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Abstract

Human interaction is largely centered on interactions at home, school, work, and
shopping. This economically-motivated partial spatial compartmentalization of our
lives, in particular the persistent and recurring interaction with a very limited number
of people, is surely of first-order importance for the modeling of disease spread that
depends on human contact. This paper models the movement of people throughout
the day to match data on the distribution of households by size and age of occupants,
the distribution of K-12 schools and colleges by size and staff-student ratios, and the
distribution of office and retail establishments by number of employees. The spread
of disease calibrated to COVID-19 characteristics is significantly less in this model
than in a corresponding SIR model in which people interact in one large location.
Simulations of this model also reveal that large-scale compliance to a mitigation policy
only directing symptomatic people to stay home is sufficient to control the widespread
of a disease such as COVID-19, without any noticeable employment effects. A partial
lockdown policy is also shown to control the widespread of such a disease, but at a cost

of considerable employment effects.
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1 Introduction

This paper uses data on the distribution of households, businesses, and schools by number
and age of people to capture how our economically-motivated movement between home,
work, school, and shopping determines the spatial aspects of disease spread and mitigation
policies. I estimate that, without any mitigation policy, about 30 percent of infections occur
at home, 12 percent occur in an office, 11 percent occur at school and 47 percent occur in retail
locations. Although the initial spread of the disease is faster in this type of model relative
to an SIR model, due to the economically-motivated partial spatial compartmentalization of
this model, the new-infection curve is significantly flattened relative to a standard SIR model.
Remarkably, as long as less than about 60 percent of infected people are asymptomatic, I
estimate that a mitigation policy in which all symptomatic people stay home is sufficient
to prevent the widespread of a disease calibrated to COVID-19 characteristics, even if other
family members without symptoms are free to go about their business. In contrast, a partial
lockdown mitigation policy that is sufficiently broad to prevent the widespread of such a
disease has disastrous employment consequences.

The introduction of multiple layers into the SIR model initially developed by Kermack
and McKendrick (1927) is not new. See, for example, Dickison, at. al. (2012), Yagan, et.
al. (2013), Zuzek, et. al., (2015), and Gevertz, et. al., (2020). What’s new here is the
adaption of such a model to environments in which families spend about a third of each
day with each other at home, about a third at separate school or work locations, and the
remainder in retail establishments of various sorts, and calibrating such a model of human
interaction to match data on the distribution of households, school environments, work
environments, and retail establishments. This approach can be used to evaluate a mitigation
policy,! either self-imposed or “mandated,” in which people quarantine themselves at home
with family members who may or may not be infected, and as well can evaluate various
lockdown policies in which some schools and office and retail establishments are directed to
close. An attractive data-driven alternative is to use historical individual tracking data to
capture actual physical contact, as done recently by Kucharski, et. al., (2020) and Ruiyn,
et., al. (2020). This approach is limited, though, by the lack of available data, the likely
incompleteness of tracking the entire population even in a confined geographic area, and the

reliance on one historical episode to make inferences about future outcomes.

1See also the study of non-pharmaceutical interventions by Bayham, et. al. (2015), Chowdhury (2020),
Ferguson, et. al., 2020), and Sofonea, et. al. (2020)



Various papers in economics have also contributed to this literature, such as Ace-
moglu, et. al., (2020), Alvarez, et. al., (2020), Atkeson (2020a, 2020b), Eichenbaum, et. al.,
(2020), Farboodi, et. al., (2020), Garriga, et. al., (2020), Jones, et. al., (2020), Jones and
Fernandez-Villaverde (2020), Rampini (2020), Rowthorn, et. al., (2020), and Stock (2020).
Many of these papers identified and studied important economic consequences and trade-
offs involving various mitigation policies. An essential element to any of these papers is the
physical disease-spreading environment within which people interact. This paper argues that

economics may have an important contribution to this dimension of the problem as well.

2 eSIR Model

I will refer to the model as an eSIR model,> where “e” designates “economically-motivated
interactions” in a way described here. In the model, people visit various locations, labeled as
home, school, work, and shopping. The distribution of households® by size of household and
age of occupants is chosen to match data from the 2010 American Community Survey.* All
children aged 6-17 attend K-12 and some young adults aged 18-22 attend college, with the
distribution of school size and college attendance chosen to match data from the National
Center for Education Statistics (NCES)® in 2018. Young adults not in college are assumed
to be in the labor force. Labor force participation rates of adults aged 23-64 and 65+ are
chosen to match data from the Bureau of Labor Statistics (BLS) in 2018, with adults 23-64
not in the labor force labeled as non-workers and those 65+ labeled as retired. Employment
is either in an office environment in which co-workers only interact with each other, a K-
12 school or college campus in which co-workers interact with each other and students,
or a retail establishment in which co-workers interact with each other and shoppers. The
distribution of office and retail establishment size is chosen to match data from the Statistics
of U.S. Businesses (SUSB)®, which reports the distribution of establishments by number of
workers. The staff/student ratio for K-12 and college are chosen to match data from NCES.
Retail establishments are further divided into Retail-A and Retail-B, where some workers
are employed at Retail-A during the day and some workers are employed at Retail-B during

the evening. Everybody is thus allocated to one of these mutually exclusive types: office

2The model is more fully presented in Appendix A.

3All data are more fully presented in Appendix B.
‘https://www.census.gov/programs-surveys/acs
Shttps://nces.ed.gov/
Chttps://www.census.gov/programs-surveys/susb.html



worker, K-12 worker, college worker, retail-A worker, retail-B worker, K-12 student, college
student, non-worker 18-65, pre-school 1-5, and retired.

A day is divided into three periods” and each person is given a daily planned location
profile that depends upon their type as listed in Table 1. A person’s home, school, or work
location is the same for each day, but a person’s shopping location is different for each day
of the week. A person’s weekly planned location profile repeats itself from one week to the
next. The allocation of establishments between Retail-A and Retail-B is chosen to equate

the shopper/worker ratio between these two.

Table 1: Planned Location Profile

period 1 | period 2 | period 3
Person Type (Night) (Day) | (Evening)
office /school /retail-A worker home work shopping
retail-B worker home | shopping work
student K-12/College home school home
non-worker 18-65 home home shopping
pre-school 1-5/retired home home home

As in a standard variant of the SIR model, people are either susceptible, exposed,
infectious, or recovered,® with a random transition time from one compartment to another.
Infection of a susceptible person from the virus at a particular location depends on the
fraction of infectious (contagious) people at that location. Let I/N denote the fraction of
infectious people at a location, and denote the probability of becoming exposed during a
period at that location by (5/3)(I/N). Denote the probability of exiting an exposed/latent
phase in each period by a/3 and the probability of exiting an infectious phase in each
period by /3. There is of course tremendous uncertainty regarding parameter values, and
as an economist it is far beyond my expertise to add to this debate, so I will simply use
the parameter estimates in a recent paper of Li, et. al. (2020). Li, et. al., differentiate
between a transmission rate for documented and undocumented infections, with an average
transmission rate during the initial phase of infection spread of 0.6866, which is the value I
will use. The parameter values are listed in Table 2.

One other parameter that is especially important regarding any mitigation policy

"The parameter p = 3 in the notation in Appendix A.
8The model described in Appendix A distinguishes between a recovered and death state, but to focus
only on the spread of the disease, the simulations include only a recovered state.



Table 2: Parameter Values

Parameter Value
B (determines prob. exposed) | 0.6866
a (prob. exit exposed phase) | 0.2710
v (prob. exit infectious phase) | 0.2882

is, given infection, the likelihood of being asymptomatic. It seems rather difficult to know
what fraction of infected people are asymptomatic, with estimates of ranging from 20 to 80
percent. In the simulations I will consider a broad range of values, but I will think of a
benchmark value of 50 percent.

Define a minimal, no-intervention policy response to the spread of infection as one in
which everybody follows their planned schedule. A mitigation policy is a “directive” that
people stay home depending on their health status and whether or not the number infected
exceeds a threshold. A compliance parameter determines the fraction of people that follow

the directive.

3 Simulation Results

Following an index case, the simulation tracks how people move through various locations
and change their health status. To begin, I simulate an SIR model for a large city in which
everybody is located in one large location. I then simulate an eSIR model with a mitigation
policy that a symptomatic person should stay home until recovered. Also considered is
the dependence of the eSIR simulation on assumptions regarding the compliance to the
mitigation policy, a new-case threshold for the implementation of the mitigation policy, and

the fraction of asymptomatic people that are infected with the virus.

3.1 Compliance

Figure 1, Panel A, shows the spread of new infections for the standard SIR model as well
as the eSIR model with a mitigation policy that all symptomatic people stay home, but
with four different levels of compliance. The new-infection curve for the standard SIR model
exhibits a rather sharp peak, in part because I use the parameter values that Li, et. al.,
estimate for the initial spread of the virus. Under the minimal, no-intervention policy (also 0

compliance), the new-infection curve is significantly flattened and pushed out to the future.
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Figure 1: eSIR Simulation of New Cases. Mitigation policy: stay home if symptomatic.
Compliance = fraction in compliance with mitigation policy. Threshold = new-case threshold
for mitigation policy implementation. Asymptomatic = fraction asymptomatic. Panel A:
Threshold = 0, Asymptomatic = .5, SIR = one large location. Panel B: Compliance = 2/3,
Asymptomatic = .5. Panel C: Compliance = 1, Threshold = 0. All data are averages of
100 simulations, each starting with 10 infections chosen at random, with the resulting time
series presented as a 5-day centered moving average.

The curve with 1/3 compliance is flattened even more so, and with 2/3 compliance yet even

more, and the peak of 2/3 compliance is shifted to the future by about 200 days relative to

the minimal policy. With 100 percent compliance to the mitigation policy, the disease does

not become widespread so the new infection curve is essentially flat.



3.2 Mitigation Policy Threshold

Figure 1, Panel B, displays simulations of the model with a mitigation policy that does not
go into effect until a certain number of cases are revealed. As shown in this figure, for 2/3
adherence to the mitigation policy, if the mitigation policy is implemented below a threshold
of 5,000 cases, the peak of the new-infection curve does not rise by much, although the peak
is shifted earlier by about 150 days. For thresholds higher than 5,000 the peak begins to
rise sharply, but the shifting forward in time is much less. However, even at a threshold of

20,000, the peak is significantly flattened relative to the minimal, no-intervention policy.

3.3 Fraction Asymptomatic

Figure 1, Panel C, displays the model with 100 percent compliance, but where the fraction of
asymptomatic infections ranges from .6 to 1 of total infections. As shown in this figure, even
if up to 60 percent of infectious people are asymptomatic and thus are not able to follow the

directive of staying home, the disease does not become widespread.

Table 3: R, for SIR and eSIR for various levels of compliance to a mitigation
policy directing symptomatic people to stay home, assuming 50 percent asymp-
tomatic, and the mitigation policy implemented immediately. Results are averages
of 10,000 simulations, each starting with one index case chosen at random.

Fraction eSIR: Compliance
Person Type of Pop. [SIR| 0 |1/3|2/3| 1
office worker 0.240 2.38 1 3.35 250 | 1.72 | 1.32
retail-A worker 0.065 2.38 13.04 1276|194 | 1.59
retail-B worker 0.167 2.38 | 3.561 | 2.65 | 1.90 | 1.42
K-12 worker 0.011 2.38 | 1.61 | 1.38 | 1.52 | 0.79
college worker 0.007 2.38 | 1.40 | 1.35 | 1.20 | 1.00
K-12 student 0.167 2.38 | 2.38 | 1.83 | 1.61 | 1.37
college student 0.034 238 | 1.76 | 2.08 | 1.21 | 1.34
non-worker 18-65 0.124 2.38 | 2.01 | 1.61 | 1.24 | 0.93
pre-school 1-5 0.079 238 | 1.27 [ 1.23 | 1.08 | 0.88
retired 0.107 2.38 1 0.60 | 0.45 | 0.44 | 0.42
weighted average 238 1249 1197|148 | 1.18




Table 4: Fraction of new infections by location for various levels of compliance
to a mitigation policy directing symptomatic people to stay home, assuming
50 percent asymptomatic, and the mitigation policy implemented immediately.
Results are averages of 100 simulations, each starting with 10 infections chosen at random.

eSIR: Compliance
Location Type | SIR| 0 |1/3|2/3 1

home 0.30 | 0.36 | 0.44 0.52
office 0.12 | 0.12 | 0.09 0.07
school 0.11 | 0.10 | 0.11 0.09
retail 0471|043 0.36 0.31

all (frac of pop) | 0.84 | 0.46 | 0.31 | 0.06 | 0.00006

3.4 Ry and Infection Location

For the compliance levels reported in Fig. 1, Panel A, Table 3 reports Ry for various cate-
gories of people, as well as for the SIR model. R is computed from simulations by assigning
as infectious one person chosen from the population at random, and tracking the number of
infections caused by this person. If a person became exposed at a location with the index
case and n — 1 other infected people present, then the index case is recorded as infecting
1/n people. As seen from this table, Ry is not generally lower for the no-compliance eSIR
model than for the SIR model with the same parameter values, and on average is higher.
Evidently, the disease initially spreads faster in the no-compliance eSIR model, but is more
contained due to the spatial compartmentalization of that model. For the eSIR model, Ry
differs significantly across types of people, with office and retail workers having the highest
Ry, and pre-school children and retired people having the lowest. As expected, Ry generally
falls as compliance rises. For 100 percent compliance, Ry is on average slightly above 1,
which is sufficient in the eSIR model to prevent the widespread of the disease as exhibited
in Fig. 1.

Also for the compliance levels reported in Fig. 1, Panel A, Table 4 reports the location
of new infections. Without a mitigation policy, most infections occur in a retail location,
with the second most at home. With an increasing compliance to a mitigation policy that
symptomatic people stay home, as expected an increasing number of infections occur at
home. With 2/3 compliance to the mitigation policy, most infections occur at home. This
table also reports the total fraction of infections for the course of the disease. For the SIR

model, about 84 percent of the population eventually become infected. The total fraction



infected is only about half that at 46 percent for the eSIR model with no mitigation policy.
With 100 percent adherence to the mitigation policy, the total number of cases becomes
very small. For the U.S. with a population of roughly 330 million, the total number of cases
would be about 20,000.
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Figure 2: eSIR Simulation with Lockdown. Mitigation policy: stay home if symp-
tomatic versus indiscriminate lockdown. All panels: 5,000 new-case threshold for mitigation
policy implementation and .5 of cases asymptomatic. Lockdown = fraction of all estab-
lishments closed and people who would otherwise visit those establishments staying home
during the planned time of visit. Compliance = fraction in compliance with stay-home-if-
symptomatic mitigation policy. For the indicated mitigation policy, Panels A and C report
daily new cases and Panels B and C report fraction of pre-COVID-19 employment. All data
are averages of 100 simulations, each starting with 10 infections chosen at random, with the
resulting time series presented as a 5-day centered moving average.



3.5 Comparison to Lockdown Policies

Fig. 2 compares the mitigation policy of directing symptomatic people to stay home versus
directing a fraction of all non-home locations to shutdown and people who would otherwise
visit those locations to stay home. The lockdown policy is indiscriminate and randomly shuts
down a fraction of all non-home locations, including office and retail establishments. For
various lockdown fractions, Panel A reports daily new cases and Panel B reports fraction of
pre-COVID-19 employment, and similarly for various compliance fractions, Panel C reports
daily new cases and Panel D reports fraction of pre-COVID-19 employment. As can be seen,
a partial lockdown policy is able to obtain a significant reduction in new cases, but with a
severe effect on reducing employment, whereas directing only symptomatic people to stay
home can also obtain a significant reduction in new cases, but with a negligible effect on

employment.

3.6 Reducing the Probability of Infection

The eSIR model can also be used to simulate the effects of other policies, such as the
wearing of masks or social distancing, to reduce the probability of infection. Fig. 3 displays
the reduction in new cases due to a reduction in the probability of infection. A 30 percent
reduction in the probability of infection, if achievable through the wearing of masks or other
measures, seems able to prevent the widespread of COVID-19. In this regard, note that
Li, et. al. (2020) estimate an average reduction in the probability of transmission from an
early infection phase to a later infection phase of 59 percent (from .6866 to .3900). It seems
difficult, though, to breakdown this reduction into a part due to mask-wearing and other

social distance measures and a part due to only symptomatic people staying at home.

4 Summary

For the spread of a disease such as COVID-19, the particular way in which we move about
between home, work, school, and shopping matters. Especially important is the home lo-
cation, not only because it captures persistent interaction with a limited number of people
for a significant fraction of the day, but because it plays a crucial role in a quarantine-based
mitigation policy. Simulations reveal that a mitigation policy in which all symptomatic peo-
ple stay home is sufficient to control the spread of COVID-19, which is a result that holds

even if up to 60 percent of the population is asymptomatic, and as well even if other family
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Figure 3: eSIR Simulation and Infection Probability. Mitigation policy: mask
wearing and social distancing. 5,000 new-case threshold for mitigation policy implemen-
tation. Reduction = fraction reduction of infection probability (new probability = (1 -
Reduction)*). All data are averages of 100 simulations, each starting with 10 infections
chosen at random, with the resulting time series presented as a 5-day centered moving aver-
age.

members are free to go about their business. This seems important for three reasons. One,
it may explain the better success of some countries over others in managing the spread of
COVID-19. Two, such a mitigation policy avoids the devastating economic consequences
of a more severe mitigation policy. And three, it highlights the immense value to any pol-
icy, such as the dissemination of information on symptoms and/or widespread testing, that

encourages infected people to stay home, or otherwise reduce the probability of infection.
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A Appendix: eSIR Model Details

Divide time into equal length intervals, indexed by t = 0,1,2,..., and suppose a day is
comprised of p intervals. At the beginning of time ¢ there are N; people, indexed by i =
1,..., Ny, who have every lived up to time ¢t. Person i has characteristic a; from a set of possible

9 The economy is comprised of

characteristics A, such as gender or period of birth (age).
L+ 1 locations, indexed by ¢ = 0, ..., L. During each time interval, a person is located at one
and only one location, and over time a person potentially visits different locations. Denote

the location of person i during time ¢ by ¢;;. For any ¢ such that ¢ € {0,1, ..., L}, define
X@(git) =1 lf git = g,

and zero otherwise, so the number of people at location ¢ during time ¢ is

Ny
Ny = ZXE(&J
i=1

Let the zero location ¢ = 0 be an absorbing state of death. Events during a period potentially
lead to a person dying at the end of a period, hence entering a location of death at the
beginning of the next period.

Newborns can add to the population that potentially increases NV; over time. Denote
the number of newborns during time ¢ by B; and associate with each newborn an index ¢

and a location £;, so the population at the beginning of any time ¢ > 1 equals

N¢_1+Bi—1

Ny = Ni_1+ By — Z Xo(Cit)-

i=1

Including newborns in the death location ¢/ = 0 admits the possibility that some newborns
may die from the disease.

As in a standard variant of the SIR model, people are either susceptible, exposed,
infectious, recovered, or dead, denoted by health status h. A susceptible person is healthy
with a positive probability of becoming exposed if coming into contact with an infectious
person. An exposed person is in a latent phase, which means the person is not contagious

and does not exhibit symptoms, and has a constant probability of exiting a latent phase

9Denote the period of birth by b;, so age at time ¢ equals t — b;. For the initial population Ny, assume
the period of birth is a negative number that represents initial age.
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to an infectious phase during each time interval, say «(t,a;)/p.'® An infectious person is
contagious and may or may not exhibit symptoms and has a constant probability of recovery
during each time interval, say (¢, a;)/p, and if not recovered, a constant probability of dying
during each time interval, say yu(t, a;)/p.'! A recovered person is assumed to be immune from
re-infection. The dependence on ¢t and a; can capture heterogeneity such as a dependence
on age, or that only some people suffer severe illness that potentially leads to death. Aside
from capturing one cost of the disease, including the state of death in the analysis allows for
a mitigation policy to depend on the more readily measurable variable, especially early in
an epidemic, that counts the number of fatalities.

Infection of a susceptible person from the virus at a particular location depends on
the fraction of infectious people at that location. Let I, denote the number of infectious

people at location ¢ € {1,2, ..., L} during time ¢, given by

Ny

IZt == Z Xﬁ(&'t))(infectious(hit)a

i=1

where Xinfectious(Rit) = 1 if hy = infectious and zero otherwise. The probability of infection

at location ¢ during time t for a susceptible person is presumed to be, as in the SIR model,

B(t,a;) Lo
p Nu
A person can be at a location either as a worker or not, from which can be derived
three different types of locations. A location with only workers can be thought of as a
business that does not interact directly with customers (e.g., an office), a location with both
workers and non-workers can be thought of a business that interacts directly with customers
(e.g., a retail establishment or school), and a location with only non-workers can be thought
of as a place in which people meet but no work is performed (e.g., home). Denote work
status as d, where d = 0 means not a worker and d = 1 means a worker.
A realization of an economy is thus a list of locations {0, ..., L}, a sequence of popu-
lations {V;} with characteristics {a;}, and a sequence of locations {¢;}, health status {h;},
and work status {d;}.

10For comparison purposes, I will scale all probabilities by p, which is motivated by an approximation such
as dS/dt = p(S;, 1 — S;), where t is in units of days.
P

HSimulations of the model do not include a death state, so u(t,a;) = 0.
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B Appendix: People and Locations

I will think of an economy as a large city in the U.S., with the distribution of people and
locations estimated to match statistics for the entire country. People begin the day from
home, with the distribution of homes by number and age of people estimated to match that
of the entire U.S. The important issue regarding a home, and other locations as well, is that
at various intervals of time the same people get together in a home. During the day, people
go to work, school, or visit retail establishments, and at the end of the day return home. At
work people interact with the same co-workers each day and at school students interact with
the same fellow students. In addition, workers at school interact with students, and workers
in retail establishments interact with shoppers. The mixing of family members, co-workers,

students and shoppers potentially exposes people to each other throughout the city.

B.1 Households and Homes

According to the Current Population Survey (CPS),!? in 2016 there are about 125,819,000
households in the U.S. Table 5 list the number of households broken down by household size.
Based on this table, I will only consider households up to 7 members, as households up to 6

members already includes 98.7 percent of all households.

Table 5: U.S Households by Size in 2016 (000’s)

Size Total | Percent
One member 35,388 28.1
Two members 42,785 34.0
Three members 19,423 15.4
Four member 16,267 12.9
Five members 7,548 6.0
Six members 2,813 2.2
Seven or more members 1,596 1.3
All households 125,819 100

The American Community Survey (ACS)!3 2010 dataset provides a sample that con-
tains the age of each household member, which can be used to estimate the number of

households by the specific age composition of its members. Suppose there are G = 5 age

2https://www.census.gov/programs-surveys/cps.html
Bhttps://www.census.gov/programs-surveys/acs
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categories: under 6, 6 - 17, 18 - 22, 23 - 64, 65+. Suppose each household must have a mem-
ber greater than age category gmin, where for ACS g, = 2 (i.e., a head of household must
be at least 18 years old). Let a type of household be a composition of members differentiated

by age category. The number of distinct types of households that can be formed that have

o))

With n,,., = 7, there are 756 distinct types of households in the U.S. From ACS,
I computed the frequency of each, and I assume that a large city has a distribution of
households similar to that of the entire U.S. The top 15 types of households are listed in
Table 6, which represents 79 percent of all types of households. Given the total population

up to n,,q, members is thus

Nmax

n=1

of a city, this determines the number of homes, the distribution of homes by the number and

age of residents, and the demographic composition of the city population by age.

Table 6: Top 15 Households in U.S. in 2010 by Age of Members (000’s)

age category of household member, oldest to youngest Percent of
first | second | third | fourth | fifth | sixth | seventh | all households
23-64 | 23-64 18%
23-64 17%
65+ 10%
65+ | 65+ ™%
65+ 23-64 4%
23-64 | 23-64 6-17 6-17 4%
23-64 | 23-64 6-17 4%
23-64 | 23-64 | under 6 3%
23-64 | 23-64 23-64 2%
23-64 | 23-64 6-17 | under 6 2%
23-64 | 6-17 2%
23-64 | 23-64 18-22 2%
23-64 | 23-64 | under 6 | under 6 2%
23-64 | 18-22 1%
23-64 | 23-64 6-17 6-17 6-17 1%
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B.2 Employment and Schooling

According to the Bureau of Labor Statistics (BLS), in 2018 the labor force participation
rate amongst adults 25-54 was 82.1 percent and adults 55-64 was 65.0 percent.!* I will thus
assume that 78 percent of all adults 23-64, the age category used in this paper, are employed
(for this exercise, I assume full employment).'®> Also, BLS estimates that 27 percent of adults
65-74 and 8.7 percent of adults 75+ are in the labor force, so I will assume that 19 percent
of adults 65+ are employed.'6

I assume all people in age category 6-17 are in school. According to the National
Center for Education Statistics (NCES),!” in 2018 the fraction of high school graduates
that attended some form of college was 69 percent and the fraction of high school students
that graduated high school (with their cohort) was 85 percent, so I assume 55 percent of
people in the age category 18-22 category are in college, while the remainder are in the
labor force (assume to be employed). Given the city population size and age distribution,
this determines the total number of employees, as well as the number students in K-12 and

college.

B.3 K-12 and College

All schooling data are obtained from NCES for the 2016-2017 school year. The average
public school size for K-12 was 528 students.'® There were about 15 students per staff at a
pubic school,*? which translates into about 35 staff per school. There were about 4,726 post-
secondary degree-granting institutions in the U.S., with about 20 million students, which
translates into about 4,232 students per school.?’ There were about 3,920,836 staff at these
schools, which translates into 830 staff per school.?! These data are summarized in Table
7. Given the number of students in K-12 and college, this determines the number of K-12
schools along with the number of K-12 workers, as well as the number of colleges and the

number of college workers.

Yhttps://www.bls.gov/emp/tables/civilian-labor-force-participation-rate.htm

15T used a weighted average using population estimates in 2018 for 23-54 and 55-64, assuming labor force
participation for 23-24 that are not in school is the same as for 25-54.

16 A weighted average based on 2018 population estimates.

"https://nces.ed.gov/

8https://nces.ed.gov/programs/digest/d18/tables/dt18_214.40.asp

Yhttps://nces.ed.gov/pubs2007/ruraled/tables/table3_12.asp

2Onttps://nces.ed.gov/programs/digest/d17/tables/dt17_317.10.asp?current=yes and https://
nces.ed.gov/programs/digest/d17/tables/dt17_303.20.asp

2lhttps://nces.ed.gov/pubs2012/2012156rev. pdf
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Table 7: U.S. School Size in 2016-2017

Type Students per School | Staff per School
primary /secondary 528 35
post-secondary 4,232 830

B.4 Work and Establishments

The Statistics of U.S. Businesses (SUSB)?? by the U.S. Census reports annual data on estab-
lishments by number of employees. As described by the U.S. Census, “An establishment is

a single physical location at which business is conducted or services or industrial operations

are performed.”?® The data are reported in Table 8.2 Given the number of employees in

a city net of those that work in a K-12 school or college, this determines the number of

business of various sizes.

Table 8: Establishment Employment in 2017Q1

Establish. Number of Total | Employment Freq.
Empl. Class | Establish. | Employment per Estab. | Establish.
<5 6,171,807 8,642,604 2% .6290
5-9 1,453,674 9,664,903 7 1482
10 - 19 1,031,800 13,994,592 14 1052
20 - 49 725,722 21,859,357 30 .0740
20 - 99 240,881 16,527,937 69 .0246
100 - 249 135,496 20,285,252 150 .0138
250 - 499 34,114 11,568,064 339 .0035
500 - 999 11,756 8,018,994 682 .0012
1000+ 6,328 13,907,553 2198 .00006

*Decimal value = 1.4, but 2 is used to capture co-worker interactions.

B.5 Employment, Occupations, and Customers

The Occupational Employment Statistics?® program of BLS reports the number of employees

by major occupation group. These data for 2018 are summarized in Table 9. T categorized

2Znttps://www.census.gov/programs-surveys/susb.html
2https://www.census.gov/programs-surveys/susb/about/glossary.html

24

2https://www.bls.gov/oes/
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each group as being either an office worker in which there is no or minimal interaction
with customers and a retail worker in which there is likely to be significant interaction with
customers. Based on this breakdown, about 49 percent of employment are in the office
category, with the remaining 51 percent in the retail category. Given the overall number of
employees that work in a business, this determines the breakdown of business type into an

office or retail establishment.

Table 9: Occupation by Employment and Customers

Occupation Employment (000’s) | Customers
Management 10,193.3 no
Business and financial operations 8,589.5 no
Computer and mathematical 4,674.4 no
Architecture and engineering 2,699.1 no
Life, physical, and social science 1,322.7 no
Healthcare support 4,315.6 no
Building and grounds cleaning and maintenance 2,756.9 no
Office and administrative support 22,973.6 no
Farming, fishing, and forestry 1,096.9 no
Construction and extraction 7,212.5 no
Production 9,452.4 no
Community and social service 2,730.1 yes
Legal 1,346.0 yes
Education, training, and library 9,647.4 yes
Arts, design, entertainment, sports, and media 2,899.8 yes
Healthcare practitioners and technical 9,107.8 yes
Protective service 3,560.9 yes
Food preparation and serving related 13,664.0 yes
Personal care and service 7,117.2 yes
Sales and related 15,728.6 yes
Installation, maintenance, and repair 6,108.1 yes
Transportation and material moving 10,841.0 yes
fraction no customer 0.49

fraction customer 0.51

B.6 Random Allocation

Households are created in proportion to the observed frequency of households by number and

age of occupants. The total number of households are created to match a given population,
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equal to one million in the simulations. Each person in age group 18-22 is randomly allocated
to being either a college student or worker, with probability of being a student equal to the
observed fraction of this age group that are students. Each person in age group 23-64 is ran-
domly allocated to being either in the labor force or a non-worker, with probability of being
in the labor force equal to the observed labor force participation rate of this age group. Each
person in age group 65+ is randomly allocated to being either in the labor force or retired,
with probability of being in the labor force equal to the observed labor force participation
rate of this age group. Each person allocated to being a worker is randomly allocated to
being an office worker or non-office worker, with the probability of being an office worker
equal to the observed fraction of office workers. Each person in age group 6-17 is randomly
allocated to a K-12 school, and each person labeled as a college student is randomly allocated
to a college, where the number of K-12 schools and colleges are chosen to match data on
student size. Office workers are randomly allocated to offices of various sizes to match the
observed distributed of establishment sizes. Non-office workers are randomly allocated to
K-12 schools, colleges, retail-A establishments and retail-B establishments of various sizes
to match staff-student ratios at the schools and to match the observed distributed of estab-
lishment sizes. Shopping in retail-A locations are chosen randomly with probability equal to
the number of workers as a fraction of total retail-A workers, and similarly for shopping in

retail-B locations.
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