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The construction of a probabilistic model is a key step in most decision and risk analyses.
Typically this is done by defining a joint distribution in terms of marginal and conditional

distributions for the model’s random variables. We describe an alternative approach that uses
a copula to construct joint distributions and pairwise correlations to incorporate dependence
among the variables. The approach is designed specifically to permit the use of an expert’s
subjective judgments of marginal distributions and correlations. The copula that underlies the
multivariate normal distribution provides the basis for modeling dependence, but arbitrary
marginals are allowed. We discuss how correlations can be assessed using techniques that are
familiar to decision analysts, and we report the results of an empirical study of the accuracy
of the assessment methods. The approach is demonstrated in the context of a simple example,
including a study of the sensitivity of the results to the assessed correlations.
(Measures of Dependence; Kendall’s t; Spearman’s r; Copulas; Multivariate Normal Copula; Decision
Analysis Process)

1. Introduction
One of the central steps in decision and risk analysis is
the construction of a model that portrays the uncer-
tainty inherent in the situation. For example, such
uncertainty could relate to risks associated with haz-
ardous chemicals, uncertainty due to economic vari-
ables, or the stochastic nature of a manufacturing or
service process. The conventional approach to model-
ing uncertainty is to specify a joint distribution of the
random variables as a product of marginal and con-
ditional distributions.

A disadvantage with the typical marginal-and-
conditional approach is that the required number of
probability assessments can grow exponentially with
the number of variables. Analysts respond by search-
ing diligently for conditional independence among
variables to reduce the assessment burden. In this
paper we discuss an alternative in which a joint

distribution is constructed using a copula, requiring
only marginal distributions and measures of depen-
dence among the random variables. Using the copula
that underlies the multivariate normal distribution, a
complete copula-based joint distribution can be con-
structed using assessed rank-order correlations and
marginal distributions, thereby reducing the number
of required assessments and relaxing the need to
search for conditional independence.

In the next section, we discuss the basics of con-
structing a copula-based probability model, showing
how this approach can be implemented using the
multivariate normal copula density. The copula ap-
proach relies fundamentally on the ability of experts
to reliably assess correlations, which may appear to be
a tall order. Some practical assessment techniques are
available, however, and they are discussed in Section
3 along with the results of a small pilot study
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investigating the techniques’ accuracy. Section 4 dem-
onstrates the copula procedure with an example, in-
cluding a sensitivity analysis of the results to errors in
assessed correlations. Section 5 concludes with a dis-
cussion of the benefits and limitations of the copula
approach and our view of the technique’s appropriate
role as a complement to the conventional modeling
approach.

2. Copula-Based Probability
Models

Our starting point is the same as in a conventional
decision analysis: We assume that the analyst has
identified those uncertain variables for which a prob-
abilistic model is required. For example, the analyst
might perform a deterministic sensitivity analysis
(Howard and Matheson 1983) or Reilly’s (1998) depen-
dent sensitivity analysis. With a set of random vari-
ables identified, the analyst proceeds by assessing
marginal distributions and dependence measures nec-
essary for constructing the copula-based joint distri-
bution. Before we discuss specific copula models and
assessment techniques, however, we review basic
properties of copulas.

2.1. Copula Basics
The essence of the copula approach is that a joint
distribution of random variables can be expressed as a
function of the marginal distributions. To make this
notion precise, we review two essential mathematical
results. The first is:

Sklar’s Theorem (1959). Given a joint cumulative
distribution function F( x 1, . . . , x n) for random variables
X 1, . . . , X n with marginal cumulative distribution func-
tions (CDFs) F 1( x 1), . . . , F n( x n), F can be written as a
function of its marginals:

F~x1, . . . , xn! 5 C@F1~x1!, . . . , Fn~xn!#,

where C(u 1, . . . , u n) is a joint distribution function with
uniform marginals. Moreover, if each F i is continuous, then
C is unique, and if each F i is discrete, then C is unique on
Ran(F 1) 3 . . . 3 Ran(F n), where Ran(F i) is the range
of F i.

The function C is called a copula. Sklar’s Theorem is
completely general: Any joint distribution can be
written in copula form. Due to space limitations, we

focus in this article on the mathematically tractable
case where each F i is continuous and differentiable.1

Given that F i and C are differentiable, the joint
density f( x 1, . . . , x n) can be written as

f~x1, . . . , xn! 5 f1~x1! 3 · · ·

3 fn~xn!c@F1~x1!, . . . , Fn~xn!#, (1)

where f i( x i) is the density corresponding to F i( x i),
and c 5  nC/(F 1

. . . F n) is called the copula density.
This is our second essential result, which states that,
under appropriate conditions, the joint density can be
written as a product of the marginal densities and the
copula density. For example, if the X i’s are indepen-
dent, then c 5 1 and f( x 1, . . . , x n) 5 f 1( x 1) 3 . . . 3
f n( x n), the familiar formula for n independent random
variables. From the representation in (1) it is clear that
the copula density c encodes information about the
dependence among the X i’s. For this reason c is
sometimes called a dependence function.

To demonstrate the use of a copula to specify a joint
distribution with specified marginals, suppose the
analyst wishes to construct a bivariate distribution
H( x, y) with marginals F( x) and G( y). Specifically, let
F( x) be a beta distribution with parameters (a 5 5, b

5 5), let G( y) be a lognormal distribution with param-
eters (m 5 0, s2 5 1), and let

Cd~u, v! 5
21
d

lnS1 1
~e 2du 2 1!~e 2dv 2 1!

e 2d 2 1 D , d Þ 0.

Then C d[F( x), G( y)] is a bivariate distribution of the
requisite form H( x, y). The copula C d(u, v) is a
member of Frank’s family (Frank 1979); the parameter
d determines the level of dependence between X and
Y (Nelson 1986). As d 3 0, C d[F( x), G( y)] ap-
proaches F( x)G( y), implying independence. As d 3
`, the correlation increases.

Figure 1 displays the joint density h(x, y) for three
different levels of correlation; in each case X and Y have
the required beta and lognormal marginal densities.

1 In the discrete case, the copula is unique on Ran(F 1) 3 . . . 3

Ran(F n) rather than the unit hypercube because there is no unique
definition for F i

21. With a specific definition of F i
21, the construction

of a copula representation for a joint distribution of discrete random
variables is straightforward. See the proof of Sklar’s Theorem for
further details and clarification.
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Figures 1(a) and 1(b) show a three-dimensional plot and
a contour plot of the bivariate density when X and Y
have Spearman2 rank correlation (r) of 0.25. Figures 1(c)

and 1(d) illustrate via contour plots the effect of increas-
ing the level of correlation to 0.50 and 0.90, respectively.

Using a copula as a basis for constructing a multi-
variate model is flexible because no restrictions are
placed on the marginal distributions. Thus, we could
just as easily have constructed a bivariate distribution
with normal and gamma marginals or binomial and
exponential marginals or any two subjectively as-

2 Although Spearman’s r was originally developed as a measure of
association in a sample, it has a population analog that can be
expressed in terms of a copula. The same is true for Kendall’s t. See
Nelsen (1991).

Figure 1 Bivariate Density with Beta (5, 5) and Lognormal (0, 1) Marginal Densities for Three Levels of Correlation
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sessed marginals. Such bivariate distributions are con-
structed by the substitution u 5 F( x) and v 5 G( y) as
in the example above.

An excellent introduction to the theory of copulas is
in Schweizer (1991). Tutorial articles include Genest
and MacKay (1986) and Nelsen (1995). Dall’Aglio,
Kotz, and Salinetti (1991) and Beneš and Štephán
(1997) are collections of articles on copulas and related
theory. A variety of applications involving copulas are
available in the literature. For example, Jouini and
Clemen (1996) use Archimedean copulas for aggregat-
ing expert judgments. Yi and Bier (1998) use copulas
in an analysis of precursor events in a reliability
model. Frees and Valdez (1998) and Frees, Carriere,
and Valdez (1996) use copulas in actuarial modeling.

2.2. The Multivariate Normal Copula
Creating a copula-based probability model is accom-
plished by using the copula to “couple” the marginals
into a joint distribution. Doing this requires two steps.
First is modeling the marginal distributions in some
way, which may require making a number of proba-
bility assessments and possibly fitting a member of a
distribution family (normal, exponential, beta, etc.) to
those assessments. Standard techniques from decision
and risk analysis are available to accomplish these
tasks (Morgan and Henrion 1990, Clemen 1996).

The second step is to create a copula to model the
dependence among the random variables. Many con-
cepts and measures of dependence or association are
available. In this article, we consider only cases in
which the relationships can be captured adequately by
pairwise measures of dependence or association.3,4

Two such measures are Spearman’s r and Kendall’s t.
For example, it is well known that if two random
variables are positively (negatively) associated, then r

. 0 (r , 0) and likewise for t (Lehmann 1966, Barlow
and Proschan 1975, Nelsen 1991). Moreover, these

measures satisfy Schweizer and Wolff’s (1981) de-
siderata for nonparametric measures of dependence
and, for many families of copulas, can be used to index
the family in terms of the level of dependence between
the variables. Unlike the Pearson product-moment
correlation, rank-order correlations such as r and t do
not depend on the marginal distributions. For now,
we will assume that the expert has assessed a matrix
R* of dependence measures (either r or t). Assessment
of these two measures is discussed below in Section 3.

Several copula families are available that can incor-
porate the relationships defined by matrix R*. One
such family is the copula that underlies the multivar-
iate normal distribution. Like other copula families,
the multivariate normal copula allows any marginal
distribution for the X i’s. It is called the normal copula
because it encodes dependence in precisely the same
way that the multivariate normal distribution does
using only pairwise correlations among the variables,
but it does so for variables with arbitrary marginals.
Moreover, the normal copula permits the use of any
positive-definite correlation matrix. (The class of
Archimedean copulas, for example, is limited to intra-
class correlation matrices; see Jouini and Clemen
(1996).) The flexibility and analytical tractability of the
multivariate normal copula suggest that it is a prom-
ising way to represent dependence. Moreover, it has
an illustrious history in probabilistic modeling. Al-
though the notion of a copula per se is fairly recent,
Edgeworth (1898) used the dependence structure of
the bivariate normal to describe the joint distribution
of bivariate data with clearly nonnormal marginals.
Mardia (1970) also discusses a technique similar to
what we use here. Kelly and Krzysztofowicz (1996a, b)
use a closely related approach for selecting and com-
bining expert forecasts.

To understand the multivariate normal copula, be-
gin by recalling that the multivariate normal distribu-
tion typically is parameterized in terms of Pearson
product-moment correlations. Thus, for each element
of R*, calculate the corresponding product-moment
correlation r ij for the multivariate normal. If R* is
made up of t ij, the formula is r ij 5 sin(pt ij/ 2), and if
the measure is r ij, r ij 5 2 sin(pr ij/6) (Kruskal 1958).
Construct matrix R with elements r ij. Solving

3 The concept of association is a relatively weak form of probabilistic
dependence; see Barlow and Proschan (1975) for a definition.
4 The approach we use permits only relationships that can be
captured by pairwise rank correlations, which implies that ø- or
ù-shaped relationships are not possible. If such a relationship is
encountered, a suitable transformation of variables may render the
problem tractable. Furthermore, we believe that limiting ourselves
to such relationships is a natural starting point for representing
expert knowledge.
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Equation (1) for the copula density c N in terms of the
multivariate normal density f (n)( y 1, . . . , y n|R) gives:

cN@F~y1!, . . . , F~yn!|R*#

5 f ~n!~y1, . . . , yn|R!/@f~y1! 3 · · · 3 f~yn!#, (2)

where F and f denote the univariate standard normal
distribution and density, respectively. Substitution of
the expressions for the normal densities and algebraic
manipulation lead to:

cN@F~y1!, . . . , F~yn!|R*#

5 exp$2y T~R 21 2 I!y/2%/|R| 1/2, (3)

where y 5 ( y 1, . . . , y n) T, and I is the n 3 n identity
matrix.

We are now able to construct a multivariate density
using c N as a dependence function with arbitrary
marginals F 1( x 1), . . . , F n( x n). Using the normal in-
verse transformation F21, define Y i 5 F21[F i(X i)] for
i 5 1, . . . n, and substitute these into (3) and (1) to
obtain the desired joint density:

f~x1, . . . , xn|R*!

5 f1~x1! 3 · · · 3 fn~xn!

3 exp$2y T~R 21 2 I!y/2%/|R| 1/2

5 f1~x1! 3 · · · 3 fn~xn!

3 exp$2~F 21@F1~x1!#, . . . , F 21@Fn~xn!#!

3~R 21 2 I!~F 21@F1~x1!#, . . . ,

F 21@Fn~xn!#) T/2}/|R| 1/2. (4)

This joint density has the specified marginals and,
because both r and t are invariant under monotone 1-1
transformations of the original variables, the X i’s have
the assessed rank-order correlations R*. Calculating
the density for specific values x 1, . . . , x n is relatively
easy, requiring n inversions of the univariate standard
normal distribution.

Conditional densities are also easily calculated us-
ing the multivariate normal copula model. Let R and y
be partitioned as follows:

R 5 F Rn21 r
r T 1 G and y 5 ~yn21, yn!,

where yn21 5 ( y 1, . . . , y n21)
T, Rn21 is the (n 2 1)

3 (n 2 1) correlation matrix for (Y 1, . . . , Y n21), and
r 5 (r 1n, . . . , r (n21)n) T. From (1), (2), and the definition
of conditional probability, we have

f~xn|x1, . . . , xn21, R*! 5 fn~xn!

3
f ~n!~F 21@F1~x1!#, . . . , F 21@Fn~xn!#|R!

f~F 21@Fn~xn!#! 3 f ~n21!~F 21@F1~x1!#, . . . ,
F 21@Fn21~xn21!#|Rn21!

,

which, upon substituting in the expressions for the
normal densities and reducing, becomes

f~xn|x1, . . . , xn21, R*!

5 fn~xn! expH20.5F ~F 21@Fn~xn!# 2 r TR n21
21 yn21!

2

~1 2 r TR n21
21 r!

2 ~F 21@Fn~xn!#!
2GJ ~1 2 r TR n21

21 r! 21/2. (5)

With the joint density specified, expected values, ex-
pected utilities, and risk profiles can be calculated di-
rectly from the copula model. Value-of-information anal-
ysis is possible and will typically require the calculation
of conditional distributions from the copula in a manner
similar to (5) above. As usual in the decision-analysis
process, modeling and analysis may iterate until clarity
of action is obtained. The example in Section 4 demon-
strates both discrete-approximation and simulation ap-
proaches for performing some of the calculations that
might be required in an analysis.

3. Assessing Correlations
Using the multivariate normal copula requires the
assessment of correlations. Although useful methods
for assessing probabilities are well known, analysts
typically do not try to assess moments of distributions
(Morgan and Henrion 1990). The assessment of cross
moments would appear to be an even more difficult
problem. Although such judgments are inherently
difficult, three general approaches are available to
help an expert think about relationships among ran-
dom variables. In this section we describe three assess-
ment approaches, report the results of an initial em-
pirical study comparing the methods’ accuracy, and
discuss additional assessment concerns.
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3.1. Correlation Assessment Methods

3.1.1. Statistical Approaches. These techniques
rely on an expert’s familiarity with statistical concepts
related to correlation. For example, an expert might
make a judgment regarding the “percentage of vari-
ance explained” (R 2) that would result from regress-
ing one variable on another. Another possibility is to
have the expert view several scatterplots representing
different levels of correlation and select one that is
consistent with the expert’s belief about the strength of
the relationship between the variables. This approach
is currently used informally in Crystal Ball, a popular
risk-analysis add-in for Microsoftt Excel™. Experts
who have substantial training in statistical data anal-
ysis may be able to think of bivariate relationships
easily in these terms. Gokhale and Press (1982), for
example, show that individuals with statistical train-
ing are capable of viewing a scatterplot of bivariate
data and making a reasonably accurate assessment of
the sample correlation of those data.

3.1.2. Probability of Concordance. The second
approach to correlation assessment is consistent with
decision analysis elicitation techniques: Assess condi-
tional or joint probabilities and relate those to the
required measure of dependence. Here we use the
concordance probability PC, following Gokhale and
Press (1982). For a bivariate population (X, Y), we
define PC by considering two independent draws ( x 1,
y 1) and ( x 2, y 2):

PC 5 P@~x1 # x2 and y1 # y2! or

~x1 . x2 and y1 . y2!]

5 P~x1 # x2|y1 # y2!.

PC can be related to Kendall’s t:

t 5 2PC 2 1.

The primary difficulty with using PC and t is the
nature of the joint or conditional event for which the
probability must be assessed. As long as a natural
interpretation of the event in frequency terms exists,
this is a minor problem. For example, judging the
relationship between height and weight in a popula-
tion by assessing PC would require the expert to
answer a question like the following:

“Two individuals (A and B) are chosen randomly from a
population of adult males. Given that A weighs less than B,
what is the probability that A is also shorter than B?”

Consider, however, what the assessment question
would look like if it concerned the relationship be-
tween the size (S) of a population of organisms (say,
an endangered species of tree frogs) and a tempera-
ture index T for the frogs’ environment. In such a case,
there may be only one population of such frogs and no
obvious frequency interpretation to relate S and T.
The expert would have to answer a difficult question
like the following:

“Imagine a hypothetical situation in which there are two
separate and independent populations of tree frogs, each one
with its own population size and temperature measurement.
Call these two situations A and B, with corresponding
population size and temperature pairs (s A, t A) and (s B, t B).
Given that t A is less than t B in this hypothetical situation,
what is the probability that s A is also less than s B?”

As long as the concordance probability is assessed for
a situation in which a frequency or cross-sectional
interpretation is reasonable (e.g., relationships among
security returns or among variables related to cancer
risk), the less complex form of the assessment question
may make the assessor’s job easier. Moreover, fre-
quency framing suggests that the expert would be less
susceptible to cognitive biases (Gigerenzer 1991, Gi-
gerenzer et al. 1991). The method may be less useful
for applications involving one-time events, such as the
extinction of a species or global warming.

3.1.3. Conditional Fractile Estimates. The third
method requires conditional estimates and uses these
to derive Spearman’s r. Given random variables X
and Y with corresponding distribution functions F( x)
and G( y), the standard nonparametric regression rep-
resentation is:

E@F~X!|y# 5 rXY@G~y! 2 0.5# 1 0.5, (6)

where r XY is the Spearman correlation between X and
Y. Equation (6) suggests that the expert be asked
questions like the following:

“Suppose an individual is randomly chosen from a popula-
tion of adult males. Given that his height is found to be 180
cm, the 70th percentile of the distribution of heights for this
population, what would you estimate for the percentile at
which his weight falls?”
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If the marginal distributions have been assessed, as
would have been done in a typical analysis, then the
percentile estimate can be related directly to the mar-
ginal distribution; for example, the expert might re-
spond that the conditional estimate of the weight
would be the 60th percentile of the marginal distribu-
tion of weights, corresponding to 85 kg. Given G(180)
5 0.70 and E[F(X)|180] 5 0.60 5 F(85), the analyst
can solve to find that r XY 5 0.50. The analyst might
have the expert make several conditional estimates
and use a least-squares approach to estimate r XY. This
method is closely related to a technique called predic-
tive assessment originally developed by Bayesian stat-
isticians for assessing a prior distribution for the
parameters in a linear model (Winkler et al. 1978,
Kadane et al. 1980).

3.2. Empirical Results
To study the ability of individuals to make correlation
assessments, we performed a small pilot study. (More
elaborate studies are underway at Duke University by
Clemen and colleagues.) In November 1997, 58 Babson
College students (30 MBA students and 28 business
undergraduates) responded to three questions (prob-
ability of concordance, conditional fractile, and direct
estimate of the correlation) for three different pairs of
financial variables: monthly returns for the Standard
and Poor’s 500 and the Dow Jones Industrial Average;
monthly returns for shares of Chrysler Corporation
and an Automotive Index compiled by Compustat;
and monthly returns for shares of Chrysler and Eli
Lilly and Company. We will refer to these three pairs
of variables as SD, CA, and CE, respectively, for which
the actual correlations are 0.95, 0.74, and 0.17 as
calculated from the most recent 20 years of Compustat
data. All of the students had previously been exposed
to the concept of correlation. The average number of
years of experience in the financial-securities industry
was 0.80 for graduates and 0.43 for undergraduates.
Only seven students in each group reported such
experience.

Each subject began by answering sample questions
about the relationship between height and weight for
male MBA students. For each of the sample questions,
the experimenter read a short statement explaining
how to think about the assessment question. Once the
sample questions were completed, each subject an-

swered the same types of questions for the three pairs
of financial variables. For each pair of variables, each
subject viewed histograms of the marginal distribu-
tions as well as the means, standard deviations, and
deciles of the marginals. No scatterplot was provided
(as was done in Gokhale and Press (1982)) because we
were interested in subjects’ ability to convert their
knowledge into accurate dependence assessments. To
counter order effects, a completely randomized design
was used. Complete details regarding the design and
questionnaire are available on request from the au-
thors.

Differences between the responses of graduates and
undergraduates were not significant. Thus, we pooled
the two groups for the subsequent analysis. To com-
pare the assessment methods, we began by converting
conditional fractile and concordance probability re-
sponses to equivalent Spearman correlations using
formulas from Section 2. The equivalent correlations
then were compared to the actual correlations. For
each subject and each assessment, we calculated the
absolute error as the absolute value of the difference
between the actual and equivalent assessed correla-
tion. Various summary statistics are presented in
Table 1.

First, we note that all of the assessment methods are
meaningful to the subjects; average assessed correla-
tions are highest for SD, next highest for CA, and
lowest for CE. The subjects tended to underestimate
the correlations for the two most highly correlated
pairs, SD and CA.

The average absolute errors indicate the level of accu-
racy of the correlation assessments. Some differences are
apparent for the different pairs, but the level of accuracy
is remarkably consistent across the three assessment
methods. Averaging over all three variable pairs, the
average absolute error falls consistently near 0.25.

The subjects also rated the difficulty of the assess-
ment methods on a 7-point Likert scale. Direct assess-
ment of the correlation was viewed as somewhat
easier than the two indirect methods. Given the stu-
dents’ prior exposure to correlation, this result does
not appear surprising.

3.3. Additional Correlation-Assessment Concerns
All three assessment methods require some training.
For direct assessment of the correlation, the expert
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should be trained in the statistical concept of correla-
tion. For the concordance probability, training may
include learning about probability assessment as well
as clarification of the concordance event. For the
conditional fractile estimate, the expert must under-
stand fractiles. In addition, the expert must also un-
derstand the notion of regression toward the mean. It
is evident from (6) that |E[F(X)| y] 2 0.5| # |G( y)
2 0.5|. Thus, in our example where G(180) 5 0.70,
E[F(X)|Y 5 180] must fall between 0.30 and 0.70.

On a technical issue, R must be positive definite. If
correlations are assessed individually without consid-
eration of the overall joint distribution, the resulting R
may be nonpositive definite, requiring reassessment.
Even a poorly conditioned R (analogous to multicol-
linearity in regression) may lead to some very coun-
terintuitive results; for example, conditional distribu-
tions and risk profiles may appear deceptively
narrow, reflecting the mathematics of the specific
model, although such a result may be inconsistent
with the expert’s intuition.

Meeuwissen and Cooke (1994) and Cooke (1995)
describe “dependence trees” along with an entropy-
maximization approach for generating the correlation
matrix. By assessing dependence measures hierarchi-
cally via a dependence tree, fewer assessments are
required, but the nature of the dependence structure
that can be modeled is somewhat constrained. En-
tropy maximization ensures that the resulting correla-
tion matrix is positive definite.

Each of the three methods for correlation assess-

ment described above has advantages and limitations.
In view of the arguments as well as our (limited)
empirical results, we make no claim for the superiority
of one method over another. For now, we recommend
that analysts and experts use a combination of ap-
proaches. For example, an initial assessment of Spear-
man’s r can be used to generate a sample scatterplot
based on simulated values. Likewise, r can be used to
derive a corresponding PC, and the expert can be
asked if the implied PC adequately reflects his or her
reasoning.

4. An Example: Eagle Airlines
4.1. Initial Model Specification and Deterministic

Sensitivity Analysis
Clemen (1996) describes the hypothetical decision
faced by Dick Carothers, owner of the fledgling Eagle
Airlines. Carothers is considering purchasing a used
aircraft. His decision criterion is whether the airplane
will generate more profit than a money-market alter-
native investment. Reilly (1998) modifies the model
slightly in his sensitivity-analysis example, and we
will use Reilly’s model here. The influence diagram in
Figure 2 portrays the initial model.

The first step is to conduct a sensitivity analysis to
identify the critical variables, either with the stan-
dard one-way sensitivity analysis (Howard and
Matheson 1983, Clemen 1996) or dependent sensi-
tivity analysis as described by Reilly (1998). As
Reilly demonstrates, in this case the two sensitivity-

Table 1 Summary Statistics for Correlation-Assessment Study. The Estimated Correlations are Based on 20 Years of Compustat Data

Assessment Method

Direct Assessment Concordance Probability Conditional Fractile Estimated Correlation

AVERAGE ASSESSED
CORRELATIONS
S&P 500 and Dow Jones 0.81 0.78 0.77 0.95
Chrysler and Auto Index 0.62 0.61 0.66 0.74
Chrysler and Eli Lilly 0.25 0.09 0.21 0.17

AVERAGE ABSOLUTE ERRORS
S&P 500 and Dow Jones (SD) 0.19 0.18 0.22
Chrysler and Auto Index (CA) 0.22 0.26 0.20
Chrysler and Eli Lilly (CE) 0.32 0.31 0.31
All Variables 0.24 0.25 0.24

AVERAGE DIFFICULTY RATING 3.00 3.76 3.78
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analysis approaches produce slightly different in-
sights but eventually identify the same set of critical
variables: Price, Hours Flown, Capacity, and Operating
Cost, which we will denote by P, H, C, and O,
respectively. Information on these variables, includ-
ing 0.10, 0.50, and 0.90 fractiles, along with hypo-
thetical Spearman correlations, are shown in Ta-
ble 2.

4.2. A Copula-Based Joint Density
To create a copula-based joint density, we first model
the marginal densities for the four variables as indi-
cated in Table 3. The modeled densities have approx-

imately the same 0.10, 0.50, and 0.90 fractiles as shown
in Table 2. Denote the marginal beta density and
cumulative distribution for P as f b( p) and F b( p),

Table 2 Fractiles and Spearman Correlations for Four Critical Variables in Eagle Airlines

Variable (X)
Low
0.10

Base
0.50

High
0.90

Spearman Correlations

Price
Level

Hours
Flown Capacity

Price Level (P ) $ 95 $100 $ 108
Hours Flown (H ) 500 800 1000 20.50
Capacity (C) 40% 50% 60% 20.25 0.50
Operating Cost per Hour (O) $230 $245 $ 260 0 0 0.25

Fractile:

Table 3 Marginal Distributions for Eagle Airlines Probability Model

Variable Distribution Parameters Range

Price Level (P ) Scaled beta a 5 9, b 5 15 [$81.94, $133.96]
Hours Flown (H ) Scaled beta a 5 4, b 5 2 [66.91, 1135.26]
Capacity (C ) Beta a 5 20, b 5 20 [0, 1]
Operating Cost (O) Normal m 5 245, s 5 11.72 (2`, 1`)

Figure 2 The Initial Influence Diagram for Eagle Airlines
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respectively, and similarly for H and C. 5 Likewise, let
f N(o) and F N(o) denote the marginal density and
cumulative distribution for the normally distrib-
uted O.

The second step in creating the joint density is to
specify the copula c N. This is a matter of using the
assessed Spearman correlations to calculate R and
substituting R and the marginal densities and distri-
butions into (4). For Eagle Airlines, we substituted the
marginal densities from Table 3, the corresponding
distributions (F i), and R into (4). Let y p 5 F21[F b( p)],
y h 5 F21[F b(h)], y c 5 F21[F b(c)], y o 5 F21[F N(o)],
and let y 5 ( y p, y h, y c, y o). We have:

f~p, h, c, o! 5 fb~p!fb~h!fb~c!fN~o!

3 exp$2yT(R 21 2 I!y/2}/0.486, (7)

where

R 21 2 I 5 3
0.366 0.715 20.014 0.004
0.715 0.777 20.787 0.205

20.014 20.787 0.506 20.393
0.004 0.205 20.393 0.103

4 .

Influence diagrams can be very useful for com-
municating with decision makers about an analyti-
cal model, but at present no convention exists for
representing a copula-based joint distribution in an
influence diagram. Any convention adopted must
accommodate the presence of predecessors and suc-
cessors that are external to the copula portion of the
model. At the same time, directed arcs among the
variables that are related by the copula are inappro-
priate. We suggest placing the copula-related vari-
ables near each other and within a shaded region as
in Figure 3. Each variable in the joint distribution
will require assessment of its marginal distribution
only, and dependence measures among the vari-
ables must be assessed to specify the copula. Expla-
nation of the model might include a statement to the
effect that the variables in the copula model are
considered together, and relationships among them
(correlations) are explicitly accounted for in the
model.

5 The scaled beta density f b( x) is created by specifying a closed
interval [ x 0, x 1] for the support of the random variable X and then
calculating the density as

fb~ x|a, b, x0, x1!

5 $@~ x 2 x0!/~ x1 2 x0!#
a21@~ x1 2 x!/~ x1 2 x0!#

b21%/

@B~a, b!~ x1 2 x0!#,

where B(a, b) is the beta function.

Figure 3 Representing a Copula-Based Probability Model in an Influence Diagram
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4.3. A Discrete Approximation
Analysis of the four-dimensional continuous density
in (7) requires numerical integration or Monte Carlo
simulation. In the spirit of current practice in decision
analysis and to demonstrate the flexibility of the
copula approach, we show in this section how a
discrete approximation can be created. The approach
we take is to calculate conditional densities using (5)
and use these to create an event tree based on the
extended Pearson-Tukey discrete approximation pro-
cedure (Keefer and Bodily 1983). The robust perfor-
mance of this method is documented by Keefer and
Bodily as well as Keefer (1994) and Runde (1997).

Using (5), it is straightforward to derive the condi-
tional densities f(h| p), f(c|h, p), and f(o|c, h, p):

f~h|p! 5 fb~h! exp$20.5@~F 21@Fb~h!#

1 0.518F 21@Fb~p!#! 2/0.732

2 ~F 21@Fb~h!#! 2#%/0.732 1/2,

f~c|p, h! 5 fb~c! exp$20.5@~F 21@Fb~c!#

2 0.009F 21@Fb~p!#

2 0.523F 21@Fb~h!#! 2/0.732

2 ~F 21@Fb~c!#! 2#%/0.732 1/2,

f~o|p, h, c! 5 fN~o! exp$20.5@~F 21@FN~o!#

1 0.003F 21@Fb~p!#

1 0.186F 21@Fb~h!#

2 0.357F 21@Fb~c!#! 2/0.907

2 ~F 21@FN~o!#! 2#%/0.907 1/2.

As indicated, each conditional density is approxi-
mated using the extended Pearson-Tukey method.
Figure 4 shows a portion of the resulting event tree.
Throughout the tree, the values displayed on the
branches are the levels of the variables at the 0.05, 0.50,
and 0.95 fractiles of the corresponding marginal or
conditional density. Probabilities are not shown on the
tree because the same trio of probabilities (0.185, 0.63,
and 0.185, per the extended Pearson-Tukey formula)
are applied at each chance node. The complete event
tree is available on request from the authors.

The bivariate relationships among the variables
reveal themselves readily in Figure 4. For example, as

Price increases, Hours Flown tends to decrease, reflect-
ing the negative correlation between these two vari-
ables, and as Hours Flown increases, its positive corre-
lation with Capacity tends to lead to an increase in the
latter.

4.4. Analysis
We can analyze the Eagle Airlines problem by using
the multivariate normal copula model (7) directly in a
Monte Carlo simulation as described in the UNICORN
User’s Manual (Cooke 1995). First generate a vector
( y p, y h, y c, y o) from a multivariate-normal process
with correlation matrix R. The standard normal dis-
tribution function F( y i) is calculated for each of the
four y variables. Finally, use the inverse marginal
distribution functions to calculate ( p, h, c, o)
5 (F p

21[F( y p)], F h
21[F( y h)], F c

21[F( y c)], F o
21[F( y o)]).

This vector of variates comes from a process that has
the specified marginal distributions as well as the
required rank correlations.

Working in Microsoftt Excel™ and Crystal Ballt,
we used the simulation procedure described above to
estimate the expected profit, standard deviation, and
risk profile for Eagle Airlines. We also ran the simu-
lation under the assumption that the variables are
independent. Both simulations were run for 10,000
trials. We also calculated the expected profit, standard
deviation, and risk profile using the discrete approxi-
mation from Section 4.3.

The results are displayed in Table 4 and Figure 5. If
we take the copula-based simulation as the bench-
mark, some observations can be made. First, although
the independence simulation accurately estimates the
expected profit—as one would anticipate—it produces
a larger standard deviation (a difference of more than
$3400). The discrete approximation, which does incor-
porate dependence, suffers from jumps in the CDF
near the median (as one would expect from a discrete
approximation with the bulk of the probability as-
signed to the median). Nevertheless, the discrete ap-
proximation provides a reasonable estimate of the
expected profit (with a difference of less than $200),
the standard deviation (a difference of less than $80),
and a very reasonable fit to the tails of the copula-
based risk profile.

Given the assessment accuracy results reported in
Section 3, an important question is how sensitive these
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results are to the specified correlations. To investigate
the influence of the correlation matrix on the decision
model, we used different matrices as inputs into the
copula model, calculating means and standard devia-
tions of the resulting risk profiles.

We performed two sensitivity analyses. The first
explores the range of possible output values for any
level of dependence, i.e., for any positive-definite
correlation matrix. Our objective was to find four
matrices, one each that produce the greatest and least
average profit, and one each that produce the greatest
and least standard deviation of profit. Our results
indicate that the average profit can range from a low
of $6552 to a high of $22,049, and that the standard
deviation can range from $9493 to $45,215.6

6 The problem of precisely identifying the correlation matrices that
generate extreme means and standard deviations is a complex
optimization problem. We approached the problem heuristically as
follows: First, we randomly generated 10,000 4 3 4 correlation

Figure 4 Event Tree from Multivariate Normal Copula

Table 4 Expected Profit and Standard Deviation for Eagle Airlines
Calculated from Three Models

Expected
Value

Standard
Deviation

Copula simulation (10,000 trials) $12,417 $20,206
Independent simulation (10,000 trials) $12,426 $23,628
Discrete approximation $12,606 $20,281
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In the second sensitivity analysis, we perturbed the
nonzero correlations in R by 60.25, approximately the
average MAD from our pilot study. (We left the two
zero elements fixed, reflecting the analyst’s modeling
process; setting these values to zero is primarily a
statement regarding the structure of the relationships
among the variables, whereas the nonzero elements
require error-prone assessments as discussed in Sec-
tion 3.) We considered all possible combinations in
which each of the four correlations could take on three
values: its base value r ij, r ij 1 0.25, or r ij 2 0.25. This
yielded 81 different matrices. Of these, five were
non-positive-definite and were eliminated. For each of
the remaining 76 matrices, we ran the simulation for
3500 trials (convergence of means to within 1.5%
occurs at about 2000 trials), collecting the mean and
standard deviation of the resulting risk profile. Table 5
shows percentiles of the means and standard devia-
tions for these 76 simulation runs. For example, 50% of
the 76 means were less than or equal to $12,610.

Figure 6 combines the results of the two sensitivity
analyses graphically. It shows clearly that all of the
means and standard deviations from the perturbed
correlation matrices fall well within the extremes
found in the first sensitivity analysis, and in many
cases varying the correlations by 0.25 does not lead to
vastly different output results. For example, 50% of
the cases (those between the first and third quartiles)
have means that fall within 7% of the base case and
standard deviations within 13% of the base case.
Likewise, 80% of the cases fall within 13% (22%) of the

mean (standard deviation) of the base case. Thus,
although individuals may be able to assess correla-
tions only with limited precision (as might be argued
with probability assessment as well), for the example
studied here the typical degree of assessment error
may not be crucial. Of course, whether a given level of
assessment accuracy is adequate depends on the spe-
cific decision problem at hand.

Others have also investigated the impact of correla-
tions in risk-analysis models. For example, a variety of
articles in the risk analysis literature have advocated
the importance of including correlations in Monte
Carlo simulation models rather than behaving as if the
variables are independent (e.g., Apostolakis and
Kaplan 1981, Burmaster and Anderson 1994, Kraan
and Cooke 1997). As in our initial Eagle Airlines
analysis, these articles show that an assumption of
independence can be misleading. Smith, Ryan, and
Evans (1992) show conditions under which correla-
tions can be ignored, including situations where the
correlations are weak, where there is relatively little
uncertainty about the variables in question, or where
the variables have relatively little influence on the
outcome measure. Lacke’s (1998) work is the most
closely related to our sensitivity analysis. He develops
a colorectal cancer risk model in which expert distri-
butions are combined using the copula model from
Jouini and Clemen (1996). Lacke studies several dif-
ferent cancer-screening policies. Varying the correla-
tions used in the copula aggregation model from 0.90
to 0.50 led to no changes in the rank order of the top
four policies.

5. Discussion and Conclusion
We have argued that decision and risk analysis can
benefit from the use of correlations and copulas in the
construction of probabilistic models, and we showed
explicitly how to realize these benefits via practical
correlation-assessment methods and the multivariate
normal copula. This approach complements the set of
tools available to the analyst, potentially streamlining
the construction and analysis of probabilistic models
and reducing the assessment burden. In this final
section we discuss several of the issues surrounding
the use of correlations and copulas.

With regard to the modeling process itself, there are

matrices and discarded those which were not positive definite. Our
(unproven) conjecture is that the extreme results we sought would
be produced by matrices that lie near the boundary of positive-
definiteness, and so we restricted further investigation to those
having determinants less than 0.01, of which there were 114 in our
sample of 10,000. Using these correlation matrices as inputs in the
simulation generated the required summary statistics. Once the four
matrices were identified, slight perturbations were applied manu-
ally, based on reasoning about the algebraic structure of the value
function, in an effort to extend the boundary further.

Our intent was to use a reasonably efficient heuristic procedure to
find cases we believed to be close to the boundary. Thus, although
our results may not lie precisely on the boundary, the true bound-
aries must be at least as extreme as the ones we found. Further
details, including the matrices that generated our boundary results,
are available on request from the authors.
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many ways to construct and use copula-based joint
densities that were not mentioned in Sections 2 and 3.
For example, we focused on the multivariate normal
copula, but others may also be useful, such as the
maximum-entropy copulas described by Meeuwissen
(1993) and MacKenzie (1994). In some cases, decision
analysts discretize density functions; we used the ex-
tended Pearson-Tukey discrete-approximation method,
but other methods may also be used. Modeling the
entire joint distribution raises the question of how
best to discretize a full joint distribution: How does
one select appropriate representative points, and what
probabilities should be applied? This question amounts
to choosing representative scenarios in a complex

multivariate space. (See DeVuyst, Preckel, and Liu
(1999).)

The calculation of conditional distributions from the
copula-based joint distribution is straightforward.
One implication of this is that the search for condi-
tional independence becomes less critical; it yields no
real savings either in assessment or computational
complexity. The ease of calculating conditional distri-
butions will be especially useful for more complex
models or analyses. For example, in a value-of-
information analysis, it would be necessary to sep-
arate out one or more variables from the copula,
conditioning decisions and the remaining copula
variables on the information variable. For inference

Figure 5 Risk Profiles for Eagle Airlines from Three Models
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applications, the ease of calculating the conditional
distributions should make it straightforward to
propagate information through a network.

Although this article has focused on the case when
the marginals are continuous and differentiable, we
reiterate that Sklar’s Theorem is completely general,
applying to all joint distributions. In the case of
discrete distributions, an open question is whether the
conventional marginal-and-conditional approach may
be more appropriate. In many cases (discrete or oth-
erwise), the analyst relies on the expert’s understand-
ing of the system’s causal structure, in which case the
assessment of marginal and conditional approach
would appear to be more suitable. If, in addition, the
random variables are discrete with relatively few
possible outcomes, it may be much more straightfor-
ward to assess conditional distributions. For example,
a risk-analysis model of a nuclear reactor might con-
sider the possible failure of a number of subsystems as
a prelude to failure of the containment vessel and

release of nuclides into the environment. The state of
a subsystem may be modeled as a discrete variable
(e.g., functional or failed), and the probability of
failure of the containment vessel would likely be
assessed conditional on the state of the subsystems,
the assessments being informed by the expert’s under-
standing of causal relationships in the system. A
counterexample, however, might be that the expert
could consider the state of several subsystems and,
rather than base assessments on causal reasoning,
might for convenience assess the marginal probability
of failure for each subsystem and the correlations
among them.

Correlation assessment is a key element in the use of
the copula approach. Much research must be done to
understand what assessment methods work best, un-
der what conditions, and what biases may come into
play. Although our empirical results are far from
conclusive, we hasten to add that errors in probability
assessment are well understood and rampant, yet

Table 5 Percentiles of Means and Standard Deviations of Risk Profiles Resulting from Simulations with Assessed Correlations Perturbed by 60.25
in Various Combinations as Described in the Text. The “Base Case” Column Contains the Mean and Standard Deviation from the Original
Simulation Using the Assessed R.

Base
Case

Percentile:

0% 10% 25% 50% 75% 90% 100%

Mean $12,417 $10,677 $11,409 $11,760 $12,610 $13,338 $14,034 $15,388
Std Dev $20,206 $11,454 $15,827 $17,486 $19,645 $21,996 $24,194 $29,887

Figure 6 Results from Two Sensitivity Analyses. The Box-and-Whisker Plots Show the Distribution of Means and Standard Deviations of Profit in the
Eagle Airlines Problem Resulting from Perturbing the Correlations by 60.25. As Shown in this Graph, Assessment Errors of this Magnitude
Typically do not Have a Large Impact on the Results of the Analysis
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probability assessments are made and used often.
Rather than asking whether experts can assess corre-
lations accurately, perhaps we should ask whether
they can assess correlations well enough to be useful
in the modeling process. The results we report here,
although preliminary, suggest an affirmative answer.

Good decision and risk analysis does incorporate
thinking about relationships among variables. Con-
ventionally, this is done through careful thinking
about conditional relationships, often aided by causal
reasoning on the part of the expert. This approach has
proven itself as a useful way to cope with complex
knowledge elicitation and modeling situations. Use of
correlations and copulas provides a useful and prac-
tical alternative tool for analysts.7

7 We thank Greg Fischer, George MacKenzie, and Bob Winkler for
many discussions on both general and technical issues relating to
the assessment of correlations and the use of copulas in decision
analysis. Scott Ferson, Jim Smith, and Bob Winkler provided useful
comments on various drafts of this paper. This work was supported
in part by the Board of Research at Babson College and by the
National Science Foundation under Grant SBR 95-96176.
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