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ABSTRACT

While Kosowski et al. (2006, Journal of Finance 61, 2551-2595) and Fama and French
(2010, Journal of Finance 65, 1915-1947) both evaluate whether mutual funds out-
perform, their conclusions are very different. We reconcile their findings. We show
that the Fama-French method suffers from an undersampling problem that leads to
a failure to reject the null hypothesis of zero alpha, even when some funds generate
economically large risk-adjusted returns. In contrast, Kosowski et al. substantially
overreject the null hypothesis, even when all funds have a zero alpha. We present
a novel bootstrapping approach that should be useful to future researchers choosing
between the two approaches.

IDENTIFYING FUNDS THAT WILL “beat the market” is one of the oldest and
most challenging problems in finance—with thousands of funds, some will out-
perform purely by luck. Influential papers by Kosowski et al. (2006) and Fama
and French (2010) employ a bootstrapping approach to try to separate luck
from skill but arrive at strikingly different conclusions. Kosowski et al. (2006)
find that a substantial fraction of funds outperform. In contrast, Fama and
French (2010) provide evidence that no advantage exists for active compared
to passive management. In this paper, we seek to shed light on why the conclu-
sions of these two studies are so diametrically opposed when both studies use
similar data and a common bootstrapping approach.

While both studies use bootstrapping, their implementations are very differ-
ent. The Kosowski et al. (2006) approach bootstraps the data firm by firm and
requires a minimum of 60 observations. In contrast, Fama and French (2010)
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bootstrap the cross section of fund returns, thereby retaining the economically
important correlation structure, and require a minimum of only eight observa-
tions.

We provide a number of apples-to-apples comparisons of these techniques—
for example, we require the Fama-French (2010) approach to have a minimum
of 60 observations. We design a simulation study in which we know the outper-
forming funds in advance. Our technique is related to Harvey and Liu (2020)
and is designed to capture the ability of each approach to correctly identify
the outperforming funds. We provide five different comparisons that we be-
lieve will be useful to future researchers seeking to choose the most powerful
technique.

Our results can be summarized as follows. Comparing test size (i.e., the Type
I error rate or the probability of falsely classifying a fund as an outperformer),
Kosowski et al.’s (2006) approach is substantially oversized and therefore over-
rejects the market efficiency hypothesis, that is, the hypothesis that no fund
outperforms. In contrast, the Fama and French (2010) requirement of a min-
imum of eight observations leads to undersampling for certain funds in the
bootstrapped simulations in that the bootstrapped sample has fewer observa-
tions than the actual sample. As a result, their approach leads to a strong
asymmetry in the distribution of the bootstrapped ¢-statistics between under-
sampling and oversampling (i.e., the opposite of undersampling) for funds with
a short history, which makes it difficult for their test to reject the null hypoth-
esis. As a result, their test is undersized under the null and hence lacks power
to detect outperforming funds under the alternative.! Reconciling these two
studies, we propose two adjusted Fama and French (2010) approaches that we
believe will be useful for future research. The first approach simply focuses
on those funds with a certain number of observations (e.g., 60 monthly obser-
vations) and is straightforward to implement. The second approach involves
dropping funds with implausible ¢-statistics in the bootstrapped iterations. We
provide guidance on what constitutes “implausible” ¢-statistics using our sim-
ulation approach. Both adjustments are shown to have near-optimal size and
are more powerful than the original Fama and French (2010) implementation.
Applying the adjusted Fama-French methods, our evidence on mutual fund
outperformance lies somewhere between Kosowski et al. (2006) and Fama and
French (2010).

Our paper is related to the considerable statistics literature on bootstrap-
based inference, which has become popular in finance applications.
Theoretically, bootstrap-based methods may deliver substantial improve-
ment over traditional approaches based on asymptotic theories for relatively
small samples (see, for example, Beran (1998), Hall (1992), Davidson and

L Our findings have important implications for the interpretation of many recent papers that
apply the method of either Kosowski et al. (2006) or Fama and French (2010). An incomplete list of
such papers includes Chen and Liang (2007), Jiang, Yao, and Yu (2007), Busse, Goyal, and Wahal
(2010), Ayadi and Kryzanowski (2011), D’Agostino, McQuinn, and Whelan (2012), Cao et al. (2013),
Hau and Lai (2013), Blake et al. (2013), Busse, Goyal, and Wahal (2014), Harvey and Liu (2017),
Yan and Zheng (2017), and Chordia, Goyal, and Saretto (2020).
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MacKinnon (1999), Horowitz (2003)).2 Despite the strong theoretical appeal,
existing Monte Carlo experiments that support bootstrap-based tests are of-
ten based on univariate tests in stylized settings. Because a generic bootstrap
test that is optimal in different contexts does not exist, it is important for re-
searchers to study the properties of a given bootstrap approach for a particular
application. We conduct such an exercise for mutual fund performance evalu-
ation that features an unbalanced panel with a large cross section, a common
factor-model benchmark across funds, and potentially a nontrivial dependence
structure in fund residuals in the cross section.?

Another recent study that analyzes Kosowski et al. (2006) and Fama and
French (2010) is Huang et al. (2020, HJLP). The authors focus on the asymp-
totic properties of Kosowski et al. (2006) and Fama and French (2010) and
propose alternative test statistics to enhance test power. Different from their
paper, we focus on the empirical performance of both papers and propose en-
hancements based on the original test statistics proposed in Fama and French
(2010). For example, while HJLP claim that Kosowski et al. (2006)’s approach
has a correct asymptotic test size, we show that it is severely oversized in
our Monte Carlo experiments where we maintain key features of the actual
data. As another example, whereas HJLP emphasize the importance of skew-
ness in fund returns, our empirical approach takes higher-order moments into
account. Compared to the test statistics proposed in HJLP, we adjust the orig-
inal percentile statistics in Fama and French (2010). Our adjusted statistics
are likely more robust to extreme test statistics in the cross section and hence
more informative about the additional question of how many funds are outper-
forming.

Our paper is organized as follows. Section I discusses the similarities
and differences between Kosowski et al. (2006) and Fama and French
(2010). Section II describes our simulation framework and presents our
results. Section III addresses issues related to our simulation framework.
Section IV concludes.

I. Methodological Similarities and Differences
A. Similarities

Both Kosowski et al. (2006, hereafter KITWW) and Fama and French (2010,
hereafter FF) address the question of whether outperforming funds exist.
Note that this question is in absolute terms (i.e., a single outperformer, if de-
tected, provides a definitive yes to the question) and thus is different from the

2 Also see more recent discussions in MacKinnon (2009) and Horowitz (2019).

3 Related bootstrap techniques that adjust for serial correlation and potentially cross-sectional
dependence include Politis and Romano (1994), Li and Maddala (1996), Buhlmann (1997, 1998),
Lahiri (1999), Politis and White (2004), Romano, Shaikh, and Wolf (2008), and Giacomini, Politis,
and White (2013). Also see the review paper by MacKinnon (2002). Different from these papers,
we focus on the implementations of Kosowski et al. (2006) and Fama and French (2010)—two
bootstrapping techniques that are specifically used for fund performance evaluation.
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next-step question of how many funds outperform, which is also extensively
studied in the literature (see, e.g., Barras, Scaillet, and Wermers (2010, 2022),
Ferson and Chen (2020), and Harvey and Liu (2018)). The corresponding null
hypothesis is that all funds generate a zero alpha.

Driven by this common null hypothesis, both KTWW and FF construct their
tests by forcing this null to hold exactly in-sample. For our replication of these
papers, we subtract the estimated alpha from each fund to obtain a pseudo
panel of funds that have an in-sample alpha of exactly zero. We then treat
this as the return population and resample to generate the cross section of
test statistics (i.e., ¢-statistics) under the null hypothesis. To summarize in-
formation in the cross section, we focus on extreme percentiles (e.g., the 90"
percentile) of the cross section of test statistics. The bootstrap allows us to ob-
tain the null (empirical) distribution of a percentile statistic. If this percentile
statistic for the actual data is too large to be explained by the null distribution,
we reject the null and conclude that some fund managers must possess skill.
Skill in our context is measured by after-fee excess returns.

Throughout our paper, we follow KTWW’s and FF’s main specifications and
use the Carhart (1997) four-factor model as the benchmark model to risk-
adjusted fund returns.

B. Differences

There are two main differences between KTWW’s implementation and FF’s
implementation of the bootstrap idea: sample selection and the bootstrap ap-
proach. In the two subsections below, we first illustrate the potential impact
of sample selection by examining exemplar funds (Section I.B.1). We then cat-
egorize bootstrap methods used by KTWW and FF as well as two extended
approaches (Section 1.B.2).

B.1. Sample Selection

FF differ from KTWW in terms of the cross section of funds that they focus
on. While FF examine all funds that have at least eight observations,* KTWW
use a more stringent threshold of 60 observations in various specifications of
their paper. We illustrate the potential impact of sample length in this sec-
tion, leaving more detailed power analysis to subsequent sections. In addition,
sample selection may interact with the bootstrap methods, which we discuss
in the next section. For now, we keep our illustration simple and focus on FF’s
original bootstrap approach, namely, the simultaneous bootstrap of the cross
section (see Section I.B.2 for a list of alternative bootstrap methods we study).

Bootstrapping is usually performed only over the sample period for which
a fund has observations (for now we refer to this as the traditional approach,
which is the main approach of KTWW). FF’s approach differs from the tra-
ditional approach in that they resample the entire cross section at any point

4 See our discussion in Section ITI.B where we require eight distinct observations.
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in time and, as such, some funds have missing observations. As a result, the
number of observations for a particular fund’s bootstrapped sample may differ
from the number of observations in the actual sample, which may lead to a
difference in the distribution of ¢-statistics for this approach compared to the
traditional method (which does not include missing observations). FF acknowl-
edge this difference and claim it is not a serious issue for their approach. They
argue that the oversampling of some funds should roughly offset the under-
sampling of others, leading to a cross-sectional distribution of ¢-statistics that
has similar properties as that generated using actual fund returns.?

One potential issue with FF’s argument is that while it is true that the num-
ber of oversampled funds should approximately equal the number of under-
sampled funds in a simulation run, the impact on the individual ¢-statistic dis-
tributions (and hence the cross-sectional distribution of ¢-statistics) could be
very different between oversampling and undersampling. In particular, given
that a ¢-distribution with degrees of freedom D converges to a standard normal
distribution when D is large, oversampling should not be as much of a concern
as undersampling. For example, for a fund with T' = 24 actual returns, over-
sampling the fund’s returns (e.g., 7' = 36) is unlikely to cause a problem be-
cause both T = 24 and T' = 36 generate similar distributions for the ¢-statistic,
whereas undersampling (e.g., T' = 12) leads to a distribution with a fatter tail
than a normal distribution, which may pose a problem for the FF method.

Given FF’s approach of missing data bootstrap, a low number of draws may
occur for funds with short return histories. To ensure a sufficient sample size,
FF require at least eight unique return observations in either the original re-
turn sample or the bootstrapped sample to include a fund in the analysis.® We
adopt this requirement throughout our analysis.

We illustrate the asymmetric impact of oversampling and undersampling
through an example. We examine the bootstrapped distribution of ¢-statistics
for several selected funds. In particular, for a given T, we randomly select a
fund with approximately 7' monthly observations. Focusing on this fund, we
first generate the corresponding zero-alpha fund by subtracting its in-sample
alpha estimate from its returns (following the FF approach) and then pro-
duce three sets of distributions by bootstrapping one million times. In the first
set, we generate the distribution for the number of observations in the boot-
strapped samples by following the FF approach. In the second set, we compare
the bootstrapped distribution of z-statistics between the traditional approach,
which we will refer to as the “complete-data” bootstrap (following KTWW),
that only resamples the actual fund returns and the FF method, which we will
call the “missing data” bootstrap, that resamples all time periods, including
those for which the fund has missing observations. In the last set, we focus on

5 See the third paragraph in Fama and French (2010, p. 1925).

6 FF state that they only require eight observations, but in reality they should state that eight
unique observations are required. We thank the referee for pointing this out. Given that many
papers implemented the FF method as stated (e.g., Busse, Goyal, and Wahal (2010) and Cao et al.
(2013)), in Appendix A we report the equivalent of Figure 1 with eight observations (that might
not be unique). The lack of power issue is even more severe.
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the FF approach by decomposing its bootstrapped distribution of ¢-statistics
into two separate distributions, one conditional on the number of observa-
tions drawn no fewer than T (i.e., oversampling) and the other conditional on
undersampling.

Figure 1 reports the results for two funds with 7' < 24 and Figure 2 for two
funds with 24 < T' < 60. Let us focus on Panel B of Figure 1 first, which shows
the bootstrapped distributions for a fund with 7' = 23 (i.e., roughly two years
of data). The top graph (i.e., bootstrapped distribution for the number of ob-
servations) peaks at 23 and is roughly symmetric around 23. There is a large
amount of variation in the bootstrapped number of observations, ranging from
11 to around 42.

The middle graph in Figure 1, Panel B (i.e., the complete-data or individual
fund vs. missing-data or cross-sectional bootstrap) shows how the missing-data
approach distorts the distribution of #-statistics. We focus on large realizations
(i.e., t-statistics > 5) of the ¢-statistic because they are more relevant to the
FF approach, which examines the right tail of the cross-sectional distribution
of t-statistics. We also winsorize the distribution at 10 to better summarize
information in the right tail because the distribution of ¢-statistics is rather
dispersed when the ¢-statistic is larger than 10. We observe that across all ¢-
statistic bins, the probability generated by the FF approach (i.e., missing-data
distribution) is higher than that of the complete-data distribution.

The bottom graph in Figure 1, Panel B shows the oversampling versus un-
dersampling decomposition of the FF distribution in the middle graph. In par-
ticular, conditional on undersampling, the probability of generating a large
t-statistic is uniformly larger than when we are oversampling.

Turning to Panel A, the story is more complex because the FF approach
requires at least eight unique observations. This implies an asymmetric dis-
tribution (around T' = 13, the number of observations for the original data) for
the number of draws in the top graph of Panel A: the distribution is skewed to
the right, implying a higher chance of oversampling than undersampling.

The middle graph of Panel A displays a similar pattern as the middle graph
of Panel B: FF’s missing-data bootstrap leads to a slightly higher probabil-
ity of generating very large ¢-statistics. However, decomposing this probability
into oversampling versus undersampling (as shown in the bottom graph), a
different pattern emerges relative to the bottom graph of Panel B: undersam-
pling leads to a lower chance of generating large ¢-statistics than oversampling.
This result can be explained by the strong asymmetry in the distribution of
the number of draws as required by the FF approach. Because undersampling
is much less likely than oversampling, the probability of generating a given
(large) ¢-statistic is also lower with undersampling than oversampling.”

7In Figure Al, where we require eight observations (including repeated observations), the dis-
tribution of the number of draws is less asymmetric since more draws from undersampling are
acceptable (e.g., seven unique draws and one repeat would qualify for inclusion). In this case,
the results for the contrast between oversampling and undersampling are similar to those in the
bottom graph of Panel B: undersampling leads to a higher chance of large ¢-statistics across all
t-statistic bins.



Luck versus Skill in the Cross Section of Mutual Fund Returns 1927

Panel (a): Exemplar Fund withTe= 13 Panel (b): Exemplar Fund withT = 23
03 Missing-Data Bootstrapped Distribution (# of Observations) 02 Missing-Data Bootstrapped Distribution (# of Observations)
. T T T T T T T T T T . T T T T T T T T T
0.25 1
Note that a complete data 0.15fF 4

bootstrap always draws 13 4
observations

Probability Density
o
Probability Density
o
\

o
o
5]

.

0.05

10 15 20 25 30 35 40 45 50
Fama and French (2010) require at least  # of Observations # of Observations

8 unique observations so all bootstrap

draws of 0 to 7 observations are censored.

%10 Distribution (¢-statistic, complete vs. missing) x10° Distribution (t-statistic, complete vs. missing)
6 T T T T T T T

17 27 29 3

23 25

9 11 13 15 19 21

T
Complete data
(individual fund by fund) B

S
T

4

©
L

“ Missing data

(cross-sectional)

&
T

061 q
Missing data bootstrap
produces large t-stats about
0.02% of the time

Missing data bootstrap
produces large t-stats with
a slightly higher probability

o
~
L

Probability Density
oW
Probability Density

o
N

[5.6) [6,7) [7.8) [8,9) [9,10) 10+ [5,6) [6,7) [7.8) [8,9) [9,10) 10+
t-statistic t-statistic

Missing-Data (Cross-Sectional) Bootstrapped Distribution Missing-Data (Cross-Sectional) Bootstrapped Distribution
x10* (¢-statistic, ing vs. %1078 (t-statistic, ing vs. i
T T

T — T T 1.4 T T T T T T
Oversampling

[

IS
T

Undersampling

w
T

=4

©

Only t-statistics > 5
are reported

o
T
Probability Density
=)
@

Probability Density
<o
~

T
o
N

L L I 1
[5.6) [6,7) [7.8) [8,9) [9,10) 10+ 0 [5,6) [6,7) [7.8) [8,9) [9,10) 10+
t-statistic t-statistic

Figure 1. Bootstrapped distributions for two mutual funds with 7' < 24. This figure shows
bootstrapped distributions for two mutual funds with 7' < 24. We compare the bootstrapped distri-
butions corresponding to the “complete-data” bootstrap (individual funds) and the “missing-data”
bootstrap (Fama and French (2010) or cross-sectional bootstrap). For each bootstrapping approach,
we resample one million times. In each panel, we plot the bootstrapped distribution for the num-
ber of observations corresponding to the missing-data bootstrap in the top figure, the distributions
for the bootstrapped ¢-statistics for both approaches in the middle figure, and the conditional dis-
tributions for the bootstrapped ¢-statistics corresponding to oversampling (i.e., bootstrap sample
> T') and undersampling (i.e., bootstrap sample < 7') for the missing-data bootstrap in the bottom
figure. In the top figure, the number of observations is truncated at eight based on Fama and
French (2010). In the middle and bottom figures, ¢-statistics with a value of 5 and above are re-
ported and truncated at 10. (Color figure can be viewed at wileyonlinelibrary.com)
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Figure 2. Bootstrapped distributions for two mutual funds with 7' > 24. This figure shows
bootstrapped distributions for two mutual funds with 7' > 24. We compare the bootstrapped distri-
butions corresponding to the “complete-data” bootstrap (individual funds) and the “missing-data”
bootstrap (Fama and French (2010) or cross-sectional approach). For each bootstrapping approach,
we resample one million times. In each panel, we plot the bootstrapped distribution for the number
of observations corresponding to the missing-data bootstrap in the top figure, the distributions for
the bootstrapped ¢-statistics for both approaches in the middle figure, and the conditional distribu-
tions for the bootstrapped ¢-statistics corresponding to oversampling (i.e., bootstrap sample > T)
and undersampling (i.e., bootstrap sample < T') for the missing-data bootstrap in the bottom fig-
ure. In the top figure, the number of observations is truncated at eight based on Fama and French
(2010). In the middle and bottom figures, ¢-statistics with a value of 5 and above are reported and
truncated at 10 in Panel A, and ¢-statistics with a value of 2 and above are reported and truncated
at 5 in Panel B. (Color figure can be viewed at wileyonlinelibrary.com)

To summarize, we observe two patterns in Figure 1. First, FF’s missing-
data bootstrap has a higher chance of drawing very large ¢-statistics than
the complete-data bootstrap. Second, everything else equal, undersampling is
more likely to generate large ¢-statistics than oversampling. At 7' = 13, FF’s
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approach alleviates the undersampling distortion in part by truncating the
number of draws at eight (unique observations).

For larger T values, as shown in Figure 2, the difference between the
complete-data bootstrap and the missing-data bootstrap is substantially
smaller, although some asymmetry still exists between oversampling and un-
dersampling for T' = 36.

Our analysis so far focuses on the implication of the FF approach at the
fund level. For a given fund, the FF bootstrapped #-statistic distribution is
more fat-tailed compared to the distribution of actual returns for funds with
a relatively short sample period (e.g., T < 24). This fund-level result is likely
to affect FF’s cross-sectional tests because the asymmetry in the bootstrapped
t-statistic distribution (between oversampling and undersampling) for funds
with a short history cannot be offset by funds with a larger sample, leading to
a fat-tailed bootstrapped distribution for the FF test statistics (e.g., the 95%
percentile).? This intuition provides the basis for our analysis of test size and
power below.

To help readers navigate the statistical terms used throughout our paper, in
Table I we provide a summary of the statistical terms used in the context of
testing fund outperformance.

B.2. Bootstrap Methods

Figure 3 depicts the different bootstrap methods. The top panel shows the
original data as well as the two individual fund “complete-data” approaches
of KTWW. The bottom panels show the original cross-sectional “missing-
data” approach as well as two additional approaches that mirror KTWW.
KTWW’s Baseline Individual Fund Bootstrap: Residual Resampling (INDy).
KTWW’s baseline bootstrap strategy resamples residuals within each fund.
This is a “complete data” approach where each resampling has exactly the
same number of fund observations as the historical data for the fund. In
particular, for each fund, we run a factor model regression and store the re-
gression coefficients (i.e., the alpha and factor loadings) and return residuals.
At each bootstrap iteration we only sample (with replacement) individual fund
residuals, which, together with the factor realizations arranged in the orig-
inal chronological order and the preestimated fund betas, helps produce the
pseudo-time series of fund returns. Note that « is set to zero when construct-
ing the pseudo-time series of fund returns. We denote this bootstrap approach
by IND; where “IND” refers to individual. (See I.B.1 in KTWW for more details
on this approach.) An example of this approach is presented in the middle top
panel of Figure 3.

KTWW’s Extended Individual Fund Bootstrap: Independent Residual and
Factor Resampling (INDj;). To take the sampling of factors into account,
KTWW also propose an extended bootstrap that features the independent

8 Our results apply to both the left and the right tails of the cross-sectional ¢-statistic distribu-
tion. Given our focus on testing outperforming funds, we focus on the right tail.
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Table I
Summary of Statistical Terminology

This table provides a summary of statistical terms that we use in the context of testing fund
outperformance.

Terms Description

Type I error Assuming the null hypothesis of zero outperformance across all
funds, the mistake of falsely rejecting the null and claiming
outperformance for some funds.

Size Assuming the null hypothesis of zero outperformance across all
funds, the actual rate of false rejections for a given approach or
the probability of making a Type I error (falsely claiming fund
outperformance).

Significance level The prespecified, desired level of size.

Type II error Assuming the alternative hypothesis that some funds outperform is
true, the mistake of not rejecting the null and falsely claiming no
outperformance.

Power Assuming the alternative hypothesis that some funds outperform is
true, the actual rate of correctly identifying the existence of
outperformers.

Undersampling In a cross-sectional bootstrap (sampling a common date across all
funds), undersampling occurs when the bootstrap draws fewer
observations than the actual number of historical observations for
the fund. This can occur because the fund does not exist in some
of the months that are drawn. We refer to this as the
“missing-data” bootstrap.

Oversampling It is also possible that bootstrap could return more observations
than the actual number of historical observations by
oversampling months in which the fund was in existence.

resampling of factor returns and fund return residuals. This is also a complete-
data approach. Similar to the baseline approach, for each fund a factor model
is estimated and both regression outputs and return residuals are stored. At
each bootstrap iteration, we first resample factor returns, the draws of which
are the same across all funds. Then, within each fund, we resample residuals
independently from the resampling of factor returns. We use both resampled
residuals and resampled factor returns to construct the pseudo time series of
fund returns. We denote this bootstrap approach by INDj;. (See Section IV.B in
KTWW for more details on this approach.) Note that by keeping factor returns
intact UNDj) or resampling them simultaneously across funds (INDj;), the
two KTWW methods preserve cross-sectional correlation in alpha caused by
common factor realizations. However, they do not control for potential residual
correlation as captured by FF’s method.

FF’s Cross-Sectional Bootstrap (CROSS;). To take cross-sectional depen-
dency into account, the FF method bootstraps time periods once at each boot-
strap iteration, and the same draws of time periods apply to each fund in the
cross section. Fund residuals and factor returns (which are also resampled ac-
cording to the same draws of time periods) are used to construct the pseudo
panel of fund returns. Think of a data matrix with time periods in rows and
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Starting data IND, IND
Factor Resi 1 Resi 2 Factor Resi 1 Resi 2 Factor Resi 1 Resi 2
1 1 9 9
2 2 4 8 4 8
3 3 3 10 3 10
4 4 3 2 3 2
5 5 6 3 6 3
6 6 6 3 6 3
i/ i 8 4 8 4
8 8 i 5 7 5
9 9 5 5
10 10 | 1
Original factors and fund residuals KTWW:'s first approach in which factors are KTWW's second approach in which factors are
(assume one factor and two funds) I d and residuals are ind dently independently bootstrapped and residuals are
bootstrapped within each fund independently bootstrapped (from other funds
and factors) within each fund
CROSS [ CROSS CROSS 1
Factor Resi 1 Resi 2 Factor Resi 1 Resi 2 Factor Resi 1 Resi 2
3 1 5 3
3 2 3 3
| M |
10 3 10
9 4 9
1] 5 d
2 6 2
1 i 1
8 8 8
9 9 9 9
10 10 10 10
FF's approach in which factors and Extended FF's approach in which Extended FF's approach in which residuals
residuals are simultaneously residuals are simultaneously bootstrapped. are simultaneously bootstrapped and
bootstrapped but factors are not bootstrapped factors are independently bootstrapped

Figure 3. Five Methods: A diagrammatic display. For a fund i, let the estimated g and « be §;
and &;, respectively. Let factor returns be F; (assume a single factor for simplicity) and regression
residuals be ¢; ;. For a bootstrap sample (after enforcing the zero-alpha assumption), we calculate
the bootstrapped return according to g; x F; + &+, Where F; and &; 1 are bootstrapped factor returns
and residuals, respectively. Different methods amount to different ways to obtain F; and &;,. We
then regress bootstrapped returns on F; to obtain test statistics for the bootstrapped sample. (Color
figure can be viewed at wileyonlinelibrary.com)

funds in columns. This method samples rows of this matrix. We denote this ap-
proach by CROSS;. (See Section III.A in FF for more details on this approach.)?

9 In Section IV.C, KTWW state that they implemented a similar cross-sectional approach. Given
their unreported results, we mainly attribute this method to FF.
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Given that time periods are drawn cross-sectionally, some observations for any
given fund will be missing for funds with partial histories. This is illustrated
in the bottom left panel of Figure 3.

Extended Cross-Sectional Bootstrap: CROSS;; and CROSSy;;. The next two
bootstrap approaches are not implemented by KTWW or FF, but are useful
in disentangling the results of different bootstrapping methods. Both of these
methods are missing-data approaches and are depicted in the last two panels
of Figure 3.

The CROSS]; approach modifies the original FF cross-sectional bootstrap
approach, CROSS;, by only bootstrapping fund residuals cross-sectionally at
each iteration. In particular, for each fund we run a factor model regression
and store the regression coefficients and return residuals. At each bootstrap
iteration, we follow FF to bootstrap time periods, and the same draws of time
periods apply to each fund in the cross section. We only bootstrap return resid-
uals. These residuals, together with the factor realizations arranged in the
original chronological order and the preestimated regression coefficients, gen-
erate the bootstrapped fund returns.

The CROSSj;; approach also modifies CROSS; by only bootstrapping fund
residuals, but resamples factor returns independently, similar to IND;;. In par-
ticular, at each bootstrap iteration, we follow FF to bootstrap time periods and
obtain the bootstrapped fund residuals. We then resample factor returns inde-
pendently from the residual bootstrap, with the same draws of factor returns
applying to each fund. Finally, we use bootstrapped fund residuals and resam-
pled factor returns to construct the combined bootstrapped fund returns.

II. Assessing Size and Power: A Simulation Exercise

Our mutual fund data are obtained from the Center for Research in Security
Prices (CRSP) Mutual Fund database after applying the same filters as in FF.
The number of funds over our full sample period that have at least eight ob-
servations is 4,007. The number of funds with 24 observations or less (but at
least eight observations) is 371.

A. The Simulation Design

Several challenges arise in comparing the bootstrapping methods of KTWW
and FF. First, their conclusions are drawn over different samples. FF include
funds with a number of observations as small as eight, whereas KTWW usually
have a higher threshold for the number of fund observations. In our simulation
design, we pay particular attention to this difference in sample size. Second,
the FF approach is theoretically more appealing in that it controls for cross-
sectional dependence in the residuals. Preserving this dependence structure
in a simulation exercise is challenging if we simulate returns from a certain
parametric distribution; any parametric distribution could misspecify the com-
plex cross-sectional distribution. One novelty of our simulation design is the
use of bootstrapping to overcome this issue. To be clear, although both KTWW
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and FF use bootstrapping, they use it to make inference. Under our simula-
tion design, we use bootstrapping to simulate the underlying data-generating
process.

Figure 4 illustrates our approach using a simplified example. In this exam-
ple, there are eight funds and 15 observations. Four of the funds have complete
data, two funds have 10 observations, and the final two funds have five obser-
vations. We call this the original data, D (see top left panel). To set up our
simulation and to provide apples-to-apples comparisons with KTWW, we focus
on the four funds with complete data, D*“? (see top right panel). As we discuss
more below, our idea is to work with this subset of complete-data funds but
intentionally drop some observations from some of the funds to recreate the
distribution of history length in the original data D. In general, D***isa T x N
matrix, with N the number of funds and 7' the number of monthly periods.

Our simulation exercise is carried out as follows:

e We randomly assign alphas to funds, as depicted in the left middle panel
of Figure 4. To ensure that alphas are properly scaled based on a fund’s
idiosyncratic risk, we obtain the risk estimates of all funds (in D**?) and
randomly select a fraction of p funds to have a positive alpha. In our exam-
ple in Figure 4, p = 0.25 so one in four funds gets an injected alpha while
all other funds have alpha set to zero. For these selected funds, an infor-
mation ratio, IR, is assigned to each fund, implying an alpha of IR x §;,
where 6; is fund 7’s idiosyncratic risk estimate. For the remaining funds,
we set the alpha to zero so the null hypothesis holds for these funds. Let
the adjusted data matrix be D,,, where m stands for the number of itera-
tions of random alpha assignment. The data matrix D,, thus contains the
return population for N funds, of which p x N have an information ratio
of IR and (1 — p) x N have a zero alpha.

¢ Note that the return population D,, contains (1 — p) x N of funds that
have an alpha of exactly zero (by construction). For the simulated realized
data (which we refer to as the realized data), which represent draws from
the underlying population, this almost never happens because, while D,,
represents the population, the realized sample is likely different from D,,.
Note that we view D,, as the underlying return population and hence we
draw a realized return sample from it. Since D,, is also simulated, we
refer to the corresponding sample as the simulated realized sample. We
therefore first perturb the time periods (i.e., bootstrap time periods for all
funds at the same time) to generate the realized data. This is displayed
in the right middle panel of Figure 4. Denote the perturbed data by D,
where c stands for “complete” in that funds in D¢, have a complete set of
observations (e.g., 15 in Figure 4). Below we construct subsets of ¢, that
include funds with fewer than 15 observations. The difference between D¢,
and D,, reflects the difference between the return population (D,,) and the
realized sample (7%,). Using the same bootstrap draws of time periods, we
also perturb the factor returns.
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We next randomly drop observations for each fund such that the empirical
distribution of the cross section of the number of observations resembles
the empirical distribution for the original data D. For example, the fre-
quency of funds with only eight observations in D is kept the same as in
our current data. We achieve this by first obtaining the empirical distri-
bution of the frequency of observations for the original data D. In Fig-
ure 4 where in the original data four of eight (50%) funds have complete
data, 25% of funds have one-third missing and 25% have two-thirds miss-
ing. Focusing on the four funds that have complete data, we recreate the
composition of original data. In our example, two of the four funds have
complete data. We delete observations for one fund so that one-third of
the observations are missing and we delete two-thirds of the observations
of the final fund so that our sample has the same distribution of missing
values as the original data D. Let the final data after this step be denoted
by D78, where mis stands for missing data and n indicates the number
of iterations for this step. A subsample of funds in D””s has the complete
history of returns (i.e., two funds in Figure 4 have T = 15) Let the return
matrix for this subsample of funds be denoted by Dm », Where ful stands
for the full history of returns.

It is worth emphasizing the differences among D, D,,, 5, D””S and

DI The data matrix D*® includes all funds in the original data (D) that
have complete history. The data matrix D,, adjusts D by injecting alpha
into some funds and setting alpha to zero for others; it still maintains the
original chronological order of time as in D and D*?. The data matrix D¢,
perturbs D,, (by bootstrapping the time periods) to generate the realized
data. It also represents the underlying complete data that are infeasible to
observe in practice, that is, it will never be the case that all funds in a par-
ticular subperiod have no missing data. The data matrix D is a subset
of T¢, that includes missing observations (which we 1ntent10nally created

in the data) and corresponds to the data used in FF. The data matrix Df ul
is a subset of D™ (and therefore also a subset of 7¢,) that only contalns
funds with complete return history. This last data set corresponds to the
sample used in KTWW.

We have constructed three data sets (D¢, Dﬁ‘fl, and D,’;un) so far, and
we are interested in five methods (INDy, INDH, CROSS;, CROSS;;, and
CROSS];p). The intersection of the two leads to 15 groups of tests. For each
group, we apply the given method to one of the three data sets. Within
each group, we run a host of tests that correspond to different percentiles
of the cross-sectional ¢-statistic distribution (e.g., the maximum ¢-statistic
and the 95 percentile of the ¢-statistics). For each test within each group,
we record the testing outcome, that is, whether the null hypothesis of the
nonexistence of outperforming funds is rejected for a given significance
level.

e, DS and D un constitute the simulated panels of returns for funds.

m,n’
Slnce we know exactly which funds outperform from D,,, we are able to
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empirically evaluate the error rates for KTWW and FF. We run M = 1, 000
(for m as in D,,, where we randomly inject alphas into funds in D**?) and
N =100 (for n as in DS, where we randomly drop observations from
7%, ) iterations to evaluate the Type II and Type I error rates. In our
context, the Type I error rate corresponds to the probability of falsely
rejecting the null hypothesis. The Type II error rate corresponds to the
probability of failing to reject the null hypothesis when outperforming
funds exist. Test power is calculated as one minus the Type II error
rate.

Similar to KTWW and FF, we run simulations for both subsamples as
well as the full sample. For five-year subsamples, we examine the initial
five-year period (1984 to 1988) and the last five-year period (2014 to 2018).
These two periods are representative of the number of funds available in the
cross section. Our simulation approach injects alphas into funds, and thus the
variation in mutual fund performance over time will not affect our results. In-
stead, the variation in residual correlations and the number of funds available
in the cross section across subsamples may have an impact.

We do not examine alternative five-year periods due to the high computa-
tional cost. The full sample covers the entire 1984 to 2018 period. Since fund
sample length plays a key role in determining the performance of different
bootstrapping methods, we provide a summary of fund sample length distribu-
tion in Table B.V.

B. Results for Five-Year Subsamples
B.1. Test Size

Test size is the probability of falsely rejecting the null hypothesis that all
funds have zero alpha, that is, the Type I error rate (see Table I for definitions).
By setting both IR (i.e., injected information ratio for outperforming funds) and
p (i.e., assumed fraction of outperforming funds) to zero, we use our simulation
framework to estimate test size. For a prespecified significance level, o, we
examine how close the realized test size is in relation to «.

Figures 5 (INDy), 6 (CROSS)), and 7 (CROSS];) include a summary of our re-
sults for the 1984 to 1988 period at the 10% significance level; Table B.I reports
more detailed results. Our figures display results only for IND;, CROSS;, and
CROSS|; because of the similar performance between IND; and IND;; and be-
tween CROSS;; and CROSSy;; (Figure 3 describes the different bootstrapping
methods). Our tables in Appendix B report results for all five methods.

Since we carry out our simulations under the null hypothesis, the average
t-statistic and o are close to zero across the three panels in Table B.I. The max-
imum ¢-statistic shows the significance of the best-performing fund by random
chance. This value is 3.06 in Panel A (funds may only have eight observations),
greater than 2.67 in Panel B and 2.78 in Panel C (all funds have 60 observa-
tions in Panels B and C). These results are due to the smaller sample size for
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Panel (a): IND, (Comparison of KTWW's Test Size Panel (b): IND, (Comparison of KTWW's Test Power
Across Alternative Samples) Across Alternative Samples)
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o Power is unsurprisingly higher given that
Full (KTWW's resampling, Panel B, Table BI) 021 there are so many rejections (oversized)
017 1
Kig. level KTWW is oversized (too often it rejects
the null of no outperformance) 0.1
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0 . . . . . . . . . .
max  99.5p 99p 98p 97p 95p 90p max 99.5p  99p 98p 97p 95p 90p

Figure 5. Results: KTWW’s test size and test power, 1984 to 1988 (186 funds). We plot test
size and test power at the 10% significance level. Test size corresponds to setting p = 0. Test power
corresponds to our baseline specification: IR = 0.75 and p = 5%. FF denotes Fama and French
(2010) and KTWW denotes Kosowski et al. (2006). (Color figure can be viewed at wileyonlineli-
brary.com)

Panel (a): CROSS, (Comparison of FF's Test Size) Panel (b): CROSS, (Comparison of FF's Test Power)

0.2 || FF achieves near-optimal size when the

minimum number of observations increases to 60 03k Full & Complete (FF's resampling, Panel B&C, Table BII)
[ a') The power of FF greatly improves when the minimum
N 015F g number of observations increases to 60
(2] L
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Full & Complete (FF's resampling, PaneNB&C, Table BI) 02t \4\\/
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) Missing (FF's resampling, Panel A, Table BI) // FF has little power. The highest power is achieved

at the 90th percentile---but it implies a 85% chance
of missing a truly outperforming fund

0 ' 0
max  99.5p 99p 98p 97p 95p 90p max  99.5p 99p 98p 97p 95p 90p

Figure 6. Results: FF’s test size and test power, 1984 to 1988 (186 funds). We report test
size and test power at the 10% significance level. Test size corresponds to setting p = 0. Test power
corresponds to our baseline specification: IR = 0.75 and p = 5%. FF denotes Fama and French
(2010) and KTWW denotes Kosowski et al. (2006). (Color figure can be viewed at wileyonlineli-
brary.com)

funds in D™ compared with D/, and T, (Figure 4 presents the simulation

design and definitions for different data sets).

Figure 5 shows that the IND; approach used by KTWW is substantially
oversized across all three samples. All three lines (corresponding to the three
samples) are well above the prespecified significance level (i.e., the dotted
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Panel (a): CROSS,, (Comparison of Panel (b): CROSS,, (Comparison of
Adjusted FF's Test Size) Adjusted FF's Test Power)
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Figure 7. Results: Adjusted FF’s Test Size and Test Power, 1984 to 1988 (186 Funds).
We report test size and test power at the 10% significance level. Test size corresponds to setting
p = 0. Test power corresponds to our baseline specification: IR = 0.75 and p = 5%. FF denotes
Fama and French (2010) and KTWW denotes Kosowski et al. (2006). (Color figure can be viewed
at wileyonlinelibrary.com)

benchmark line). This means that they falsely identify funds that outperform
when no fund outperforms (i.e., p = 0.0) in the simulation. Table B.I presents
detailed results for both the IND; approach and the IND;; approach. For ex-
ample, in Panel B of Table B.I (corresponding to KTWW’s sample selection)
and under 5% significance, the estimated size of KITWW’s two methods (IND;
and INDj;) ranges from 8.5% (the max statistic) to 23.2% (the 90 percentile).
KTWW’s approaches are therefore substantially oversized for the max statis-
tic and massively oversized for percentiles lower than, and including, the 99t"
percentile.!®

In contrast, FF’s approach (CROSS)) is substantially undersized in Panel A
of Table B.I, which corresponds to their application to the missing-data sample.
From the perspective of hypothesis testing, undersized tests, albeit conserva-
tive (in rejecting the null), are usually regarded as acceptable because the Type
I error rate constraint is satisfied. However, substantially undersized tests of-
ten lead to less powerful tests, which makes discovering outperforming funds
more difficult, as we shall see below. Correspondingly, in Panel A of Figure 6,
the solid line is substantially below the prespecified significance level. For in-
stance, test size for the 99" percentile is only 5%. While this indicates good
performance in terms of the Type I error rate, we will show that test power is
low, which makes it difficult to correctly discover outperforming funds.

Figure 6 (Panel A) shows that, different from the case with missing data (i.e.,
Panel A in Table B.I), both the full sample, with a complete history of returns,

10 For example, using the KTWW method, Cao et al. (2013) focus on percentiles ranging from
the 90" to the 99",
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and the complete sample feature size levels that are below and closer to the
desired significance level.

The two modified FF approaches (CROSS;; and CROSS;;), unlike the orig-
inal FF approach CROSS;, are also oversized, although usually to a lesser
extent compared to the corresponding KTWW methods (see Table B.I and
Figure 7).

Overall, in terms of test size, regardless of sample selection, our results sug-
gest that nonsimultaneous sampling of factor realizations (i.e., either nonsam-
pling of factor returns, as in IND; and CROSSj;, or independent sampling
of factor returns, as in IND;; and CROSS;;) leads to substantially oversized
tests. This means that the null hypothesis of no outperformance is rejected too
often when no fund outperforms.

B.2. Test Power

We now choose nonzero levels of p (assumed fraction of outperforming
funds) and IR (injected information ratio) to study test power (see Table I for
definitions). We explore nine specifications in total, with IR chosen from 0.5,
0.75, and 1.0 and p from 2.5%, 5%, and 10%. For our baseline specification, we
set IR to 0.75 and p to 5%.

Figures 5, 6, and 7 also include a summary of test power and Table B.II
reports more detailed results, all corresponding to our baseline specification.
In Panel A of Table B.II, FF’s CROSS}”S approach, which corresponds to FF’s
sample selection, generates very low power. When 5% of outperforming funds
are each endowed with an IR of 0.75, the average maximum ¢-statistic, «, is
3.08 (13.25%). However, the maximum power across the percentile statistics is
only 15.0% at the 10% level (associated with the 98" percentile), implying a
85% chance of falsely claiming zero alpha across all managers.

When we alter FF’s sample, as in Panels B and C, we observe a substan-
tial increase in test power for CROSS;. For example, for Df as in Panel B,
test power for the maximum statistic increases to 22.4% at the 10% level.
More extreme test statistics have a larger improvement in test power com-
pared to Panel A: at the 10% level, while the power for the maximum statistic
changes from 5.6% to 22.4%, the corresponding change for the 90™ percentile
is from 13.6% to 14.9%. Figure 6, Panel B, displays the difference in perfor-
mance for CROSS; across samples. The two dashed lines (corresponding to
D,’;”n and 7%, ,) dominate the solid line that corresponds to the missing sam-
ple (Figure 4 detalls the simulation design); these differences are smaller at
lower percentiles.

The improved performance of FF’s CROSS; ap;)roach when applied to the
sample with a complete history of returns (i.e., D;,",), can be explained by the
results in Table B.I. Because CROSS; is close to its optimal size when applied
to D,’;L”,i, its test power should also be high.

The two KTWW approaches (IND; and INDj;) have substantially higher
power than CROSS; across the three samples. However, given they are over-
sized, they provide ambiguous information in interpreting the test outcome
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because, even if the null hypothesis is rejected, it may be a false positive.
The same issue applies to the two extended FF approaches (CROSS;; and
CROSSy;;) (Figure 3 presents the different bootstrapping methods).

In absolute terms, test power of 22.4% (i.e., the best-case scenario for the
D,’;”fl sample) still seems low. This low test power says more than the general
difficulty in identifying outperforming funds for the mutual fund data than
about a deficiency in FF’s approach. On the one hand, the close-to-optimal
test size for CROSS;”Z in Table B.I is usually indicative of a powerful test.
On the other hand, the large number of nonperforming funds can mask the
performance of a fraction p of truly performing funds (despite an economically
meaningful p and IR), leading to low power for likely any multiple testing tech-
nique that successfully guards against false positives. For instance, in Panel B
of Table B.II, the average maximum ¢-statistic among truly performing funds
is 2.94, which is not far from the average maximum ¢-statistic among nonper-
forming funds of 2.65. Moreover, the average maximum « for the former group
is 11.07%, which is lower than the average maximum « for the latter group.

Tables TA.I to IA.VIII in the Internet Appendix report our results under al-
ternative values of IR and p.!! Not surprisingly, the highest power occurs at
the maximum values of the IR and p parameters. However, even at IR = 1 and
p = 10%, the highest power is only 66.3% (at 10% level of significance) for the
99t percentile.

Contrary to the perception that, for a given p of the fraction of outperforming
funds, the 100(1 — p)** percentile would be most powerful (e.g., Yan and Zheng
(2017)) in rejecting the null hypothesis, our results show that more extreme
test statistics are usually more powerful. For instance, in the example above
for Table IA.I, the highest test power is found for the 99" percentile, although
p = 10% of funds are outperforming. In fact, test power for the 90 percentile
is only 37.5%, substantially lower than that for the 99" percentile.

Overall, combining the evidence in Tables B.I and B.II, we recommend the
use of the FF approach with a complete history of returns G.e., CROSSF‘Z).
It has near-optimal size and much higher test power compared to the case
with missing observations. Among the different test statistics for CROSS{ ul,
we advocate the use of more extreme test statistics, such as the 99* percentile.

C. Results for the Full Sample

Finally, we examine the 1984 to 2018 sample. It has 2,876 funds in total.

We first clarify how we obtain the 2,876 funds. Note that our simulation
design described in Section II.A cannot be directly applied because keeping
funds that span the entire 1984 to 2018 period would leave us with very few
funds. We adjust our simulation design as follows. First, motivated by our re-
sults in Section 1.B.1, where T' = 60 yields little distortion in the bootstrapped
t-statistic distribution, we keep funds with at least 60 observations over the
1984 to 2018 period. This leaves us with 2,876 funds, which constitutes our

1 The Internet Appendix may be found in the online version of this article.
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Db for the 1984 to 2018 sample. Let the original sample of funds with at least
eight observations be D, which has 4,007 funds.

Second, we follow the same procedure as described in Section II.A to inject
alphas into funds in D*** and obtain the corresponding D,, (see Figure 4).12 We
perturb D, to obtain DS,. Now the question is how to insert missing observa-
tions into 7¢,, so that the resulting data (i.e., D) have the same distribution
in terms of the frequency of number of observations as D (i.e., the original data
with 4,007 funds). We achieve this stochastically, following the idea that funds
in D¢, with a larger number of observations will have a higher chance of keep-
ing more observations than funds with a lower number of observations. We
calibrate our model to ensure that the frequency distribution for the number
of observations for D7 is approximately the same as that for D.!3 After ob-

taining D7, we define D! as the subsample of funds in D¢, that have at least
60 observations.

Our results for the full sample are reported in Tables B.III and B.IV. Figure 8
contains a summary for the FF approach. Figures B.1 and B.2 in Appendix B
contain summaries for IND; and CROSS;;.

Figures B.1 and B.2 show that the issue of an oversized test is exacerbated
for IND; and CROSS;; compared to the five-year subsamples. For example, as
in Panel A of Figure B.1, various percentiles for IND; reach a size around 40%
when the nominal size is only 10%. In contrast, FF’s CROSS; still performs
well (as shown in Panel A of Figure 8): starting from the 99.5™ percentile,
although a bit oversized, all test statistics have a size close to the desired sig-
nificance level. In terms of test power (Panel B of Figure 8), the preferred test
statistics, such as the 99.5™ and 99" percentiles, have similar but lower test
power compared to the five-year subsamples (e.g., the 1984 to 1988 subsam-
ple in Figure 6). The maximum statistic is somewhat undersized and therefore
less powerful than alternative test statistics.

12 One difference from the previous five-year setting is that we need to inject a different in-
formation ratio (IR). The reason is that with the same IR, ¢-statistics grow in proportion to /T,
where T is the number of time periods. Since our full sample has 35 years, which is seven times
that over a five-year subsample, we divide the assumed IR for five-year subsamples by /7 to allow
for an apples-to-apples comparison between our full-sample and subsample results. Our summary
statistics reported in Table B.IV correspond well to those reported in Table B.IT and Table IB.IT in
the Internet Appendix.

13 For a fund with n; observations in D¢, we first record its number of observations as n;, if
n; < 60. Otherwise, we randomly generate a number (denoted by p;) from the uniform distribution
between zero and one. If p; < a/(a + exp(b x (n; — 60))), where a and b are our model parameters,
we sample a number from F‘GO‘ p (i.e., the frequency distribution for the number of observations
for funds in D, conditional on funds having fewer than 60 observations) and use it as the number
of observations for fund i. If p; > a/(a + exp(b x (n; — 60))), we record the number of observations
as n;. We set the parameters a and b at 0.7 and 1/200. For D, the mean number of observations,
the probability of having fewer than 60 observations, and the standard deviation of the number of
observations are 134.13, 0.28, and 97.96, respectively. The corresponding averages across simula-
tions for D%is are 139.83, 0.29, and 102.94, respectively.
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Figure 8. Results: FF’s test size and test power, full sample, 1984 to 2018, 2,876 funds.
We report test size and test power at the 10% significance level. Test size corresponds to setting
p = 0. Test power corresponds to our baseline specification: IR = 0.75 and p = 5%. (Color figure
can be viewed at wileyonlinelibrary.com)

D. Modifying FF: A Thresholding-FF Approach

While our strategy of keeping only those funds with more than 60 obser-
vations helps mitigate the undersampling issue of FF and enhance its test
power, funds with fewer than 60 observations may represent an economically
important set of funds (1,163 of 4,007 funds in our sample, which may ex-
plain FF’s original intention of keeping most funds with a short return his-
tory in their paper). In particular, funds with a short history of returns may
display return patterns that deviate substantially from other funds, leading
to a selection bias if our goal is to make inference on the entire fund pop-
ulation. In this section, we propose an alternative approach that overcomes
the sampling issue of FF while at the same time keeps as many funds as
possible.

First, we keep all funds with a history of at least 12 monthly obser-
vations. While in principle we can keep all funds with at least eight ob-
servations, we believe 12 is a more reasonable cutoff given the increased
instability of estimating ¢-statistics for funds with eight observations and
four benchmark factors. Our thresholding-FF approach is described as
follows.

Before we perform the FF bootstrap, we run a complete-sample bootstrap
for each fund to generate ¢-statistic bandwidths that are deemed “realistic.”
In particular, for fund i, we subtract its in-sample alpha estimate from its
returns, following FF. We then focus only on months for which we observe fund
i’s returns and bootstrap 1,000 times (i.e., complete-sample bootstrap). Let the
25t and 75 percentiles for the bootstrapped ¢-statistic distribution be §(25, i)
and (75, i), respectively. The bandwidth for ¢-statistics that we create for fund
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i is given as
m(i) = (§(25,1) — thres x [§(75,1) — §(25,1)], §(75, 1) + thres x [§(75,1)
— §(25,9)]),

where thres is the threshold parameter whose value is to be determined later.
Note that a value of 1.5 for thres corresponds to the traditional rule-of-thumb
for outlier detection (see, for example, Tukey (1977)). As we shall see, the
optimal value of thres in our model is higher than 1.5, suggesting that our
procedure is more conservative than the usual outlier detection rule in terms
of keeping observations (i.e., more observations are classified as valid by our
procedure).

Given the bandwidths for the cross section of funds, we modify the FF
approach as follows. When we run FF’s missing-data bootstrap (after we
subtract the in-sample alphas from all funds) and for bootstrap iteration b
(b=1,...,B=1,000), we discard fund i if its bootstrapped ¢-statistic falls out-

side of m(i). We discard all such funds from the cross section and compute
a given percentile ¢-statistic (i.e., P,) based on the remaining funds. We then
conduct inference by comparing the corresponding percentile for the original
data with the empirical distribution {Pb}le.

What remains to be determined is the threshold parameter thres. We use
our simulation approach to search for the optimal ¢Ares of our data. In partic-
ular, we run a grid search within the set of thres € {1.0, 1.5, 2.0, ..., 5.0}. For
each value of thres, we simulate to find test size, that is, the probability for
the thresholding-FF approach to incorrectly reject the null hypothesis when
the null is true. We also find the average number of funds (across bootstrapped
iterations) dropped due to their extreme ¢-statistics in the bootstrap simula-
tions.

Figure 9 displays our results with a significance level of 10%.'* Not sur-
prisingly, test size is monotonically decreasing in thres because the higher is
thres, the fewer extreme ¢-statistic observations we drop in the bootstrapped
iterations, making it harder for the FF approach to reject the null of no per-
formance. Interestingly, all percentiles (except for the maximum ¢-statistic)
generally achieve the desired size of 10% at thres = 2.0. At this value of thres,
the average number of funds dropped in each bootstrap iteration is about 15,
which is economically small compared to the size of the cross section in total
(i.e., 2,876).1°

Fixing thres at 2.0, Figure 10 shows test size and power for different
percentile statistics. Comparing Figure 10 with the corresponding panels in
Figure 8 (also labeled as “Full (FF’s resampling)” in Figure 10), test size is well

14 We choose 10% to be consistent with our previous figures. Our results are consistent across
significance levels.

15 Note that the total number of funds in D is greater than 2,876. However, based on our sim-
ulation design, we use D% to simulate the data-generating process for the panel of fund returns.
The data matrix D**® includes 2,876 funds.
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Figure 9. Results: Simulated test size for the thresholding-FF approach, 2,876 funds.
We simulate to find the test size (left y-axis) for the thresholding-FF approach with a threshold
parameter given by the x-axis. We also find the corresponding average number of funds dropped in
the bootstrapped simulations (right y-axis). (Color figure can be viewed at wileyonlinelibrary.com)
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Figure 10. Results: Simulated test size and power for the thresholding-FF approach
with thres = 2.0, 2,876 funds. We report test size and test power at the 10% significance level
for the thresholding-FF approach with the threshold parameter set to 2.0. Test size corresponds to
setting p = 0. Test power corresponds to our baseline specification: IR = 0.75 and p = 5%. (Color
figure can be viewed at wileyonlinelibrary.com)
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maintained at the 10% level for our thresholding-FF approach (which is also
consistent with Figure 9). Meanwhile, test power is also higher, especially for
more extreme percentiles such as the 99.5™ and 99" percentiles. Overall, our
thresholding-FF approach appears to perform well in terms of both test size
and power.

Note that our results do not imply that the low-power issue for FF is
caused by only 15 funds. We show that on average 15 funds are dropped
across bootstrapped iterations. The total number of funds ever dropped in the
bootstrapped simulations is much higher than 15. Therefore, one cannot solve
the low-power issue for FF simply by excluding 15 funds from the data.

Another caveat in interpreting our results is that while ¢thres = 2.0 appears
to be the optimal threshold for the mutual fund data, alternative values may
be found for other data sets (e.g., hedge funds) that display a different signal-
to-noise ratio in the performance metric or a different dependence structure.
We therefore recommend that researchers conduct similar simulation studies
to find the data-specific optimal value of thres.

ITI. Other Issues

In this section, we discuss several issues related to our simulation design.

A. Alternative Five-Year Subsamples

We also examine the 2014 to 2018 sample, which features a much larger
number of funds (1,502) than the 1984 to 1988 subsample (186). We report our
results in Figure IB.I, Table IB.I, and Table IB.II in the Internet Appendix.

Our findings are similar to those for the 1984 to 1988 subsample. Panel C
of Figure IB.I shows that overall the FF CROSS; approach performs well in
test size for the full sample (D]“,) or complete sample (7%, ,,). One exception
is the maximum statistic, which appears to be oversized. FF do not consider
the maximum statistic because it may correspond to an outlier. Our simulation
reveals a similar concern: the maximum statistic in simulation runs may be too
large to be explained by the bootstrapped distribution under the null, leading
to overrejections. Nonetheless, starting from the 99.5% percentile, less extreme
percentiles do not seem to be subject to this concern.

B. The Cross-Sectional Distribution of Alphas

In our simulations, we use a simple distribution to model alphas for outper-
forming funds. Conditional on a given p (i.e., assumed proportion of outper-
forming funds), we assume that all outperforming funds have the same IR.
As such, we do not model the potential within-group variation in fund alphas
for outperforming funds. Given the general difficulty of separating nonzero-
alpha funds from zero-alpha funds, it would be even more challenging to reli-
ably rank performance among outperforming funds. We therefore consider our
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simple two-group specification sufficient to approximate the cross-sectional re-
turn distribution for the underlying data-generating process.

IV. Conclusion

It is essential to attempt to separate luck from skill in the evaluation of
fund performance. With so many funds, many will appear to outperform purely
by luck. Bootstrapping is an attractive technique to tackle this problem and
has been employed in very influential papers by Kosowski et al. (2006) and
Fama and French (2010). Curiously, using similar data, they arrive at different
conclusions. KTWW suggest that a measurable fraction of funds outperform
while FF argue that few, if any, outperform.

Our paper replicates the findings in these papers with the goal of under-
standing what drives the different conclusions. We present a novel bootstrap
framework that allows us to examine the Type I error rates (falsely claiming
that a fund outperforms) as well as power (the probability of identifying a truly
outperforming fund). In our simulation design, we know exactly which funds
outperform, making it possible to measure these error rates.

There are two key differences between the KTWW and FF bootstrap im-
plementations. First, KIWW bootstrap one fund at a time, whereas FF re-
sample the full cross section of fund returns at every draw. Second, KTWW
require a minimum of 60 observations, whereas FF require only eight time-
series observations. FF’s technique has the advantage of capturing econom-
ically important information in the cross section, but it also has disadvan-
tages. Whereas the KTWW approach will always return a bootstrap simu-
lation with the exact number of observations for the fund, the FF approach
suffers from undersampling—if we start with, say, 23 fund observations,
given that the cross section is being resampled, we might draw fewer than
23 observations.

Our results suggest that the undersampling of the FF approach causes prob-
lems with funds with a small number of observations. The bootstrapping tech-
nique produces very high ¢-statistics when there are few independent obser-
vations. These high ¢-statistics are inconsistent with the actual ¢-statistics ob-
tained using realized data and they distort the threshold for significance. As a
result, the FF implementation provides evidence that few or no funds achieve
the bootstrap threshold, even when those funds have economically meaning-
ful alphas (greater than 10% per annum). Given these results, it is perhaps
unsurprising that the FF technique has little or no power to detect the truly
outperforming funds in our simulation.

KTWW suffers the opposite problem. Our simulations show that
KTWW substantially overrejects. This means that the KTWW approach
leads researchers to falsely conclude that a large number of funds
outperform.

We provide numerous simulations that are aimed at matching the partic-
ular setting that researchers face when choosing between FF and KTWW. In
the end, our general recommendation is to use FF’s technique that captures
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cross-sectional correlations, but to implement it in a way that is consistent
with KTWW’s approach in which the minimum number of observations is
increased. For the analysis of performance, requiring a larger number of ob-
servations creates an obvious survivorship bias problem. We offer a solution
using our thresholding approach. In our application, we can include funds
with as few as 12 observations and achieve similar statistical performance as
the approach that imposes a 60-observation minimum. Our results may alter
the interpretation of published papers that use the FF or KTWW bootstrap
method.

Initial submission: June 11, 2020; Accepted: January 20, 2021
Editors: Stefan Nagel, Philip Bond, Amit Seru, and Wei Xiong

Appendix A: Illustration: Requiring Eight Observations
(Including Nonunique Observations)

We illustrate the undersampling issue that arises using the stated approach
(i.e., requiring eight observations, including nonunique observations) in Fama
and French (2010) and compare with our results in Figures 1 and 2 (the actual
approach used in Fama and French (2010)). The stated approach is illustrated
in Figures Al and A2. This exercise is important because many researchers
have implemented the stated approach. Our analysis shows that there are
important differences between the stated and actual approaches for small
samples.

Several patterns emerge from the comparison. First, the difference is mi-
nor for T greater than 36. The main differences stem from short-lived funds
with 7" below 36. Second, comparing Panel A in Figure 1 and Figure A.1, the
censoring implied by the actual Fama-French (2010) approach (i.e., requiring
eight unique observations), as shown in Figure 1, brings the missing-data boot-
strapped distribution closer to its complete-data counterpart (than Figure A.1),
although the missing-data bootstrap still leads to a higher probability of very
large ¢-statistics. The reason is that undersampling happens less frequently
given the more stringent requirement on the number of unique observations.
Third, comparing Panel B in Figure 1 and Figure A.1, for funds with around
two years of data, it is clear that either approach tilts the missing-data boot-
strapped distribution toward larger ¢-statistics to a greater extent than does
the complete-data bootstrapped distribution. It is also evident that undersam-
pling is driving the results.
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Figure A.1. Bootstrapped distributions for two mutual funds with 7 < 24. This fig-
ure shows bootstrapped distributions for two mutual funds with 7' < 24. We compare the boot-
strapped distributions corresponding to the “complete-data” bootstrap (individual funds) and
“missing-data” bootstrap (Fama and French (2010) or cross-sectional bootstrap). For each boot-
strapping approach, we resample one million times. In each panel, we plot the bootstrapped dis-
tribution for the number of observations corresponding to the missing-data bootstrap in the top
figure, the distributions for the bootstrapped ¢-statistics for both approaches in the middle figure,
and the conditional distributions for the bootstrapped ¢-statistics corresponding to oversampling
(i.e., bootstrap sample > T') and undersampling (i.e., bootstrap sample < T') for the missing-data
bootstrap in the bottom figure. In the top figure, the number of observations is truncated at eight
based on Fama and French (2010). In the middle and bottom figures, ¢-statistics with a value of
five and above are reported and truncated at 10. We follow Fama and French’s (2010) stated cen-
soring scheme that requires eight observations (including nonunique observations). (Color figure
can be viewed at wileyonlinelibrary.com)
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Figure A.2. Bootstrapped distributions for two mutual funds with 7' > 24. This fig-
ure shows bootstrapped distributions for two mutual funds with 7' > 24. We compare the boot-
strapped distributions corresponding to the “complete-data” bootstrap (individual funds) and
“missing-data” bootstrap (Fama and French (2010) or cross-sectional approach). For each boot-
strapping approach, we resample one million times. In each panel, we plot the bootstrapped dis-
tribution for the number of observations corresponding to the missing-data bootstrap in the top
figure, the distributions for the bootstrapped ¢-statistics for both approaches in the middle figure,
and the conditional distributions for the bootstrapped ¢-statistics corresponding to oversampling
(i.e., bootstrap sample > T') and undersampling (i.e., bootstrap sample < T') for the missing-data
bootstrap in the bottom figure. In the top figure, the number of observations is truncated at eight
based on Fama and French (2010). In the middle and bottom figures, ¢-statistics with a value of 5
and above are reported and truncated at 10 for Panel A, and ¢-statistics with a value of 2 and above
are reported and truncated at 5 for Panel B. The bin count for the top panel of Panel A for a given
number c is [¢ — 2, ¢ + 2) (left close and right open). We follow Fama and French’s (2010) stated cen-
soring scheme that requires eight observations (including nonunique observations). (Color figure
can be viewed at wileyonlinelibrary.com)
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Appendix B: Additional Results

B.1. Five-Year Subsample, 1984 to 1988
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Figure B.1. Results: KTWW’s test size and test power, full sample, 1984 to 2018, 2,876
funds. We report test size and test power at the 10% significance level. Test size corresponds to
setting p = 0. Test power corresponds to our baseline specification: IR = 0.75 and p = 5%. (Color
figure can be viewed at wileyonlinelibrary.com)

B.2. Full Sample, 1984 to 2018

B.3. Fund Length Distribution
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Panel (a): CROSS), (Comparison of Panel (b): CROSS,, (Comparison of
Adjusted FF's Test Size) Adjusted FF's Test Power)
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Figure B.2. Results: Adjusted FF’s test size and test power, full sample, 1984 to 2018,
2,876 funds. We report test size and test power at the 10% significance level. Test size corresponds
to setting p = 0. Test power corresponds to our baseline specification: IR = 0.75 and p = 5%. (Color
figure can be viewed at wileyonlinelibrary.com)
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