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1 Introduction

One of the more striking advances in information theory has been the advent of
provably optimal data compression techniques for rapid encoding/decoding and
transmission of information ¥. In this paper we take advantage of the recent
progress in data compression and information-theoretic algorithms developed
in the field of predictive computing, such as pre-fetching (fetching of data from
slow memory to fast memory before the data is referenced by a program [26, 7)),
to build models which forecast high-frequency financial data. The algorithms
can be thought of as entropy-based encoding [27, 4, 5], where the encoding
is a function: of the entropy of the source (Entropy can be thought of a the
measure of uncertainty of a random event), which may or may not be condi-
tioned on side information. This paper not only presents rigorous derivations of
information theoretic concepts, but also analyzes comprehensive entropy based
trading strategies implemented on one year of spot transactions data on the U.S.
dollar-Japanese yen, U.S. dollar-Deutschemark and Deutschemark-Japanese yen
exchange rates, along with the countries respective interest rates, all provided
by Olsen and Associates.

In section 2, we introduce the necessary information-theoretic notions that
in turn will provide the foundation for provably optimal encoding techniques.
We introduce the notion of a probability space and derive the analytic form for
the amount of information associated with an event, followed by a derivation
of the entropy measure of a random source. We give several examples of en-
tropy for particular probability densities, followed by a brief discussion of the
relationship between the likelihood function and corresponding entropy notions.
We thereby provide a link between the two schools of thought and proceed to
give a computationally tractable method of encoding a random source.

In section 3, we introduce the concept of vector quantization(VQ) and prove
that any multidimensional data clustering and/or pattern recognition technique
is properly contained in the set of all VQ algorithms over a Hilbert space. In
particular, any nonparametric forecasting and neural-net based forecasting is
some (and often not the most optimal) VQ technique. In section 4, we present
our results on forecasting foreign exchange returns given no side information
using scalar quantization and entropy encoding algorithms. Our aim is to de-
velop reliable trading algorithms whose running time will allow us to make
high-frequency trading decisions. Due to the potential high dimensionality of
the data set, we rely on vector quantization as a means of compressing the data
and thereby overcoming this constraint. The final section details our ideas for
future research and offers some concluding remarks.

¥For example, see [5, 29, 13, 12, 18, 17, 14, 24, 27].



2 Fundamentals of information theory

Forecasting of high-frequency data presents an interesting challenge, in that the
forecasting algorithms are required to process the incoming information and
make a prediction faster than the data is being supplied. In other words, the al-
gorithms need to function in an “on-line” fashion, processing and making trading
decisions in a timely manner. Our research has led to a development of forecast-
ing algorithms that are based on current state-of-the-art methods in predictive
computing and asymptotically optimal data compression algorithms [12, 26]. To
motivate our rationale for choosing entropy encoding algorithms as the skeleton
of forecasting, we present some fundamental notions from information theory.

2.1 Basics of probability theory

In order to properly introduce the concept of entropy and other necessary
information-theoretic notions we give a short exposition on probability theory.
We aim to present only the most relevant and crucial definitions that should
make the reader properly interpret the forthcoming entropy notions.

2.1.1 Probability spaces

In order to properly define the notion of entropy, we posit that a probability
space contains all the necessary mathematical structure to give a quantitative
measurement of uncertainty associated with a random source.

A probability space ¥ is given by a triple (Q,F,P) where Q is a set, F is a
o-field ¥ of subsets of 2, and P : F — R a nonnegative real-valued function
such that if {E,} is a countable pairwise disjoint collection of members of F,
then

PUE.) = D PEL; (1)
P(Q) = 1. (2)

The triple (2, F,P) is often referred to as the sample space, elements of Q are
outcomes, members of J are events and P is the probability of an event.

—

Definition 2.1 A countable collection, E of measurable ! sets is said to be a
basis for the probability space (2, F,P) if

o For every w,w* € Q, there exists a B € E such that w € B,w' g B or vice
versa. **

§For a more thorough treatment of the mathematical theory of entropy, measure and
probability theory see [2, 23, 20].
Ythat is F is closed under countable unions, complements and contains €2.
Il A set is measurable if it is in the domain of P.
** A basis is well-defined as Q is a Hausdorff space [28].



o The completion of the o-field generated by = is F.

Definition 2.2 A space is a Lebesgue space if it is a totally finite measure space
with respect to some basis. 11

2.1.2 Information theory

Let A be an event in F, such that (Q2, F,P) is a Lebesgue space. We remind the
reader that the Lebesgue space is most easily interpreted as an abstract model
of a stochastic source.

Suppose an event A occurs. As a result we have gained some information
about the source. We quantify this notion by introducing a function over the
Lebesgue space, called the information function. The function so defined can
also be interpreted as giving a measure of the uncertainty of an event A output
by the source. Formally, we give the following definition.

Definition 2.3 Information function (or uncertainty function), T : R — R is
a real valued function of probabilities of the outputs of a random source, with
the following properties:

o I(P(A)) =0, if P(A) = 1.
e If P(A) < P(B), then Z(P(B)) < Z(P(A)).
o I(P(A A B)) = I(P(A)) + Z(P(B)).

To derive an analytic expression for Z, note that information only depends
on the probability of events, and not on the events themselves. In addition,
the domain of 7 is the unit interval [0,1] and Z(1) = 0. In order to satisfy
the last property, for two independent events A, B, we need Z(P(A( B)) =
Z(P(A)) +IZ(P(B)). Since P(A( B) = P(A) +P(B), the information function
has to satisfy

Vz,y € R;  I(zy) = L(z) + I(y) 3)

It is well known that the only function satisfying the above algebraic relationship
is for Z(¢) = K'logt. In order for information to be a monotone nonincreasing
function, we need K < 0. We formally define the information associated with
an event E € F as:

_J —7logt, fory>0,te0,1]
ﬂw—{ 00, =0,

where t = P(E), and log(z) is taken to be base e. We also note that information
is a measurable function with respect to F.

We now formally define the entropy of a source which will in turn lead us to
introduce entropy encoding algorithms for forecasting.

HFor a more through treatment of Lebesgue spaces, the reader should consult [20].



2.1.3 Information function and entropy

We define the entropy functional of a discrete-time stochastic source and present
the definitions of joint and conditional entropies followed by a brief description
of the relationship between the entropy and mutual information. Given the
basic definitions, we introduce a family of encoding algorithms whose encoding
of a given random variable is independent of the underlying distribution and
achieves an asymptotic complexity equal to that of the conditional entropy of
the encoded source.

In the previous section, we defined a general information function whose
domain was the range of a probability function over a Lebesgue space. We
now focus on a particular form of that function by considering the information
contained in the output of a random source. Theoretically, one can regard that
output as a partition of the underlying Lebesgue space. This, in turn will define
the constant ~.

Let x be a countable partition of the Lebesgue space (€2, F,P). The infor-
mation function of such partition is a function defined on € whose value for
any w € (2 is the information obtained from the realization of that element of y
which contains w. Formally,

I)w) = =7 Y 1a(w)log P(4), 4)

A€x

where 14 is the indicator function of the set A. We assert that Z(.) have constant
values over each output of the random source, so that the collection of all outputs
induces a partition x, which in turn results in information being a step function.

Let II be the collection of all triplets (€2, F, P) over a Hilbert space. For any
such probability space there corresponds a probability distribution F(z) € II
induced by the measure P on Q. We formally define the entropy functional
H(P)(z) : U~ R

Definition 2.4 The entropy of a countable measurable partition x of a Lebesgue
space (2, F,P) is the expected value of the information function of the partition.
The entropy of the partition can be interpreted as the entropy of the distribution
induced by the partition, and is given by

H = / P(dw)Z{x)(w) (5)
[¢]
= -7 P(A)log(P(4)). (6)
Aex

Therefore, the entropy of a distribution underlying the output of a source is the
average amount of information contained in the output, which is represented by
the distribution.
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Figure 1: Uniform distribution over 7 letters

The entropy of a source is therefore a measure of the degree of random-
ness associated with the output of the source. We provide several examples of
entropies for particular distributions.

Example 1 - Let R be a source over a finite alphabet with n letters,
{20, ..., Zn}, such that each letter has equal probability being output by R.
Then, P(z;) = £, and the entropy is

n’

HP) = =3 log() ")
= —nlog(1) ®
= - log(2) ©
= logn. (10)

Note that as n + co, the entropy tends to infinity. On the other hand, the
entropy of a deterministic process (for example a toss of a two-headed coin) is
0. In other words, there is no uncertainty associated with the toss.

Example 2 - Let R be a source whose underlying distribution is normal
with mean p and variance o2, or N(u,0?). The entropy is independent of the
mean and is given by:

H(N (4, 0%)) /m L g ) ()
, g = — R A 20 e 20
a —co V210 g\/27ra



log( 1 ) /°° 1 _e-w? (12)
= — 10 e 202
& 2n0" J_oo V270

1 [ (z-p? 1 R
—_— —— {8 1
+2/—-oo 202 27roe ’ (13)
1
= 5¥ log(v2m) + log o (14)
1
= logo+ 3 log(2n) + 1]. (15)

In the next section, we restrict ourselves to discrete time sources, and define
mutual information, a measure of the amount of information one discrete ran-
dom variable contains about another. One of the best interpretations of entropy
is the amount of “self-information” in a random variable. Mutual information
can be viewed as a special case of the more general measure coined “relative
entropy”, which is used to metrize the space of distributions.

2.2 Entropy of discrete sources

Let X be a discrete random variable over a finite alphabet .4, and a probability
mass function fx (¢) = Pr{X = z}, 2 € A. For notational convenience, we omit
the subscript indicating the random variable and, if necessary, we use different
arguments such as f(z) and f(y) to denote fx(z) and fy(y), respectively. We
define the entropy, H of a discrete random variable X as:

H(X) =~ f(z)log f(a).

z€A

Let E denote the expectation functional. Therefore for X ~ f(z), we define

Erg(X) =) g(x)f(x).

zEA

Armed with *his notation, we can interpret the entropy of a random variable as

the expected value of log +1~. Some basic properties of the entropy functional
¥ ie)
are:

H >0,
Hp(X) = (logy a)Ho(X).

We now turn towards joint and conditional entropies. Define the joint en-
tropy, H(X,Y') of random sources X and Y, whose joint distribution f(z,y) is
assumed to be well-defined:

HX,Y) ==Y > f(z,y)log f(z,y),

z€EAYEB

which has the expectational interpretation: H(X,Y) = —E(gg—f(%(—?)).



We also define the conditional entropy H(Y|X) of a source Y, conditioned
on an information source, X as:

HYIX) = Y f@HY|X =2) (16)
z€A
=~ 1@ f(ylz)log f(ylx) (17)
€A yEB
= =2 > fl@y)logf(ylz) (18)
z€AyEB
= ~Ej(zy log f(Y]X). (19)

In short, the conditional entropy of a random source given another is the
expected value of the entropies of the conditional distributions, averaged by the
conditioning information. From here, it is easy to see that the entropy of a set
of random sources is the entropy of one source plus the conditioning entropy of
the rest. For example, given a pair of sources, X and Y, we have:

H(X,Y) =H(X) +H(Y|X).

# Next, we introduce yet another fundamental notion, that of relative entropy
and mutual information.

2.3 Relative entropy and mutual information

As we have noted above, the entropy functional can be regarded as a measure
of uncertainty or randomness of a random variable. In other words, it is the
expected amount of side information required to completely describe a random
variable.

Consider a linear functional on the space of distributions, called the Kullback-
Leibler functional, also known as the relative entropy:

Definition 2.5 The Kullback-Leibler functional D(a||b) = the “distance of a to
b” on the distribution space is given by:

S f(z)log 1

= g(z)

9(X)
Note that the complement of the support set for the Kullback-Leibler functional
is all f,g, such that f = g, almost surely in 4. One attractive feature of the
relative entropy is that it gives us a measure of the inefficiency of assuming a

D(fllg)

HSee [5] for a full proof.



random variable has as its underlying distribution g, when the true distribution
is in fact f. We will show that this measure has direct links to statistical
likelihood function.

Suppose the true distribution of a source is known. Then, there exists a
program describing the source with an expected average length equal to 7(f). If
we by mistake used the program for distribution g, we would need on the average
H(f)+ D(f|lg) nats to describe the source. Entropy is usually calculated using
log() base 2, and is given in units of “bits”. We opt for the natural logarithm,
and hence ou: entropy is in the units of “nats”. In the next section we rigorously
derive the relationship between the relative entropy and the standard likelihood
estimators in statistics.

To put some metric on the amount of information one random variable con-
tains about another, we introduce the mutual information functional on P [5].

Definition 2.6 Let f(z,y) be the joint probability density function (pdf) of
two random variables X andY, and let f(z) and f(y) denote their the respec-
tive marginal pdf’s. The mutual information functional I(X;Y) is defined as
the relative entropy between the joint distribution and the product distribution

f(@)f(y), ie,

o . @)
= D(f(z, )l f(=)f(y))
XY
= Eﬂw’wk’g%

2.3.1 Information theory and statistics

In this section we establish the relationship between information-theoretic no-
tions derived above and the standard hypothesis testing in statistics as given in
[6]. We also discuss the work done in establishing the relationship between the
concept of moximum entropy of a random source and to Bayesian nonparametric
statistics.

Suppose {Xo, ..., X5} are independent and identically distributed random
variables, with the distribution P(z). Consider the following hypothesis:

OHl : 73 = Pl .

0H2 : P= 7)2.

Consider a decision function (21, ..., z,), such that ¢(z1,...,z,) = 1 implies

that that hypothesis H; is accepted and v¢(z1,...,2,) = 2 implies H, is ac-

cepted. Let the set A be such that H; is accepted for all z; in A. Let A¢ be its
complement. Define the probability of error:

o= Pr{’(ﬂ(XL ,Xn) = 2'H1}

B =Pr{y(Xy,.., Xp) = 1|Hy}

P1(A9) (20)
P2(A°%) (21)

fl



We wish to minimize both probabilities. Best achievable result is given by
Stein’s lemma [5]. First, we state the following theorem.

Theorem 2.1 (Neyman-Pearson): Let X1, ..., X,, be drawn i.i.d. with a prob-
ability mass function (pmf), P. Consider the above decision problem. For a
gwen T >0, define a set

) = { ey > 1)

Let a and 8 be as defined above. Let By, be any other region with its correspond-
ing probabilities of error o and 8'. If a < o', then 8> 3.

Proof: See [5] for a full proof.
The Neyman-Pearson lemma tells us that the optimum test for the distri-
bution hypothesis is of the form

¢1 (.’1)1, ceey .’En)

e ST 22

’(ﬁg(ﬂ?l,...,.’l,‘n) : ( )
This, of course is the well known likelihood ratio test, and the ratio Ba(2180) o

Ij)z(zl,“.,wn)
T is the likelihood ratio. As an example, consider the test applied to two normal

distributions, say 41 = N(1,0%), and 92 = N(=1,02). The corresponding
likelihood ratio is

n 1 _(x—1)?
(21, ey ) _ 7, — a2l 2 (23)
’l,bQ(IUl,...,Z'n) Hn 1 e_(i;':-lT)z
=1 \onas2
2 Z:‘L—l *i
= e oz (24)
2nX
= e_,T (25)

We see that for this case the likelihood test consists of comparing the sample
mean with a threshold. For the two probabilities of error to equal, T' should be
set to 1. Let us now rewrite the likelihood test by looking at the log-likelihood
ratio:

L(X1,., Xn) = log%i:ﬁi—:; (26)
- Yy )
_ " 4 ¥1(a)
= ; b (@) log 28 (28)



D(lltr) — D(@Tpz) = (1/n) log(T)

Figure 2: Likelihood ratio test in the probability space

Pxn(a)

3 Pxn(a)
= aez;nwm(a) log = ) —aez;mbx"(a) log =y (29)
= nD(x~||2) — nD(Px~||11), (30)

which is simply the difference in the “distances” of the sample to each of the
distributions. Therefore, we infer that the standard likelihood test

’(,01(1171, ,SCn)

Pa(z1, eoey Tny) >T (31)

is equivalent to

D(xnlh2) — D(pxen 1) > BT (32)

n

The likelihood test has an interesting geometrical interpretation. The optimum
region is defined by the above equation, whose boundary is the region equidistant
to the differences of the two distributions, as given in Figure 2. We briefly
comment on the optimal choice of threshold. Let B be the set of events on which
hypothesis 1 is accepted. Then the probability of error is a = 9(vx, € B°). It
can be shown [5] that the complement of B is a convex set, and hence the error
is given by the distance of the set B° to v;. Let ¢* be such point of B¢ closest
to 1. Then,

ay, = 27 DWIllvY), (33)
Similarly,

Bn = 27 "PWill) (34)

10



where 43 is the closest point in B to ;. We then minimize D(¢)|[+)2), subject
to the linear constraint D(¢||v2) — D(¥||v1) = 13%2 This can be accomplished
by writing down the lagrangian,

¥

= x '([)(CL‘) Z) Lo .'IZ) 14 x
TW) = W >1og¢2(x)+AZw( Jog o + > v(@). (35)

The optimal ¥« is given by:

R@W @) 0
Yaer ¥ (@) (a)
Note that the errors are exponential in D(y*||11) and D(3*||1)2).

Continuing with development of computational bounds in likelihood estima-
tion, we state the Stein’s lemma which gives the optimal error bounds of the
likelihood estimator.

Y3 =Prs =

Theorem 2.2 (Stein’s Lemma) - Let the assumptions of the Neyman-Pearson
lemma hold. Furthermore, let D(¢1||y2) < 0o0. Let Ap C F be an acceptance
region for the hypothesis 1. The probabilities of error are given by

on = Y7 (An), B =95(47), (37)
Min
and define 3, =A, C F,a, < € B,. Then,

lim lim log A,
e—0 ni—oo n

= =D(t][¢2). (38)

Therefore, no sequence of sets B,, can have an associated exponent better than
D(3)1]}2). It can be shown that the if we define

A, = {x € 1 2n(Dllva)-9) < ¥1(®) 2n<D(¢1||¢2>+a>} >0, (39)
Y2()

the sequence of sets A, achieves the exponent D(¢1||1)2). Therefore, the se-

quence is asymptotically optimal, and the best error exponent is D (11 ||12).

Hence, Stein’s lemma gives tight computational bounds of the goodness of the

likelihood estimator in terms of computable quantities D(e||e).

Next, we briefly touch on the important connection in Bayesian approach
to hypothesis testing and the equivalent computable notion of Chernoff infor-
mation. We assign a priori probabilities to both hypothesis and minimize the
overall probability of error that is given by a weighed sum of the individual
probabilities of error. That exponent turns out to be precisely the Chernoff
information.

Let {X;, .., Xy} be iid., distributed according to t(z). Let hypothesis 1
be: 1) = 1)1, with prior probability p and hypothesis 2: 1) = 15, with probability
q. Then, the overall probability of error is given by

1;/1? = poty, + qfn. (40)

11
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Figure 3: Relative entropies as functions of A.

Let D* = limp, oo ming 7 —lig;bﬂ. Then, we can state the following theorem:

Theorem 2.3 (Chernoff): The best achievable exponent in the Bayesian prob-
ability of error is D*, where

D* = D(a«lth1) = D(whr=|jh2), (41)
such that

¥ (@) )
Zaef-wi(a)w;“*(a)

Pa =

and X* is such that
D(¥a+l41) = D(9ha-[|th2)- (43)

The value D(px«||11) = (Yax||tb2) = C(y1,%2) is called the Chernoff informa-
tion, and is the highest achievable exponent for the probability error.

Note that the maximum a posteriori probability decision rule minimizes the
Bayesian probability of error and that the Bayes exponent does not depend on
the a priori probabilities. The effect of the prior is negligible in large samples.
The optimal decision rule is to choose the maximal a posteriori probability which
can be written as the test

p1 (X, ..., Xp)
a(Xn, o X) = (44)

12



Taking logs and dividing by n and taking limits, we get

lim ( —log +E < 0) (45)

n—oo 1
(46)

is D(¢1|[4h2) if 41 is the true distribution, or the limit tends to —D(t;||12)
otherwise. The first term above tends to zero, verifying the fact that the prior
probabilities do not contribute to the statistic.

We now introduce some fundamental relationships between entropy and mu-
tual information, the notion of complexity and present an asymptotic compres-
sion algorithm that is independent of the distribution of the source and achieves
asymptotic complexity equal to that of the unconditional entropy of the encoded
source.

It can be shown that the mutual information I{X;Y’) is the reduction in the
uncertainty of X due to knowledge of Y. That is, I(X;Y) = H(X) - H(Y). By
symmetry we have the following properties:

I(X;Y) = HX)-HX]Y), (47)
I(X;Y) = HY)-HY|X), (48)
I(X;Y) = HX)+HY)-HX,Y), (49)
I(X;Y) = I(Y;X), (50)
I(X:X) = HX). (51)

The above relationships completely characterize mutual information and en-
tropy. Our final functional, the conditional relative entropy is defined below.

Definition 2.7 The conditional relative entropy functional D(f(y|z)||g(y|z))
is the average of the relative entropy between the conditional pmf’s f(ylz) and
9(yl|z), averaged over the probability mass function p(z). Le.,

> #a) Y ol tos L H (52)

z€A yeB

£Y1X)
B 98 g7 )

D(f(yl=)llg(ylz))

(53)

We now turn out attention to entropy-based compression and present a result
relating the entropy of a source and its fundamental limit of compression of the
random variable.

2.4 Prefix coding

In this section we present some important relationships between the optimal
compressibility of a source and its entropy. We begin by defining the notion of an

13



instantaneous code, followed by the statement of Kraft inequality [5], asserting
that the exponentiated codeword length mappings must look like probability
mass functions. This would imply that the expected codeword length must be
greater than or equal to the entropy of the encoded source. Following, we note
an asymptotically optimal encoding, the Huffman code. After establishing the
entropy measure as the data compression limit, we will introduce a provably
optimal encoding algorithm for a stationary ergodic source, on which we base
our foreign exchange forecasting model.

Definition 2.8 A source code C for a random variable X, is a mapping from
A, the range of X, to D*, the set of finite length strings of symbols from a D-ary
alphabet. Let C(z) denote the encoding of z, and let I(x) denote the length of
the encoding.

Definition 2.9 The ezpected length L(C) of a source code C(z) for a random
variable X with pmf f(z) is

L(C) = Y f(@)l(=),

z€EA

where I(z) if the length of the encoding corresponding to x.

Definition 2.10 A code is o prefix or instantaneous code if no codeword is a
prefiz of any other codeword.

Theorem 2.4 (Kraft inequality): For any prefix code over an alphabet of size
D, the codeword lengths satisfy:

ZD‘“ <1.

See [5] for a full proof. We now discuss the concept of finding shortest instan-
taneous codez.
2.5 Optimal codes

The Kraft inequality is a sufficient condition for existence of an encoding of
a random variable with a specified set of codeword lengths. Any codeword set
that satisfies the prefix condition has to satisfy the Kraft inequality. Generating
a prefix code with minimal expected length is equivalent to minimizing:

minL = Z fili7

over all integer l,ls, ..., I, such that,
Y ph<u

14



This problem is solved by forming the Lagrangian:

TJ=3 fli+ XD D).

Solving, it can be shown that the optimal codelengths I} = —log, f;, where
fi = D7%. Note that this optimization was solved over continuous codeword
lengths. We therefore conclude that the optimal expected codeword length L*
is given by:

L*=} fif =~ filogp fi = Hp(X).

The above result is easily extended to integer codeword lengths.

The main result implied by the above is: to find an optimal encodings we
need to find a D-adic distribution that is the closest, under the relative entropy
measure, to the real distribution of X. In turns, this distribution will provide a
set of encoding lengths. The encoding construction can be found in [5].

The obvious problem is finding the appropriate D-adic distribution. The well
known optimal procedure for actually finding the optimal code, the Huffman
code, can be found in [5]. We do not investigate Huffman encoding because it
assumes a-priori knowledge of the probability distribution of the source, and
therefore is inappropriate for forecasting on financial data whose distribution
in not knowr. Instead, we investigate an encoding algorithm whose asymptotic
rate approaches the entropy of the source, and which is independent of the
distribution.

2.6 Entropy encoding

An example of lossless encoding, the entropy code is ideally suited as a forecast-
ing algorithm of a set of quantized or raw data. Its complexity is logarithmic
in the size of the input, and hence is very promising for on-line forecasting of
high-frequency data. We introduce the entropy encoding via an example.
Suppose X is a random source over the alphabet { 0,1}. Let z; = {X1, ..., X:},
where Xy = 1V 0. Suppose z; = {100011110 011101 1001011 10010101101}
(Note that the entropy encoding can be extended over an arbitrary alphabet).
The algorithm breaks the source into substrings that had not been parsed so far.
In our example, the string z; would be parsed as: [1];[0]; [00]; [11]; [110]; [01];
[1101];[10]; [010]; [111]; [001]; [0101];[101]. Such parsing builds a tree, where a
child-node is added whenever a new string has been parsed. A tree-diagram
for this particular string is included. In figure 4, each node has two attributes,
namely o, 8, where a is either 0 or 1, and 8 denotes the number of times the
particular node has been visited during the construction of the tree. Here we can
see the tree structured version of the encoding for the string. Interpreting the
encodings as trees gives a rise to a natural measure of the asymptotic entropy

An encoding is said to be “lossless” if the decoded output is the same as the original
input. In other words, there is no loss of information.

15



Root

Figure 4: Tree encoding

of the source as the inverse of the ratio of the length of the original input to the
length of its encoding, also known as the compression ratio of the source. For
example, a string [ = 1111111111111... would be parsed as [1];[11];[111]; [1111]
etc. The corresponding tree would be a chain. The compression ratio as a
function of [ is ©(y/n), for this particular string, and the entropy therefore
H({) = @(\/Lﬁ) bits, which goes to zero as n tends to infinity. On the opposite
end of the spectrum, given a “randomly” generated string, over 0,1 the asymp-
totic structure of the tree would be a full binary tree, whose compression ratio
is ©(1), and whose entropy is ©(1) bits. In other words, for a totally random
input, there is no predictability. Conversely, for sources whose compression ratio
tends to infir ity, we would have complete (asymptotic) predictability.

The algorithm as given above is an example of an entropy based algorithm
that forecasts the output of a random source, given no a priori assumptions
about the underlying distribution. Naive forecasting can be done by keeping a
count of the number of times a node is traversed in descending down a tree, and
taking the more frequently occurring path. For example, if we are at the node
(1,7), the probability that next digit is a 0 is 1/3, while probability that it is a
1is 2/3.

The encoding as given above is a lossless encoding. Led by our intuition in
financial trading, we now focus on a class of “quantizing” or “lossy’ encodings,
where we regard the output of a source subject to noise and/or the rate of the
incoming information is high enough that the techniques are forced to lose some
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information 1n order to remain operating in an on-line (timely) fashion.

2.7 Lossy encodings

In finance, forecasting of high frequency data is complicated due to the inevitable
noise trading. More importantly, the frequency is high enough that the trading
algorithm, in order to remain feasible, has to quantize the data. To develop
a reliable forecasting methodology, we study the entropy-based quantization
algorithms, where the information produced by a source is arriving over a noisy
channel. We briefly introduce the concept of scalar quantization (SQ), followed
by a more in-depth discussion of vector quantization (VQ). We discuss the basic
theoretical justifications behind some of the techniques, followed by a discussion
of why neural-net based algorithms for forecasting can be viewed as (simple)
special cases of the more general predictive VQ.

2.7.1 Scalar quantization

In information theory, quantization can be regarded as the crux of the analog to
digital conversion. To put it simply, quantization is a process of computing the
best representative (drawn from a discrete vocabulary) for a given input (for
example a real number), under a set of constraints. More formally,

Definition 2.11 A monotone map w(z) : R = V, V C R, card(V) = N, is
called an N-point scalar quantizer. The set V is known as the vocabulary or the
codebook for w(x).

In all practical cases V' is a finite (an often as small as possible) set of
numbers. We also define the distortion measure p, of a scalar quantizer 7, as
p = log N, which is a measure of the number of bits needed to uniquely parse
a quantized value. Quantization can be fixed-rate or variable-rate, depending
on the particular choice or p. For every monotone map =, there exists a unique
finite element of the power set of R, which we denote as II. Each member of II,
can be written as: R; = {z € R|n(z) = v;}, which is exactly the inverse image of
v; € V, under the map 7. It is clear that {J R; = R, and that they are mutually
disjoint. The partition sets, in general can be open, closed or half-open intervals.
A partition is called regular iff all elements of the partition set are open, and no
scalar is mapped onto the separator point between two intervals. The separator
points are sometimes called boundary or decision points. Every quantizer can
be viewed as a composition of two maps: An encoder map E : ® — Z, and a
decoder map, D : Z = V. Therefore, 7(z) = D(E)(x). We now introduce the
concept of Vector Quantization, a generalization of SQ to the quantization of a
vector.
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3  Vector quantization

The generalization of SQ to a general N-dimensional vector space results in a
powerful quantization technique and introduces some intriguing computational
and geometric issues. Whereas SQ is used mostly for analog to digital conver-
sion, VQ is used primarily for state-of-the-art digital processing and in data
compression. We will argue that neural-nets are a subclass of vector quanti-
zation, and that quantization in the VQ sense provides much more flexibility
and a framework for efficient algorithmic implementation. VQ also provides
some ground for using entropy-based encoding in N-dimensional vector space,
whereas neural nets cannot.

VQ is usually, but not exclusively used for the purpose of data compression.
A wvector can be used to describe virtually any type of input data, for example
a collection of currencies with side information, simply by forming a vector of
the incoming data. VQ has been used, traditionally for encoding of speech and
image data [13, 18, 17, 14, 6, 3, 9, 10, 11, 15, 1, 16]. There exist many ways of
quantizing multidimensional data. For example, VQ can be viewed as a form
of pattern recognition where an input pattern is “approximated” by an element
in a codebook of patterns. In other words, the pattern produced by a source
is matched with a pattern stored in the codebook. VQ can also be viewed as
a technique to reduce the space complexity of the input data. We present the
VQ in the light of data encoding, pattern recognition and forecasting.

Definition 3.1 A mapping II : R — V, such that card(V) is a finite, k-
dimensional subset of R", is called a Vector Quantizer, or VQ.

The points in V are called codewords. Parameter p = l%;ﬂ is called the reso-
lution or the code rate and is used to represent the bit-complexity of the vector
components. p gives a measure of the accuracy of VQ, provided a codebook is
well-defined. However, note that for a codebook of a fixed dimension, k, the
resolution is determined by the dimension of the input set, and not the number
of bits used to specify the elements of the codebook. The codebook is typically
represented as a table or a tree data structure.

We turn to discuss some geometrical properties of hypercells * induced by
spatial tesseiations of the VQ codebook construction. Similar to SQ, the vector
quantizer induces a hypercell partition of R". As before, each hypercell can be
regarded as an open, bounded subset of ®". The boundary hyperplanes are
the “decision hyperplanes”. A bounded hypercell(or cell, for short) is called a
regular cell, an unbounded cell is called an overload cell. The collection of all
regular cells is called a regular region.

Definition 3.2 A vector quantizer is called “regular” if each hypercell is convex,
and each element of V is an interior point of the hypercell.

*A hypercell is a d-dimensional region where any point in its interior is quantized to the
codebook entry in the cell
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It is useful to identify an another quantizer, a polytopal vector quantizer, which
is a subset of the regular quantizers, such that the boundary of each of the hy-
percells are segments of hyperplane surfaces in n dimensions. Or, equivalently,
each partition is a regular polytope(a hyper-polyhedra), and consists of an in-
tersection of a finite number of half-spaces. These half-spaces can be written in
the form {z € R" : u, -z + B, > 0}.

The faces of a polytopal hypercell are hyperplane segments of dimension less
than n that bound the cell, so that it completely determines membership of a
point and a cell. In other words, a point of one “side” of a hyperplane belongs
to a different hypercell than a point on the other side of the hypercell. A face
is the (n — 1)-dimensional boundary of a hypercell. Note, trivially, SQ always
induces a regular quantization.

A vector quantizer is bounded if II : W~ V, and W C ®™. A bounded VQ
has no overload hypercells. Just as with SQ, a vector quantizer can be viewed
as a composition of two functions on R"; A vector encoder, E: R* — T, and a
vector decoder, J : T+ V. Then, the VQ can be written as II(z) = J(E)(z).
Note that a given partition of the n-space into hypercells completely determine
the encoding map. On the other hand, a given codebook completely determines
how the decoder will generate a decoded output vector from a given index. One
of the tasks of the encoder is to implicitly or explicitly identify hyper-cell a given
vector lies. It is not immediately obvious, but true however, that the encoder
does not need to be aware of the codebook. The decoder, similarly, does not
need to know the geometry of the hypercell to function. It is interesting to
note that most practical VQ algorithms retain only the codebook as enough
information to provide a cell partition of n-space.

3.1 Properties of VQ

In multidimensional quantizing, it is well known [13] vector quantization is the
ultimate solution to the quantization of a data vector. No other coding(including
neural-nets) exists that can do better than VQ. The following theorem shows
that VQ can at least match the performance of any arbitrarily given coding
system that operates an a vector of data.

Theorem 3.1 For any given coding system that maps a vector into one of N
binary words and reconstructs the approzimate vector from the binary word,
there exists a vector quantizer with codebook size N that gives ezactly the same
performance, i.e., for any input vector, it produces the same reproduction as the
given coding system.

Proof: [13] Enumerate the set of binary words produced by the coding system,
as indexes 1,2,...,N. For the i*" binary word, let the decoded output of the
given coding system be the vector y;. Define the codebook, C' as the ordered
set of code vectors y;. Then, a VQ decoder achieves equivalent performance to
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Figure 5: A regular vector quantization on the plane

the decoder of the given coding system, and a VQ encoder can be defined to be
identical to the encoder of the given coding system. |

Furthermore, in general, any heuristic coding technique, such as neural-nets,
encoding a set of n data points with b-bits, is a suboptimal way to map a k-
dimensional input vector into one of N = 2% index values and into one of the
reproduction vectors. Since VQ encompasses all such possible encoding schemes,
it is only natural encode our source by VQ.

We will introduce the problem of joint optimization of the encoder and pre-
dictor in this paper. It should be clear that if an optimal VQ is found for a
given performance objective, no other encoding system will be able to achieve
a better performance.

3.2 Exainples of VQ

To illustrate VQ, we present the quantization of a bivariate random variable.
Given a codebook consisting of IV points in the plane, the VQ will assign any
particular realization of the source to the appropriate codeword. We show two
examples of a quantization in two dimensions. A regular quantizer may separate
the cells into perhaps what is shown in the figure below. A non-regular VQ can
in general, arbitrarily subdivide the plane. The figure below demonstrates an
example of a non-polytopal subdivision.
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Figure 6: A non-regular vector quantization on the plane

3.3 Hypergeometry of VQ

For a given input, the primary structure of a vector quantizer is to identify the
appropriate dictionary element and map the input onto the point. In order to
achieve this, a VQ needs to be able to identify in which hypercell a particular
input point belongs. In one dimension, this question is trivial, as it must lie
between two separators. In higher dimensions, this question is nontrivial. For
certain classes of V() algorithms, such as nearest-neighbor or polytopal VQ, such
techniques have been developed [13, 21, 22]. For a general VQ, this question
can be arbitrarily hard. We examine this question for a polytopal VQ.

A polytopal VQ is such that each cell in the partition is a convex polytope.
Consider the half-space H, defined as:

H,={z e R ulz+ Bou >0}, (54)

Let Anu be the hyperplane bounding the half-space H,. Then, any polytopal
region can be represented by a finite intersection of half-planes. Therefore, each
polytope can be written as:

L;
Ry = () H,, (55)

v=1

such that L; is the number of n — 1-dimensional hyperfaces of the cell. For such
a polytopal VQ, we define an indicator function 1g, () for the half-space H,,.
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In vector notation,
T, (x) = w(ufxw + /Bnu)a (56)

where ¢(v) = 1 if v > 0, and equals 1 otherwise. We then define a cell selector
function which basically answers the question: “Is z on the positive side of the
hyperplane A,”. To draw some parallels to neural networks, the hyperplane
decision functions are known as the binary threshold values, or linear decision
functions.

3.4 VQ performance

Let dist(e,e) be a metric on the vector space. We define the average distortion
measure D = E(dist(z,Z), where z is the input vector and T is its encoded
value. The distortion measure can be expanded for a sequence of inputs as the
average distortion over n inputs, or simply

d= lim ~ Z dist(zi,T;). (57)
It is worth noting that for a stationary ergodic processes, the above limit is the
expectation D.
Suppose z is the outcome of a d-variate random source with the a pdf f,(z).
Let VQ(z) the the quantized value of any input. Then, the average distortion
is

D = E(dist(z,y)) = N dist(z,VQ(z)) fo (z)dx (58)
N

= Z/R dist(z,y) fo(2)dz (59)

= / ZPszst z,y;) f)i{x)dz (60)

= ZP] (dist(z,y;) : © € R;)), (61)

where P; is the probability that z is in the hypercell R;.

We comri.ent that as many different distortion measures can be constructed
as there are metrics on R?. Ones we consider have to be readily computable, in
order to give a realistic measure on the goodness of quantization. A common
measure is the Buclidian distortion,

dist(z,7) = ||z —7|? (62)
d
= Z(xz - _.'13-1')2. (63)
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Figure 7: A Vornoi vector quantization of the plane

Then, the average Euclidian distortion is simply E(||z — Z||*). An important
generalization of the Euclidian distortion is the generalized or weighted Euclidian
distortion,

dist(z,7) = (z — %)W (zx — y), (64)

where W is a matrix of weights.

3.5 Vornoi quantizers

The Vornoi Vector quantization, or the Nearest neighbor quantization is of par-
ticular interest, for efficiency and excellent quantizing properties. The Vornoi
VQ is completely characterized by the codebook set of vectors and the distortion
measure. We shall show that the Vornoi VQ is the optimal VQ in the sense of
minimizing distortion. A vector quantizer is Vornoi if the partition cells are of
the form

R; = {z : dist(z,y;) < dist(z,y;)for allj}. (65)

The following diagram is an example of a Vornoi quantization of the plane.
We now present several different quantizer designs, for a given set of points in
R4, Afterwards, we point out some parallels between VQ and nonparametric
statistical techniques in high dimensions.
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3.6 Vector quantizer methods

This section discusses several iterative methods for optimal codebook design.
The quantization techniques described herein are provably optimal, under the
aforementioned assumptions. The objective in quantization is to find a codebook
and a hyperspace partition rule for a given set of inputs while minimizing some
chosen distortion measure. As mentioned, VQ performance can be measured
by a statistical average of a distortion measure or a worst-case metric. The
statistical average of the distortion of a vector quantizer, VQ(z) is given by

D = E(dist(x, VQ())) = / dist(w, VQ(2)) fx (v)dz (66)

where F,(z) is the joint pdf of X. Naturally, for a discrete source, the above
definition ca: be stated as

D = E(dist(X,VQ(z))) = > _ dist(z;, VQ(a;))P (). (67)

In order to find the optimal VQ for a given source, we search for the optimal
encoder, given a fixed decoder, and then for a fixed encoder, we find the optimal
decoder. The encoder is completely determined by the hyperspace tessellation,
and the decoder is completely determined by the associated codebook.

Given a decoder, the optimal partition is one that satisfies the Vornoi condi-
tion: For each cell, all inputs closer to the codebook assigned to that cell should
be encoded as the codebook value. Thus, we state

Definition 3.3 (Vornoi condition) For a given set out outputs, the optimal
partition cells satisfy

R; C {z : dist(z,y;) < dist(z,y;); for allj}. (68)
Equivalently, we have
VQ(z) = y; only if dist(z,y;) < dist(z,y;), for all 5. (69)

Therefore, for a given decoder, the encoder is a minimum distortion mapping,
and we have:

dist(z,VQ(z)) = méIcl dist(z,y;). (70)
Yi

Next, we state the centroid condition which ensures that a quantizer is optimal
for a given decoder. Define the centroid cent(R;) of any region R; to be that
vector y* that minimizes the distortion between any interior point in R; and y,
averaged over the probability distribution of the source. In other words,

y* = cent(R) if E(dist(z,y") : z € R) < E(dist(z,y) : = € R), (71)
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for all codebook elements y. Equivalently, we write

cent(R) = myin E(dist(z,y) : z € R). (72)

The easiest interpretation of the centroid is that the centroid is the best repre-
sentative of a region under some pre-supposed probability distribution over the
region. For the Euclidian distortion, cent(R) = E(z : z € R). For a bounded
cell, we can directly compute the centroid, provided a probability distribution of
the source is known, or approximated, if we estimate pdf. In order to estimate
the probability distribution, we usually consider some training sequence of data,
say the history of a collection of currencies and side information. This is equiv-
alent to the statistical notion of a learning set. In the next section we discuss
several methods of determining the distribution of a learning set, and cross-
reference these methods to standard nonparametric statistical techniques, but
first we complete this section formally defining the so-called centroid condition,
which completely characterizes the optimal codebook for a given partition.

Definition 3.4 For a given partition {R; : i — 1,..., N}, the optimal codebook
satisfies

y; = cent(r;) (73)

In order to complete the optimality criterion, we formally state the so-called
zero probability boundary condition, which states that the probability of a source
output being equidistant to two codebook entries is zero almost surely.

To this end, let B;: be a collection of M; hyperplanes bounding the cell R;.
An obvious condition for optimality of a VQ is that

N Mi
P(UJ U B =0, as (74)
=1 j=1
Equivalently,
Pz : dist(x,y;) = dist(z,y;)Fi £ j) = 0,, a.s. (75)

The zero boundary condition is trivially satisfied if the source is continuous, as
a countable collection of hyperfaces is of measure zero. For discrete source, the
zero condition may be violated with positive probability. To ensure optimality
for a VQ, we simply break the tie by re-quantizing. It is easy to see that for a
countable number of input vectors, the zero condition can always be avoided.

3.6.1 Local and global optimality

An important requirement for a given quantizer is to be globally(and hence
locally) optimal. We formally define these notions.
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Definition 3.5 A quantizer is said to be locally optimal if the distortion mea-
sure does not decrease given any local perturbation of the codebook vectors. A
quantizer is globally optimal is there does not exist any other codebook resulting
in a lower distortion.

It is well known [13] that a quantizer that satisfies the three optimality condi-
tions will be locally optimal. Unfortunately, a quantizer that is locally optimal
may be severely suboptimal globally. Global optimization is a research area on
its own, and is very much a function of the random source. For forecasting we
intend to do, the quantizer is carefully designed to be globally optimal over a
window of time. Before discussing several design issues, we briefly state some
important implications of optimal quantizers,

Theorem 3.2 A vector quantizer that satisfies optimality conditions under Eu-
clidian distortion is regular.

Proof: Regions satisfying the Vornoi condition are necessarily convex. Given
any pdf over subset of R¢, the expectation is also in the set. Therefore, by the
centroid condition, each codebook vector is in the interior of its corresponding
partition cell. Hence, the VQ is regular [13]. |

Theorem 3.3 A quantizer satisfying the centroid condition under the Euclidian
distortion satisfies:

E(VQ(z) = E(z) (76)
BE@'VQ@) = E(VQ@IP) (77)
E(VQ@I®) = E(lzl*) - E(ls -~ VQ(@)|]). (78)

Proof:  We follow [13]. Let S; = 1g,(x) denote the indicator function for
the region R;. Since the codebook is optimal for the given partition, we have
E((zx — VQ(=))S;) = 0 for all i. Taking a sum over all hypercells, we get
E((x - VQ(z))(3, Si)) = 0. Since the support sets of S; are disjoint, and each
Si = 1 on its support set, we have ), S; = 1. Therefore, E(z — VQ(z)) = 0.
Next, since the codebook is a linear combination of the indicator functions, we
immediately have that E((zx — VQ(z))'VQ(z)) = 0. Hence the quantization
error is not correlated with the output vector. Therefore, E(z'VQ(z)) = 0.
Lastly, E(||z -V Q(2)||*) = E((z—VQ(z))!=), so therefore we can write E(||z—
VQ@)I?) = Ellzl ) - E@VQ()) = E(JzlP) - B(IVQ@)|2). 1
Therefore, we conclude that without loss of generality, optimal quantization

can always be designed for zero-mean random variables. For an optimal decoder,
the quantization error is always correlated with the input vector.
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3.7 Vector quantizer algorithms

In this'section we briefly mention some state-of-the-art methods for designing
optimal quantizers for a given training set of data. We base the design on
the optimality conditions, as a basis for an iterative improvement an initial
vector quantizer. Every quantizer will be initialized with an initial choice for
a codebook and the Vornoi hypercell subdivision. We then search for a new
codebook that is optimal for that partition. We seek to minimize the average
distortion over each cell. We start by mentioning some of the more popular
techniques for an initial codebook choice.

3.7.1 Random poling

Given a training set consisting of N points, we randomly choose a set of points
K < N representatives, according to the source distribution. This approach has
been used extensively in standard pattern recognition literature [13].

3.7.2  Pruning

Given a starting set, the idea of pruning is to selectively remove training vec-
tors as potential codewords. The technique proceeds in a sequential fashion by
inserting a new vector as the codeword, computing the distortion measure for
that codeword, and if the distortion is less than a specified tolerance we con-
tinue, otherwise we do not add another codevector. This procedure is continued
until the codebook has enough vectors. This technique is also well known in
statistical clustering methods [13, 25].

3.7.3 'Pairwise Vornoi design

One of the more powerful design techniques is the pairwise nearest-neighbor or
Vornoi clustering algorithm [8]. For a given set of training vectors, we initialize
a set of clusters, each cluster containing a single training vector. The method-
ology is to merge vectors into groups until a suitable codebook is formed. The
codebook will contain centroids of the clusters of input vectors. The codebook
so gotten is provably optimal [13]. To start, one simply computes the distortion
between each pair of vectors. Two training vectors with smallest distortion are
clustered together, forming a new vector, it being the centroid of the region(in
this case a line) defined by the two vectors. The algorithm proceeds by com-
puting the increase in average distortion, for each pair of clusters, that results
by replacing the pair of clusters by the corresponding centroid. We continue in
this fashion until a suitable size of the codebook is reached.
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3.7.4 Product codes

This procedure computes the optimal scalar quantizer codebook, and forms the
VQ codebook by taking the Cartesian product of the SQ points. In practice,
product codes are not optimal.

3.7.5 The generalized Lloyd procedure

Equivalent to the k-means statistical clustering technique [19], this algorithm is
based on iteratively improving the codebook modification based on Lloyd itera-
tion [13] for scalar quantization. For a given codebook, by the means of a Vornoi
condition, we find the optimal partition of the search space into quantization
cells. In case of a tie, we assign the input to the cell arbitrarily. Using the
centroid condition, we find the optimal codebook for the newly formed cells. It
can be shown that for a known, continuous random source, the Lloyd iteration
does not result in an increase of the distortion rate. Lloyd algorithm has become
more or less the standard in codebook design for a known distribution source.

It is worth noting that a vast array of techniques exist [13] that attempt to
modify the Lloyd algorithm, or some of the earlier ones in order to overcome
the problem of local minima in distortion rate, to attempt to find global minima
and optimize performance. The algorithms are stochastic relaxation, simulated
annealing and fuzzy clustering. In our opinion none of these methods are satis-
factory. We note that Lloyd algorithm is equivalent to a nonlinear Gauss-Siedel
iteration, and in order to generate optimal codes a full nonlinear minimization
must be performed. In other words, the centroid and codebook criteria have to
be simultaneously satisfied. This work is in progress.

4 Forecasting by scalar quantization and entropy
coding

Our empirical application uses the standard data set provided by Olsen and
Associates. The data include the USD-DM, USD-JPY and the DM-JPY ex-
change rates. For the purposes of this paper, we sample these data at a tick to
tick and 5 minute intervals, and we forecast each of the three random sources
independently. Our analysis is conducted on data from October 1, 1992 through
August 31, 1993. Although the granularity of encoding of each source is fixed
at a tick-to-tick or 5 minute intervals, we present the output data daily. The
outputs, per market and per granularity of sampling include the following

e Tree statistics for the compression ratio of the source, giving a measure of
average randomness of the binary output of the sources.

e Tree statistics giving the ratio of the number of internal nodes divided
by the number of leaves, giving a measure of diversity of binary patterns
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output by the source.

e Prediction statistics for the maximum likelihood forecasting strategy. Here
we estimate the probability of a “1”, updated on a daily basis and forecast
with that probability throughout the next day.

e Prediction statistics for the entropy encoding algorithm, growing a, single
tree for the entire year and calling the next move based on the position in
the tree and the probabilities assigned to each child of the current node.

4.1 Results

Given the encoding procedure described above, we encoded the binary strings
from one year worth of data for all three currencies, at a tick-to-tick and five
minute fashion. It is widely accepted that high-frequency foreign exchange
markets pass most martingale tests. Hence, there should be no predictability in
the binary strings above and beyond the maximum likelihood estimate, in other
words, flipping a slightly unfair coin.

Each data-point in the prediction figures represents the cumulative predic-
tion rate at the end of a day (midnight GMT), although the encoding is done for
each and every point in the data-set. Such quantizing is done in order to save
plotting tens of thousands of points, figures which are informationally equivalent
to our plots.

To this end, let us first concentrate on the USD-DM stream. The maximum
likelihood ratio yields a roughly 50% probability of a rise in the mean bid/ask
spread (figure 10) for the tick-to-tick observations, and five-minute sampling
(figure 14). Running the encoder we see that for the tick-to-tick ratio, the
compression of the strings is constant at about 1.15:1, as shown in figure 8.
Figure 11 shows that the encoder’s forecasting is consistently above 64%, or a
12% premium over the MLE estimate, and growing. The encoder’s performance
grows monotonly towards 66% towards the end of the sample. Figure 34 shows
the performance of the MLE estimate compared to the encoder. The difference
is significant.

It is interesting to note that, while the compression ratio stays about con-
stant for the duration of the run, the encoder is improving, hinting that a large
(but less than exponential) number of states in the transition chain are repet-
itive and describe high-frequency trading evolution over the period. We infer
that high-frequency bid/ask posts are incrementally repetitive, through different
days and times of the day.

At a five minute resolution, however, the compression ratio falls monotonly
towards 1.04:1 (figure 12), and the encoder’s performance (figure 15 degrades
to a bit above the MLE estimate (figure 14). The five-minute calls are therefore
highly context-free and unpredictable over a coin toss.

For the USD/JPY stream, the compression ratio (figure 16) of the binary
output converges to just about 1.15:1 much like the USD/DM. The maximum
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likelihood ratio is correct about 50.5%(figure 18) while the encoder’s perfor-
mance is steadily improving from 62% to 64% over the lifetime of the sample
(figure 19). As with USD/DM stream, the five-minute stream shows no signifi-
cant context under the encoding.

The interesting case is the JPY/DM stream. The compression ratio is low
during the entire simulation at 1.05:1 (figure 24), while the encoding grows
steadily to about 53% (figure 27). The five minute encoding shows the same
compression at 1.05:1 (figure 28), while the encoder is performing at around
50.5% (figure 30). This poor performance of the encoder for this particular
stream is no setback, as we will show, the multitree encoder performs well
above 70% for this currency.

The encoder presented above is the simplest on-line predictive strategy for
entropy encoding a source in a context sensitive manner. The multitree encoder
is one of the encoding strategies we have implemented to further enhance the
forecasting power of the encoding strategy.

The multitree encoder encodes the stream in a parallel fashion, by stagger-
ing the encoding over several periods and then each encoder is “super-encoded”
into a “managing” encoder which predicts the stream as a single encoder. The
encoders are started over fixed periods of time, each encoding the source inde-
pendently. Each encoder casts a vote for the next prediction, which are encoded
further by our manager. This manager acts as a simple encoder of the votes.
The manager casts his forecast and trades accordingly. This hierarchical encod-
ing is common as performs quite well. Figure 4.1 shows a time series of encoders
prediction successes. We see that each encoder starts out at zero and quickly
learns. Encoders are also “fired” if their relative compression ratio is low, and
new ones are started. Figure 33 shows the prediction rate of the encoders super-
imposed over the prediction rate of the encoded encoders predictions. We see a
dramatic improvement to 70%, over the average performance of a single encoder
of about 64%. The procedure is, however, recursive, and a “super” manager can
be coded to encode the votes of several managers and so on. These results are
left to future work.

Another statistic is of interest. An encoder makes a prediction with a certain
probability. A “1” is called if the probability of a “1” is greater than 50%.
Figure 35 shows a description of the performance of an encoder versus how sure
the encoder is of its own prediction. If an encoder was right about the call,
we record is probability. If it was wrong, we add a -1 to the value, thereby
separating the rights from the wrongs. We can see that the majority of rights
was in the 6U% to 80% range. The wrongs are in the 50% to 65%. This data,
can be used to optimize an encoder call. by not trading unless the prediction
is in a certain range. Future work involves constructing a super-encoder to deal
with this issue.

The encoders are universal. Therefore, our future work will also include
encoding arbitrary alphabets, such as quantized returns by SQ, or quantized
returns and side information by VQ.
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The hierarchical possibilities are virtually limitless. A real-time on-line trad-
ing framework is the final culmination of this effort.
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Figure 8: USD-DM binary tick-to-tick compression ratio.
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Figure 9: USD-DM tree internal node ratio.
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Figure 10: USD-DM Maximum likelihood ratio prediction rate.
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Figure 11: USD-DM Entropy encoding prediction rate.
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Figure 12: USD-DM binary five minute compression ratio.

350

1.450

1.4

L L : r
50 100 150 200 250 300

Figure 13: USD-DM five minute tree internal node ratio.
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Figure 14: USD-DM five minute maximum likelihood ratio prediction rate.
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Figure 15: USD-DM five minute entropy encoding prediction rate.
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Figure 16: JPN-USD binary tick-to-tick compression ratio.
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Figure 17: JPN-USD tree internal node ratio.
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Figure 19: JPN-USD Entropy encoding prediction rate.
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Figure 22: JPN-USD five minute maximum likelihood ratio prediction rate.
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Figure 23: JPN-USD five minute entropy encoding prediction rate.
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Figure 24: JPN-DM binary tick-to-tick compression ratio.
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Figure 25: JPN-DM tree internal node ratio.
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Figure 26: JPN-DM Maximum likelihood ratio prediction rate.
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Figure 27: JPN-DM Entropy encoding prediction rate.
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Figure 29: JPN-DM five minute tree internal node ratio.
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Figure 30: JPN-DM five minute maximum likelihood ratio prediction rate.

0.535 T T T T T T

0.53H |

0.525 m

0.515H .

0.51 -

0.505H B
M W\/\WW i

0.495( -

o. . : . . N L
490 50 100 150 200 250 300 350

Figure 31: JPN-DM five minute entropy encoding prediction rate.
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Figure 32: Multitree encoder individual performance.
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Figure 33: Multitree encoder group performance.
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Figure 34: Encoder versus maximum likelihood performance.
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Figure 35: Encoder reliability versus performance.
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