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Abstract

In a decision and risk analysis, experts may provide subjective proba-
bility distributions that encode their beliefs about future uncertain events.
For continuous variables, experts often provide these judgments in the
form of quantiles of the distribution (e.g., 5th, 50th, and 95th percentiles).
Psychologists have shown, though, that such subjective distributions tend
to be too narrow, representing overconfidence on the part of the expert.
We propose an approach for modeling and debiasing expert overconfi-
dence. Based on past performance data (previous assessments and real-
izations for a number of uncertain variables), and using Bayesian meth-
ods to update prior distributions on the model parameters, we show how
our model can be used to debias expert probabilities. We develop and
demonstrate both a single-expert model and a multiple-expert hierarchi-
cal model.

KEYWORDS Calibration, expert judgment, subjective probability, de-
biasing, overconfidence

1 Introduction

Risk analyses often rely on experts to provide subjective probability assessments
for unknown variables. A typical assessment question for a continuous uncertain
variable might be, “Consider net operating profit for Delta Airlines next year.
Please give a number x such that you believe there is a 5% chance that the
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actual net operating profit for Delta Airlines next year will be above x.” The
answer to this question is the 95th percentile of the expert’s subjective proba-
bility distribution for Delta’s net operating profit. Similar questions would be
asked for other quantiles. Typical practice is to obtain several such quantiles.
These quantiles may then be used in a probabilistic model, typically by fitting
a continuous distribution to them. The analyst might use either the continuous
distribution itself or a discrete approximation.

It is well known that individuals are subject to judgment biases when as-
sessing subjective probabilities (e.g., Kahneman et al. 1982). The use of specific
protocols (Merkhofer 1987, Morgan & Henrion 1990) for expert assessment can
help to reduce such biases but does not eliminate them. In this article we focus
on expert overconfidence. Reviews that cover psychological models of confi-
dence and experimental results include Budescu et al. (1997), Griffin & Varey
(1996), Keren (1991), Klayman et al. (1999), Lichtenstein et al. (1982), and Mc-
Clelland & Bolger (1994). Although such overconfidence has been documented
for both binary and continuous variables, in this paper we consider only con-
tinuous variables. An expert’s probability distribution displays overconfidence
when an assessed interval (e.g., the interval between an expert’s 5th and 95th
percentiles) is too narrow. Detecting this phenomenon in practice requires the
analyst to compare a number of such assessed intervals with the corresponding
realizations. If each set of assessments/realization is exchangeable (de Finetti
1937) with respect to other assessments/realizations, then for a calibrated judge
we would expect the proportion of realizations that fall within the assessed in-
tervals to correspond to the specified probability. For example, if an expert
has made many 5th-95th percentile judgments, then we would expect that 90%
of realizations would fall within the corresponding intervals. Such an expert is
said to be “calibrated.” For many probability assessors, the proportion is on the
order of 40%-60% of realizations (e.g., see Lichtenstein et al. 1982), reflecting
overly narrow assessed intervals.

Attempts to debias expert judgments have generally focused on finding ways
to improve the elicitation process itself so as to improve the calibration of the
assessed probabilities (Fischhoff 1982). For example, the protocols mentioned
above include steps in which experts learn the principles of subjective probability
judgment and the associated biases.

In this paper, we take the approach of calibrating the expert’s judgments
after the elicitation is completed. This approach is consistent with ideas from
Cox (1958), Morris (1974), and Harrison (1977). Shlyakhter (1994) (see also
Shlyakhter et al. 1994) develops a model of overconfidence and uses past data
to estimate an “inflation factor” for assessed distributions. Shlyakhter treats all
experts as exchangeable and hence applies his inflation equally to all experts.
In contrast, our Bayesian model is capable of calibrating individual experts.

Section 2 below describes a basic, single-expert model, which we demon-
strate with data from Cooke (1991). Although useful, the single-expert model
essentially treats all experts separately; Expert i’s overconfidence characteris-
tics (parameters) are completely unrelated to Expert j’s. Section 3 describes
a Bayesian hierarchical model in which each expert’s parameters are randomly
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drawn from a distribution characterized by hyperparameters with their own
prior distributions. In this model, the experts are conditionally independent
given their parameters. These parameters are uncertain but are related through
the hyperparameters; this allows data from one expert to affect inferences about
other experts. Section 4 concludes with a discussion of the model and further
research.

2 Debiasing a Single Expert

2.1 A Judgment Model

Suppose an expert assesses three quantiles for uncertain quantity Xi. Denote
the expert’s quantiles by Li, Ri, and Ui (e.g., 5th, 50th, and 95th percentiles).
We want to transform Li, Ri, and Ui into their unbiased couterparts L∗

i , R∗
i ,

and U∗
i . We assume that the assessed Ri is biased by parameter β, a location

multiplier, so that

R∗
i = βRi .

Our primary concern is with the potential bias in Li and Ui. We model
the bias in Li and Ui in terms of their distances from R∗

i . Suppose that the
distance R∗

i − Li should be multiplied by parameter αL and similarly Ui − R∗
i

by parameter αU in order to achieve unbiasedness. Thus, αL and αU can be
thought of as scale multipliers. The expert is overconfident when αL or αU is
greater than 1. Thus, we can calculate L∗

i and U∗
i according to the following

equations:

L∗
i = R∗

i − αL(Ri − Li) = (β − αL)Ri + αLLi

U∗
i = R∗

i + αU (Ui − Ri) = (β − αU )Ri + αUUi

For random variable Xi (with corresponding realization xi), an expert’s un-
biased distribution G(xi|L∗

i , R
∗
i , U

∗
i ) is modeled as uniform between L∗

i and R∗
i

and between R∗
i and U∗

i and with exponential tails below L∗
i and above U∗

i .
The exponential tails are fit so that the density g(xi) is continuous at L∗

i and
U∗

i . Thus, g(xi) is given by

g(xi|L∗
i , R

∗
i , U

∗
i ) =




G(L∗
i )λLe−λL(Li−xi) if xi < L∗

i

(G(R∗
i )− G(L∗

i ))/(R
∗
i − L∗

i ) if L∗
i < xi < R∗

i

(G(U∗
i )− G(R∗

i ))/(U
∗
i − R∗

i ) if R∗
i < xi < U∗

i

(1− G(U∗
i ))λUe−λU (xi−Ui) if xi > U∗

i .

Parameters λL and λU are

λL =
(

G(R∗
i )− G(L∗

i )
R∗

i − L∗
i

)
1

G(L∗
i )
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and

λU =
(

G(U∗
i )− G(R∗

i )
U∗

i − R∗
i

)
1

1− G(U∗
i )

.

Although this model maintains fidelity with the expert’s assessments, it is
admittedly ad hoc; there are many possible alternatives such as fitting a member
of a parameterized family to the expert’s assessment or modeling the tails in
other ways. We do not expect our results to be highly sensitive to these modeling
assumptions

Parameters αL, αU , and β are assumed to be constant for assessments of
different random variables and hence are characteristics of the expert. How-
ever, these parameters are unknown; for our analysis, we assume diffuse priors
for them. If the expert has made judgments on n random variables Yi in the
past for which we have observed realizations yi, . . . , yn, and if these assess-
ment/realization vectors are judged to be exchangeable, then we can use the
data to find posterior distributions for the three parameters. Let L denote the
vector (L1, . . . , Ln), similarly for R and U , and for L∗, R∗, and U∗ as well. For
the model described above, the likelihood of observing realizations yi, . . . , yn is

f(y1, . . . , yn|L∗, R∗, U∗) =
n∏

i=1

g(yi|L∗
i , R

∗
i , U

∗
i ),

or equivalently

f(y1, . . . , yn|αL, αU , β, L,R,U) =
n∏

i=1

g(yi|(β − αL)Ri + αLLi, βRi, (β − αU )Ri + αUUi).

Using this model, we can find posterior distributions for αL, αU , and β
using Markov Chain, Monte Carlo (MCMC) methods. In the following we use
a Metropolis-Hastings algorithm. Details of the algorithm and implementation
are available from the authors.

2.2 Example

The data for the demonstration come from a study on risks to manned space-
flight from collisions with space debris (Cooke 1991). In the original study, seven
experts provided 5th, 50th, and 95th percentiles for a variety of variables related
to space-debris risk. Among other assessments, the experts assessed their prob-
ability distributions for the number of radar-tracked objects injected into orbit
for each of 26 years beginning in the early 1960s. Cooke and colleagues used
the assessments and realizations for these 26 variables to evaluate and combine
the experts’ probability judgments. We use the same data to demonstrate our
debiasing model.

We demonstrate our method using Expert 3’s assessments for the 26 vari-
ables, which are reproduced in Table 1 along with realizations yi. Note that
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i Li Ri Ui yi i Li Ri Ui yi

1 102.5 242.0 335.0 292.0 14 337.5 415.0 485.0 20.0
2 117.5 244.0 344.0 24.0 15 357.5 435.0 509.0 585.0
3 132.5 245.0 346.0 150.0 16 375.0 458.0 534.0 609.0
4 147.5 250.0 347.5 97.0 17 392.5 477.5 560.0 552.0
5 162.5 252.5 347.5 823.0 18 410.5 500.0 586.0 178.0
6 180.0 257.5 347.5 223.0 19 430.0 520.0 617.5 87.0
7 197.5 280.0 347.5 27.0 20 447.5 540.0 649.0 88.0
8 222.5 300.0 347.5 287.0 21 462.5 558.0 680.0 578.0
9 238.0 318.0 352.5 356.0 22 477.5 578.0 710.0 191.0
10 260.0 337.0 380.0 508.0 23 501.0 597.5 741.0 84.0
11 279.0 357.5 408.0 187.0 24 522.0 617.5 770.0 33.0
12 298.0 375.0 437.5 12.0 25 540.0 638.0 800.0 546.0
13 318.0 396.0 460.0 556.0 26 556.0 680.0 832.0 601.0

Table 1: Example expert assessments. Li, Ri, and Ui correspond to the 5th,
50th, and 95th percentiles of the expert’s distribution. These 26 assessments
display substantial overconfidence; 18 of the 26 actual values (yi) fall outside
the lower (Li) and upper (Ri) quantiles.

Expert 3 experienced 18 “surprises” (yi below the 5th or above the 95th per-
centiles) for these 26 assessments. If the expert were well calibrated, we would
expect only 2 or 3 surprises. Hence we believe that Expert 3 is overconfident
in making probability assessments and that a decision maker may benefit from
debiasing those assessments.

We ran our MCMC model for 100,000 iterations after a burn-in period of
25,000 iterations. The candidate acceptance rate for the Metropolis-Hastings
algorithm was 23.8%. Complete details about the implementation and results
from the run are available from the authors.

Figures 1 and 2 display posterior densities for Expert 3’s αL, αU , and β.
These densities have medians 2.07, 7.73, and 0.41, respectively. From these we
can interpret Expert 3’s characteristics. First, with median β of 0.41, Expert
3 appears to assess medians about 2.5 times greater than should be. Further-
more, after correcting the median to get R∗

i , Expert 3 appears to be extremely
overconfident in assessing both upper and lower tails. Median αL = 2.07 implies
that the assessed distances between Li and R∗

i tend to be about half of what
they should be. Likewise, median αU = 7.73 means that the assessed differences
between Ui and R∗

i tend to be about one-eighth of what they should be.
The bimodality in the densities for αL and β may seem surprising at first

glance but is readily explained. The uncertain variables are all numbers that
must be nonnegative, and parameters αL and β must covary in a way that is
consistent with these constraints. In particular, if β is small, the location of
the calibrated distribution must shift toward zero, in which case αL must also
be small. The presence of several realizations near zero in the data set mean
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Figure 1: Posterior distributions for Expert 3’s αL and αU .

Figure 2: Posterior distribution for Expert 3’s β.
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Figure 3: Expert 3’s original and calibrated distributions for variable 27.

that the model must put substantial mass on very small values for the two
parameters; hence the left mode in each graph. The remaining larger realizations
are likewise more consistent with larger parameter values, and hence the right
mode. The small modes in the right tail of the density for αU can be explained
with the same reasoning.

We can also use the posterior distributions on the parameters to calibrate a
new assessment by Expert 3. For example, consider variable 27, the number of
bits of radar-tracked space items placed into orbit the year after the study was
done. This assessment was not included in the original set of 26 data points.
For this variable, Expert 3 assessed 5th, 50th and 95th percentiles to be 572,
712, and 865, respectively. Figure 3 shows the calibrated density, for which the
5th, 50th, and 95th percentiles are 2, 335, and 1490, a dramatic change from
the original assessments. The presence of substantial mass near zero reflects the
non-negativity constraint. The combination of a large αL and small β could lead
to a negative L∗

i . Rather than creating a calibrated distribution that extends
below zero, the algorithm concentrates mass at the boundary.

3 Debiasing Multiple Experts

3.1 A Bayesian Hierarchical Model

The model above focuses on a single expert, but common practice in risk anal-
ysis is to use multiple experts. It is not unreasonable to imagine that experts
within a domain could have a tendency to display similar characteristics. In this
section, we propose a Bayesian hierarchical model (e.g., Gelman et al. 1995) that
captures this notion.
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The essence of a hierarchical model is that an individual’s parameters are
modeled as if they are randomly drawn from a population distribution. For our
model, we will identify an expert j’s characteristics as αLj , αUj , and βj . To
begin, let αLj be distributed according to a gamma distribution:

αLj |AL, BL ∼ Ga(AL + 1, BL),

where AL and BL are hyperparameters with prior distributions

AL ∼ Pois(aL)

and
BL ∼ Exp(bL).

Given these specifications, the marginal density for αLj is

f(αLj) =
(aL + 1)bLαLj + b2

L

(b + αLj)3
e−aLbL/(b+αLj) . (1)

We let aL = bL = 2, which results in a relatively diffuse unconditional prior for
αLj with mean near 1.

The hierarchical models for αUj , and βj are specified in a corresponding
manner. When implemented, this model produces posterior distributions for all
hyperparameters (AL, BL, AU , BU , Aβ , and Bβ) as well as for all of the individ-
ual parameters for each expert (αLj , αUj , and βj).

The hierarchical model provides a more complete environment for analyz-
ing and calibrating expert judgments. In particular, it specifies a relationship
among the experts. Data from all of the experts provides information about the
hyperparameters, which in turn affects the posterior distributions for all αLj ,
αUj , and βj . The example below demonstrates this effect.

3.2 Example

We continue with Cooke’s space-debris data, demonstrating the hierarchical
model using all seven experts. We again ran the MCMC model for 100,000
iterations after a burn-in period of 25,000 iterations. The candidate acceptance
rate for the Metropolis-Hastings algorithm was 22.2%. Again, complete details
are available from the authors.

We begin the discussion of the analysis by considering what these data sug-
gest for a new, hypothetical expert for whom no calibration data are available.
Assuming that this expert comes from the same population as those in the study,
we can use the hierarchical model to make inferences about such a generic ex-
pert. Figure 4 shows the prior (the same for all three parameters) and posterior
densities for αL, αU , and β for this expert. The prior is the unconditional density
f(αL) (Equation 1) and is implied by the prior distributions on the hyperpa-
rameters. Because their models are identical, αU and β have the same prior
density. To obtain the posterior densities, the data from the seven experts in
the study have been used to update the prior densities for the hyperparameters,
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Figure 4: Prior and posterior distributions from the hierarchical model for a
new, hypothetical expert’s parameters αL, αU , and β. The prior density is the
same for all three parameters.

and in turn to generate the unconditional distributions for the three parameters
for the new expert. The change from the prior is substantial for αL and β,
but less so for αU . Overall, we see that a new expert is expected to be highly
overconfident; P (αL < 1) = 0.20 and P (αU < 1) = 0.06, with medians for αL

and αU of 1.83 and 5.07, respectively. A typical expert would be expected to
have a slight upward location bias, with median β = 0.79 and P (β < 1) = 0.62.

Suppose that the new, hypothetical expert provides a probability assessment
for another space-debris variable, giving 5th, 50th, and 95th percentiles of 400,
450, and 500, respectively. By integrating over the posterior distributions for
αL, αU , and β, we can produce a calibrated assessment for this new expert.
Figure 5 shows the calibrated density. Note the long upper tail and the slight
spike of mass at zero. This calibrated density has 5th, 50th, and 95th percentiles
at 38, 417, and 1202, respectively, reflecting the overconfidence of experts in this
population.

It is also instructive to compare the results of the hierarchical model with
those from the single-expert model. Figures 6, 7, and 8 show the posterior
densities for Expert 3’s αL3, αU3, and β3 using both models. In all three cases,
the hierarchical model produces substantially different results. For example, for
αL3 the hierarchical model places almost no mass below 1.5, whereas the single-
expert model has 32% of the mass in this interval. Similar observations can be
made for both αU and β. In all three cases, the hierarchical model provides
narrower densities, reflecting the fact that data from all seven experts have a
bearing on the posterior densities for a specific expert.

Finally, we can consider how the hierarchical model would recalibrate Expert
3’s assessment for Variable 27. Figure 9 shows the calibrated densities from both
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Figure 5: New expert’s original and calibrated assessment using the hierarchical
model.

Figure 6: Posterior densities for αL3 for hierarchical and single-expert models.
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Figure 7: Posterior densities for αU3 for hierarchical and single-expert models.

Figure 8: Posterior densities for β3 for hierarchical and single-expert models.
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Figure 9: Expert 3’s original and calibrated assessments for variable 27 using
single-expert and hierarchical models.

models. Again, the hierarchical model gives different results, although in this
case it is not radically different. The hierarchical model produces 5th, 50th,
and 95th percentiles of 0, 374, and 1418, respectively, as compared to 2, 335,
and 1490 for the single-expert model. The hierarchical model places slightly
less mass near zero and in the lower portion of the domain, and likewise the the
hierarchical model has slightly less mass in the upper tail. These observations
reflect the fact that the hierarchical model has somewhat tighter densities for
the parameters due to the incorporation of information from all experts.

4 Conclusion

Our Bayesian calibration model provides a way to debias expert probability as-
sessments based on past performance data. Although the single-expert model
is relatively straightforward to understand and implement, we prefer the hierar-
chical model. Modeling a population of experts provides important inferential
advantages, which we have demonstrated: Any inferences about a single expert
benefit from all the data, and the model enables the analyst to perform a pre-
liminary calibration of a new expert before any specific performance data are
available for that expert.

Our approach provides a way to adjust expert judgments after the fact. This
is an “ex-post” approach to debiasing; an “ex-ante” approach would be to de-
velop elicitation methods that counteract the expert’s natural biases in the first
place. Fischhoff (1982), Morgan & Henrion (1991), and McClelland & Bolger
(1994) all discuss ex-ante debiasing techniques. For example, analysts can use
counterfactual reasoning to push experts to consider extreme scenarios; doing
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so can reduce overconfidence somewhat, but has not been shown to eliminate
it (Koriat et al. 1980, Morgan & Henrion 1990). The most promising debiasing
technique is training. While training can be effective in some circumstances
(e.g., novel situations in which the assessor may learn what cues are diagnos-
tic), the empirical results are not all positive. In particular, Morgan & Henrion
(1991) discuss five studies that explicitly address overconfidence for continuous
variables; although improvement was observed, in no case did training eliminate
the bias. Benson & Onkal (1992) come to a similar conclusion in their review.

Another promising approach arises from the Brunswikian approach to proba-
bility assessment that has been recently promoted by Gigerenzer and others (see
Gigerenzer 1991, Gigerenzer et al. 1991). This approach stresses the importance
of asking an expert questions that are consistent with those typically encoun-
tered in his or her domain of expertise. Asking such questions is said to be
“ecologically consistent” with the expert’s experience and can improve calibra-
tion. In addition, framing assessment questions in terms of relative frequencies
can improve calibration in comparison with the “degree of belief” framing typi-
cally used for subjective probability judgments. Neither of these approaches are
a panacea, however. First, by their very nature risk assessments often involve
asking experts questions that go beyond their day-to-day experience (e.g., the
probability of a failure in a nuclear reactor containment vessel). Also, not all
risk-assessment tasks are readily re-framed in frequency terms. Consider the
space-debris example. If the problem is to assess the number of objects injected
into orbit in 2010, how would one describe an equivalence class for which the
expert could make a relative-frequency judgment?

This discussion suggests that ex-ante debiasing is a difficult and potentially
unattainable goal. For that reason, we believe ex-post calibration of the type we
describe here to be of value in risk assessment. The idea of ex-post calibration
has been eschewed, however, by behavioral decision theorists and others for
many years. Savage (1971) argues eloquently that “You might discover with
experience that your expert is optimistic or pessimistic in some respect and
therefore temper his judgments. Should he suspect you of this, however, you
and he may well be on the escalator to perdition” (p. 796). Lichtenstein et al.
(1982) and von Winterfeldt & Edwards (1986) add that ex-post calibration can
require a substantial quantity of data.

Our model and example demonstrate that calibration can be performed with
a data set of reasonable size. Although we do not have a strong counterargument
to Savage, we believe that most experts would prefer to be calibrated and that a
suitable system can be developed to accomplish calibration in an ex-post fashion.
Finally, we believe that our Bayesian approach may prove valuable for analyzing
experimental data from studies of ex-ante debiasing methods. In particular,
where most studies to date have focused on aggregate characteristics of the
population of experts, our model would permit researchers to study individual
differences in calibration.

Although we have developed and demonstrated our model on the basis of
three assessments (Li, Ri, and Ui), the model readily extends beyond these
three. For example, an expert might provide quartiles as well as the 5th, 50th,
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and 95th percentiles. Also, by incorporating additional parameters, one could
extend the model to handle experts who provide different quantiles. For exam-
ple, one expert might provide 5th and 95th percentiles, and another 10th and
90th percentiles.

The model does include ad hoc assumptions for the purpose of translating an
expert’s judgments into a density function; we assume a piecewise-uniform den-
sity between the assessed quantiles and exponential tails. These specifications
give us modeling convenience and tractability in the MCMC implementation.
Other specifications are also possible, although we believe that the qualitative
results—the calibrated expert density—will be robust to alternate specifications.

Our examples have demonstrated the feasibility of a Bayesian calibration
process. The hierarchical model in particular has potential for further studies.
For example, we may apply it to the same expert making assessments in different
domains. If an expert makes judgments on almanac-type questions, those data
may be useful for calibrating the expert in a specialty domain such as space
debris or nuclear waste. Further, this model may extend to multiple experts
making judgments in multiple domains and to the problem of combining judg-
ments from multiple experts. In addition, scoring rules (Savage 1971, Winkler
1967, Winkler & Matheson 1976) can be used to analyze the performance of the
calibrated judgments. Of particular interest are the relative performance of the
single-expert and hierarchical models as well as the performance of calibrated
judgments in a variety of domains. Research is under way on these and other
issues.
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