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Abstract

This paper analyzes the Deutsche Mark futures options traded on the
Chicago Mercantile Exchange, from January 24, 1984 to October 10, 1984,
Transaction data were used to match the prices of the futures options and
the underlying futures contracts.

In the data, there are very low rates of violations of early exercise
boundary conditions and put-call parity conditions. This is indicative of
well-synchronized markets and low transaction costs.

The analysis of implied volatilities turned up some interesting
empirical regularities. (1) Implied volatilities are not constant over time.
In fact, they appear to be serially correlated. (2) The moneyness bias is
very strong, regardless of time to maturity. Deep-out-of-the-money options
have the largest implied volatilities, and out-of-the-money options the
second largest. In other words, the Black-Scholes model underprices deep-
out-of-the-money options relative to at-the-money options. (The evidence is
not conclusive for deep-in-the-money options, since they are not frequently
traded.) (3) The maturity bias is also quite strong. Implied volatilities
tend to rise as the options approach maturity. In other words, the Black-
Scholes model underprices options which are closer to maturity relative to
those which are further from maturity.

These systematic biases of the Black-Scholes model are unlikely to be
caused by transaction costs and discontinuous trading. More likely, the
distributional assumption of the Black-Scholes model is at fault. The cash
price and futures price for DM do not appear to come from a Weiner diffusion
process, as assumed in the Black-Scholes model. Three different candidates
have been considered in the literature. One, the underlying process follows
a mixture of a Weiner diffusion process and a Poisson jump.process. This can
explain both the maturity bias and moneyness bias. Two, the variance of the
underlying futures price is increasing monotonically as the contract
approaches maturity. Three, the variance of the underlying futures prices is
stochastic, as in the case of an autoregressive conditional
heteroscedasticity model. It appears that the third candidate may provide
the most promising explanation.






1. Introduction

To date, most of the literature on foreign currency options primarily
concern those written on cash currencies, such as those traded on the
Philadelphia Stock Exchange. Theoretical pricing models for these options,
developed along the lines of Black and Scholes [1973] and Black [1976]
appeared in Biger and Hull [1983], Garman and Kohlhagen [1983], Giddy
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[1983], and Grabbe [1983]. Empirical studies about these options have been
published by Shastri and Tandon [1985, 1986], and Bodurtha and Courtadon
[1986].

In this paper, we examine the options on the Deutsche mark (DM) futures
contract traded on the Chicago Mercantile Exchange (CME). These options have
been studied in Ball and Torous [1986], who use closing option prices and
corresponding settlement futures prices from January 24, 1984 to March 1,
1985. Cox and Rubinstein [1985] expressed some reservations on the use of
closing prices (p. 341). Hence in our work, we use transactions data
obtained from the CME.

The motivation behind this study is twofold. First, we wish to examine
whether the futures options behave differently than the cash options.
Arbitrage restrictions for futures options should be tighter than those for
cash options, because of side-by-side trading of the options and the
underlying futures contract, and because of lower transaction costs in
futures markets. The options on DM futures are traded in a pit on the CME
only a few feet away from the pit where the underlying DM futures are
traded. Floor traders can observe prices and conduct trades in both markets
very easily. A priori, these two markets are "well synchronized," a point
first brought up by Galai [1978] in discussing the link between stock
options traded on the Chicago Board of Options Exchange and the underlying
stocks traded on the major stock exchanges such as the New York and the
American Stock Exchanges. The situation is very different on the
Philadelphia Stock Exchange, where the options on cash currencies are
traded, because the underlying cash currencies are traded in the interbank
market. In order to arbitrage between the cash option and the cash currency,
traders must use two different markets. It is therefore questionable whether

the cash option and the cash currency markets are well synchronized.
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In addition, the cost of trading in DM futures and futures options
 appear to be much smaller than that in DM cash and cash options. For
example, Ball and Torous [1986] write: "Transaction costs to trading in
futures contracts and futures option contracts are minimal. For floor
traders in a particular contract, round trip transaction costs to a position
in that instrument are on the order of 24¢ per contract. These costs include
a service charge of 2¢ per contract per side payable to the exchange, and a
clearing charge of 10¢ per contract per side payable to the chearing firm.
However, for floor traders in a particular contract taking a position in a
different instrument, say, a futures option trader taking a position in the
underlying futures contract, an additional round trip service change of
approximately $3 per contract is levied." (p. 864) The round trip
transaction costs for arbitraging between the futures option and the
underlying futures contract are less than $3.50. On the other hand, Bodurtha
and Courtadon [1986] estimate the market maker’s transaction costs per

contract to be:

" OCC initial fee $ 0.05
PHLX $2 broker fee $ 2.00
PHILX exchange fee $ 0.05

PHLX proportional value charge 0.12%" (p. 157)
In addition, they estimate the cost of each foreign exchange trade on the
interbank market to be $50.00. Therefore, the costs of arbitraging between
the cash option and the interbank market are at least $52.10, before adding
the proportional value charge of 0.12%. These are substantially higher than

the transaction costs on futures options and futures contracts.

Second, we are interested to examine whether the Black-Scholes model
for option pricing provides a good description of the data. The low
transaction costs and side-by-side trading of the option and the underlying
futures contract are good approximations of the Black-Scholes model, which
assumes zero transaction costs. On the other hand, we have reasons to doubt
the appropriateness of the Black-Scholes model for DM futures options.

Burt, Kaen and Booth [1977], Westerfield [1977], and Rogalski and Vinso
[1978] have all found that the rate of change of spot currency prices are
non-normal. In addition, Hsieh [1985] and Manas-Anﬁon [1986] have found that

these price changes are not independent and identically distributed, and
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that they are better described by Engle’'s [1982] autoregressive conditional
heteroscedasticity model (ARCH). In the present work, we concentrate on the
systematic biases in the Black-Scholes model, from which we may obtain some

further information about the distribution of these prices.
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2. The Pricing of Options on Deutsche Mark Futures Contract

In this section, we review the literature on the pricing of options on
futures contracts. For this purpose, we shall use the .following notation.
Let S denote the cash price of Deutsche Mark (DM) currency in terms of U.S.
Dollars. Let i be the instantaneous U.S. riskless interest rate, and i* the
instantaneous German riskless interest rate. Both are assumed to be known
and constant. There is no spread between borrowing and lending rates in both
currencies. Furthermore, there are no transcations costs, and trading is
conducted continuously over time.

Under these conditions, costless arbitrage ensures that the futures
price of Deutsche Mark, F, must satisfy the following relation:

F = S exp( (i-i*) T’ ),
where T' is the time to maturity of the futures contract, measured in the

same time units as the interest rates.

A standard assumption for pricing option and futures contracts is to
suppose that S can be described by the following continuous time stochastic
process:

ds / S = pdt + ¢ dZ,
where Z is a standard Wiener diffusion process. Then F must also be
characterized by: 4

dF / F = (p-i+ix) dt + o dz.

Now, consider a European call option on the futures contract, with time
to maturity T ( <T' ), and strike price K. Then using a riskless hedge
between the option and the futures contract, and noting that the carrying
cost of the latter is zero, one obtains the Black [1976] formula for pricing
a call option on futures contract:

C(F,T,K) = exp( -iT ) [ F N(dl) - K N(dz) ],

where d, = [ log(F/K) +62T /21 /o JT ],
d, - dlx- o JT ,
and N(x) = [ [ exp(-u%/2) du ] / 2n .

Similarly, one obtains the price of a put option:
P(F,T,K) = exp( -iT ) [ K N(~d2) - F N(-dl) ].
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It is worthwhile to note here that, under the above assumptions, the
forward price and the futures price of DM is the same, if the two contracts
mature at the same time. Hence these pricing formulae for European futures
options are identical to those for European cash options found in Biger and
Hull [1983], Garman and Kohlhagen [1983], Giddy [1983], and Grabbe [1983].

The DM futures options traded on the CME are American options, which
differ from European options in that their owners can exercise the option at
any time prior to maturity. It can easily be shown that there are some
circumstances in which the value of an American option would be greater than
that of an identical European option. Consider the following. Suppose the
futures price F is much higher than the strike price K. For a call option,
the European formula will give a price approaching exp( -iT ) [ F - K 1. If
the American call option is exercised immediately, the owner receives [ F -
K ]. Hence the American option must command a higher price than its European
counterpart. In fact, the American option must sell for a price no less than
F-K, the value of early exercise.

Unfortunately, there is no simple closed form solution to evaluate the
American option. Numerical methods or approximations must be used. In this
paper, we use the technique described in Barone-Adesi and Whaley [1986].
They point out that the difference between the value of an American option
and that of an identical European option is the early exercise premium of
the former. Since the same partial differential equation (which results from
the riskless hedge between the option and the underlying agset) applies to
both the American and the European option, it also applies to the early
exercise premium of the American option. Barone-Adesi and Whaley employ a
quadratic approximation for this partial differential equation, and obtain a
closed form (approximate) solution for the early exercise premium. When this
is added to the value of the European option, it gives an approximation of
the value of the American option. They show that this method not only gives
accurate approximations of the value of the American option, but also is one

of the fastest computational method available for pricing American options.



3. The Data

The data consist of quotes on the Deutsche Mark (DM) futures contract
and quotes on the options on the DM futures contract, traded on the
Chicago Mercantile Exchange (CME). Each DM futures contract is for the
delivery of 125,000 DM. Each DM option contract is written on one DM futures
contract. The futures contract was first traded on May 16, 1972, while the
option did not start until January 24, 1984. The price of the futures
contract as well as the options is quoted in U.S. Cents per DM. Each tick of
the options and the futures equals $12.50, which is the minimum price change
for both contracts.

The data were provided by the CME, and are generally known as "quote
capture” information. The data set contains the time and price of every
tranaction in which the price has changed from the previous transaction. In
addition, bid and ask prices are also recorded if the bid price is above or
the ask price is below the price of the previous transaction. There is no
information regarding the number and volume of transaction at a particular
price.

We eliminated all bid and ask quotes from the data, since they do not
represent transaction prices. From the remaining quotes, we extracted a very
small subsample of data. On each trading day, we found the last traded price
for each option nearest to noon Chicago time, and then matched it to the
price of the underlying futures contract which traded most closely
preceeding the option. On average, the time between an option transaction
and the preceeding futures transaction was only 152 seconds. We have a total
of 1560 observations on call options and 824 on put options in our sample.
The smaller number of observations on puts is due to the fact that puts are
less frequently traded than calls. Table 1 gives a complete breakdown of

these options by strike price and by maturity date.

We do not have any transaction data for interest rate. Instead, we use
the three month Treasury bill rate in the Federal Reserve G.13 Release as
the riskless U.S. interest rate (i). This should not cause too much problem
in pricing options, since interest rates were not as volatile as exchange
fates, and option prices are not very sensitive to small changes in interest

rates.
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4. Testing for Violations of Boundary Conditions

In this section, we test for violations of the early exercise boundary
conditions and the put-call parity conditions in the data. These boundary
conditions are of interest, since they are derived merely from arbitrage
arguments and not from any particular model of option pricing. Furthermore,
the low transaction costs and side-by-side trading of futures options and
the underlying futures contract make these boundary conditions more likely

to hold than cash options and cash currencies.

Early Exercise Boundary Conditions

As pointed out in section two, American options on futures contracts
must sell for at least the value of early exercise, if there is to be no
profitable arbitrage. These boundary conditions are:

C(F,K,T) = Max{0,F-K}, and

P(F,K,T) = Max{0,K-F).

Table 2 summarizes our findings of violations of the above boundary
conditions. For call options, we found 16 violations out of 1560
observations, at a rate of 1.03%. These violations occurred only in the
options maturing in March and June of 1984. In fact, all but one of these
violations occurred before March 9, 1984. The size of the violations is
quite small. The maximum violation is 4 ticks or $50. For the calls maturing
in March 1984, 4 violations involved the discrepancy of 1 tick, 2 violations
involved 2 ticks, 2 violations involved 3 ticks, and 2 more involved &
ticks. For the calls maturing in June 1984, 1 violation involved the
discrepancy of 1 tick, another involved 2 ticks, 3 violations involved 3
ticks, and 1 involved 4 ticks.

For put options, we found 5 violations out of 824 observations, at a
rate of 0.61%. All violations involved options maturing in June and
September 1984. Here, too, the size of the violations is small. The maximum
violation is 2 ticks or 325.00. For the put options maturing in June 1984, 3
violations involved only 1 tick, and 1 violation involved 2 ticks. For the
put options maturing in September 1984, there was only 1 violation involving
2 ticks.
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These results contrast interestingly with those in previous studies.
Ball and Torous [1986], using closing DM futures option prices and
settlement DM futures prices from January 24, 1984 to March 1, 1985, found
2.70% violations for calls and 7.08% for puts. Shastri and Tandon [1985],
using closing prices for cash options and cash currencies from December 14,
1982 to November 22, 1983, found 1.66% violation for calls and 17.60% for
puts. Bodurtha and Courtadon [1986], using transactions prices for cash
options and cash currencies from Feburary 28, 1983 to September 14, 1984,
found 0.77% violations in call observations, and 8.26% violations for puts.
Thus, our results find a similar rate of violation in calls, but a
substantially lower rate for puts.

We speculate that the high rate of violation for puts in Ball and
Torous [1986] resulted from the use of closing prices. As mentioned earlier,
puts are much less frequently traded than calls. Closing prices for puts are
probably not synchronous with the corresponding settlement futures prices.
This may also explain the high rate of violation for puts in Shastri and
Tandon [1985]. But this cannot explain the high rate of violation for puts
in Bodurtha and Courtadon [1986], who use transaction data. Bodurtha and
Courtadon themselves show that the violations can be explained by
transaction costs, which are much higher for arbitraging between cash
options and the cash currency market than between futures options and the

futures market.

Put-Call Parity Conditions

Besides the early exercise boundary conditions, there are other
arbitrage restrictions between the prices of puts and calls. Ramaswamy and
Sundaresan [1985] provides a relationﬁbetween call and put options with
similar contractual terms:

C(F,K,T) =< P(F,K,T) + F - K b(T),
where b(T) is the price of a unit discount bond paying $1 with time to
maturity T. This relation is called "the upper put-call parity" in Ball and
Torous [1986], and holds even if interest rates are stochastic. Stoll and
Whaley [1986] provides a second relation:

C(F,K,T) = P(F,K,T) - F b(T) + K.

This condition is called the "lower put-call parity" in Ball and Torous

[1986], and holds only if interest rates are constant over time.
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We checked for violations of the two parity conditions in the data. We
assumed a constant interest rate, and used the three month treasury bill
rate (i) to calculate the price of the discount bond as:

b(T) - = exp( - iT ).

Table 3 summarizes our findings. For the lower put-call parity, there
were only three violations out of 592 observations, a rate of 0.51%. Two
violations occurred in the option with a strike price of 39¢ maturing on
March 1984, when the options were one and two days prior to expiration. The
maximum violation was only 3.98 ticks ($49.75). The third violation occurred
in the options with a strike price of 34¢, but it was only 1 tick ($12.50).

For the upper put-call parity, there were only four violations out of
592 observations, a rate of 0.68%. The largest violation was 9.97 ticks
($124.50). This appears to be sizable. However, it turns out that the put
and the call traded 1 hour and 21 minutes apart, during which time, the
futures price moved 11 ticks ($137.50). The second largest violation was
6.14 ticks ($76.75). In this case, the put and the call traded more than 4
hours apart, during which time the futures price moved 18 ticks ($225.00).
These two instances should not be considered violations of the upper put-
call parity condition, since the puts and calls could not be traded
simultaneously. The remaining two violations consist of 1.99 ticks ($25.00)
and .97 ticks ($12.50).

Our results are similar to the findings of other authors. For
the lower and upper put-call parity conditions, Ball and Torous [1986] found
violation rates of 0.58% and 0.73s%, respectively, while Bodurtha and
Courtadon [1986] found violation rates of 0.05% and 0.32%, respectively.
Shastri and Tandon [1985] found violation rates of 28.25% and 46.10%
respectively, but Bodurtha and Courtadon argue that these results are caused

by closing prices.

On the whole, we found that we have very low rates of violation of the
early exercise boundary conditions and the put-call parity conditions. These
results compare very favorably with those in previous work. For the few
violations we found, we cannot attribute them to transaction costs and non-

synchronized trading. The transaction costs of trading in futures options



-10-

and futures contracts are very minimal. In addition, the futures options and
futures trade side-by-side. We do not believe that these violations are
evidence of market inefficiency. Rather, we believe the violation may

have other explanations, such as the presence of large bid-ask spreads and
the quality of the data. It is possible that, when the DM futures options
were first traded, there was little liquidity. Bid and ask prices may have
been more than several ticks apart, causing some transactions to appear to
violate the boundary conditions. As the liquidity in these options
increased, the bid-ask spread narrowed, and so we do not observe these
discrepancies any more. It is also possible that, when the options were
first traded, the quote capture reporting procedures may not have been very
accurate. The recorded time for an option price may be different from the
actual trading time. We therefore observed some discrepancies which never
existed in real time. The reporting procedures may have been improved at a

later date, so we do not observe these violations any more.
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5. Analysis of Implied Volatilities

In this section, we analyze whether the Black-Scholes method for
pricing futures options describes the data adequately. For simplicity, let
us denote the theoretical or model price of a call option on the DM futures
contract as C(F,K,T;o0,i), and that of a put option as P(F,K,T;a,i). We
observe the variables F (the price of the underlying futures contract), K
(the strike price), T (time to maturity), i (the riskless interest rate,
assumed to be the three month Treasury bill rate), and the market value of
the option. The only unknown is ¢ (the instantaneous standard deviation of
the underlying contract).

There are two ways to proceed from here. One method is to estimate o
using past data, compute the model price (conditional on the estimated value
of ¢), and compare it with the market price. This was done in Shastri and
Tandon [1986]. Another method is to find the value of ¢ which equates the
model price to the observed market price. We denote this value by V, which .
is known as the "implied volatility" of that option. As an example, V solves
the following equation for a call option:

C(F,K,T;V,i) = observed market price.

This is a nonlinear equation, and is solved by an iterative Newton-Raphson
procedure. This was done in Ball and Torous [1986], and is the method we
follow. By examining the properties of the implied volatilities, we hope to
gain some information about systematic biases of the Black-Scholes model,
and about the distribution of the underlying futures contracts.

Under the assumptions of the Black-Scholes model, the two methods
should produce the same results. The difference is that the first method
requires an estimate of ¢, which generally contains estimation error. Using
the same estimate of o for more than one option may produce systematic
biases which would otherwise be absent. The second method computes an
implied volatility for each option, and avoids the problem of estimation

error altogether.

Serial Correlation of Implied Volatilities

A frequently dicussed issue concerning the Black-Scholes model is
whether o is constant over time. We cannot directly test this hypothesis,

since we do not observe o¢. Instead we use the implied volatility of the
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option in its place. This procedure may contain some measurement errors,
since the futures price, the option price, and the interest rate, may not be
observed simultaneously. If the Black-Scholes model is correct, then the
implied volatility should be different from the true volatility by a random
measurement error e:

V = o+ €.
Unless the measurement errors have a systematic component, ¢ should not be

correlated across observations.

In Table 4, we present some time series statistics of the implied
volatilities. For both puts and calls, it is quite clear that the first and
second order serial correlation coefficients, pland pys are very different
from zero. It therefore appears to be the case that the implied volatilities
contain a systematic error term, contrary to the assumptions of the Black-
Scholes model. This finding is consistent with a time-varying o. The Black-
Scholes model can be generalized, as in Merton [1973], to handle the case
when o is time-varying but nonstochastic. But there are no simple results

when o is stochastic, as in the case of an ARCH model.

Moneyness Bias

Another frequently discussed problem of the Black-Scholes model is the
"moneyness"” bias. The Black-Scholes model has been found to work well for
at-the-money options, but often misprices deep-in-the-money and deep-out-of-
the-money options. For our study, we created five categories of moneyness. A
call option is deep-out-of-the-money (DOM) if the ratio of the futures price
to the strike price (F/K) is less than .95; it is out-of-the-money (OM) if
F/K is between .95 and .98; it is at-the-money (AM) if F/K is between .98
and 1.02; it is in-the-money (IM) if F/K is between 1.02 and 1.05, and deep-
in-the-money (DIM) if F/K is greater than 1.05. The moneyness of put options
is defined similarly, except reversing the order of the definition of

moneyness.

Table 5 summarizes our findings. In the first row, we compare the
implied volatilities of deep-out-of-the-money calls (DOM) with those of the
other four categories of call options. The comparison against the at-the-

money calls (AM) is in the second column. In our data, there are 570 days
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with observations for both categories. Of these, only 16 pairs (2.81%)
contain at-the-money calls with implied volatilities greater than deep-out-
of-the-money calls. The implied volatilities of the at-the-money calls are
less than those of the deep-out-of-the-money calls at the 5 percent
significance level, using the nonparametric test in Rubinstein [1985]. On
average, the implied volatilities of the at-the-money calls are 10.0%
smaller than those of the deep-out-of-the-money calls. Figure 2 contains a
plot of the two implied volatilities for the calls maturing in September
1984, and shows that the deep-out-of—the-mqney calls consistently have
higher implied volatilities than the at-the-money calls. A glance at Table 5
reveals that, as a rule, the deep-out-of-the-money calls have the largest
implied volatilities, and the out-of-the-money calls the second largest. The
rankings are not conclusive for the remaining calls, probably because these
options are not traded as frequently.

The comparison for puts gives similar results. Table 5 shows that the
deep-out—of-the-money puts have the largest implied volatilities, and the
out-of-the-money puts the second largest. Again, the rankings are not
conclusive for the remaining puts. Figure 3 contains a plot of the implied
volatilities of the out-of-the-money puts and the at-the-money puts, and
shows that the out-of-the-money puts consistently have higher implied
volatilities than the at-the-money puts.

These findings differ somewhat with those in Whaley [1986], who finds
that the model underprices out-of-the-money calls but overprices deep-out-
of-the-money puts for options on the ‘Standard and Poors 500 futures
contract. Our results show that the model underprices out-of-the-money calls
and puts relative to at-the-money options.

To check the robustness of our results, we performed regression tests
using options which are identical except for strike prices. The results are
consistent with those above. They show that options with lower strike prices
have lower implied volatilities. (These results are not reported in our
tables, but are available upon request.)

To check if the moneyness bias changes with time to maturity, we
recomputed Table 5 for options with maturities of 0-2 weeks, 3-4 weeks, 5-6
weeks, 7-10 weeks, and 10 or more weeks. The results are in Appendix A-1 to
A-5. They show very clearly that the‘moneyness bias continues to hold,
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regardless of the time to maturity. In fact, the moneyness bias becomes more
pronounced as time to maturity shortemns. For example, the average difference
in implied volatilities between out-of-the-money calls and deep-out-of-the-
money calls is 7.1% when both options have 10 or more weeks until maturity.
This difference rises to 11.0%, 21.7%, 23.1%, and 45.9% as the time to
maturity falls to 7-10 weeks, 5-6 weeks, 3.4 weeks, and 0-2 weeks,

respectively.

Maturity Bias
A third frequently discussed problem of the Black-Scholes model is

the "maturity" bias. Ball and Torous [1986] observed that implied
volatilities of DM futures options increased as the time to maturity
decreased. We also find the same phenomenon. Figures 2 and 3 are
representative time series plots of the implied volatilities in our data. In
general, we find that (a) implied volatilities are not constant across time,

and (b) implied volatilities tend to rise when the options approach

maturity.

The first observation is consistent with the finding of
heteroscedasticity in daily spot exchange rates, in Hsieh [1985] and Manas-
Anton [1986]. Since our data contain only a few expiration series, we are
not sure whether the rise in implied volatilities near maturity is related
to a change in variances of the underlying futures contract during those
dates, or whether there is a systematic maturity bias.

In order to discriminate between the two explanations, we compared the
implied volatilities of pairs of options which are identical except that
they mature three months apart. For example, we compared the implied
volatility of the 38¢ call maturing in June with that of the 38¢ call
maturing in September, as they move through time. In this way, we hold
constant all other aspects except time to maturity. We performed the same
analysis holding fixed moneyness as well. Under the assumptions of the
Black-Scholes model, the implied volatilities should not differ between
options with different times to maturity. The findings are in Table 6.

Let us first examine the effect of maturity alonme. For call options,
this is in the sixth row of the table, and for put options, in the last row.
In our sample, there are 50 pairs of options which are identical except they

mature three months apart, and the closer-to-maturity option has 0-2 weeks
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remaining until expiration. There are 38 pairs (76%) in which the closer-to-
maturity option has the larger implied volatility. The difference is 27.7
percent on average. The results are equally striking for those matched

pairs in which the closer-to-maturity option has 3-4 weeks and 5-6 weeks
remaining until expiration. The evidence is not conclusive for the

remaining pairs.

For put options, when the closer-to-maturity option has &4 or fewer
weeks remaining to expiration, it also tends to have a higher implied
volatility that the further-to-maturity option. The evidence is not
conclusive for the remaining pairs.

These results contradict the assumptions of the Black-Scholes model.
The evidence strongly suggests that the implied volatility increases as an
option nears expiration. This is consistent with the hypothesis that the
distribution of the underlying futures price is a mixture of a Wiener
diffusion process and a Poisson jump process, as suggested by Ball and
Torous [1985]. This is also consistent with the Samuelson [1965] hypothesis:
that the variance of futures price increases monotonically as the contract

approaches maturity, as discussed in Ball and Torous [1986].

To check if the maturity bias is affected by the moneyness of the
options, we performaned the same comparisons holding fixed moneyness. The
first row in Table 6 shows that for deep-out-of-the-money calls, the closer-
to-maturity option always has a higher implied volatility,'regardless of
time to maturity. This, however, does not hold for the other call options.
The second row in Table 6 shows that for out-of-the-money calls, the closer-
to-maturity option has a higher implied volatility only if it has less than
6 weeks to maturity. Similarly, the third row in Table 6 shows that for at-
the-money calls, the closer-to-maturity option has a higher implied
volatility only if it has less than 4 weeks to maturity. The evidence is
inconclusive for in-the-money and deep-in-the-money calls. For put options,
there are also too few observations to give any definitive conclusions about

any effects moneyness has on the maturity bias.
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6. Conclusion

In our analysis of the DM futures options, we found that futures
options have very low rates of violations of early exercise boundary
conditions and put-call parity conditions. This is indicative of well-
synchronized markets and low transaction costs.

In our analysis of implied volatilities, we turned up some interesting
empirical regularities.

(1) Implied volatilities are not constant over time. In fact, they appear to
be serially correlated.

(2) The moneyness bias is very strong, regardless of time to maturity. Deep-
out-of-the-money options have the largest implied volatilities, and out-of-
the-money options the second largest. In other words, the Black-Scholes
model underprices deep-out-of-the-money options relative to at-the-money
options. (The evidence is not conclusive for deep-in-the-money options,
since they are not frequently traded.)

(3) The maturity bias is also quite strong. Implied volatilities tend to
rise as the options approach maturity. In other words, the Black-Scholes
model underprices options which are closer to maturity relative to those

which are further from maturity.

These empirical regularities implies that there are systematic biases
in the Black-Scholes model. We believe that these biases are unlikely to be
caused by transaction costs and discontinuous trading. Trading costs are
very low, and currencies can almost be traded around the clock. Rather, we
believe that the biases of the Black-Scholes model results from an incorrect
distributional assumption --- that the underlying asset price is a Wiener
diffusion process. There are several alternatives.

The first candidate is that underlying process may be a mixture of a
Weiner diffusion process and a Poisson jump process. Ball and Torous [1985]
show that this can explain the mispricing behavior of the Black-Scholes
model regarding deep-out-of-the-money options and close-to-maturity options.
There is, however, additional evidence that contradicts this explanation.
The mixture of a Weiner diffusion process and a Poisson jump process implies
that incremental changes in the exchange rate are indenpendent and
identically distributed. Hsieh [1985] and Manas-Anton [1986] find that the
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rates of change of spot exchange rates are not independent and identically
distributed, and that the squared rates of change are serially correlated
(even though the rates of change themselves are’uncorrelated.)

The second candidate is that the Samuelson [1965) hypothesis. that the
variance of the futures price increases as the contract nears maturity; We
do not believe that there is evidence in favor of this hypothesis. Figures 4
through 7 plot the daily highs and lows for the four DM futures contracts
maturing in 1984. If the variance of futures Prices is increasing
monotonically over time, one should observe widening daily highs and lows as
each contract nears maturity. Visual inspection shows that there is no
strong evidence to support the Samuelson hypothesis. In addition, even if
the Samuelson hypothesis can account for the maturity bias, it cannot
explain the moneyness bias.

The third candidate is that the variance of the cash price, which is
also the variance of the futures price, is changing systematically over
time. If the variance is a nonstochastic function, then options can be
priced using the method in Merton [1973]. It could explain the maturity
bias, but does not explain the moneyness bias. If the variance is a
stochastic function, such as the case in an ARCH model, then it may explain
both the maturity bias and the moneyness bias, and still be consistent with
the observations about the underlying cash process. There is, however, no
simple way to price options when the underlying asset price follows an ARCH

process. We leave this for future research.
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Table 1

Number of Days with Traded Options: Jan. 23, 1984 - Oct. 10, 1984

Strike
Price 8403

Total 103

Put Options:

Maturity Date

8406

426

8409



Call Options:

No. of
Violations

Percent of
Violations

Maximum Size
of Violation
(Ticks)
(Dollars)

Average Size
of Violation
(Ticks)
(Dollars)

Put Options:

No. of
Violations

Percent of
Violations

Maximum Size
of Violation
(Ticks)
(Dollars)

Average Size
of Violation
(Ticks)
(Dollars)

Violations of Early Exercise Boundary Conditions

-21-

Table 2

Maturity Date

8403 8406

C 2z Max{0,F-K}

10 6
9.7% 1l.4%
4 4
$50.00 $50.00
2.20 2.67
$27.50 $33.33

P > Max{0,K-F)

0 4

0% 1.4%

0 2
$0 $25.00

0 1.25
$0 $15.63

8409 8412
0 0
0% | 0%
0 0

$0 $0
0 0

$0 $0
1 0
0.4% 0%
2 0

$25.00 $ 0
2 0

$25.00 $ 0

O%

0%



No. of
Observations
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Table 3

Violations of Put-Call Parity Conditions

55

Maturity Date

8406

219

Test of upper put-call parity:

No. of
Violations

Percent of
Violations

Maximum Size
of Violation
(Ticks)
(Dollars)

Average Size
of Violation
(Ticks)
(Dollars)

3.6%

3.98
$49.75

2.5
$31.25

Iest of lower put-call parity:

No. of
Violations

Percent of
Violations

Maximum Size
of Violation
(Ticks)
(Dollars)

Average Size
of Violation
(Ticks)
(Dollars)

1.8%

6.14
$76.75

6.14
$76.25

1.4%

9.96
$124.50

4.31
$53.83

8409

183

C(F,K,T) =

0.5%

$12.50

1
$12.50

C(F,K,T) =

P(F,K,T)

131

P(F,K,T) + F - K b(T),

$0

- F b(T) + K.
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Table 4

Time Series Statistics of Implied Volatilities

Strike Number of Mean Max Min S.D.

Pl Py
Price Observation x10? x102 x102 x102
Calls Maturing 8403:
35 8 .45 .50 .40 .05 .63 .26
36 21 .55 1.30 .40 .24 .46 .01
37 24 .49 .57 .43 .03 .56 .20
38 20 .60 1.41 A7 .20 .15 .09
39 13 .72 1.10 .60 .12 .05 .01
Calls Maturing 8406:
36 44 .54 .76 .42 .071 .46 .32
37 90 .54 .74 .44 .056 .61 .67
38 91 .59 1.50 .43 .137 .64 .48
39 72 .63 2.36 .48 . 245 .51 .34
40 58 .72 3.61 .52 441 46 .27
41 37 .63 .70 .56 .037 .68 49
42 19 .66 .73 .58 .049 .75 .58
Calls Maturing 8409:
34 14 .70 1.07 .52 .135 .09 .13
35 45 .64 .74 .51 .044 .56 .48
36 : 68 .65 .79 .52 .068 .90 .82
37 76 .64 .85 .51 .077 .90 .86
38 81 .64 .96 .53 .094 .87 .78
39 70 .64 .99 .52 .091 .85 .69
40 75 .67 1.32 .53 .139 .82 .62
41 35 .66 1.34 . .55 .130 .26 .16
42 B .69 .82 .58 .089 .40 .03
Calls Maturing 8412:
32 23 .87 .93 .79 .039 .70 .51
33 28 .86 .92 .70 .060 .73 .49
34 40 .81 .96 .63 .115 .93 .87
35 60 .77 1.00 .60 .138 .95 .91
36 74 .76 1.06 .57 .152 .95 .91
37 74 .77 1.09 .59 .156 .96 .91
38 57 .73 1.05 .60 .116 .90 .79
39 39 .74 1.13 .57 .133 .82 .61
40 19 .74 .82 .61 .061 .72 .64
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Table 4
(continue)
Iime Series Statistics of Im lied Volatilities
Sess-stiimo.ookarkisties of Jmplled Volatilities

Strike Number of Mean Max Min S.D. Py Py
Price Observation x102 x102 x102 x102

Puts Maturing 8403:

35 9 .49 .51 .46 .02 -.01 .06
36 19 .49 .57 42 .04 .70 .53
37 18 .51 .63 .40 .07 .73 .53
38 7 .63 .70 .53 .06 .43 .15
39 6 .76 .94 .65 .11 -.31 .09
Puts Maturing 8406:

35 18 .55 .68 A .083 .76 .60
36 59 .58 1.21 yvA .105 .39 .34
37 79 .57 .90 A .070 .66 .47
38 63 .57 .87 .47 .066 46 .40
39 43 .58 .80 .49 .051 .28 .24
Puts Maturing 8409:

34 40 .67 .85 .57 .060 .55 .45
35 74 .63 .82 .51 .048 .48 .33
36 66 .62 .83 .55 . .052 .72 .59
37 58 .61 .87 .48 .067 .72 .49
38 26 .58 .66 .53 .035 .49 .20
39 4 .60 .64 .56 .060 .64 .34
Puts Maturing 8412:

30 11 .95 1.00 .88 .047 .41 .28
31 23 .91 .96 .81 .041 .66 .43
32 29 .87 .96 .71 .062 .72 .57
33 36 .82 .92 .64 .089 .89 .83
34 37 .78 .94 .64 .100 .90 .83
35 33 .70 .92 .58 .085 .84 .69
36 24 .65 .82 .57 .050 .36 .07



-25-

Table 5

Comparison of Implied Volatilities Across Moneyness

Call Options:
DoM

oM

&

Put Options:
DOM

oM

&

Notes:

oM AM
-10.0 -14.1
(23,451)* (16,570)*
-5.9
(68,441)%
oM AM
-4.0 -5.6
(25,111)* (19,134)%
-3.4
( 58,235)%

IM

-11.9
(13,192)%*

-5.5
(35,169)*

-1.5
(68,182)*

po. |

-4.8
(11, 49)*

-0.4
(43, 93)

2.4
(90,144)

The numbers in the table are the averages of the logarithm of the implied
volatility of the less out-of-the-money option minus that of the more out-
of-the-money option. The first number in parentheses is the number of times
the implied volatility of the less out-of-the-money option exceeds that of
the more out-of-the-money option. The second number is the total number of
such comparisons.
An asterisk (*) denotes statistical significance at the 5% level of the one-
tailed test, that the implied volatilities of the less out-of-the-money
option is smaller than that of the more-out-of-the-money option, using the
nonparametric test in Rubinstein [1986]

Definition of moneyness:

Puts Calls
DIM: DOM:
IM: OM:
AM: AM:
OM: IM:
DOM: DIM:

.
.

1.
1.

95
98
02
05

.95

Futures/Strike
< Futures/Strike
< Futures/Strike
< Futures/Strike
< Futures/Strike

IAIAIA JA

98

1.02
1.05
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Table 6
Comparison of Implied Volatilities Between Across Maturit
Money- Weeks to Maturity of Shorter Option
ness 0:2 34 5-6 7-10 10+ Total
Call Options:
DOM 116.5 26.0 22.6 11.7 11.5 24.6
(3, 3) (10,10) (21,21 (17,19) ( 8, 8) (59, 61)
oM 57.6 14.8 5.6 0.7 2.4 7.4
( 8, 8) (21,21) (26,34) (19,36) (11,26) (85,125)
AM 14.6 2.6 0.4 4.4 -4.9 2.3
(26,36) (29,43) (19,37) ( 7,39) ( 3,16) (84,171)
IM a -2.1 a a a -2.5
(1, 3 ( 2,10) (1, 3) (1, 2) (1, 2) (6, 20)
DIM - a : - - a 15.0
(0, 0) (2,2 (0, 0) (0, 0) (1, 1 (3, 3)
Total 27.7 9.3 7.1 0.7 -1.3 7.4
(38,50) (64,86) (67,95) (44,96) (24,43) (237,380)
Put Options:
D.Qﬂ = - a - - a
(0, O (0, O (1, 1 (0, 0) (0, 0 (1, 1
oM - a 2.1 - - 5.9
(0, 0 (1, D (5, 8) (0, 0) (0, 0O cé, 9
AM 18.1 2.1 0.1 -3.2 a 4.9
(24,27) (18,26) (14,33) ( 4,14) (0, 2) (60,102)
M 21.3 5.8 1.3 a a 6.1
( &, 5) (12,13) ( 7,10) (2, 3) (o0, (25, 32)
DIM - a a - - 8.6
(0, 0) (1, D (1, (0, 0) (0, 0 2, 2)
Total 20.5 13.7 4.4 -1.3 a 6.0
(28,32) (32,41) (28,53) ( 6,17) (0, 3 (94,146)

The numbers are the averages of the logarithm of the implied volatility of
the closer-to-maturity option minus that of the further-to-maturity option.
The first number in parentheses is the number of times the implied
volatility of the closer-to-maturity option is greater than that of the
further-to-maturity option.

a2 Less than five comparisons.
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Appendix A-1

Pairwise Comparison of Implied Volatilities Across Monevyness
Call Options With More Than 10 Weeks To Maturity:

oM
DOM -7.1
(19,296)
oM
AM
IM

AM

-9.4
(15,361)

-2.5
(62,255)

M

-10.8
(10,132)

-5.1
(20,115)

-2.6
(37,112)

Put Options With More Than 10 Weeks To Maturity:

oM
DO -3.6
(20, 85)
oM
AM
IM

See notes in Table 5.

AM

-5.3
(17,100)

-2.0
( 39,123)

aturity

IM

-4.5
(7, 29)

-1.0
(17, 37)

1.0
(28, 49)

=
I
4

~
w o O O =~
. N . . ;\)
O
~

~

-
[e-]

v

B~

~

~
O
~

|

o~
o0
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Appendix A-2

Pairwise Comparison of Implied Volatilities Across Moneyness

Call Options With 7 - 10 Weeks To Maturity:

oM : AM
DOM -11.0 -14.8
( 2,101) ( 1,141)
oM -5.2
(5, 9)
AM
M

Put Options With 7 - 10 Weeks To Maturity:

oM AM
DOM -4.6 -6.9
(5, 23) (2, 29)
oM -2.6
( 12, 61)
AM
IM

See notes in Table 5.
a Less than five comparisons.

IM

-12.0
( 2, 44)

-3.4
(8,29

0.3
(19, 39)

IM

4.9
(4, 17)

-0.3

(16, 33)

2.2
(34, 53)

)
4
4

-,I

=
4
4

> |

(o,

o,

( 0’

(o,

1Y)

3)

3)

3
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Appendix A-3

Pairwise Comparison of Implied Volatilities Across Moneyness

Call Options With 5 - 6 Weeks To Maturity:

oM AM
DOM -21.7 -28.3
( 0, 36) (0, 42)
oM -7.0
(1, 41)
AM
IM

Put Options With 5 - 6 Weeks To Maturity:

oM AM
DOM a -4.9
(0, 3) (0, 5
oM -6.3
( 6, 26)
AM
IM

See notes in Table 5.
a Less than five observations.

-27.9
(0, 11)

-9.1
(1, 10)

-5.2
( 2, 12)

o, 3)

-1.6
(6, 16)

2.8
(17, 27)

=
]
<3

.

16.3
(10, 11)

13.9
(&4, 6)
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Appendix A-4
Pairwise Comparison of Implied Volatilities Across Moneyness

Call Options With 3 - 4 Weeks To Maturity:

oM aM M DIM
boM -23.1 ’ -39.2 4,2 -
(2, 14) (0, 21) (1, 5)
oM -14.5 -7.0 -
(o, 37) ( 6, 14)
AM 4.7 -
(10, 17
M .
Put Options With 3 - 4 Weeks To Maturity:
oM AM IM DIM
oM -6.5 -0.7 a
( 1, 18) (2, 5) (1, L
AM 2.0 . -
(8, 12)
IM .

See notes in Table 5.
a Less than five comparisons.
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Appendix A-5
Pairwise Comparison of Implied Volatilities Across Monevness

Call Options With 0 - 2 Weeks To Maturity:

oM AM IM DIM
DOM a -105.5 - -
: (0, & (0, 5
oM -47.1 a -
(0, 14) (0, 1)
AM a a
(0, 2) (4, 4
M .

Put Options With 0 - 2 Weeks To Maturity:

]
i
iz -

oM AM M DIM
DOM - - - -
oM -18.3 a -
¢ 0, 7 (2, 2
AM a -
(3, 3
IM .

See notes in Table 5.
a Less than five comparisons.
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