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Acommon practice in evaluating 
backtests of trading strategies is 
to discount the reported Sharpe 
ratios by 50%.1 There are good 

economic and statistical reasons for reducing 
the Sharpe ratios. The discount is a result 
of data mining. This mining may manifest 
itself in academic researchers searching for 
asset-pricing factors that explain the behavior 
of equity returns, or by researchers at firms 
that specialize in quantitative equity strate-
gies trying to develop profitable systematic 
strategies.

The 50% haircut is only a rule of thumb. 
Our article’s goal is to develop an analytical 
way to determine the haircut’s magnitude.

Our framework relies on the statistical 
concept of multiple testing. Suppose you have 
some new data, Y, and you propose that vari-
able X explains Y. Your statistical analysis 
finds a significant relation between Y and X 
with a t-ratio of 2.0, which has a probability 
value of 0.05. We refer to this as a single test. 
Now consider the same researcher trying to 
explain Y with variables X

1
, X

2
, …, X

100
. In 

this case, you cannot use the same criteria 
for significance. You expect that, by chance, 
some of these variables will produce t-ratios 
of 2.0 or higher. What is an appropriate cut 
off for statistical significance?

In this article, we present three 
approaches to multiple testing and the ques-
tion in the previous example. The t-ratio is 

generally higher as the number of tests (or X 
variables) increases.

In summary, any given strategy pro-
duces a Sharpe ratio. We transform the Sharpe 
ratio into a t-ratio. Suppose that t-ratio is 3.0. 
Although a t-ratio of 3.0 is highly signifi-
cant in a single test, it may not be if we take 
multiple tests into account. We proceed to 
calculate a p-value that appropriately ref lects 
multiple testing.

To do this, we must make an assump-
tion on the number of previous tests. For 
example, Harvey, Liu, and Zhu [2015] (HLZ) 
document that at least 316 factors have been 
tested in the quest to explain the cross-sec-
tional patterns in equity returns. Suppose the 
adjusted p-value is 0.05. We then calculate an 
adjusted t-ratio; in this case, it is 2.0. With 
this new t-ratio, we determine a new Sharpe 
ratio. The percentage difference between the 
original Sharpe ratio and the new Sharpe 
ratio is the haircut.

The haircut Sharpe ratio that is a result 
of multiple testing is the Sharpe ratio that 
would have resulted from a single test, that is, 
a single measured correlation of Y and X.

We argue that it is a serious mistake to 
use the usual 50% haircut. Our results show 
that the multiple testing haircut is nonlinear. 
The highest Sharpe ratios are only moder-
ately penalized, while the marginal Sharpe 
ratios are heavily penalized. This makes 
economic sense. The marginal Sharpe ratio 
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strategies should be thrown out. The strategies with very 
high Sharpe ratios are probably true discoveries. In these 
cases, a 50% haircut is too punitive.

Our method does have a number of caveats, some 
of which apply to any use of the Sharpe ratio. First, high 
observed Sharpe ratios could be the results of non-normal 
returns, for instance, an option-like strategy with high 
ex ante negative skew. In this case, Sharpe ratios should 
be viewed in the context of the skew. Dealing with these 
non-normalities is the subject of future research.

Second, Sharpe ratios do not necessarily control 
for risk. That is, the strategy’s volatility may not ref lect 
the true risk. Our method also applies to information 
ratios, which use residuals from factor models.

Third, it is necessary in the multiple testing frame-
work to take a stand on what qualifies as the appropriate 
significance level. Is it 0.10 or 0.05?

Fourth, we must make a choice of the multiple 
testing method. We present results for three methods, 
as well as the average of the methods. Finally, we need 
some judgment specifying the number of tests.

Given choices three to f ive, it is important to 
determine the haircuts’ robustness to changes in these 
inputs. We provide a program that lets the user vary the 
key parameters to investigate the effect on the haircuts.2 
We also provide a program that determines the minimal 
level of profitability for a trading strategy to be consid-
ered significant.

METHOD

We start by describing the simplest situation in 
which a Sharpe ratio is used to evaluate the performance 
of a single investment strategy.

Let r
t
 denote the realized return for an  investment 

strategy between time t – 1 and t. The investment strategy 
involves zero initial investment, so that r

t
 measures the net 

gain/loss. Such a strategy can be a long-short strategy, i.e., 
r R Rt tr Rr L

t
S−R  where Rt

L and Rt
S are the gross investment 

returns for the long and short position, respectively. It 
can also be a traditional stock and bond strategy in which 
investors borrow and invest in a risky equity portfolio.

To evaluate whether an investment strategy can 
generate and maintain true profits, we form a statis-
tical test to see if the expected excess returns are dif-
ferent from zero. Because investors can always switch 
their positions in the long-short strategy, we focus on a 

 two-sided alternative hypothesis. In other words, insofar 
as the long-short strategy can generate a mean return 
that is significantly different from zero (either positive 
or negative), we think of it as a profitable strategy. To 
test this hypothesis, we first construct key sample statis-
tics. Given a sample of historical returns (r

1
, r

2
, …, r

T
), 

let μ̂ denote the mean and σ̂  the standard deviation. A 
t-statistic is constructed to test the null hypothesis that 
the average return is zero:

 = μ
σ /

-statistic
ˆ

ˆ
t-

T
 (1)

Under the assumption that returns are i.i.d. normal,3 the 
t-statistic follows a t-distribution with T − 1 degrees of 
freedom under the null hypothesis. 

We can follow standard hypothesis-testing proce-
dures to assess the  statistical significance of the invest-
ment strategy.

The Sharpe ratio, one of the most commonly used 
summary statistics in finance, is linked to the t-statistic 
in a simple manner. Given μ̂ and σ̂ , the Sharpe ratio 
(�SR ) is defined as

 � ˆ
ˆ

SR = μ
σ

(2)

which, based on Equation 1, is simply t T-ratio / .4 
Therefore, for a fixed T, a higher Sharpe ratio implies a 
higher t-statistic, which in turn implies a higher signifi-
cance level (lower p-value) for the investment strategy. 
This equivalence between the Sharpe ratio and the t-sta-
tistic, among many other reasons, justif ies the use of 
Sharpe ratio as an appropriate measure of an investment 
strategy’s attractiveness under our assumptions.

Despite its widespread use, the Sharpe ratio for 
a particular investment strategy can be misleading.5 
This is due to the finance profession’s extensive data 
mining. Because academics, financial practitioners, and 
individual investors all have a keen interest in finding 
lucrative investment strategies from the limited his-
torical data, it is not surprising for them to “discover” 
a few strategies that appear to be very profitable. Both 
the financial and the science literature recognize this 
data-mining issue. In finance, many well-established 
empirical abnormalities (e.g., certain technical trading 
rules, calendar effects, and the like) are overturned 
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once we take data mining biases into account.6 Profits 
from trading strategies that use cross-sectional equity 
 characteristics involve  substantial statistical biases.7 The 
return predictability of many previously documented 
variables is shown to be spurious once we perform 
appropriate statistical tests.8 In medical research, dis-
coveries tend to be exaggerated.9 This phenomenon is 
called the winner’s curse in medical science: the scientist 
who makes a discovery in a small study is cursed by 
finding an inf lated effect.

Given the widespread use of the Sharpe ratio, we 
provide a probability-based multiple testing framework 
to adjust the conventional ratio for data mining. To illus-
trate the basic idea, we give a simple example in which 
we assume that all tests are independent. This example 
is closely related to the literature on data mining biases. 
However, we can generalize important quantities in 
this example using a multiple testing framework. This 
generalization is key to our approach, as it lets us study 
the more realistic case when different strategy returns 
are correlated.

To begin with, we calculate the p-value for the 
single test:

 ( -ratio)

( )

p PS = |(Pr(PP |

= |(Pr | �
 (3)

where r denotes a random variable that follows a t-dis-
tribution with T − 1 degrees of freedom. This p-value 
might make sense if researchers are strongly motivated 
by an economic theory and directly construct empirical 
proxies to test the implications of the theory. It does 
not make sense if researchers have explored hundreds 
or even thousands of strategies and present only the 
most profitable one. In the latter case, the p-value for 
the single test may greatly overstate the true statistical 
significance.

To quantitatively evaluate this overstatement, 
we assume that researchers have tried N strategies and 
present the most profitable one (that is, the one with the 
largest Sharpe ratio). Additionally, we assume (for now) 
that the test statistics for these N strategies are indepen-
dent. Under these simplifying assumptions and under the 
null hypothesis that none of these strategies can generate 
non-zero returns, the multiple testing p-value, pM, for 
observing a maximal t-statistic that is at least as large as 
the observed t-ratio is

 

( { 1 } -ratio)

1 ( -ratio)

1 (1 )

1

p P …1 N}

t

p

M
i

i

N

i

S N)

∏

= |(m {Pr(max{PP | ,1 , }N}

= 1 | |rirr ≤

= 1

=

 (4)

When N = 1 (single test) and pS = 0.05, pM = 0.05, 
so there is no multiple testing adjustment. If N = 10 
and we observe a strategy with pS = 0.05, pM = 0.401, 
implying a probability of about 40% in f inding an 
investment strategy that generates a t-statistic that is at 
least as large as the observed t-ratio, much larger than 
the 5% probability for single test. Multiple testing greatly 
reduces the statistical significance of single test. Hence, 
pM is the adjusted p-value after we take data mining into 
account. It ref lects the likelihood of finding a strategy 
that is at least as profitable as the observed strategy after 
searching through N individual strategies.

By equating the p-value of a single test to pM, we 
obtain the defining equation for the multiple testing 
adjusted (haircut) Sharpe ratio �HSRSS :

 �( )p PM = |(Pr( |  (5)

Because pM is larger than pS, �HSRSS  will be smaller 
than �SR . For instance, assuming there are twenty years 
of monthly returns (T = 240), an annual Sharpe ratio of 
0.75 yields a p-value of 0.0008 for a single test. When 
N = 200, pM = 0.15, implying an adjusted annual Sharpe 
ratio of 0.32 through equation 5. Hence, multiple testing 
with 200 tests reduces the original Sharpe ratio by 
approximately 60% (=(0.75−0.32)/0.75).

This simple example illustrates the gist of our 
approach. When there is multiple testing, the usual 
p-value pS for single test no longer ref lects the strategy’s 
statistical signif icance. The multiple-testing-adjusted 
p-value pM, on the other hand, is the more appropriate 
measure. When the test statistics are dependent, how-
ever, the approach in the example is no longer applicable, 
as pM generally depends on the joint distribution of the N 
test statistics. For this more realistic case, we build on the 
work of HLZ to provide a multiple testing framework 
to find the appropriate p-value adjustment.

MULTIPLE TESTING FRAMEWORK

When more than one hypothesis is tested, false 
rejections of the null hypotheses are more likely to 

JPM-HARVEY.indd   14JPM-HARVEY.indd   14 10/20/15   4:03:32 PM10/20/15   4:03:32 PM



THE JOURNAL OF PORTFOLIO MANAGEMENT   15FALL 2015

occur; i.e., we incorrectly “discover” a profitable trading 
strategy. Multiple testing methods are designed to limit 
such occurrences. Multiple testing methods can be 
broadly divided into two categories: one controls the 
family-wise error rate and the other controls the false-
discovery rate.10 Following HLZ, we present three mul-
tiple testing procedures.

Type I Error

We first introduce two definitions of Type I error in 
a multiple testing framework. Assume that M hypotheses 
are tested and their p-values are (p

1
, p

2
, …, p

M
). Among 

these M hypotheses, R are rejected. These R rejected 
hypotheses correspond to R discoveries, including both 
true discoveries and false discoveries (remember that 
the null hypothesis is no-skill). Let N

r
 denote the total 

number of false discoveries (also known as false posi-
tive), i.e., strategies incorrectly classified as profitable. 
Then the family-wise error rate (FWER) calculates the 
probability of making at least one false discovery:

FWER ( 1)Pr r= (Pr

Instead of studying the total number of false 
rejections, i.e., profitable strategies that turn out to be 
unprofitable, an alternative definition—the false dis-
covery rate—focuses on the proportion of false rejec-
tions. Let the false discovery proportion (FDP) be the 
proportion of false rejections (measured related to total 
number of rejections, R):

=
> ,

= .

⎧

⎨
⎪
⎧⎧

⎪
⎨⎨
⎪⎪

⎩
⎪
⎨⎨

⎪⎩⎩
⎪⎪

FDP

if 0

0 if 0=

N
R

Rr

Then the false discovery rate (FDR) is defined as:

FDR [ ]F[ DPFF

Both FWER and FDR are generalizations of the Type 
I error probability in a single test. Comparing the 
two definitions, procedures that control FDR allow 
the number of false discoveries to grow proportion-
ally with the total number of tests and are thus more 
lenient than procedures that control FWER. Essentially, 

FWER is designed to prevent even one error. FDR 
controls the error rate.11

P-value Adjustment under FWER

We order the p-values in ascending orders, i.e., p
(1)

 
≤ p

(2)
 ≤ … ≤ p

(M )
 and let the associated null hypotheses 

be H
(1)

, H
(2)

, …, H
(M )

.
Bonferroni’s method adjusts each p-value equally. 

It inf lates the original p-value by the number of tests 
M:12

min[ 1] 1( ) ( )Bonferroni p Mp i …1 MBonfeff rroni =( )pBonfeff rroni , ,1] ,1 ,

For example, if we observe M = 10 strategies and 
one of them has a p-value of 0.05, Bonferroni would say 
the more appropriate p-value is Mp = 0.50, and hence 
the strategy is not significant at 5%. For a more con-
crete example that we will use throughout this section, 
suppose we observe M = 6 strategies and the ordered 
p-value sequence is (0.005, 0.009, 0.0128, 0.0135, 0.045, 
0.06). Five strategies would be deemed significant under 
single tests. Bonferroni suggests that the adjusted p-value 
sequence is (0.03, 0.054, 0.0768, 0.081, 0.270, 0.36). 
Therefore, only the first strategy is significant under 
Bonferroni.

Holm’s method relies on the sequence of p-values 
and adjusts each p-value by:13

i [ {( 1) } 1] 1( ) ( )Holm p Mmin[max{(( ) j p1) i …1 MHolm

j i
j: p( ) , ,1] ,1 ,

≤

Starting from the smallest p-value, Holm’s method 
allows us to sequentially build up the adjusted p-value 
sequence. Using the previous example, the Holm adjusted 
p-value for the first strategy is 6 0 03(1) (1)p 6(1) 6Holm 6 . , which 
is identical to the level Bonferroni prescribes. Under 5% 
significance, this strategy is significant.

The second strategy yields (2)pHolm = max[6p
(1)

, 5p
(2)

] 
= 5p

(2)
 = 0.045, which is smaller than the Bonferroni-

implied p-value. Given a cutoff of 5% and, in contrast to 
what Bonferroni concludes, this strategy is significant. 
Similarly, the next four adjusted p-values are calculated as 

[6 5 4 ] 4 0 0512,

[6 5 4 3 ] 4 0 0512,

[6 5 4 3 2 ] 2 0 09,

[6 5 4 3 2 ] 2 0 09,

(3) (1) (2) (3) (3)

(4) (1) (2) (3) (4) (3)

(5) (1) (2) (3) (4) (5) (5)

(6) (1) (2) (3) (4) (5) (6) (5)

p max[6(3) [ p 4(2) p

p max[6(4) [ p 4(2) 4 p p] 4(4) ] 4

p max[6(5) [ p 4(2) 4 p 2(4) p

p max[6(6) [ p 4(2) 4 p 2(4) 2 p ] 2(6) ] 2

Holm

Holm

Holm

Holm

,(1)max[6max[6 =]44 = .0

,(1)max[6max[6 ,(3)4 =p4 .

,(1)max[6max[6 ,(3)4 =]22 = .0

,(1)max[6max[6 ,(3)4 2 2 .
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making none significant at 5% level. Therefore, the first 
two strategies are significant under Holm.

Comparing the multiple-testing-adjusted p-values 
to a given significance level, we can make a statistical 
inference for each of these hypotheses. If we made 
the mistake of assuming single tests, and given a 5% 
signif icance level, we would “discover” four factors. 
In multiple testing, both Bonferroni’s and Holm’s 
adjustment guarantee that the family-wise error rate 
(FWER) in making such inferences does not exceed 
the pre-specified significance level. Comparing these 
two adjustments, 

( ) ( )p p( )
Holm Bonfeff rroni≤  for any i.14 Therefore, 

Bonferroni’s method is tougher, because it inf lates the 
original p-values more than Holm’s method does. Con-
sequently, the adjusted Sharpe ratios under Bonferroni 
will be smaller than those under Holm. Importantly, 
both of these procedures are designed to eliminate all 
false discoveries, no matter how many tests for a given 
significance level. Although this type of approach seems 
appropriate for a space mission (given the catastrophic 
consequence of a part failing), asset managers may be 
willing to accept the fact that the number of false dis-
coveries will increase with the number of tests.

P-value Adjustment under FDR

Benjamini, Hochberg and Yekutieli (BHY)’s pro-
cedure defines the adjusted p-values sequentially:15

if

min
( )

if 1
( )

( )

( 1) ( )

BHY p

p iif( ) M

p
M c

i
p iif( )

BHY

BHY
i

=( )pBHY

= ,M

⎡
⎣⎢
⎡⎡
⎣⎣

⎤
⎦⎦⎦

≤ −M ,

⎧

⎨
⎪
⎧⎧

⎪
⎨⎨
⎪⎪

⎩
⎪
⎨⎨

⎪⎩⎩
⎪⎪

where ( )
1

1c(
j

M

j∑=
=

. In contrast to Holm’s method, 
BHY starts from the largest p-value and defines the 
adjusted p-value sequence through pairwise compari-
sons. Again using the previous example, we first calcu-
late the normalizing constant as ( ) 2 45

1

6 1c(
j j∑ =1= j∑ .
=

. 
To assess the significance of the six strategies, we start 
from the least significant one. BHY sets (6)pBHY  at 0.06, the 
same as the original value of p

(6)
. For the fifth strategy, 

BHY yields i [ ] 0 06(5) (6)
6 2 45

5 (5) (6)p pmin[(5) [ p ](5) ]
BHY Bi [ HY BHY,(6)pmin[min[ .× .2 . 

For the fourth strategy, BHY yields i [(4) (5)p pmin[(4) [BHY Bi [ HY ,(5)pmin[min[
] 0 04966 2 45

4 (4)
6 2 45

(4)p p](4) .× .2 2 . Simi larly, the f ir st 
three adjusted p-values are sequentially calculated as

, .

, .

× .

× .

i [ ] 0= 0496,

i [ ] 0= 0496,

(3) (4)
6 2× 45

3 (3) (4)

(2) (3)
6 2× 45

2 (2) (3)

p p= min[(3) [ p ] =(3) ]

p p= min[(2) [ p ] =(2) ]

BHY Bi [ HY BHY

BHY Bi [ HY BHY

 

and
i [ ] 0 0496(1) (2)

6 2 45
1 (1) (2)p pmin[(1) [ p ](1) ]

BHY Bi [ HY BHY,(2)pmin[min[ .× .2 . 
Therefore, the BHY-adjusted p-value sequence is 
(0.0496, 0.0496, 0.0496, 0.0496, 0.06, 0.06), making 
the first four strategies significant at 5% level. Based on 
our example, BHY leads to two more discoveries, com-
pared to Holm, and Holm leads to one more discovery, 
compared to Bonferroni.

Hypothesis tests based on the adjusted p-values 
guarantee that the false discovery rate (FDR) does not 
exceed the pre-specified significance level. The constant 
c(M) controls the test’s generality. In the original work 
by Benjamini and Hochberg [1995], c(M) is set equal to 
one and the test works when p-values are independent or 
positively dependent. We adopt the choice in Benjamini 
and Yekutieli [2001] by setting c(M ) equal to 1

1
j
M

j∑ = . 
This allows our test to work under arbitrary dependency 
for the test statistics.

The three multiple testing procedures provide 
adjusted p-values that control for data mining. Based on 
these p-values, we transform the corresponding t-ratios 
into Sharpe ratios. In essence, our Sharpe ratio adjust-
ment method aims to answer the following question: if 
the multiple-testing-adjusted p-value ref lects the gen-
uine statistical significance for an investment strategy, 
what is the equivalent single-test Sharpe ratio that one 
should assign to such a strategy as if there were no data 
mining?

For both Holm and BHY, we need the empirical 
distribution of p-values for strategies that have been tried 
so far. We use the structural model estimate from HLZ. 
The model is based on the performance data for more 
than 300 risk factors that the academic literature has 
documented. However, a direct multiple-testing adjust-
ment based on these data is problematic for two reasons. 
First, we do not observe all the strategies that have been 
tried. Indeed, thousands more may have been tried, and 
ignoring these would materially affect our results on 
the haircut Sharpe ratio. Second, strategy returns are 
correlated. Correlation affects multiple testing, in that 
it effectively reduces the number of independent tests. 
Taking these two concerns into account, HLZ propose a 
new method to estimate the underlying distribution for 
factor returns. We use this distribution to make Sharpe 
ratio adjustments for a new strategy.
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Multiple Testing and Cross-Validation

Recent important articles by López de Prado and 
his coauthors also consider the ex post data mining issue 
for standard backtests.16 Due to data mining, they show 
theoretically that only seven trials are needed to obtain 
a spurious two-year backtest that has an in-sample real-
ized Sharpe ratio of more than 1.0, while the expected 
out-of-sample Sharpe ratio is zero. The phenomenon 
is analogous to the regression overf itting problem, 
where models found to be superior in in-sample tests 
often perform poorly out of sample, and is thus termed 
backtest overfitting. To quantify the degree of backtest 
overfitting, they propose calculating the probability of 
backtest overfitting (PBO) that measures the relative 
performance of a particular backtest among a basket of 
strategies, using cross-validation techniques.

Their research and our study share a common 
theme. We both attempt to evaluate the performance 
of an investment strategy in relation to other available 
strategies. Their method computes the chance for a par-
ticular strategy to outperform the median of the pool 
of alternative strategies. In contrast, our work adjusts 
the statistical significance for each individual strategy, 
so that the overall proportion of spurious strategies is 
controlled.

Despite these similar themes, our research is dif-
ferent in many ways. First, the objectives of analyses are 
different. Our research focuses on identifying the group 
of strategies that generate non-zero returns, while López 
de Prado evaluates the relative performance of a certain 
strategy that is fit in-sample. For example, consider a case 
with a group of factors that are all true. The one with the 
smallest t-ratio, although dominated by other factors in 
terms of t-ratios, may still be declared significant in our 
multiple-testing framework. In contrast, it will rarely 
be considered significant in the PBO framework, as it is 
dominated by other, more significant strategies. Second, 
our method is based on a single test statistic that sum-
marizes a strategy’s performance over the entire sample, 
whereas their method divides and joins the entire sample 
in numerous ways, with each way corresponding to an 
artificial hold-out period. Our method is therefore more 
in line with the statistics literature on multiple testing, 
while their work is more related to out-of-sample testing 
and cross-validation.

Third, the extended statistical framework in 
Harvey and Liu [2015] needs only test statistics. In 

contrast, their work relies heavily on each individual 
strategy’s time series. Although the López de Prado 
approach is data intensive, it does not need to make 
assumptions regarding the data-generating process for 
returns. As such, their approach is closer to the machine-
learning literature and ours is closer to the econometrics 
literature. Finally, the PBO method assesses whether a 
strategy selection process is prone to over-fitting. It is 
not linked to any particular performance statistics. We 
primarily focus on Sharpe ratios, as they are directly 
linked to t-statistics and thus p-values, which are the 
required inputs for  multiple-testing adjustment. Our 
framework can be easily generalized to incorporate 
other performance statistics, as long as they also have 
probabilistic interpretations.

In-Sample Multiple Testing versus 
Out-of-Sample Validation

Our multiple-testing adjustment is based on 
in-sample (IS) backtests. In practice, out-of-sample 
(OOS) tests are routinely used to select among many 
strategies.

Despite its popularity, OOS testing has several 
limitations. First, an OOS test may not be truly out 
of sample. A researcher tries a strategy. After running 
an OOS test, she finds that the strategy fails. She then 
revises the strategy and tries again, hoping it will work 
this time. This trial and error approach is not truly OOS, 
but the difference is hard for outsiders to see.

Second, an OOS test, like any other test in statis-
tics, only works in a probabilistic sense. In other words, 
an OOS test’s success can be due to luck for both the in-
sample selection and the out-of-sample testing. Third, 
given that the researcher has experienced the data, 
there is no true OOS that uses historical data.17 This is 
especially the case when the trading strategy involves 
economic variables. No matter how we construct the 
OOS test, it is not truly OOS, because we know what 
happened in the economy.

Another important issue with the OOS method, 
which our multiple-testing procedure can potentially 
help solve, is the tradeoff between type I (false discov-
eries) and type II (missed discoveries) errors due to 
data splitting.18 In holding out some data, researchers 
increase the chance of missing true discoveries for the 
shortened in-sample data. For instance, suppose we 
have 1,000 observations. Splitting the sample in half 
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and  estimating 100 different strategies in-sample, i.e., 
based on 500 observations, suppose we identify 10 strate-
gies that look promising (in-sample tests). We then take 
these 10 strategies to the OOS tests and find that two 
strategies work. Note that, in this process, we might 
have missed perhaps three strategies after the first-step 
IS tests, due to bad luck in the short IS period. These 
true discoveries are lost because they never get to the 
second-step OOS tests.

Instead of the 50-50 split, now suppose we use 
a 90-10 data split. Suppose we identify 15 promising 
strategies. Among the strategies are two of the three 
true discoveries that we missed when we had a shorter 
in-sample period. Although this is good, we unfortu-
nately have only 100 observations held out for the OOS 
exercise; it will be difficult to separate the good from 
the bad. At its core, the OOS exercise faces a tradeoff 
between in-sample and out-of-sample testing power. 
Although a longer in-sample period leads to a more 
powerful test, which reduces the chance of committing 
a type II error (i.e., missing true discoveries), the shorter 
out-of-sample period provides too little information to 
truly discriminate among the factors that are found sig-
nificant in-sample.

So how does our research fit? First, one should be 
very cautious of OOS tests, because it is hard to con-
struct a true OOS test. The alternative is to apply our 
multiple-testing framework to the full data, to identify 
the true discoveries. This involves making a more strin-
gent cutoff for test statistics.

Another and (in our opinion) more promising 
framework involves merging the two methods. Ideally, 
we want the strategies to pass both the OOS test on 
split data and the multiple test on the entire data. The 
problem is how to deal with the true discoveries that 
we miss if the in-sample data is too short. As a tenta-
tive solution, we can first run the IS tests with a lenient 
cutoff (e.g., p-value = 0.2) and use the OOS tests to see 
which strategy survives. At the same time, we can run 
multiple testing for the full data. We then combine the 
IS/OOS test and the multiple tests by looking at the 
intersection of survivors. We leave the details of this 
approach to future research.

APPLICATIONS

To show how to adjust Sharpe ratios for multiple 
testing, we first use an example to illustrate how Bonfer-

roni’s adjustment works under the assumption that test 
statistics are independent. We next relax the indepen-
dence assumption and use the HLZ model to adjust the 
Sharpe ratio for a new strategy. One salient feature of the 
HLZ model is that it allows dependency in test statistics. 
The appendix shows how to apply the framework in 
HLZ to Sharpe ratio adjustment.

Three Strategies

To illustrate how the Sharpe ratio adjustment 
works, we begin with three investment strategies that 
have appeared in the literature. All of these strategies are 
zero-cost hedge portfolios that simultaneously take long 
and short positions on the cross-section of U.S. equi-
ties. The strategies are the earnings-to-price ratio (E/P), 
momentum (MOM), and betting against beta factor 
(BAB, Frazzini and Pedersen [2014]). These strategies 
cover three distinct types of investment styles (i.e., value 
(E/P), trend-following (MOM), and potential distor-
tions induced by leverage (BAB)) and generate a range of 
Sharpe ratios.19 None of these strategies ref lect transac-
tion costs and as such, the Sharpe ratios (and t-statistics) 
are overstated and should be considered “before-costs” 
Sharpe ratios.

Two important ingredients in the Sharpe ratio 
adjustment are the Sharpe ratios’ initial values and the 
number of trials. To highlight the effect of these two 
inputs, we focus on the simplest independent case. With 
independence, the multiple testing p-value pM and the 
single test p-value pS are linked through equation 4. 
When pS is small, this relation is approximately the 
same as in Bonferroni’s adjustment. Hence, the multi-
ple-testing adjustment we use for this example can be 
thought of as a special case of Bonferroni’s adjustment.

Exhibit 1 shows the summary statistics for these 
strategies. Among these strategies, the strategy based on 
E/P is the least profitable, as measured by the Sharpe 
ratio. It has an average monthly return of 0.43% and 
a monthly standard deviation of 3.47%, the multiple 
testing p-value increases to 0.029. The haircut (�hc), 
which captures the percentage change in the Sharpe 
ratio, is about 27%. When there are more trials, the 
haircut is even larger.

Sharpe ratio adjustment depends on the Sharpe 
ratio’s initial value. Across the three investment strate-
gies, the Sharpe ratio ranges from 0.43 (E/P) to 0.78 
(BAB). The haircut is not uniform across different initial 
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Sharpe ratio levels. For instance, when the number of 
trials is 50, the haircut is almost 50% for the least profit-
able E/P strategy, but only 7.9% for the most profitable 
BAB strategy.20 We believe this non-uniform feature of 
our Sharpe ratio adjustment procedure is economically 
sensible, as it lets us discount mediocre Sharpe ratios 
harshly while keeping the exceptional ones relatively 
intact. It is sufficient to make up for the loss in statistical 
significance due to data snooping. This phenomenon 
is not unique to the three strategies or the Bonferroni 
method that we present. As we will discuss further, this 
is a general property of our Sharpe ratio adjustment 
method.

Sharpe Ratio Adjustment for a New Strategy

Given the population of investment strategies 
that have been published, we now show how to adjust 
a new investment strategy’s Sharpe ratio. Consider a 
new strategy that generates a Sharpe ratio of �SR  in T 
periods,21 or, equivalently, the p-value pS. Assuming that 
N other strategies have been tried, we draw N t-statistics 
from the model in HLZ. Additional details are described 
in the appendix. These N + 1 p-values are then adjusted 
using the aforementioned three multiple testing proce-
dures. In particular, we obtain the adjusted p-value pM 
for pS. To take the uncertainty in drawing N t-statistics 

into account, we repeat the procedure many times to 
generate a sample of pMs. The median of this sample is 
taken as the final multiple-testing-adjusted p-value. This 
p-value is then transformed back into a Sharpe ratio—the 
multiple-testing-adjusted Sharpe ratio. Exhibit 2 shows 
the original vs. haircut Sharpe ratios, and Exhibit 3 
shows the corresponding haircut. With a user-specified 
correlation level, we linearly interpolate among the five 
sets of parameter estimates in HLZ to find a new set of 
parameter estimates that exactly achieves the assumed 
correlation level.

First, as previously discussed, the haircuts depend 
on the Sharpe ratios’ levels. Across the three types of 
multiple testing adjustment and different numbers of 
tests, the haircut is almost always more than and some-
times much larger than 50% when the annualized 
Sharpe ratio is less than 0.4. On the other hand, when 
the Sharpe ratio is greater than 1.0, the haircut is at 
most 25%. This shows the 50% rule of thumb discount 
for the Sharpe ratio is inappropriate: 50% is too lenient 
for relatively small Sharpe ratios (< 0.4) and too harsh for 
large ones (> 1.0). This nonlinear feature of the Sharpe 
ratio adjustment makes economic sense. Marginal strate-
gies are heavily penalized because they are likely false 
discoveries.

Second, the three adjustment methods imply 
different haircut magnitudes. Given the theoretical 

E X H I B I T  1
Multiple Testing Adjustment for Three Investment Strategies

Summary statistics for three investment strategies: E/P, MOM, and BAB (betting against beta, Frazzini and Pedersen [2014]). “Mean” and 
“Stdev.” report the monthly mean and standard deviation of returns, respectively; �SR  reports the annualized Sharpe ratio; “t-stat” reports 
the t-statistic for the single-hypothesis test that the mean strategy return is zero ( �t stat 12S Tstat × /T ); pS and pM report the p-value for 
single and multiple tests, respectively; �HSRSS  reports the Bonferroni-adjusted Sharpe ratio; and �hc  reports the percentage haircut for the 
adjusted Sharpe ratio ( � � ��( )hc S) RSS= ( / ).
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 objectives that these methods try to control (i.e., family-
wise error rate (FWER) vs. false discovery rate (FDR)), 
we divide the three adjustments into two groups: Bon-
ferroni and Holm in one group and BHY in the other 
group. Comparing Bonferroni and Holm’s method, we 
see that Holm’s method implies a smaller haircut than 
does Bonferroni’s method. This is consistent with our 
previous discussion about Holm’s adjustment being less 
aggressive than Bonferroni’s adjustment. However, the 
difference is relatively small (compared to the differ-

ence between Bonferroni and BHY), especially when 
the number of tests is large. The haircuts under BHY, 
on the other hand, are usually a lot smaller than those 
under Bonferroni and Holm when the Sharpe ratio is 
small (< 0.4). For large Sharpe ratios (> 1.0), however, 
the haircuts under BHY are consistent with those under 
Bonferroni and Holm.

In the end, we advocate the BHY method. The 
FWER seems appropriate for applications where a false 
discovery brings a severe consequence. In f inancial 

E X H I B I T  2
Original vs. Haircut Sharpe Ratios
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applications, it seems reasonable to control for the rate 
of false discoveries, rather than the absolute number.

Minimum Profitability for Proposed 
Trading Strategies

There is another way to pose the problem. Given 
an agreed-on significance level, such as 0.05, what is 

the minimum average monthly return that a proposed 
strategy must exceed? Our framework is ideally suited 
to answer this question.

The answer to the question depends on a number 
of inputs. We need to measure the strategy’s volatility. 
The number of observations is also a critical input.22 
Finally, we need to take a stand on the number of tests 
that have been conducted.

E X H I B I T  3
Haircuts
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Exhibit 4 presents an example. Here we consider 
four different sample sizes: 120, 240, 480, and 1,000 
and three different levels of annualized volatility: 5%, 
10%, and 15%. We then assume that the total number 
of tests is 300. To generate the table, we first find the 
threshold t-ratios based on the multiple-testing-adjust-
ment methods provided in the previous section and then 
transform these t-ratios into mean returns based on the 
formula in equation (1).

Exhibit 4 shows the large differences between the 
return hurdles for single testing and multiple testing. For 
example, in panel B (240 observations) and 10% vola-
tility, the minimum required average monthly return 
for a single test is 0.365% per month, or 4.4% annually. 
 However, for BHY, the return hurdle is much higher: 
0.616% per month, or 7.4% annually. The Programs sec-
tion (following the conclusions) details the  program that 
we use to generate these return hurdles and provides an 
Internet address to download the program.

CONCLUSIONS

There are many considerations involved in evalu-
ating a trading strategy. The criteria may include the 
strategy’s economic foundation, Sharpe ratio, signifi-
cance level, drawdown, consistency, diversif ication, 
recent performance, etc. We provide a real-time eval-
uation method for determining the signif icance of a 
candidate trading strategy. Our method explicitly takes 
into account that hundreds, if not thousands of strategies 
have been proposed and tested in the past. Given these 
multiple tests, inference must be recalibrated.

Our method follows the following steps. First, we 
transform the Sharpe ratio into a t-ratio and determine 
its probability value, e.g., 0.05. Second, we determine the 
appropriate p-value, explicitly recognizing the  multiple 
tests that preceded the discovery of this particular invest-
ment strategy. Third, based on this new p-value, we 
transform the corresponding t-ratio back to a Sharpe 
ratio. The new measure, which we call the haircut 
Sharpe ratio, takes multiple testing or data mining into 
account. Our method is readily applied to other popular 
risk metrics, such as value at risk (VaR).23

Our method is ideally suited to determine min-
imum prof itability hurdles for proposed strategies. 
We provide open access code where the inputs are the 
desired significance level, the number of observations, 
the strategy volatility, and the assumed number of tests. 
The output is the minimum average monthly return 
that the proposed strategy must exceed.

There are many caveats to our method. We do not 
observe the entire history of tests and, as such, we need 
to use judgment on an important input—the number 
of tests—for our method. In addition, we use Sharpe 
ratios as our starting point. Our method is not applicable 
insofar as the Sharpe ratio is not the appropriate measure 
(e.g., non-linearities in the trading strategy or the vari-
ance not being a complete measure of risk).

Of course, true out-of-sample tests of a partic-
ular strategy (not a holdout sample of historical data) 
is a cleaner way to evaluate a strategy’s viability. For 
some strategies, models can be tested on previously 
 unpublished data or even on uncorrelated markets. 
However, for the majority of trading strategies, true 
out-of-sample tests are not available. Our method lets 
investors make  decisions in real time on a proposed strat-
egy’s viability.

E X H I B I T  4
Minimum Profitability Hurdles

Average monthly return hurdles under single and multiple tests. At 
5% signif icance, the table shows the minimum average monthly 
return for a strategy to be signif icant at 5% with 300 tests. All 
numbers are in percentage terms. See the appendix for the link to 
the program.
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PROGRAMS

We make the code and data for our calcula-
tions publicly available at: http://faculty.fuqua.duke.
edu/~charvey/backtesting

Haircut Sharpe Ratios

The Matlab function Haircut_SR lets the user specify 
key parameters to make Sharpe ratio adjustments and 
calculate the corresponding haircuts. It has eight inputs 
that provide summary statistics for a return series of an 
 investment strategy and the number of tests allowed for. 
The first input is the sampling frequency for the return 
series. Five options (daily, weekly, monthly, quarterly, and 
annually) are available.24 The second input is the number of 
observations, in terms of the sampling frequency provided 
in the first step. The third input is the strategy returns’ 
Sharpe ratio. It can either be annualized or based on the 
sampling frequency provided in the first step; it can be 
autocorrelation-corrected or not. Subsequently, the fourth 
input asks if the Sharpe ratio is annualized and the fifth 
input asks if the Sharpe ratio has been corrected for auto-
correlation.25 The sixth input asks for the autocorrelation 
of the returns if the Sharpe ratio has not been corrected for 
autocorrelation.26 The seventh input is the number of tests 
assumed. Lastly, the eighth input is the assumed average 
level of correlation among strategy returns.

To give an example of how the program works, 
suppose that we have an investment strategy that gener-
ates an annualized Sharpe ratio of 1.0 over 120 months. 
The Sharpe ratio is not autocorrelation corrected and the 
monthly autocorrelation coefficient is 0.1. We allow for 
100 tests in multiple testing and assume the average level 
of correlation is 0.4 among strategy returns. With this 
information, the input vector for the program is
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Input vector

D / M Q/ A 1= 2 3, 4 5,
# of obs

Sharperr ratio
SR annualized ( Yes)

AC correction needed ( Yes)
AC level

# of tests assumed
Average correlation assumed

3
120
1
1
1

0.1
100
0.4

Passing this input vector to Haircut_SR, the 
function generates a sequence of outputs, as shown in 
Exhibit 5. The program summarizes the return char-
acteristics by showing an annualized, autocorrelation-
corrected Sharpe ratio of 0.912, as well as the other 
data the user provides. The program output includes 
adjusted p-values, haircut Sharpe ratios, and the haircuts 
involved for these adjustments under a variety of adjust-
ment methods. For instance, under BHY, the adjusted, 
annualized Sharpe ratio is 0.438 and the associated 
haircut is 52.0%.

Profit Hurdles

The Matlab function Profit_Hurdle lets the user cal-
culate the required mean return for a strategy at a given 
level of significance. It has five inputs. The first input is 
the user-specified significance level. The second input 
is the number of monthly observations for the strategy. 

E X H I B I T  5
Program Outputs
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The third input is the strategy’s annualized return vola-
tility. The fourth input is the number of tests assumed. 
Lastly, the fifth input is the assumed average level of cor-
relation among strategy returns. The program does not 
allow for any autocorrelation in the strategy returns.

To give an example of how the program works, 
suppose we are interested in the required return for a 
strategy that covers 20 years and has an annual volatility 
of 10%. In addition, we allow for 300 tests and specify 
a significance level of 5%. Finally, we assume that the 
average correlation among strategy returns is 0.4. With 
these specifications, the input vector for the program is

Input vector

Significance level
# of obs

Annualized return volatility
# of tests assumed

Average correlation assumed

0.05
240
0.1
300
0.4
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Passing the input vector to Profit_Hurdle, the function 
generates a sequence of outputs, as shown in Exhibit 6. 
The program summarizes the data the user provides. The 
program output includes return hurdles for a variety of 
adjustment methods. For instance, the adjusted return 
hurdle under BHY is 0.621% per month and the average 
multiple testing return hurdle is 0.670% per month.

Correlation Adjustment

We use the model estimated in HLZ to provide 
correlation adjustment when tests are correlated.

HLZ study 316 strategies that have been docu-
mented by the academic literature. They propose a 
structural model to capture trading strategies’ under-
lying distribution. Two key features mark their model. 
First, there is publication bias, so not all tried factors 
make it to publication. Second, tests may be correlated 
and this affects multiple testing adjustment. Taking these 
two concerns into account, HLZ postulate a mixture 
distribution for strategy returns. With probability p

0
, a 

strategy has a mean return of zero and therefore comes 
from the null distribution. With probability 1 – p

0
, a 

strategy has a nonzero mean and therefore comes from 
the alternative distribution. To capture the heterogeneity 
in strategy mean returns, HLZ assume that the mean 
returns for true strategies are drawn from an exponential 
distribution with a mean of λ. After fixing the mean 
returns, HLZ assume that the innovations in returns 
follow a normal distribution with a mean of zero and a 
standard deviation of ma = 15%. (Heterogeneity in return 
standard deviations are captured by the  heterogeneity 
in return means.) Importantly, return innovations are 
correlated in the cross-section and are captured by the 
pairwise correlation ρ. At a certain level of correlation 
(ρ) between strategy returns, and by matching the mod-
el-implied t-ratio quantiles with the observed t-ratio 
quantiles, HLZ estimate the probability (p

0
), the total 

number of trials (M), and (λ). They show that both p
0
 

and M are increasing as the level of correlation rises.
We use the model estimates in HLZ to approxi-

mate strategy returns’ underlying distribution. The rel-
evant parameters for our application are ρ, p

0
, and λ. 

HLZ provide five sets of estimates, corresponding to five 

E X H I B I T  6
Program Outputs

E X H I B I T  7
Model Parameter Estimates in HLZ

The HLZ model estimates that ρ is the correlation coeff icient 
between two strategy returns in the same period. p

0
 is the prob-

ability of having a strategy that has a mean of zero. λ is the mean 
parameter of the exponential distribution for the monthly means 
of the true factors.
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levels of correlation (i.e., ρ = 0, 0.2, 0.4, 0.6 and 0.8). 
Exhibit 7 shows HLZ’s model estimates.

For our application, at a user-specified level of ρ, we 
use linear interpolation to generate the parameter estimates 
for p

0
 and λ. For example, if the user  specifies ρ = 0.3, then 

the parameter estimates for p
0
 and λ would be:

(0 3) 0 5 (0 2) 0 5 (0 4)

0 5 0 444 0 5 0 485 0 465

( 3) 0 5 (0 2) 0 5 ( 4)

0 5 0 555 0 5 0 554 0 555

0 0 0p (0 3) 0 p0(0 ) 0 p3)3) ×555 . +2) . ×5 .
= .0 × .0 + .0 × .0 = .0

λ .(0 = .0 × λ . +2) . ×5 λ .(0

= .0 × .0 + .0 × .0 = .0

where p
0
(ρ) and λ(ρ) denote the estimate for p

0
 and λ 

when the correlation is set at ρ, respectively. When ρ 
is greater than 0.8, we interpolate based on ρ = 0.6 and 
ρ = 0.8, that is:
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When ρ is not specified, we use the preferred esti-
mates in HLZ, i.e., ρ = 0.2.

The user specif ies the value for ρ. We take the 
following steps to obtain the multiple-testing-adjusted 
Sharpe ratios:

• We obtain the estimate for p
0
 and λ using the afore-

mentioned linear interpolation.
• The user calculates the Sharpe ratio (�SR ) of the 

new strategy under consideration and specifies how 
many alternative strategies have been tried (N ).

• With these parameter specifications ( �
0p S0 R NSρ, λ ,SRSS ), 

we run B (=5,000) sets of simulations to find the 
haircut Sharpe ratio. The following steps describe 
the steps of the simulations:
a. For each set of simulation, we draw N strategies 

based on the model in HLZ that is parameterized 
by ρ, p

0
, and λ. In particular, with probability 

p
0
, the strategy mean is drawn as zero; with 

probability 1–p
0
, the strategy mean is drawn 

from an exponential distribution with mean λ. 
The return innovations are contemporaneously 
correlated with a correlation coefficient of ρ and 
are assumed to be uncorrelated over time. All 
strategy returns have a volatility of σ = 15%.

b. We calculate the p-values for the N simulated 
return series and use the three multiple-testing-
adjustment procedures described in the main 
text to calculate the adjusted p-value for the new 
strategy.

c. We take the median p-value across the B sets of 
simulations as the final adjusted p-value. Lastly, 
we convert this p-value into the haircut Sharpe 
ratio �HSRSS .

Intuitively, a larger p
0
 implies more f lukes among 

the strategies and thus a higher haircut. A larger λ means 
that true strategies have higher means and are thus more 
significant. As a result, the haircut is smaller. Our model 
lets a user calculate exactly the haircut level needed for 
a specification of p

0
 and λ.

ENDNOTES

We appreciate the comments of Frank Fabozzi, Scott 
Linn, Marcos López de Prado, Bernhard Scherer, Christian 
Walder, Nico Weinert, and the seminar participants at the 
Inquire Europe UK, Man-AHL, APG, CPPIB, RA, as well 
as Wharton Jacobs-Levy, CQA, and SQA.

1While practices may vary across different invest-
ment management companies, the 50% haircut is generally 
considered the industry standard. In presenting this article 
to numerous practitioners of f inance, such as at Inquire 
Europe-UK, CQA, and SQA, no one challenged the 50% 
assumption.

2Our program is available at
http://faculty.fuqua.duke.edu/~charvey/backtesting
3Without the normality assumption, the t-statistic 

becomes asymptotically normally distributed, based on the 
central limit theorem.

4Lower-frequency Sharpe ratios can be calculated 
straightforwardly, assuming higher-frequency returns are 
independent. For instance, if μ̂  and σ̂  denote the mean and 
volatility of monthly returns, respectively, then the annual 
Sharpe ratio equals 12 ˆ 12 ˆ 12 ˆ ˆμ /ˆ σ = μ /ˆ σ.

5It can also be misleading if returns are not i.i.d. (for 
example, non-normality and/or autocorrelation), or if the 
volatility does not ref lect the risk.

6See Sullivan, Timmermann, and White [1999, 2001] 
and White [2000].

7See Leamer [1978], Lo and MacKinlay [1990], Fama 
[1991], and Schwert [2003]. A recent article by McLean and 
Pontiff [2015] shows a significant degradation of performance 
of identified anomalies after publication.

8See Welch and Goyal [2008].
9See Button et al. [2013].
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10For the literature on the family-wise error rate, see 
Holm [1979], Hochberg [1988], and Hommel [1988]. For 
the literature on the false-discovery rate, see Benjamini and 
Hochberg [1995], Benjamini and Liu [1999], Benjamini 
and Yekutieli [2001], Storey [2003], and Sarkar and Guo 
[2009].

11For more details on FWER and FDR, see HLZ.
12For the statistics literature on Bonferroni’s method, 

see Schweder and Spjotvoll [1982] and Hochberg and 
 Benjamini [1990]. For the applications of Bonferroni’s 
method in finance, see Shanken [1990], Ferson and Harvey 
[1999], Boudoukh et al. [2007], and Patton and Timmer-
mann [2010].

13For the literature on Holm’s procedure and its exten-
sions, see Holm [1979] and Hochberg [1988]. Holland, Basu, 
and Sun [2010] emphasize the importance of Holm’s method 
in accounting research.

14See Holm [1979] for the proof.
15For the statistical literature on BHY’s method, see 

Benjamini and Hochberg [1995], Benjamini and Yekutieli 
[2001], Sarkar [2002], and Storey [2003]. For the applications 
of methods that control the false discovery rate in finance, see 
Barras, Scaillet, and Wermers [2010], Bajgrowicz and Scaillet 
[2012], and Kosowski et al. [2006].

16See Bailey et al. [2014, 2015] and López de Prado 
[2013].

17See López de Prado [2013] for a similar argument.
18See Hansen and Timmermann [2012] for a discussion 

on sample splitting for univariate tests.
19For E/P, we construct an investment strategy that 

takes a long position in the top decile (highest E/P) and a 
short position in the bottom decile (lowest E/P) of the cross-
section of E/P sorted portfolios. For MOM, we construct an 
investment strategy that takes a long position in the top decile 
(past winners) and a short position in the bottom decile (past 
losers) of the cross-section of portfolios sorted by past returns. 
Both the data for E/P and MOM are obtained from Ken 
French’s on-line data library for the period from July 1963 
to December 2012. For BAB, return statistics are extracted 
from table IV of Frazzini and Pedersen [2013].

20Mathematically, this happens because the p-value is 
very sensitive to the t-statistic when the t-statistic is large. In 
our example, when N = 50 and for BAB, the p-value for a 
t-statistic of 7.29 (single test) is one-50th of the p-value for a 
t-statistic of 6.64 (multiple-testing-adjusted t-statistic), i.e., 
pM/pS ≈ 50.

21Assuming T is in months, if SR  is an annualized 
Sharpe ratio, t 12t S-stat T /� ; if �SR is a monthly Sharpe 
ratio, t S-stat R TSSSRSS� .

22The number of observations is also central to con-
verting a Sharpe ratio to a t-statistic.

23Let VaR(α) of a return series to be the α-th per-
centile of the return distribution. Assuming that returns are 
approximately normally distributed, it can be shown that 
VaR is related to Sharpe ratio by ( ) SR zVaR = −SRσ α , where zα is 
the z-score for the (1 – α)-th percentile of a standard normal 
distribution and σ is the standard deviation of the return. 
Multiple-testing-adjusted Sharpe ratios can then be used to 
adjust VaRs. As with the Sharpe ratio, if non-normalities 
exist, these features need to be ref lected in the VaR.

24We use number one, two, three, four, and five to indi-
cate daily, weekly, monthly, quarterly, and annually sampled 
returns, respectively.

25For the fourth input, “1” denotes a Sharpe ratio that is 
annualized and “0” denotes otherwise. For the fifth input, “1” 
denotes a Sharpe ratio that is not autocorrelation corrected 
and “0” denotes otherwise.

26We follow Lo [2002] to adjust Sharpe ratios for 
autocorrelation.
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