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 ABSTRACT 

 This paper uses a nonlinear arbitrage pricing model, a conditional linear 

model, and an unconditional linear model to price international equities, 

bonds, and forward currency contracts.  Unlike linear models, the nonlinear 

arbitrage pricing model requires no restrictions on the payoff space, allowing 

it to price payoffs of options, forward contracts and other derivative 

securities.  Only the nonlinear arbitrage pricing model does an adequate job of 

explaining the time series behavior of a cross section of international 

returns. 

 



 

 
 
 1 

 

 

  A NEW APPROACH TO INTERNATIONAL ARBITRAGE PRICING 

 

 The idea that a few relevant state variables explain expected returns is 

the main driving force of the seminal papers of Merton (1973) and Ross (1976). 

 These seminal ideas have been extended to the pricing of international assets 

by Ikeda (1991), Ross and Walsh (1983), Solnik (1974, 1983), and Stulz (1981), 

among others.1  The key implication of these arbitrage pricing models is that 

only risks related to these factors (state variables) are relevant in 

determining asset prices. 

 Testable implications of these international asset pricing models have 

been derived either by placing restrictions on the payoff structure (i.e., 

payoffs are linear in factors) as in Ikeda (1991), Ross and Walsh (1983), 

Solnik (1983) or on the joint distributions of the payoffs and state variables 

as in Constantinides (1989).  These restrictions lead to the testable 

implication that expected asset returns are linear in the conditional 

covariances with the factor payoffs.  In what follows, we refer to these models 

as linear arbitrage models or linear models. 

 Previous empirical work using a linear one factor model (e.g. CAPM and 

consumption-based models) and multi-factor extensions (using only equity based 

factors) as developed in Korajczyk and Viallet (1992) are unable to 

simultaneously price international equity, bond, and in particular, forward 

currency returns (see Hodrick (1987), Dumas and Solnik (1992)).  In this paper, 

we follow the nonlinear approach of Bansal and Viswanathan (1992), who observe 
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that the pricing kernel from a linear model cannot price securities whose 

payoffs are nonlinear functions of the factors.2  Such nonlinearities would 

arise if the primitive payoffs (e.g., equities) are themselves nonlinear 

functions of the factors.  Even in the case when the primitive payoffs satisfy 

the assumptions of linear factor pricing, the presence of derivative securities 

(e.g. forward contracts and options) will lead to nonlinearities in the payoff 

set.3  The ability of the pricing kernel from the nonlinear approach to price 

securities which are arbitrary nonlinear functions of the factors lead us to 

believe that we may have greater success in pricing simultaneously a rich 

collection of payoffs, including forward currency returns. 

 The nonlinear approach has other advantages over linear arbitrage pricing 

models.  The key restriction of linear arbitrage models is that there are only 

a few factors (relative to the number of traded securities) in the pricing 

kernel.  Hansen and Jagannathan (1991) show that, for a given collection of 

payoffs, there always exists a unique pricing kernel (or stochastic discount 

factor) that is a linear combination of all the payoffs.4  Linear arbitrage 

pricing further restricts this pricing kernel to be a linear combination of a 

few factor payoffs.  If payoffs are arbitrary nonlinear functions of factors, 

the simple linear low-dimensional representation of the pricing kernel does not 

obtain (see Bansal and Viswanathan (1992)).5  Our nonlinear approach delivers a 

pricing kernel which can accommodate this restriction of low dimensionality 

even when payoffs are complicated nonlinear functions of the factors.6  

Additionally, this nonlinear pricing kernel also prices dynamic trading 

strategies. 

 To construct the nonlinear pricing kernel, we first exploit the no 
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arbitrage restriction, which guarantees a nonnegative pricing kernel (see Kreps 

(1981), Harrison and Kreps (1979) and Ross (1978)).  Then conditioning this 

nonlinear pricing kernel on the factors, we obtain a kernel which satisfies the 

restriction of low dimensionality.  This construction does not require the 

nonlinear pricing kernel to belong to the set of traded securities,7  so that 

nonnegativity can easily be imposed.  In constrast, a linear arbitrage model 

restricts the pricing kernel to be a traded security which is a linear 

combination of factor payoffs.  This linear combination (particularly when 

markets are incomplete) may take on negative values (see Hansen and Jagannathan 

(1991)), thus violating the no arbitrage restriction. 

 As the exact functional form of the nonlinear pricing kernel is unknown, 

we nonparametrically approximate this function with a series expansion, as in 

Gallant and Tauchen (1989), Gallant and White (1989), and Bansal and 

Viswanathan (1992).  In this paper, we use a polynomial series expansion.  The 

advantages of the polynomial series is that its leading term is linear in the 

factors, which nests the unconditional versions of the international linear 

APT, the international CAPM and the international discrete time ICAPM as 

special cases of the nonlinear model. 

 In addition to the nonlinear model and the associated nested 

unconditional linear model (as in Bansal and Viswanathan (1992)), here we also 

consider the conditional linear factor pricing model, which restricts the 

minimum variance pricing kernel to be a conditional linear combination of a few 

factor payoffs.  Since the conditional weights on this linear pricing kernel 

are unknown (and potentially complex) functions of variables in the information 

set, we estimate them using a nonparametric approach.8 
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 Parameters of the polynomial series expansion are estimated using 

Hansen's (1982) generalized method of moments (GMM).  Since the unconditional 

linear model is nested within the nonlinear model, a GMM-based likelihood 

ratio-type test allows a comparison between the two.  However, as the nonlinear 

model and the conditional linear model are not nested, such a comparison is not 

possible.  Instead, the three models can be directly compared using the 

distance measure suggested in Hansen and Jagannathan (1992).  The Hansen-

Jagannathan (HJ) distance measure is the distance between the pricing kernel 

under study (called the proxy) and the class of valid pricing kernels.  A proxy 

that is a valid pricing kernel will have a zero HJ distance.  Therefore, a 

proxy with a smaller HJ distance is closer to the class of valid pricing 

kernels and can be considered a better pricing kernel than one with a larger HJ 

distance.  Consequently, we evaluate the three models using two different 

metrics: the GMM metric and the HJ distance. 

 The data we use are sampled on a weekly basis from January 1975 to 

December 1990.  The raw data includes weekly observations on the world stock 

portfolio and equity indices from the U.S, Japan, Germany and the U.K.9  In 

addition, we use four week forward contract returns on three foreign currencies 

(calculated using forward and spot exchange rates), the four-week U.S treasury 

bill return, and the seven-day Eurodollar deposit return. 

 The rest of the paper is organized in 6 sections.  Section I discusses a 

theoretical derivation of the nonlinear APT and the restriction placed on 

security returns.  It also presents a derivation of conditional linear models 

and contains details regarding the distance measure suggested by Hansen and 

Jagannathan (1992). Section II discusses the data and some of its properties.  
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Section III presents the estimation strategy while Section IV discusses the 

factors, payoffs and instruments used in estimation.  Section V discusses the 

results and the cross model comparisons while Section VI concludes. 

 

 I.   A THEORETICAL DERIVATION 

 We present a simple derivation of the nonlinear APT in this section, 

which is similar to that in Bansal and Viswanathan (1992) for a one country 

model.10  In a world with N assets, the first order condition that an investor 

in the United States willingly holds the i-th asset for one period is (see 

Lucas (1982), Stulz (1981), Svensson (1987), Bansal (1990) among others): 

where xi(t,t+1) is the payoff of the i-th asset at time t+1 that has price 

π(xi(t,t+1)) at time t, MRSt,t+1 is the marginal rate of substitution of the 

investor from time t to time t+1 and Ωt is the information set that the investor 

has at time t. 

 Then, the projection of the one period marginal rate of substitution on 

the space of one period payoffs, p+1, satisfies a similar condition that: 

 Hansen and Jagannathan (1991) show that this projection has the minimum 

variance in the class of all pricing kernels and is in general a linear 

combination of all the one period payoffs under consideration.11  In particular, 

where the conditional weighting vector αt = [αjt] is given by: 

 [ ] N,1,..., = i for 1))+t(t,x( =   | 1)+t(t,x  MRS  E iti1+tt, πΩ  (1) 

 [ ] 1)).+t(t,x( =   | 1)+t(t,x  p  E iti
*

1+t πΩ  (2) 

 1),+t(t,x = p jjt

N

j=1

*
1+t α∑  (3) 
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where xt+1 is the payoff vector whose i-th component is xi(t,t+1). 

 The linear factor pricing model is derived by imposing the restriction 

that this projection, p+1, is a linear combination of only the factor payoffs.  

This restriction is justifiable when all the payoffs under consideration are 

linear in the factors or when the payoffs satisfy certain distributional 

restrictions.  The existence of a payoff that is nonlinear in the factors or 

that does not satisfy the distributional restrictions would lead to the minimum 

variance pricing kernel involving this payoff in addition to the factors (see 

Bansal and Viswanathan (1992)).  Thus the linear factor pricing model holds 

only under restrictive assumptions on the payoff space. 

 Instead of imposing restrictions on the minimum variance pricing kernel, 

we follow an alternative approach which yields a pricing kernel that prices all 

securities and satisfies the nonnegativity restriction implied by no arbitrage. 

 Our approach imposes a sufficient statistic restriction on the conditional 

expectation of the one period marginal rate of substitution at time t+1.  This 

approach leads to a low-dimensional, nonnegative pricing kernel that is 

typically different from the minimum variance pricing kernel unless markets are 

complete. 

 To do so, we use the law of iterated expectations to rewrite Equation (1) 

for one period ahead payoffs as follows: 

We impose the sufficient statistic restriction that the conditional expectation 

of the marginal rate of substitution between t and t+1 as of time t+1 is a 

 [ ] ,]|xxE[ = tt1+t1+t
-1

t πα Ω′  (4) 

 [ ][ ] 1)).+t(t,x( =   | 1)+t(t,x  | MRS E  E iti1+t1+tt, πΩΩ  (5) 
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function of p+1, a K-dimensional vector of basis variables:
12 

where K is a low number and G($) is a well behaved function.  In the nonlinear 

arbitrage model, the information in the well diversified basis variables p+1 is 

sufficient for all the history in forming the conditional expectation of the 

marginal rate of substitution at time t+1.  Equation (6) is the key 

dimensionality restriction that leads to a nonlinear arbitrage pricing theory. 

 As in linear arbitrage pricing, a low-dimensional pricing kernel that only 

depends on the factors exists.  However, unlike linear pricing kernels, the 

above kernel is not necessarily linear in the factors.  Also, it satisfies the 

nonnegativity restriction on the pricing kernel that is required by the absence 

of arbitrage opportunities in financial markets. 

 Equation (6) leads to the following restatement of the first order 

condition for a marginal investor for one period ahead payoffs: 

This states that there exists a pricing kernel for one period returns that is 

low-dimensional.  Recursive use of Equation (7) along with the law of iterated 

expectations leads to the following restriction for s period ahead payoffs:13 

This states that, for longer horizon returns, the product of the low-

dimensional one period pricing kernels is the appropriate pricing kernel.  

Equation (8) is the fundamental equation of interest for estimation purposes. 

 In summary, the nonlinear APT theory implies the existence of a low-

 [ ] [ ] ),pG( = p | MRS E =  | MRS E b
1+t

b
1+t1+tt,1+t1+tt, Ω  (6) 

 [ ] 1)).+t(t,x( = |1)+t(t,x)pG(E iti
b

1+t πΩ  (7) 

 ( )[ ] s)).+t(t,x( =   | s)+t(t,x)pG(  E iti
b

r+t
s
=1r πΩ∏  (8) 
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dimensional pricing kernel that satisfies the following restrictions: 

Restriction 1: The pricing kernel satisfies the condition that: 

Restriction 2: The pricing kernel is nonnegative; i.e. G($) $ 0. 

Restriction 3: The pricing kernel is low-dimensional. 

 Dynamic theories of international asset pricing of the type tested in 

Bansal et al (1992), Hodrick (1989), Wheatley (1988), and other related work 

test Restriction 1 (the functional forms for marginal utility in these models 

automatically ensure Restriction 2).  Hansen and Jagannathan (1991) discuss 

Restriction 2 and the ways to implement it.  Restriction 3 is implied by 

arbitrage pricing theory and has been tested in the context of linear models 

where the pricing operator is a linear combination of a few factor portfolios. 

 In our empirical work, we estimate the nonlinear model without imposing the no 

arbitrage condition (Restriction 2) and test for Restrictions 1 and 3.  Having 

done so, we proceed to check whether the estimated pricing kernel is positive. 

 It turns out to be so in every case. 

 In addition to the nonlinear arbitrage model, we estimate the 

unconditional linear model (which is nested within the nonlinear model) and the 

conditional linear model.  While the latter is not nested within the nonlinear 

model, we write its restrictions in terms of the basis variables of the 

nonlinear model. 

 Let the first asset be the riskless asset, so that k=2,...,K denote the 

remaining K-1 risky assets.  From Equation (3) and the fact that returns are 

unit cost payoffs, the sum of the conditional weights, αι (where ι is a vector 

 [ ] s)).+t(t,x( =  | s)+t(t,x))pG(( E iti
b

r+t
s
=1r πΩ∏  (9) 
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of 1's), is just the price of the minimum variance pricing kernel for one 

period returns at time t, π(p+1).  Dividing the conditional weights of the 

minimum variance pricing kernel by this price, π(p+1), we obtain a portfolio 

that is mean variance efficient among the class of one period returns.  Call 

this portfolio return R*(t,t+1).   

 Now, every conditional linear pricing model (e.g., the CAPM) implies that 

a portfolio of the K-1 risky factor returns is mean variance efficient.  Call 

this portfolio return RM(t,t+1) = Σ=2 φkt pt+1.  In the case of the capital asset 

pricing model, this mean variance efficient portfolio is just the market 

portfolio.  Since every mean variance efficient portfolio is a convex 

combination of the riskless asset and the mean variance efficient portfolio 

RM(t,t+1) (see Hansen and Richard (1987)), we have: 

where θt is the conditional weight and y(t,t+1) is the return on the riskless 

asset.  Multiplying by the price of the minimum variance pricing kernel, π(p+1), 

and expanding RM(t,t+1), we get the following expression for the minimum 

variance pricing kernel when the linear factor pricing model holds: 

where ηt is a vector whose first component is η1t = π(p+1)θt and whose remaining 

components are ηkt = π(p+1)(1-θt)φkt for k = 2 to K (all the factor payoffs other 

than the riskless payoff).  The theoretical content of the conditional linear 

model is the restriction that the minimum variance pricing kernel is a 

conditional linear combination of the factor payoffs and the riskless asset.  

 ,1)+t(t,R)-(1+1)+ty(t, = 1)+t(t,R Mtt
* θθ  (10) 

 ,
p = 

1)]+t(t,R)-(1+1)+ty(t,)[p( = p
b

1+tt

Mtt
*

1+t
*

1+t

η

θθπ

′

 (11) 
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To price multiperiod returns using the one period linear pricing kernel implied 

by the linear pricing models, we follow the strategy of using the law of 

iterated expectations to obtain: 

Equation (12) allows us to estimate and test the conditional linear model. 

 Finally, we compare the three models (unconditional linear, conditional 

linear and nonlinear) using the Hansen and Jagannathan (1992) distance measure. 

 Briefly, the Hansen-Jagannathan (HJ) distance measure is a metric for 

determining how well a pricing kernel prices a given set of payoffs.  Consider 

the one period payoff set xt+1 with prices πt.  Hansen and Jagannathan (1992) 

prove the existence of a minimum variance pricing kernel p+1 given in Equations 

(3) and (4).  Any other pricing kernel, mt+1, can be rewritten as: 

 ( )[ ] s)).+t(t,x( = |s)+t(t,x p  E iti
*

r+t
s
=1r πΩ∏  (12) 

 0. =1)] +t(t,x E[ ,+p = m imm
*

1+t1+t εε  (13) 
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In particular, if mt+1 is a valid pricing kernel for the payoff set, its 

projection on the space of payoffs is the minimum variance pricing kernel p+1. 

 Hansen and Jagannathan (1992) suggest the following distance measure as a 

metric for comparing different pricing kernels for the payoff set xt+1.  Take any 

pricing kernel mt+1.  Project it on the space of payoffs and call its projectionm 

t+1.  If mt+1 is a valid pricing kernel for the payoff set,m t+1 = p+1.  If mt+1 is 

not a valid pricing kernel for the payoff set,m t+1 … p+1.  The distance betweenm 

t+1 and p+1, E[(p+1 -m t+1)
2], is the minimal distance between the potential proxy 

and the class of valid pricing kernels for that payoff set.  This distance is 

zero if mt+1 is a valid pricing kernel for the payoff set, and it is positive 

otherwise.  Hansen and Jagannathan (1992) show how to estimate this distance 

measure. 

 

 II.   DATA DESCRIPTION 

 Our data is weekly return data on country capital market indices for the 

United States, Japan, Germany and the United Kingdom collected by Morgan 

Stanley from January 1 1975 to December 31 1990.  This gives us 832 

observations for each time series of interest.  The weekly indices are value 

weighted indices that are not dividend adjusted.  Monthly index data from 

Morgan Stanley has been used previously in work by Harvey (1991) (among others) 

and the daily data has been used by Chan, Karolyi, and Stulz (1992).14  In 

addition to the four country stock market indices, we have a value weighted 

weekly world index calculated by Morgan Stanley.  The value weighted world 

index does not adjust for the cross corporate holdings in Japan and West 

Germany.  This phenomenon has documented for Japan by McDonald (1989) and 
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French and Poterba (1990).  Thus, the Morgan Stanley world index probably gives 

a higher weight to these countries than an index that adjusts for cross 

corporate holdings. 

 All these indices are in dollar terms and are weekly returns calculated 

on each Wednesday 4:00 p.m. U.S. Eastern Standard Time.  Since the foreign 

country stocks do not actually trade at this time, the prices used are the last 

closing prices before the Wednesday close on the NYSE (4:00 p.m. EST).  The 

returns are converted to dollar terms using the exchange rate prevailing at 

4:00 p.m. EST.15  The correlation between the Morgan Stanley US Index and the 

S&P500 Index (not dividend adjusted) over the period January 1975 to December 

1989 is 0.9974.  Similarly, the correlation between the Morgan Stanley Japan 

Index (the Japanese index not adjusted for the exchange rate) and the Nikkei 

225 index over the period October 1980 to September 1987 is 0.9085.16  Thus, the 

Morgan Stanley weekly index data are closely correlated with the frequently 

used market indices.  Furthermore, the Morgan Stanley US Index has a 

correlation of 0.987 with the dividend adjusted value weighted index from the 

Center for Research in Security Prices, which indicates that the dividend 

adjustment does not make much difference in weekly returns.17 

 In addition to the stock market indices, we use the one month T-bill rate 

for the United States and the seven day Eurodollar rates obtained from the 

Board of Governors of the Federal Reserve System.  We also use spot rates and 

four week forward rates for the three foreign countries (Japan, Germany and UK) 

obtained from WEF Econometrics to construct an equally weighted portfolio of 

forward currency returns (see equation (23) below for a precise definition).  

All exchange rates are U.S. dollar prices of foreign currencies. 
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 Table IA provides summary descriptions for the eight payoffs of interest. 

 The four week T-bill has the lowest return, while the Japanese stock market 

has the highest return.  Also, the 4 week T-bill has the lowest standard 

deviation, while the UK stock market has the highest standard deviation. The 

equally weighted forward portfolio return has a mean which is similar to that 

of T-bills, and a standard deviation which is smaller than that of stock 

indices but larger than that of T-bills.  

 Table IB gives the contemporaneous correlation across the eight payoffs. 

 It is interesting to note that the two interest rates, Eurocurrency and T-

bills, are highly correlated with each other.  The stock returns are also 

positively correlated to each other; in particular, the US and Japanese stocks 

are strongly correlated with the world index.  However, there is no strong 

correlation between the equally weighted forward contract portfolio return and 

the other seven payoffs. 

 Table II shows the autocorrelation patterns of the eight payoffs.  The 

top panel indicates that there is a slight amount of autocorrelation in the raw 

returns for stocks, and much stronger autocorrelation in interest rates and the 

equally weighted forward contracts.  After performing a vector autoregression 

to correct for the conditional mean, we find strong evidence of autocorrelation 

of the squared residuals, as reported in the bottom panel.  This is consistent 

with the presence of higher moment dependence in all these payoffs.  This 

evidence is consistent with the evidence in Bansal, Gallant, Hussey and Tauchen 

(1992), Engle and Gonzales-Riviera (1991) and Gallant, Hsieh and Tauchen 

(1991). 
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 III.   ESTIMATION STRATEGY  

 Call the realization of any payoff that we are interested in pricing, 

xi(t,t+s) (where the maturity of the ith payoff is s periods ahead).  The 

orthogonality conditions that have to be satisfied by the payoffs in the 

nonlinear APT are: 

where Zlt is any variable belonging to the information set Ωt. 

 The function G($) of the basis variables is an unknown function that we 

nonparametrically approximate using a multivariable polynomial series 

expansion, Gq($), where q is the order of the expansion.  Consistency of such 

nonparametric estimation requires that the order of the series expansion 

increase with the sample size.18  These and other technical issues are discussed 

in Gallant (1987), Gallant and White (1989) and Bansal and Viswanathan (1992). 

 The consistency of the nonparametric procedure allows us to replace G($) 

by the polynomial series expansion, Gq($), in the orthogonality condition: 

where Zlt is an instrument belonging to the information set Ωt. 

Write 

The error uit+s satisfies the restriction it is orthogonal to Zlt which belongs to 

the information set Ωt: 

 We construct sample versions of this restriction to estimate Gq($).  

 ( )( )[ ] 0, = Z 1-s)+t(t,x )pG(  E lti
b

r+t
s
=1r∏  (14) 

 ( )( )[ ] 0, = Z 1-s)+t(t,x )p(G  E lti
b

r+t
qs

=1r∏  (15) 

 ( ) 1.-s)+t(t,x )p(G = u i
b

s+t
Ps

=1rs+it ∏  (16) 

 l.i,0, =] ZuE[ lts+it ∀  (17) 
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Define the IHJ vector et whose components are uit+sZlt for i=1,..,I and l=1,...,L. 

 With I payoffs and L instruments, we have IL=R orthogonality conditions that 

are used to estimate the pricing kernel.  Call the sample mean of the vector et, 

set.G (p+1), the consistent estimator of G
q($), is the function that minimizes 

the following GMM criterion function with respect to Gq($): 

 

where W is a RHR optimal weighting matrix discussed in Hansen (1982) and Hansen 

and Singleton (1982).  We minimize this criterion function with respect to the 

parameters of the series expansion Gq($).  Let J(G
q,K) be the minimized value of 

the criterion function. 

 To test whether an additional factor is required in a K factor 

representation, we use a likelihood ratio-type test.  To implement this test, 

we first estimate Gq($) with K factors.  Keeping the weighting matrix fixed, we 

re-estimate Gq($) with K+1 factors.  The specification with K+1 factors nests 

the K factor specification.  The difference in the objective value between the 

two specifications, J(Gq,K+1) - J(Gq,K), is distributed χ2 with the degrees of 

freedom equal to the difference in the number of parameters between the two 

specifications.  We use a similar approach to test the nested unconditional 

linear model against the nonlinear model. 

 In addition to estimating the nonlinear model, we estimate the 

conditional linear model which is not nested in the nonlinear model.  In the 

conditional linear model, the conditional weights on the factor portfolios are 

an unknown (and potentially complicated) function of the history until that 

 ], )G se(W)G se(N[ qq ′  (18) 
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point in time.  From Equation (11), the pricing condition satisfied in the 

conditional model is: 

 We estimate the conditional weights in the above equation using a 

nonparametric method (see Gallant, Hansen and Tauchen (1990) for another 

nonparametric approach).  The conditional weights, ηkt, are nonparametrically 

estimated by: 

 

where we use exactly the same conditioning variables that are used as 

instruments; hence, L is the number of instruments used in estimation.  As the 

number of conditioning variables increases to infinity, we use all the relevant 

conditional information and this estimate of the conditional weight converges 

to the true conditional weight.  Thus, this approach provides asymptotically 

consistent estimates without imposing the usual restrictive parametrization on 

the conditional mean process and the conditional covariance process of the 

(factor) payoffs. 

 Having estimated the pricing kernels, we compute their HJ distances.  We 

do this for one payoff at a time. This particular strategy is followed for two 

reasons: first, because the minimum variance pricing kernel is different for 

payoffs of different holding periods, and second, because we want to keep the 

number of parameters to be estimated small.19  For a one period payoff, 

xi(t,t+1), we estimate the HJ distance of the pricing kernel mt+1 as: 

 ( )[ ] 0.= Z-Zs)+t(t,x p  E ltlti
b

1+r+tr+t
s
=1r η ′∏  (19) 

 ,Z= ltkl

L

=1l
kt λη ∑  (20) 
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where Zlt is the time t price of the "payoff" xi(t,t+1)Zlt.
20 

 Let Qit+1 = xi(t,t+1)qZt represent the L vector of "payoffs". The HJ 

distance measure for mt+1 can be expressed as: 

This is akin to the GMM criterion function with the weighting matrix formed by 

the inverse of second moment matrix of the "payoffs" Qit+1 = xi(t,t+1)qZt.   The 

HJ distance uses the same weighting matrix in calculating the distances for all 

pricing kernels under consideration.  In contrast the optimal weighting matrix 

as used in the GMM criterion function is dependent on the proxy (pricing 

kernel) under consideration. 

 As previously mentioned, a valid pricing kernel must have a zero HJ 

distance, or equivalently, the vector of coefficients, ζ, must be zero.  This 

hypothesis of equality of coefficients to zero is tested using a Wald  

test.21 22 

 

 IV.   ESTIMATION DETAILS 

 The payoffs that we are interesting in pricing are the weekly country 

stock market indexes, the seven day Eurodollar return, the four week holding 

period return on a U.S. T-bill, the four week forward contract returns for the 

UK, Japan and Germany and seven day return from holding the three foreign 

currencies (UK, Japan and Germany). 

 We divide our payoffs into three sets (Sets 1, 2 and 3).  In Set 1, we 

use only the weekly four country index returns, Ri(t,t+1), i = US, WG, UK, JP.  

 ( )( )[ ] 0, =  Z-Z1)+t(t,x Z1)+t(t,x +m  E ltltiti1+t ⊗′ζ  (21) 

 ( )[ ] ( ).]mQE[-]ZE[ ]QQE[ ]mQE[-]Z[E 1+t1+itt1+ti1+it
-1

1+t1+itt ′′  (22) 
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We do this to compare our results with previous work that uses only stock index 

returns (see Harvey (1991)).  In Set 2, we introduce interest rates into our 

payoffs, by adding to Set 1 the one week Eurodollar return, yUS(t,t+1), and the 

four week U.S. Treasury bill return, yUS(t,t+4).  This yields a total of six 

payoffs.  In Set 3, we introduce derivative securities by replacing the 

Japanese stock returns in Set 2 with an equally weighted portfolio of the three 

forward contracts (for the UK, Germany and Japan), f(t,t+4).  The four week 

equally weighted forward contract return, f(t,t+4), is calculated as: 

where ek(t+4) is the spot exchange rate four periods ahead and Fk(t,t+4) is the 

1-month forward exchange rate today (exchange rates are US Dollar prices of a 

unit of foreign currency).  For each currency k, this is the return on the 

trading strategy that invests Fk(t,t+4) dollars in the four week Treasury bill 

and buys yUS(t,t+4) units of foreign currency forward contracts.
23  We use a 

portfolio instead of the individual forward contract returns to keep the number 

of nuisance parameters in estimation small.  This payoff turns out to provide 

greater discrimination between the unconditional linear, conditional linear and 

nonlinear models. 

 The holding period for the various payoff returns is one week except for 

the forward contract returns and the U.S. T-bill return where it is one month. 

 However, the four week T-bill and forward contract returns are sampled weekly. 

 As in Hansen and Hodrick (1983), this leads to serial correlation in the 

errors.  We adjust for this serial correlation by estimating our GMM weighting 

matrix using the procedure suggested by Newey and West (1987). 

  (23) 
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 In estimation, we consider two basis variables: the known one period 

Eurodollar interest rate and the value weighted world index RW(t,t+1).  The 

monthly value weighted index has been used in previous research on the one 

factor model (the CAPM) by Harvey (1991) and others.  The use of the interest 

rate and the world index allows us to nest the one factor unconditional linear 

model as a special case of the nonlinear model in our estimations. 

 Given these basis variables, we approximate the unknown nonlinear pricing 

kernel as discussed previously using a multivariable polynomial series 

expansion.24  To reduce the number of parameters to be estimated and to obtain a 

parsimonious representation, we use a fifth order polynomial expansion with a 

number of terms in the series expansion suppressed.  This strategy to reduce 

the number of parameters is also followed in Gallant, Rossi and Tauchen (1992). 

 We use the second and fifth orders of the world index return as the even and 

odd exponents seem to capture different kinds of function behavior and suppress 

the third and fourth orders of the market in the expansion.25  Thus, for the one 

factor nonlinear model, we use the series expansion:26 

 This particular formulation uses a linear combination of the factors as 

the leading term in the expansion.  This linear leading term nests the linear 

pricing kernel (as implied by the restrictions of the unconditional linear 

factor pricing models) in the nonlinear pricing kernel.  For the one factor 

(market) model considered above, the leading linear term is the CAPM pricing 

kernel.  It should also be observed that the above formulation does not impose 

 .
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nonnegativity on the pricing kernel.  The imposition of the nonnegativity 

restriction (as is done in Hansen and Jagannathan (1991) and Bansal and 

Viswanathan (1992)) is needed only if the unrestricted pricing kernel achieves 

any negative values, which is never the case in our estimation. 

 We also test whether an additional second factor is required in the 

unconditional linear model and the nonlinear model.27 28  The second factor that 

we consider is the equally weighted foreign currency return, (1/3)* ΣUK.WG.JP 

[ek(t+1)/ek(t)], where ek(t) is the exchange rate for country k today.  The 

equally weighted foreign currency return is the equally weighted average of the 

weekly price relative for the three foreign currencies, the Japanese yen, the 

German mark and the British pound.  This factor is chosen for the additional 

factor test because Dumas and Solnik (1992) present empirical work indicating 

that exchange rate factors have explanatory power in equity pricing (see also 

Bekaert and Hodrick (1992)). 

 We consider five instrument sets in our estimation.  These are labelled 

A, B, C, D, and E.  Each set contains 5 instruments. The exact instrument sets 

used are listed in Appendix A.  Each set of instruments is used with either 6 

payoffs (payoff sets 2 and 3) or 4 payoffs (payoff set 1).  This yields either 

30 or 20 orthogonality conditions.  To control for the number of parameters 

relative to the data size, we use the heuristic of saturation ratios (see 

Gallant and Tauchen (1989)).  The saturation ratio is total number of 

observations (the number of orthogonality conditions times the length of the 

data) divided by the number of parameters to be estimated (which include the 

GMM weighting matrix parameters).  The lowest saturation ratio is 52, which is 

obtained with payoff set 2 or 3 when estimating the conditional linear model.  
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This is about three times the saturation ratios obtained in Gallant and Tauchen 

(1989).  This heuristic of saturation ratios suggests that the number of 

parameters estimated is small relative to the number of observations. 

 Our choice of instruments is based on the following reasoning.  Since 

lagged excess returns have been used in domestic studies, we use the difference 

between the world index return and the implied Japanese four week interest rate 

in all five instrument sets.29  To allow for nonlinear prediction we use the 

square of the difference between the US index return and the one week 

Eurodollar rate (instrument sets A,E) and the square of the difference between 

the world index return and the one week Eurodollar rate (instrument sets B,C). 

 We also use the difference between the one week Japanese and US interest rates 

(instrument set A,C) and the US interest rate (instrument set B,E).  Finally, 

in all the instrument sets, we use the lagged equally weighted one period 

exchange rate growth. 

 The instruments chosen strongly predict the payoffs we are interested in 

pricing.  Table III contains results for projections of each payoff on the 

instruments.30  The Wald test for the joint hypothesis that all the coefficients 

of the projection on the instruments are zero is strongly rejected.  These 

rejections are especially striking for the world index, the typical p-values 

being less than 2%.  Similar results hold for all the other payoffs. These 

results suggest that these chosen instruments allow a powerful test of the 

theory.  While there is no unique way to decide on conditioning information, we 

feel that the results of the projections for the chosen instruments justify our 

conclusion that the instrument sets contain meaningful conditioning 

information.  Hence, when estimating the conditional linear model, we use these 
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instruments also as conditioning information to allow for time variation in the 

conditional weights. 

  For the parametrizations that we consider (1 factor, 5 instruments), the 

conditional linear model has double the parameters of the nonlinear model (10 

for conditional linear, 5 for nonlinear).  This suggests that the nonlinear 

model leads to a more parsimonious specification.  Note that any nonparametric 

estimation of the conditional weights will typically lead to even more 

parameters than the nonlinear model. 

 

 V.   RESULTS 

 Table IV shows the results for payoff set 1 that includes only the four 

country indexes.  None of three models (linear, conditional linear and 

nonlinear model) with one factor (the market returns) is rejected at the 5% 

level for either instrument set A or B.  Consistent with previous research 

based on equity returns (Harvey (1991)), both the conditional and the 

unconditional linear model perform fairly well.31  Finally, the nested model 

test for the nonlinear model versus the unconditional linear model does not 

reject the unconditional linear model. 

 Table V shows the HJ distance and the associated Wald tests using US and 

Japan index returns.  Consistent with the χ2 tests based on the GMM criterion 

function, the hypothesis that these pricing proxies belong to the class of 

valid pricing kernels is not rejected by the HJ Wald test.  More importantly, 

the equity indices do not seem to be able to discriminate between the three 

models.32 

 Table VI shows the results for payoff set 2.   The introduction of 
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interest rate payoffs results in rejections of the unconditional linear model 

for two instrument sets and a p-value marginally greater than 5% in the third 

instrument set.  The conditional linear model and the nonlinear model have p-

values for the GMM criterion function test that are in the 10% to 20% region.  

However, the p-values for the nonlinear model are much higher than that for the 

conditional linear model. 

 Not surprisingly, the test for a single factor in the unconditional model 

leads to a strong rejection (p-value of around 2%), indicating that a second 

factor is required.  In the nonlinear model, a second factor is not required; 

the lowest p-value in the additional factor test is 70%.  Finally, the nested 

linear model test rejects the unconditional linear model in favor of the 

nonlinear model. 

 For payoff set 2, the HJ distances and associated Wald tests are shown in 

Table VII.  Generally, the nonlinear model has the lowest HJ distance measure 

for both the US index and the Japanese index across all three instrument set 

(Sets A, B and C).33  This difference in the HJ distances between the nonlinear 

model and the conditional linear model is especially large.  In addition, the 

p-values for the HJ Wald tests are always highest for the nonlinear model.  

While the nonlinear model is never rejected (the lowest p-values are around 

20%), the unconditional linear model is rejected in three cases and the 

conditional linear model in two cases.  Thus the GMM criterion function based χ2 

test and the HJ Wald tests indicate that the nonlinear model is preferred to 

the two linear models. 

 Lastly, we turn to payoff set 3, which contains the equally weighted 

forward contract return and the interest rates along with the indices.  The 
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evidence in Table VIII shows rejections or marginal rejections for the 

unconditional linear model and marginal rejections for the conditional linear 

and nonlinear models.  This indicates that the asset pricing models have the 

greatest difficulty in explaining forward contract returns.  Again, in the 

unconditional linear model, a second factor is indicated in the additional 

factor test (p-values for four instrument sets are less that 4%).  In contrast, 

in the nonlinear model, the second factor is not required as the lowest p-value 

obtained in the additional factor test is 23%.  Finally, the nested model test 

always rejects the unconditional linear model in favor of the nonlinear model. 

 The HJ distances and associated Wald tests for payoff set 3 are shown in 

Tables IX and X.  With the US index return (Table IX), the nonlinear model has 

a much lower HJ distance measure than the conditional linear model.  Also, the 

HJ Wald test yields p-values for the nonlinear model which are much higher than 

that for the linear models: the lowest p-value is 63%.  The HJ Wald test 

actually rejects the unconditional linear model for two instruments and the 

conditional linear model for one instrument.  Thus the HJ distance measure and 

the associated Wald tests favor the nonlinear model. 

 The results for the forward contract returns in Table X are also strongly 

supportive of the nonlinear model.  The nonlinear model always has a much lower 

HJ distance measure than the conditional linear model.  For two instrument 

sets, the unconditional linear model has a marginally lower HJ distance measure 

than the nonlinear model.  In addition, the HJ Wald test of the hypothesis that 

the pricing kernel belongs to class of valid pricing kernels virtually never 

rejects the nonlinear model.  In contrast, the HJ Wald tests yield very strong 

rejections of the two linear models (p-values are 0.000).34  These results are 
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very strongly supportive of the nonlinear model as against the unconditional 

linear model and the conditional linear model. 

 Intuitively, the success of the nonlinear model can be explained by 

rewriting equation (1) in the unconditional form: 

 

First, note that E[πi(t,t+1)] and E[xi(t,t+1)] are estimated at their sample 

means and are the same across the three models.  Second, all three of the 

pricing kernels have an unconditional mean equal to the average price of the 

one period bond.  Hence the difference in pricing errors across the three 

models is due to their ability to capture the covariances (risk premia) between 

the pricing kernel and the payoffs.  From equation (22), we see that 

differences in the HJ distance measure are due to differences in the average 

pricing errors as the weighting matrix is held constant across the models.  It 

immediately follows that the relative success of the nonlinear model can be 

attributed to its ability in capturing the risk premia on the different 

payoffs. 

 In our estimation, the estimated pricing kernel has a mean that is very 

close to 1 (it is 0.997 or 0.998 generally).  From theory, the mean of the 

pricing kernel is the price of the unit riskless payoff the next period.  

Since, the average Eurodollar deposit (gross) return over the week is around 

1.001733, the estimated mean of the pricing kernel is consistent with theory.  

While all three pricing kernels have similar means, their standard deviation 

differs.  The nonlinear pricing kernel tends to have the lowest standard 

 [ ] [ ] [ ] N,1,..., = i for  , 1))+t(t,x(  E =) 1)+t(t,x  ,m Cov( +   1)+t(t,x  E   m  E iitit π  (25) 
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deviation while the conditional linear pricing kernel has a much higher 

standard deviation.  The lower standard deviation of the nonlinear pricing 

kernel is most striking in the third payoff set which includes both bond and 

forward contract returns.   

 Our results indicate that the challenge in international asset pricing is 

in explaining forward contract and bond returns and not stock index returns.  

Stock index returns are explained by all the models that we consider and cannot 

discriminate between the three models.  In contrast, the introduction of 

forward contracts leads to greater rejection of the models we consider and 

greater discriminatory power between the linear and nonlinear models in the 

cross model tests. 

 All the above results were obtained without imposing the nonnegativity 

restriction on the pricing kernel.  In a related context, Bansal and 

Viswanathan (1992) show how to impose this restriction in nonparametric 

estimation.35  However, none of the estimated pricing kernels ever generate a 

negative value.  Hence, the estimated pricing kernels always satisfy the 

nonnegativity restriction. 

 

 6.   CONCLUSIONS 

 In this paper, we present an approach to arbitrage pricing that implies 

the existence of a low-dimensional, nonnegative, nonlinear pricing kernel.  

This pricing kernel prices all payoffs, including payoffs that are nonlinear in 

the factors and thus do not satisfy the usual linearity restrictions in linear 

arbitrage pricing.  Allowing for nonlinear payoff structures is important as it 

makes possible the application of arbitrage pricing theory to payoffs of 
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derivative securities and fixed income securities. Moreover, there is no a 

priori reason to believe that primitive payoffs have linear factor 

representations. 

 The key object of interest in our approach is the low-dimensional, 

nonnegative, nonlinear pricing kernel.  We present a nonparametric estimation 

method to estimate this pricing kernel and test the theory.  The approach is 

implemented on weekly international data from January 1975 to December 1990.  

In addition to estimating and testing the unconditional linear factor and the 

nonlinear arbitrage pricing theory, we also present a new approach to 

estimating the conditional linear factor pricing model. The three models are 

then evaluated using the distance measure suggested in Hansen and Jagannathan 

(1992). 

 Our empirical results suggest that payoffs that include only equity index 

returns do not discriminate between the unconditional linear, conditional 

linear and nonlinear one factor models.  None of the models are rejected in the 

GMM metric, and the HJ distance slightly prefers the nonlinear model to the 

linear models. 

 The addition of bond returns and especially forward contract returns to 

the payoff set sharply increases the power to discriminate among the three 

models in favor of the nonlinear model.  In the GMM metric, the unconditional 

linear model is strongly rejected while the conditional linear model and the 

nonlinear model have greater success.  In the HJ distance metric, the nonlinear 

model is strongly supported while the conditional and unconditional linear 

model are strongly rejected.  The lowest HJ distances typically occur with the 

nonlinear model.  The HJ distance test results clearly show that the one factor 
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(world index) unconditional linear and the conditional linear models have the 

greatest difficulty in pricing the forward contract.  Only the nonlinear single 

factor model does an adequate job of pricing all these payoffs simultaneously. 

These results indicate that explaining forward contract and bond returns is the 

key challenge for an international asset pricing model; all the single factor 

models considered here seem to do a reasonable job of explaining country index 

returns.  

 Finally, our results in this paper are strongly supportive of the 

approach to asset pricing that we present, emphasizing the restrictions of no 

arbitrage and low dimensionality.  This approach yields a low-dimensional, 

nonnegative, nonlinear pricing kernel on which theory places restrictions.  Our 

results using international data and those in Bansal and Viswanathan (1992) 

using U.S. data strongly support the nonlinear arbitrage pricing model and 

suggest that this approach is a promising one. 
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 APPENDIX A 

 INSTRUMENT SETS 

 

 The table lists the instrument sets that we use in our estimations.  

RUS(t,t+1) is the one week US index return and RW(t,t+1) is the one week world 

index return.  yUS(t,t+1) is the one week Eurodollar return while yUS(t,t+4) is 

the four week US Treasury bill return.  yJP(t,t+4) is a variable defined below 

as: 

where FJP(t,t+4) is the forward price today for yen four weeks ahead and eJP(t) 

is the spot exchange rate today.  Finally, eUK(t) and eWG(t) are the spot 

exchange rates for the United Kingdom and West Germany. 

 

 

SET A                          SET B 

 

CONSTANT                        CONSTANT 

1+10*[RW(t-1,t)-yJP(t-1,t+3)]      1+10*[RW(t-1,t)-yJP(t-1,t+3)] 

1+(10*[RUS(t-1,t)-yUS(t-1,t+3)])
2  1+(10*[RUS(t-1,t)-yUS(t-1,t+3)])

2 

1+[yJP(t-1,t+3)-yUS(t-1,t+3)]  1+[100*yUS(t-1,t+3)] 

(1/3)*ΣUK,WG,JP[ek(t)/ek(t-1)]   (1/3)*ΣUK,WG,JP[ek(t)/ek(t-1)] 

 

 

 ,4)+t(t,y
4)+t(t,F

(t)e=4)+t(t,y US
JP

JP
JP  (26) 
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SET C                           SET D 

 

CONSTANT                        CONSTANT 

1+10*[RW(t-1,t)-yJP(t-1,t+3)]      1+10*[RW(t-1,t)-yJP(t-1,t+3)] 

1+(10*[RW(t-1,t)-yUS(t-1,t+3)])
2  1+RW(t-1,t) 

1+[yJP(t-1,t+3)-yUS(t-1,t+3)]  1+yUS(t-1,t) 

(1/3)*ΣUK,WG,JP[ek(t)/ek(t-1)]   (1/3)*ΣUK,WG,JP[ek(t)/ek(t-1)] 

 

 

SET E 

 

CONSTANT 

1+10*[RW(t-1,t)-yJP(t-1,t+3)] 

1+(10*[RUS(t-1,t+3)-yUS(t-1,t+3)])
2 

1+[100*yUS(t-1,t+3)] 

(1/3)*ΣUK,WG,JP[ek(t)/ek(t-1)] 
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 TABLES IA and IB 
 DESCRIPTIVE STATISTICS 
 PAYOFFS: MEANS AND STANDARD DEVIATIONS 
 
  This table shows descriptive statistics for the international payoffs used in 
this paper.  All payoffs except the Treasury-bill return and the equally 
weighted forward contract return are one period payoffs.  The Treasury-bill 
return and the equally weighted forward contract return are four period 
payoffs.  To allow proper comparison across payoffs, we divide each observation 
of the four period payoffs by four to calculate the descriptive statistics.  In 
the table, EDR is the one week Eurodollar return and EWFC is the equally 
weighted portfolio of the forward contract return for Japan, the UK and West 
Germany. 
 

 MEAN STANDARD 
DEVIATION 

MAXIMUM MINIMUM 

EDR 1.001733 0.000641 1.004231 1.000781 

World Index 1.002243 0.018213 1.079840 0.864791 

US Index 1.001915 0.021749 1.081693 0.848607 

German Index 1.002301 0.025881 1.085662 0.865623 

UK Index 1.003331 0.031736 1.249334 0.837574 

Japanese Index 1.003647 0.027071 1.110665 0.885633 

Treasury Bill 1.001606 0.000566 1.003533 1.000612 

EWFC 1.001921 0.006777 1.028097 0.982910 

 
 
 TABLE IB 
 PAYOFFS: CROSS CORRELATIONS 
 

 ECR World US WG UK Japan TBill EWFC 

EDR 1.000 -0.0664 -0.0398 -0.0628 -0.0521 -0.0524  0.9527 -0.1430 

World   1.000  0.8413  0.5182  0.5752  0.6831 -0.0851  0.1491 

US    1.000  0.3087  0.3691  0.2875 -0.0503 -0.0386 

WG     1.000  0.3485  0.3803 -0.0688  0.2349 

UK      1.000  0.2996 -0.0762  0.1550 

Japan       1.000 -0.0698  0.2655 

TBill        1.000 -0.1343 

EWFC         1.000 
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 TABLE II 
 AUTOCORRELATION PATTERNS 
 
   The first panel of this table shows the autocorrelations up to order 8 for the 
Eurodollar returns (EDR), world index return, the four country indexes and the equally 
weighted forward contract portfolio (EWFC) and the Treasury-bill returns.   
  The second panel of this table shows the autocorrelations in the squared residuals from 
a vector autoregression of the payoffs (up to lag length 8).  These autocorrelations are 
also shown up to lag length 8. 
 

 EDR World 
Index 

US 
Index 

German 
Index 

UK 
Index 

Japanese 
Index 

EWFC T-Bill 

AUTOCORRELATION 
OF RAW DATA 

        

Lag 1 0.958  0.092  0.005  0.125  0.073  0.085   0.798  0.980 

    2 0.954  0.038 -0.019  0.083  0.090  0.065   0.579  0.965 

    3 0.940  0.054  0.052  0.003  0.014  0.033   0.337  0.950 

    4 0.921 -0.014 -0.044  0.009  0.038  0.011   0.090  0.935 

    5 0.911  0.008 -0.014 -0.016  0.007  0.025   0.038  0.917 

    6 0.899  0.018  0.021 -0.041 -0.036  0.01   0.005  0.900 

    7 0.881  0.050  0.061  0.002  0.012 -0.001   0.003  0.883 

    8 0.873 -0.028 -0.025 -0.022 -0.034 -0.031   0.020  0.865 

AUTOCORRELATION  
OF SQUARED  
VAR RESIDUALS 

         

Lag 1 0.161  0.298  0.321  0.249  0.318  0.231   0.565  0.242 

    2 0.098  0.097  0.094  0.276  0.045  0.215  0.217  0.091 

    3 0.143  0.075 -0.006  0.188  0.020  0.232  0.032  0.116 

    4 0.122  0.044 -0.015  0.136  0.068  0.213  -0.005  0.100 

    5 0.054  0.046  0.015  0.116  0.058  0.155  -0.019  0.180 

    6 0.091  0.062  0.036  0.128  0.082  0.143  -0.004  0.037 

    7 0.084  0.041  0.056  0.087 -0.008  0.105   0.032  0.078 

    8 0.063  0.010 -0.004  0.069  0.028  0.081   0.014  0.117 
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 TABLE III 
 PROJECTION OF PAYOFFS ON INSTRUMENTS 
 
  This table reports the results for the projection of the payoffs, i.e., the 
world index return, the four country indexes and the equally weighted forward 
contract portfolio (EWFC), on the instruments.  For each of the five instrument 
sets (Sets A, B, C, D and E), we first estimate the projection 

    υνθ tt0i  + Z  +  = ) s + t  t,( x ′ 1 

where xi(t,t+1) is a payoff, Zt is a set of instruments, θo is a constant term 
and v is a four dimensional coefficient vector (there are four variables in 
each instrument set).  For the four period payoffs, the projection accounts for 
the MA structure.  For each payoff and each instrument set, we report χ2 value 
for the Wald test for the equality of vector v to zero. 
 

 World 
Index 

US Index German 
Index 

UK Index Japanese 
Index 

EWFC 

INSTRUMENT SET A       

Wald test χ2(4)  11.99   10.45  21.96   7.29    12.89   19.33  

P-value   0.017   0.033   0.00   0.12     0.012   0.00  

INSTRUMENT SET B       

Wald test χ2(4)   9.78    9.21  10.12   4.13    12.88   16.43  

P-value   0.044   0.056   0.038  0.38     0.012   0.002 

INSTRUMENT SET C       

Wald test χ2(4)  11.13    9.79  12.39   5.78    15.90   24.26  

P-value   0.025   0.044   0.015  0.22     0.003   0.00  

INSTRUMENT SET D       

Wald test χ2(4) 126.56  105.50 147.77  186.20   53.69   497.17  

P-value   0.00    0.00   0.00    0.00    0.00    0.00  

INSTRUMENT SET E       

Wald test χ2(4)  11.89   10.25  21.60    6.64   10.59   12.62  

P-value   0.018   0.036   0.00    0.15    0.032   0.013 
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 TABLE IV 
 PAYOFF SET 1 
 
  This table lists results for payoff set 1, which includes the 4 country index 
returns.  With 5 instruments, this yields 20 orthogonality conditions.  For 
each instrument set, we report; first, the GMM criterion function value (GMM F 
value) for each of the three pricing kernels with the world index return as the 
only factor.  Also reported with this χ2 value are the degrees of freedom for 
the model under consideration and the associated p-value.  Second, we present 
the mean and standard deviation of each of the three pricing kernels.  Lastly, 
we report the results of the nested model test for the unconditional linear 
model against the nonlinear model (the nested test). 
 

 LINEAR MODEL COND LINEAR MODEL NONLINEAR MODEL 

INSTRUMENT SET A    

GMM F value χ2, dof, p-value 26.37, 17, 0.067 16.31, 10, 0.091 24.56, 15, 0.056 

Pricing kernel Mean, SD  0.999, 0.061  1.001, 0.111  0.998, 0.148 

Nested test χ2, dof, p-value    1.300, 2, 0.522 

INSTRUMENT SET B    

GMM F value χ2, dof, p-value 25.66, 17, 0.080 17.84, 10, 0.057 24.31, 15, 0.060 

Pricing kernel Mean, SD  0.997, 0.038  1.002, 0.162  0.995, 0.067 

Nested test χ2, dof, p-value    1.962, 2, 0.374 
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 TABLE V 
 HANSEN-JAGANNATHAN DIAGNOSTICS FOR PAYOFF SET 1 
 
  This table represents the Hansen Jagannathan distance measure tests for 
payoff set 1.  For each of the two instrument sets (Set A and Set B), the HJ 
distance is estimated using the orthogonality condition: 
 

  0 = ] Z - Z ) 1 + t  t,( x ) ) Z  ) 1 + t  t,( x (  + m ( [ E  tl tliti1 +t ⊗′ζ 2 

 
where Zlt is the time t price of the "payoff" xi(t,t+1)Zlt. xi(t,t+1) is either 
the return on the US index or the Japanese index and Zt is the 5 dimensional 
vector of instruments used in estimation.  The estimated HJ distance and its 
associated standard deviation are first reported.  For each of the two payoffs, 
a Wald test for equality of all the coefficients, ζ, to zero is reported next. 
 

     LINEAR  CONDITIONAL LINEAR     NONLINEAR 

INSTRUMENT SET A 

 

(US Index) 

 

H-J Dist(x 104), SD(x 104) 

 

Wald χ2 (5), p-value 

 

 

 

 

0.551, 3.332 

 

2.59, 0.762   

 

 

 

 

6.742, 45.197 

 

3.47, 0.627   

 

 

 

 

0.659, 2.091  

 

0.842, 0.974 

(Japanese Index) 

 

H-J Dist(x 104), SD(x 104) 

 

Wald χ2 (5), p-value 

 

 

0.525, 2.311 

 

4.986, 0.417 

 

 

6.833, 45.363 

 

4.035, 0.544 

 

 

0.564, 3.3622 

 

0.232, 0.998  

INSTRUMENT SET B 

 

(US Index) 

 

H-J Dist(x 104), SD(x 104) 

 

Wald χ2 (5), p-value 

 

 

 

 

0.551, 3.328 

 

2.59, 0.762   

 

 

 

 

7.598, 47.386 

 

3.404, 0.637 

 

 

 

 

0.632, 1.127 

 

0.920, 0.968 

(Japanese Index) 

 

H-J Dist(x 104), SD(x 104) 

 

Wald χ2 (5), p-value 

 

 

0.525, 2.311 

 

4.986, 0.418 

 

 

8.675, 61.469 

 

4.216, 0.519 

 

 

0.313, 0.590 

 

0.244, 0.998 
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 TABLE VI 
 PAYOFF SET 2 
 
  This table lists results for payoff set 2, which includes the 4 country index 
returns, the one week Eurodollar return and the four week US T-bill returns.  
With 5 instruments, this yields 30 orthogonality conditions.  For each 
instrument set, we report; first, the GMM criterion function value (estimated 
using a Newey-West MA (6) lag weighting matrix) for each of the three pricing 
kernels with the world index return as the only factor (GMM F value).  Also 
reported with this χ2 value are the degrees of freedom for the model under 
consideration (dof) and the associated p-value.  Second, the mean and standard 
deviation of each of the three pricing kernels.  Third, for the unconditional 
linear model and the nonlinear model, we report the χ2 value for the additional 
factor test (the Up test).  The additional factor considered is the equally 
weighted average of the three foreign country one period exchange rate growths. 
 Lastly, we report the results of the nested model test for the unconditional 
linear model against the nonlinear model (the nested test). 
 

 LINEAR MODEL COND LINEAR MODEL NONLINEAR MODEL 

INSTRUMENT SET A    

GMM F value χ2, dof, p-value 41.78, 27, 0.034 27.84, 20, 0.113 32.51, 25, 0.144 

Pricing kernel Mean, SD 0.997, 0.043 0.998, 0.078 0.997, 0.046 

Up test χ2, dof, p-value 4.874, 1, 0.027  1.42, 3, 0.701 

Nested test χ2, dof, p-value   8.54, 2, 0.013 

INSTRUMENT SET B    

GMM F value χ2, dof, p-value 38.53, 27, 0.069 28.73, 20, 0.093 31.30, 25, 0.179 

Pricing kernel Mean, SD 0.997, 0.042 0.996, 0.061 0.997, 0.041 

Up test χ2, dof, p-value 6.07, 1, 0.013  0.732, 3, 0.865 

Nested test χ2, dof, p-value   11.39, 2, 0.003 

INSTRUMENT SET C    

GMM F value χ2, dof, p-value 41.12, 27, 0.040 25.49, 20, 0.183 32.93, 25, 0.137 

Pricing kernel Mean, SD 0.997, 0.041 0.996, 0.072 0.997, 0.043 

Up test χ2, dof, p-value 5.626, 1, 0.017  0.760, 3, 0.859 

Nested test χ2, dof, p-value   7.509, 2, 0.023 
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 TABLE VII 
 HANSEN-JAGANNATHAN DIAGNOSTICS FOR PAYOFF SET 2 
  
  This table presents the Hansen Jagannathan distance measure tests for payoff 
set 2.  For each of the three instrument sets (Sets A, B and C), the HJ 
distance is estimated using the orthogonality condition: 

  0 = ] Z - Z ) 1 + t  t,( x ) ) Z  ) 1 + t  t,( x (  + m ( [ E  tl tliti1 +t ⊗′ζ 3 

where Zlt is the time t price of the "payoff" xi(t,t+1)Zlt.  xi(t,t+1) is either 
the return on the US index or the Japanese index and Zt is the 5 dimensional 
vector of instruments used in estimation.  The estimated HJ distance and its 
associated standard deviation are first reported.  For each of the two payoffs, 
a Wald test for equality of all the coefficients, ζ, to zero is reported next. 
 
 

     LINEAR  CONDITIONAL LINEAR     NONLINEAR 

INSTRUMENT SET A 

 

(US Index) 

 

H-J Dist(x 104), SD(x 104) 

 

Wald χ2 (5), p-value 

 

 

 

 

0.255, 0.938 

 

13.008, 0.023 

 

 

 

 

0.874, 7.213 

 

10.415, 0.063 

 

 

 

 

0.1214, 0.263 

 

2.686, 0.748 

(Japanese Index) 

 

H-J Dist(x 104), SD(x 104) 

 

Wald χ2 (5), p-value 

 

 

0.251, 1.453 

 

8.294, 0.141 

 

 

1.153, 12.114 

 

9.348, 0.095 

 

 

0.0608, 0.462 

 

0.7213, 0.982 

INSTRUMENT SET B 

 

(US Index) 

 

H-J Dist(x 104), SD(x 104) 

 

Wald χ2 (5), p-value 

 

 

 

 

0.147, 0.392 

 

13.531, 0.019 

 

 

 

 

1.294, 10.149 

 

8.055, 0.153 

 

 

 

 

0.161, 0.297 

 

2.644, 0.754 

(Japanese Index) 

 

H-J Dist(x 104), SD(x 104) 

 

Wald χ2 (5), p-value 

 

 

0.075, 0.879 

 

2.817, 0.728 

 

 

1.545, 15.318 

 

6.619, 0.251 

 

 

0.038, 0.084 

 

0.734, 0.981 

INSTRUMENT SET C 

 

(US Index) 

 

H-J Dist(x 104), SD(x 104) 

 

Wald χ2 (5), p-value 

 

 

 

 

0.177, 0.367 

 

12.109, 0.033 

 

 

 

 

0.364, 0.667 

 

10.798, 0.055 

 

 

 

 

0.130, 0.249 

 

7.255, 0.202 
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(Japanese Index) 

 

H-J Dist(x 104, SD(x 104 

 

Wald χ2 (5), p-value 

 

 

0.157, 0.797 

 

6.816, 0.234 

 

 

0.436, 2.015 

 

11.549, 0.042 

 

 

0.032, 0.162 

 

2.219, 0.818 
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 TABLE VIII 
 PAYOFF SET 3 
 
  This table lists results for payoff set 3, which includes the 3 country index 
returns (US, UK and West Germany), the one week Eurodollar return, the four 
week US T-bill returns and the equally weighted forward contract return.  With 
5 instruments, this yields 30 orthogonality conditions.  For each instrument 
set, we report.  First, the GMM criterion function value (estimated using a 
Newey-West MA(6) lag weighting matrix) for each of the three pricing kernels 
with the world index return as the only factor (GMM F value).  Also reported 
with this χ2 value are the degrees of freedom for the model under consideration 
(dof) and the associated p-value.  Second, we present the mean and standard 
deviation of each of the three pricing kernels.  Third, for the unconditional 
linear model and the nonlinear model, we report the χ2 value for the additional 
factor test (Up test).  The additional factor considered is the equally 
weighted average of the three foreign country one period exchange rate growths. 
 Last, we report the results of the nested model test for the unconditional 
linear model against the nonlinear model. 
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 Table VIII (cont.) 

 

 LINEAR MODEL COND LINEAR MODEL NONLINEAR MODEL 

INSTRUMENT SET A    

GMM F value χ2, dof, p-value 45.34, 27, 0.014 30.75, 20, 0.058 38.90, 25, 0.037 

Pricing kernel Mean, SD 0.998, 0.0320 0.996, 0.0461 0.997, 0.0288 

Up test χ2, dof, p-value 5.066, 1, 0.024  1.992, 3, 0.574 

Nested test χ2, dof, p-value   13.297, 2, 0.001 

INSTRUMENT SET B    

GMM F value χ2, dof, p-value 39.25, 27, 0.060 29.96, 20, 0.071 35.47, 25, 0.080 

Pricing kernel Mean, SD 0.998, 0.0253 0.996, 0.0367 0.997, 0.0211 

Up test χ2, dof, p-value 4.962, 1, 0.025  2.877, 3, 0.410   

Nested test χ2, dof, p-value   18.734, 2, 0.000 

INSTRUMENT SET C    

GMM F value χ2, dof, p-value 43.77, 27, 0.021 34.17, 20, 0.025 37.86, 25, 0.047 

Pricing kernel Mean, SD 0.997, 0.0284 0.997, 0.0343 0.997, 0.0238 

Up test χ2, dof, p-value 6.120, 1, 0.013  1.801, 3, 0.614 

Nested test χ2, dof, p-value   23.885, 2, 0.000 

INSTRUMENT SET D    

GMM F value χ2, dof, p-value 39.75, 27, 0.054 31.71, 20, 0.046 37.68, 25, 0.049 

Pricing kernel Mean, SD 0.997, 0.0239 0.996, 0.0701 0.996, 0.0394 

Up test χ2, dof, p-value 0.122, 1, 0.726  2.309, 3, 0.511 

Nested test χ2, dof, p-value   17.997, 2, 0.000 

INSTRUMENT SET E    

GMM F value χ2, dof, p-value 41.63, 27, 0.036 30.71, 20, 0.059 37.01, 25, 0.058 

Pricing kernel Mean, SD 0.998, 0.0284 0.996, 0.0329 0.997, 0.0257 

Up test χ2, dof, p-value 4.147, 1, 0.0417  4.259, 3, 0.234 

Nested test χ2, dof, p-value   13.027, 2, 0.002 
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 TABLE IX 
 HANSEN-JAGANNATHAN DIAGNOSTICS FOR PAYOFF SET 3 
 US INDEX 
 
  This table presents the Hansen Jagannathan distance measure tests for payoff 
set 3, where the HJ distance is estimated using the US index return as the 
payoff.  For each of the five instrument sets (Sets A, B, C, D and E), the HJ 
distance is estimated using the orthogonality condition: 
 

   0 = ] Z - Z ) 1 + t  t,(R )  ) Z    ) 1 + t  t,( R (  + m ( [ E  tl tlS UtS U1 +t ⊗′ζ 4 

 
where Zlt is the time t price of the "payoff" RUS(t,t+1)Zlt.  RUS(t,t+1) is the US 
index return and Zt is the five dimensional vector of instruments.  The 
estimated HJ distance and its associated standard deviation are first reported. 
 A Wald test for equality of all the coefficients, ζ, to zero is reported next. 
 

       LINEAR CONDITIONAL LINEAR     NONLINEAR 

INSTRUMENT SET A    

H-J Dist(x 104), SD(x 104) 0.0833, 0.4081 0.9502, 3.944 0.0623, 0.1489 

Wald χ2 (5), p-value 13.196, 0.021 6.459, 0.264 1.089, 0.962 

INSTRUMENT SET B    

H-J Dist(x 104), SD(x 104)  0.0489, 0.1058  0.3212, 0.6858  0.0578, 0.2868 

Wald χ2 (5), p-value 12.607, 0.027  8.393, 0.136  2.319, 0.803 

INSTRUMENT SET C    

H-J Dist(x 104), SD(x 104)  0.0588, 0.1323  0.4964, 1.0382  0.0931, 0.4777 

Wald χ2 (5), p-value 11.705, 0.039   17.060, 0.004  3.445, 0.632 

INSTRUMENT SET D    

H-J Dist(x 104), SD(x 104)  0.0526, 0.1030  1.2508, 2.3276  0.1752, 0.3038 

Wald χ2 (5), p-value  8.306, 0.139  7.393, 0.193  2.289, 0.807 

INSTRUMENT SET E    

H-J Dist(x 104), SD(x 104)  0.6551, 0.2962  0.3028, 0.5710  0.0422, 0.1027 

Wald χ2 (5), p-value 14.414, 0.131  8.953, 0.111  1.973, 0.853 



 

 
 
 51 

 TABLE X 
 HANSEN-JAGANNATHAN DIAGNOSTICS FOR PAYOFF SET 3 
 EQUALLY WEIGHTED FORWARD CONTRACT PORTFOLIO 
 
  This table presents the Hansen Jagannathan distance measure tests for payoff 
set 3, where the HJ distance is estimated using the equally weighted forward 
contract return as the payoff.  For each of the five instrument sets (Sets A, 
B, C, D and E), the HJ distance is estimated using the orthogonality condition: 
 

   0 = ] Z - Z ) 4 + t  t,( f ) ) Z  ) 4 + t  t,( f ( + m ( [ E  tl tlt4 +t ⊗′ζ 5 

 
where Zlt is the time t price of the "payoff" f(t,t+4)Zlt.  f(t,t+4) is the 
return on the forward contract portfolio and Zt is the five dimensional vector 
of instruments used in estimation.  The estimated HJ distance and its 
associated standard deviation are first reported.  A Wald test for equality of 
all the coefficients, ζ, to zero is reported next. 
 

      LINEAR CONDITIONAL LINEAR     NONLINEAR 

INSTRUMENT SET A    

H-J Dist(x 104), SD(x 104)  0.2046, 0.9308  3.993, 6.393  0.1423, 0.8349 

Wald χ2 (5), p-value 24.709, 0.000 34.252, 0.000  1.826, 0.872 

INSTRUMENT SET B    

H-J Dist(x 104), SD(x 104)  0.1189, 0.6383  0.5824, 0.8499  0.1626, 0.4556 

Wald χ2 (5), p-value 20.804, 0.001 34.382, 0.000  8.216, 0.145 

INSTRUMENT SET C    

H-J Dist(x 104), SD(x 104)  0.1469, 0.5690  2.0904, 3.0575  0.2836, 0.8448 

Wald χ2 (5), p-value 20.233, 0.001 108.723, 0.000 14.783, 0.012 

INSTRUMENT SET D    

H-J Dist(x 104), SD(x 104)  0.4035, 0.7647  7.4205, 14.9733  0.3014, 0.5550 

Wald χ2 (5), p-value 48.408, 0.000 52.921, 0.000  3.103, 0.684 

INSTRUMENT SET E    

H-J Dist(x 104), SD(x 104)  0.1356, 0.9508  0.3820, 0.4069  0.0948, 0.5043 

Wald χ2 (5), p-value 22.414, 0.000 27.293, 0.000  5.264, 0.384 



 

 
 

 Footnotes  

1. Also, there is a large literature on linear arbitrage pricing in a domestic context.  Papers include

Brock (1982), Bossaerts and Green (1989), Chamberlain (1983), Chamberlain and Rothschild (1983), Connor 

(1984), Connor and Korajczyk (1988,1989), Dybvig (1983) and Grinblatt and Titman (1983) among others. 

2. The continuous time derivations of the linear models do not suffer from the inability to price

nonlinear payoffs as all payoffs are locally linear.  However, discrete time estimation of these models

requires integration of the continuous time pricing kernel, leading to a discrete time nonlinear pricing

kernel that depends on the specific stochastic processes used.  Longstaff (1989) is an example of this 

approach. 

3.  For example, Dybvig and Ingersoll (1982) show that even if stock returns satisfy the distributional

restrictions required for the CAPM, the use of the CAPM (the one factor model) to price options leads to

violations of the no arbitrage condition. 

4. Hansen and Jagannathan (1991) show that this linear combination of the payoffs is the minimum

variance pricing kernel and is the unique projection of any pricing kernel on the space of payoffs. 

5. Bansal and Viswanathan (1992) show (see their Theorem 1) that the introduction of a new security will

generically change the minimum variance pricing kernel. 

6.  The critical distinction between a linear and nonlinear model can be illustrated in the following 

example suggested by René Stulz.  Suppose the market proxy is a nonlinear function of the true

underlying factor because of leverage.  Any asset price correlated with leverage will help predict

returns and might be identified as a factor in a linear model.  However, if leverage is a function of

total wealth, the market proxy will be a sufficient statistic but the linear beta relation will not

hold.  In this example, a linear model will typically yield more than one factor, while a nonlinear
  



 

 
 

  

model will result in a single factor. 

7. The pricing kernel that we present is not necessarily a payoff unless markets are complete. Thus it

does not in general agree with the linear combination of payoffs identified by Hansen and Jagannathan

(1991) as a pricing kernel.  When markets are complete, there is a unique pricing kernel and the two

pricing kernels must agree. 

8. Our nonparametric approach allows for time variation in a manner different from that in Gallant,

Hansen, and Tauchen (1990). 

9. These indices were obtained from Morgan Stanley. 

10. See also Constantinides (1989). 

11. This projection is closely related to the maximally correlated portfolio in Breeden (1979). See also

Shanken (1987). 

12. The marginal rate of substitution between time t and t+1 is a random variable at time t+1 if we have

durability of goods or non time separable preferences. 

13. We have to consider returns with different period lengths as the forward contract returns are four

week returns.  In addition, we use the four week return on a U.S. Treasury bill. 

14. See Harvey (1991) for a discussion of the monthly data. 

15. Since the exchange rate is the 4:00 p.m. EST rate and the foreign index prices are those at the

close that occurred some hours ago, there is a misalignment in the data.  While this misalignment may

create problems in daily returns, we do not think it is a problem in weekly returns.  Our results are

robust to lagging our instrument sets by one extra day, i.e., using Tuesday-to-Tuesday rather than 
  



 

 
 

  

Wednesday-to-Wednesday returns.  Chan, Karolyi, and Stulz (1992) show that their statistical inference

using daily returns is robust to nonsynchroneity, by making different adjustments to their data. 

16. These numbers are comparable to the correlations reported by Harvey (1991) for monthly data. 

17.  To evaluate the effect of any potential misspecification that may occur from this omission of

dividends, we did some unconditional mean adjustments based on the monthly dividend yields.  The

adjustments made no substantive difference to our results. 

18. See Bansal and Viswanathan (1992) for a consistency proof. 

19. The minimum variance pricing kernel for one period payoffs is the projection of the one period

pricing kernel on the space of one period payoffs while the minimum variance pricing kernel for four

period payoffs is the projection of the four period pricing kernel on the space of four period payoffs. 

20. The estimation of the HJ distance using a subset of payoffs is legitimate provided these payoffs

(the subset) were part of the original payoff set used to estimate the pricing kernels being compared. 

21. As in Hansen and Jagannathan (1992), we take the pricing kernel as given when we estimate the HJ

distance and ignore any second step estimation error issues. 

22.  See Wong and Jagannathan (1993) for some recent work deriving the distribution of the Hansen-

Jagannathan distance measure under the null and for an interesting application to the size effect. 

23.  The trading strategy (for each currency k) has a price of Fk(t,t+4) and a payoff of

Fk(t,t+4)yUS(t,t+4) on the investment in the treasury bill and (ek(t+4) - Fk(t,t+4))yUS(t,t+4) on the 

forward contract purchase.  Thus, the overall payoff on the trading strategy is ek(t+4)yUS(t,t+4). 

Hodrick (1987) considers a similar trading strategy.  In the event that covered interest arbitrage holds
  



 

 
 

  

exactly, this is the uncovered return on holding an interest bearing foreign currency deposit. 

24.  Good starting values for the parameters of the polynomial expansion can be easily obtained by two

stage least squares.  Hence the polynomial expansion is numerically simpler to estimate than other

series expansions. 

25. Using the fifth order instead of the third order was partly motivated by the need to reduce

collinearity between the various powers of the expansion. 

26.For an application of nonparametric techniques to performance evaluation, see Glosten and Jagannathan

(1992). 

27. We do not test for an additional factor in the conditional linear model as the number of parameters

is very large (15 parameters) when we add a second factor. 

28. In the nonlinear model, the additional factor adds 3 parameters: a linear parameter, a second order

parameter and a fifth order parameter.  Thus we treat the first factor and the additional factor

symmetrically. 

29. The variable we use is the Japanese four week interest rate as implied by covered interest parity.

Whether or not interest rate parity holds, it is in the information set and hence is a valid instrument.

30. Since the four week T-bill and seven day Eurodollar returns are part of the instrument sets, we do

not need to project these payoffs on the instruments in Table 3.  

31.In addition, the test for an additional factor does not reject the one factor model.  This result is

not reported in the tables. 

32. It is meaningful to compare the HJ distance only when the hypothesis that the HJ distance is zero is
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rejected.  Here, the hypothesis that the HJ distance is zero cannot be rejected and we do not compare

the HJ distance across models.  

33. The HJ distance comparison is valid in the cases where the hypothesis that the HJ distance is zero

is rejected for the linear models and is not rejected for the nonlinear model.  This occurs often with

payoff set 2 and always with payoff set 3. 

34. To check the sensitivity of our results on the conditional linear model to the number of

instruments, we re-estimated the conditional linear model with a lesser number of instruments.  The GMM

criterion function tests lead to greater rejections.  The HJ distance was larger and the HJ Wald tests 

showed greater rejections.  Thus the performance of the conditional linear model only deteriorates when

we reduce the number of instruments. 

35. See also Hansen and Jagannathan (1992). 

 


