strate-
gies that appear to be significant for the in-sample period 
but are actually not true will likely to perform poorly 
for the out-of-sample period. Our IS sample approach, 
on the other hand, uses all ten years’ information and 
makes the decision at the end of the sample. Using the 
method developed by López de Prado and his coauthors, 
we can calculate PBO to be 0.45.18 Therefore, there is 
high chance (that is, a probability of 0.45) for the IS best 
performer to have a below-median performance in the 
OOS. This is consistent with our result that based on 
the entire sample, the best performer is insignificant if 
we take multiple testing into account. However, unlike 
the PBO approach that evaluates a particular strategy 
selection procedure, our method determines a haircut 
Sharpe ratio for each of the strategies.

In principle, we believe there are merits in both 
the PBO as well as the multiple-testing approaches. A 
successful merger of these approaches could potentially 
yield more powerful tools to help asset managers suc-
cessfully evaluate trading strategies.

TRADING STRATEGIES AND FINANCIAL 
PRODUCTS

The multiple-testing problem greatly confounds 
the identification of truly profitable trading strategies 
and the same problems apply to a variety of sciences. 
Indeed, there is an inf luential paper in medicine by 
Ioannidis [2005] called “Why Most Published Research 
Findings Are False.” Harvey et al. [2014] look at 315 dif-
ferent financial factors and conclude that most are likely 
false after you apply the insights from multiple testing.

In medicine, the first researcher to publish a new 
finding is subject to what they call the winner’s curse. 
Given the multiple tests, subsequent papers are likely 
to find a lesser effect or no effect (which would mean 
the research paper would have to be retracted). Similar 
effects are evident in f inance where Schwert [2003] 
and McLean and Pontiff [2014] find that the impact of 
famous finance anomalies is greatly diminished out-of-
sample—or never existed in the first place.

So where does this leave us? First, there is no reason 
to think that there is any difference between physical 
sciences and f inance. Most of the empirical research 
in finance, whether published in academic journals or 
put into production as an active trading strategy by an 
investment manager, is likely false. Second, this implies 

that half the financial products (promising outperfor-
mance) that companies are selling to clients are false.

To be clear, we are not accusing asset managers of 
knowingly selling false products. We are pointing out 
that the statistical tools being employed to evaluate these 
trading strategies are inappropriate. This critique also 
applies to much of the academic empirical literature in 
finance—including many papers by one of the authors 
of this article (Harvey).

It is also clear that investment managers want to 
promote products that are most likely to outperform in 
the future. That is, there is a strong incentive to get the 
testing right. No one wants to disappoint a client and no 
one wants to lose a bonus—or a job. Employing the statis-
tical tools of multiple testing in the evaluation of trading 
strategies reduces the number of false discoveries.

LIMITATIONS AND CONCLUSIONS

Our work has two important limitations. First, for 
a number of applications the Sharpe ratio is not appro-
priate because the distribution of the strategy returns is 
not normal. For example, two trading strategies might 
have identical Sharpe ratios but one of them might be 
preferred because it has less severe downside risk.

Second, our work focuses on individual strate-
gies. In actual practice, the investment manager needs 
to examine how the proposed strategy interacts with the 
current collection of strategies. For example, a strategy 
with a lower Sharpe ratio might be preferred because 
the strategy is relatively uncorrelated with current strate-
gies. The denominator in the Sharpe ratio is simply the 
strategy volatility and does not measure the contribution 
of the strategy to the portfolio volatility. The strategy 
portfolio problem, that is, adding a new strategy to a 
portfolio of existing strategies is the topic of Harvey 
and Liu [2014c].

In summary, the message of our research is simple. 
Researchers in finance, whether practitioners or aca-
demics, need to realize that they will f ind seemingly 
successful trading strategies by chance. We can no longer 
use the traditional tools of statistical analysis that assume 
that no one has looked at the data before and there is only 
a single strategy tried. A multiple-testing framework 
offers help in reducing the number of false strategies 
adapted by firms. Two sigma is no longer an appropriate 
benchmark for evaluating trading strategies.
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ENDNOTES

1AHL Research [2014].
2Sharpe [1964] for the CAPM. Higgs [1964] for the 

Higgs Boson.
3See Black et al. [1972] and Fama and MacBeth 

[1973].
4A 2009 brochure put the cost of the machine at about 

$4 billion and this does not include all other costs. See http://
cds.cern.ch/record/1165534/files/CERN-Brochure-2009-
003-Eng.pdf retrieved July 10, 2014.

5CMS [2012] and ATLAS [2012].
6See Baglio and Djouadi [2011].
7See Hardy [2002].
8See Simon-Sanchez et al. [2009].
9When returns are realized at higher frequencies, Sharpe 

ratios and the corresponding t-statistics can be calculated in a 
straightforward way. Assuming that there are N return realiza-
tions in a year and the mean and standard deviation of returns 
at the higher frequency is μ and σ, the annualized Sharpe ratio 
can be calculated as μ × σ ×( )/( )N N  = (μ/σ) × N . The 
corresponding t-statistic is (μ/σ) × ×Numberof YearsN . 
For example, for monthly returns, the annualized Sharpe 
ratio and the corresponding t-statistic are μ × σ × 12( ) and

×μ σ × 12 Numberof years( / ) , respectively, where μ and σ 
are the monthly mean and standard deviation for returns. 
Similarly, assuming μ and σ are the daily mean and standard 
deviation for returns and there are 252 trading days in a year, 
the annualized Sharpe ratio and the corresponding t-statistics 
are (μ/σ) × 252 and (μ/σ) × ×252 Number of years .

10AHL Research [2014].
11See Barras et al. [2010].
12See http://www.mars-one.com/mission/roadmap 

retrieved July 10, 2014.
13See Schweder and Spjotvoll [1982].
14More specifically, c(M) = 1 + 1

2  + 1
3
 + … + 1

M = ∑ =1
1

i
M

i  
and approximately equals log(M ) when M is large.

15For the p-value thresholds, whether or not BHY is 
more lenient than Holm depends on the specific distribution 
of p-values, especially when the number of tests M is small. 
When M is large, BHY implied hurdles are usually much 
larger than Holm.

16We have 269 monthly observations for the strategies 
in the price momentum and capital eff iciency groups and 
113 monthly observations for the strategies in the analyst 
expectations group. Therefore, the t-statistics are calculated 
as (269/12)0.83 ×  = 3.93, (113/12)0.37 ×  = 1.14 and 0.67 × 

(269/12) = 3.17.
17Applying the Bonferroni test, the three p-values are 

adjusted to be 0.0387, 1.0 and 0.7260. The corresponding 
adjusted Sharpe ratios are 0.44, 0, 0.07 and the haircuts are 

47%, 100%, and 90%. These haircuts are larger than under 
the BHY approach.

18See AHL Research [2014]. The 0.45 is based on 16 
partitions of the data.
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