
Creating a Crypto Token 
Using a Smart Contract

Campbell R. Harvey
Duke University and NBER

FUQINTRD 697: Innovation and Cryptoventures

1

Developed in collaboration with Hyoung-Yoon Kim, Anibal Granada Gonzales, Manmit Singh and Yash Patil

Campbell R. Harvey 2022



Things you’ll need

• A basic understanding of the Solidity language 
https://cryptozombies.io/en/course/

• Metamask extension: chrome web store
• Remix IDE: https://remix.ethereum.org/
• At least 1 full testnet ether: https://faucet.ropsten.be/

Campbell R. Harvey 2022 2

https://cryptozombies.io/en/course/
https://remix.ethereum.org/
https://faucet.ropsten.be/


Parameters for the token
• Name (e.g., FQ1)
• Symbol (e.g., FQ1, default is SYM)
• Decimal places (e.g., 2 decimal places))
• Number of units in circulation (e.g., 100 billion)

• The number of whole tokens will be 1 billion in the above 
example, i.e., 

100 billion/100 (10^2 from 2 decimal places)

Campbell R. Harvey 2022 3



First off, make sure your MetaMask is on 
Ropsten Test Network

Campbell R. Harvey 2022 4



Step 1. Acquire test ethereum for the gas fee

Go to https://faucet.metamask.io/ and request at least 1 
Ethereum from the faucet

Campbell R. Harvey 2022 5

https://faucet.metamask.io/


Step 2. Write a contract
1. Go to the IDE (Integrated Development Environment) https://remix.ethereum.org
2. Select the Solidity Environment 
3. Create new file by clicking on 

Campbell R. Harvey 2022 6

https://remix.ethereum.org/


Step 2. Write a contract

3. Name the file “Token.sol” 
4. Copy and paste the contract code* 

• Note: Be careful here because some copy and pastes might change 
some characters like ‘ or -.

• Depending on your browser, the code will be highlighted; noticed 
that all the code preceded by a slash (‘/’) takes the same color. 
Solidity understands text after / as comments and will not attempt 
to run it as code (similar to ‘#’ in R and Python).

• Notice that functions, object names and parameters take distinctive 
colors.

Campbell R. Harvey 2022 7
*File available at https://faculty.Fuqua.duke.edu/~charvey/Teaching/697_2022/Public_Presentations_697/fq1.sol

https://faculty.fuqua.duke.edu/%7Echarvey/Teaching/697_2021/Public_Presentations_697/fq1.sol


Step 2. Write a contract

5. Modify the code –
At the name of the contract 

The parameters of the contract 
constructor 

Notes:

• Use ctrl + f to find “FQ1” and replace it with 
the name you give to your token elsewhere 
in the code

• Do not use thousands separator

Campbell R. Harvey 2022 8



Step 3. Compile the contract 
• 1. Switch to Compiler tab
• 2. Choose 0.4.24 commit 

version compiler 
• 3. ‘Auto compile’ ON, 

‘Enable optimization’ OFF, 
‘Hide warnings’ ON

• 4. Compile the contract

Campbell R. Harvey 2022 9



Step 4. Deploy the contract
• 1. Switch to Deploy & Run tab
• 2. Choose Injected Web3 

Environment
• 3. Deploy your token using your 

account address!
• You should be logged in with your 

MetaMask; a new screen will ask you to 
confirm the contract

Campbell R. Harvey 2022 10



Step 4. Deploy the contract
• 4. The deployed contract should 

show up on your MetaWallet. View 
it on Etherscan and obtain the 
contract ID. 

Campbell R. Harvey 2022 11

Look carefully:
- The contract ID is not your public address 



Step 5. Add tokens

Campbell R. Harvey 2022 12

The contract ID 
(It is not your 
public address)

Symbol should 
match the one 
you establish in 
the code

FQ1

FQ1



Step 6. Using the tokens

You can send tokens to anyone with a MetaMask address
• They will have to follow Step 5 to add the custom token to 

their wallet.

Campbell R. Harvey 2022 13



Further information

The Solidity code is from:
• https://github.com/CodeWithJoe2020/ERC20Token/blob/main/ERC20.sol

Campbell R. Harvey 2022 14

https://github.com/CodeWithJoe2020/ERC20Token/blob/main/ERC20.sol

	Slide Number 1
	Things you’ll need
	Parameters for the token
	First off, make sure your MetaMask is on Ropsten Test Network
	Step 1. Acquire test ethereum for the gas fee
	Step 2. Write a contract
	Step 2. Write a contract
	Step 2. Write a contract
	Step 3. Compile the contract 
	Step 4. Deploy the contract
	Step 4. Deploy the contract
	Step 5. Add tokens
	Step 6. Using the tokens
	Further information

