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Things you’ll need

• A basic understanding of the Solidity language 
https://cryptozombies.io/en/course/

• Metamask extension: chrome web store
• Remix IDE: https://remix.ethereum.org/
• At least 1 full testnet ether: https://faucet.ropsten.be/
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Parameters for the token
• Name (e.g., FQ1)
• Symbol (e.g., FQ1, default is SYM)
• Decimal places (e.g., 2 decimal places))
• Number of units in circulation (e.g., 100 billion)

• The number of whole tokens will be 1 billion in the above 
example, i.e., 

100 billion/100 (10^2 from 2 decimal places)
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First off, make sure your MetaMask is on 
Ropsten Test Network
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Step 1. Acquire test ethereum for the gas fee

Go to https://faucet.metamask.io/ and request at least 1 
Ethereum from the faucet
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Step 2. Write a contract
1. Go to the IDE (Integrated Development Environment) https://remix.ethereum.org
2. Select the Solidity Environment 
3. Create new file by clicking on 
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Step 2. Write a contract

3. Name the file “Token.sol” 
4. Copy and paste the contract code* 

• Note: Be careful here because some copy and pastes might change 
some characters like ‘ or -.

• Depending on your browser, the code will be highlighted; noticed 
that all the code preceded by a slash (‘/’) takes the same color. 
Solidity understands text after / as comments and will not attempt 
to run it as code (similar to ‘#’ in R and Python).

• Notice that functions, object names and parameters take distinctive 
colors.
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Step 2. Write a contract

5. Modify the code –
At the name of the contract 

The parameters of the contract 
constructor 

Notes:

• Use ctrl + f to find “FQ1” and replace it with 
the name you give to your token elsewhere 
in the code

• Do not use thousands separator
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Step 3. Compile the contract 
• 1. Switch to Compiler tab
• 2. Choose 0.4.24 commit 

version compiler 
• 3. ‘Auto compile’ ON, 

‘Enable optimization’ OFF, 
‘Hide warnings’ ON

• 4. Compile the contract

Campbell R. Harvey 2022 9



Step 4. Deploy the contract
• 1. Switch to Deploy & Run tab
• 2. Choose Injected Web3 

Environment
• 3. Deploy your token using your 

account address!
• You should be logged in with your 

MetaMask; a new screen will ask you to 
confirm the contract
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Step 4. Deploy the contract
• 4. The deployed contract should 

show up on your MetaWallet. View 
it on Etherscan and obtain the 
contract ID. 
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Look carefully:
- The contract ID is not your public address 



Step 5. Add tokens

Campbell R. Harvey 2022 12

The contract ID 
(It is not your 
public address)

Symbol should 
match the one 
you establish in 
the code

FQ1

FQ1



Step 6. Using the tokens

You can send tokens to anyone with a MetaMask address
• They will have to follow Step 5 to add the custom token to 

their wallet.
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Further information

The Solidity code is from:
• https://github.com/CodeWithJoe2020/ERC20Token/blob/main/ERC20.sol
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