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Abstract

Efficient Method of Moments (EMM) is used to fit the standard stochastic volatility
model and various extensions to several daily financial time series. EMM matches to
the score of a model determined by data analysis called the score generator. Discrepan-
cies reveal characteristics of data that stochastic volatility models cannot approximate.
The two score generators employed here are “Semiparametric ARCH” and “Nonlinear
Nonparametric”. With the first, the standard model is rejected, although some exten-
sions are accepted. With the second, all versions are rejected. The extensions required
for an adequate fit are so elaborate that nonparametric specifications are probably
more convenient.
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1 Introduction

The stochastic volatility model has been proposed as a description of data from financial
markets by Clark (1973), Tauchen and Pitts (1983), Taylor (1986, 1994), and others. The
appeal of the model is that it provides a simple specification for speculative price movements
that accounts, in qualitative terms, for broad general features of data from financial markets
such as leptokurtosis and persistent volatility. Also, it is related to diffusion processes used
in derivatives pricing theory in finance; see Mathieu and Schotman (1994) and references
therein. The standard form as set forth, for instance, in Harvey, Ruiz, and Shephard (1994),
Jacquier, Polson, and Rossi (1994), and Danielsson (1994), takes the form of an autoregres-
sion whose innovations are scaled by an unobservable volatility process, usually distributed
as a lognormal autoregression.

Estimation of the stochastic volatility model presents intriguing challenges, and a variety
of procedures have been proposed for fitting the model. Extant methods include method
of moments (Duffie and Singleton, 1993; Andersen and Sorensen, 1996), Bayesian methods
(Jacquier, Polson, and Rossi, 1994; Geweke, 1994), simulated likelihood (Danielsson, 1994),
and Kalman filtering methods (Harvey, Ruiz, and Shephard, 1994; Kim and Shephard, 1994).
Two excellent recent surveys are Ghysels, Harvey, and Renault (1995) and Shephard (1995).

Here, we employ the Efficient Method of Moments (EMM) proposed by Bansal, Gallant,
Hussey, and Tauchen (1993, 1995) and developed in Gallant and Tauchen (1996) to esti-
mate and test the stochastic volatility model. EMM is a simulation-based moment matching
procedure with certain advantages. The moments that get matched are the scores of an
auxiliary model called the “score generator.” If the score generator approximates the distri-
bution of the data well, then estimates of the parameters of the stochastic volatility model
are as efficient as if maximum likelihood had been employed (Tauchen, 1996; Gallant and
Long, 1995). Failure to match these moments can be used as a statistical specification test
and, more importantly, can be used to indicate features of data that the stochastic volatility
model cannot a,ccorﬁmoda,te (Tauchen, 1995).

The objective is to report and interpret the EMM objective function surface across a com-

prehensive set of specifications of the stochastic volatility model. We start with the standard,



and widely used setup, with Gaussian errors and short lag lengths, and we proceed to more
complicated specifications with long lag lengths. The effort is aimed at generating a com-
prehensive accounting of how well the model and its extensions accommodate features of the
data. An advantage of the EMM procedure is that it is computationally tractable enough
to permit this exhaustive specification analysis. Our approach differs from typical practice
in the stochastic volatility literature, which is to fit the standard setup and perhaps a sin-
gle extension in one direction. Since various studies use different specifications, estimation
methods, and data sets, it is difficult to reach firm conclusions on the plausibility of the
stochastic volatility model. By using EMM, we can confront all of the various extensions,
individually and jointly, to a judiciously chosen set of moments determined by a nonparamet-
ric specification search for the score generator. Other estimation methods are incapable of
investigating the empirical plausibility of such an extended set of specifications for stochastic
volatility on the large data sets used here.

We fit the univariate stochastic volatility model to a long time series comprised of 16,127
daily observations on adjusted movements of the Standard and Poor’s Composite Price Index,
1928-87. We use such a long series because, among other things, we are interested in the
long-term persistence properties of stock volatility.

For this estimation, we use two score generators based on the specification analysis of
Gallant, Rossi, and Tauchen (1992). The first is an ARCH model with a homogeneous
innovation distribution that is given a nonparametric representation. The specific specifi-
cation is determined by a standard model selection procedure based on the BIC criterion
and specification tests. This model is similar to the most widely used models in the ARCH
family. Its score is termed the “Semiparametric ARCH Score”. The second score generator
is a fully nonparametric estimator of the distribution of a nonlinear process. It both nests
the first and relaxes its homogeneity assumption. The specific specification is determined
using the same model selection procedure as above. The corresponding score is termed the
“Nonlinear Nonparametric Score”. These two score generators, determined independently of
the stochastic volatility model, are similar to models that are commonly fit to high-frequency
financial data.

We undertake a similar exercise for a trivariate stochastic volatility model applied to



4,044 daily observations on adjusted movements of the Standard and Poor’s Composite
Price Index, adjusted movements of the /DM spot exchange rate, and the adjusted 90-day
Euro-Dollar interest rate, 1977-92.

2 The Stochastic Volatility Model

2.1 Setup and Notation

Let y; denote the first difference (either simple or logarithmic) over a short time interval, a
day for instance, of the price of a financial asset traded on active speculative markets. The
basic stochastic volatility for y; is

Ly
Yt — By = Z i (Yi—j — py) + exp(ws)ry2z;

=1
Ly

W= pw = Y ai(Wij — pu) + Tudt
i=1

where p,, {Cj}f:l, Tyy Buw {aj}f’;’l, and r, are the parameters of the two equations, called
the mean and volatility equations respectively. The processes {z;} and {Z;} are mutually
independent i:d random variables with mean zero and unit variance. Whenever they exist,
unconditional expectations are taken with respect to the joint distribution of the processes
{z:} and {Z:}. The first two moments of the z; and %; are not separately identified from the
other parameters — hence the restriction to £(z;) = £(%;) = 0 and Var(z:) = Var() = 1.
Likewise, p.,, is not separately identified; we find numerically the best normalization is simply
kv = 0. A common assumption in the literature is that both z; and Z; are independent
N(0,1) random variables and that the lag lengths are short. Typically, L, =1 and L, = 1,
or L, = 0. Below, we entertain other distributional assumptions and search over a broad
set of lag lengths. The model implies restrictions on the serial covariance properties of |y:|°,
¢ > 0, which are worked out in exhaustive detail in Ghysels, Harvey, and Renault (1995).
One interpretation of the process w;, which has its origins in Clark (1973) and is refined
in Tauchen and Piﬁts (1983), is that stochastic volatility reflects the random and uneven flow
of new information to the financial market. Over the time period ¢t —1 to ¢, a random number

of individual pieces of information impinge the market. Each piece triggers an independent



price movement drawn from a time-homogeneous parent distribution. If I; = [exp(w;)]?

individual pieces impinge on the market then, conditional on I;, the studentized innovation

[yt - #t-—l,t]/\/ft,

where
Ly

Hi-1t = fhy + Z ci(Ye-i — Hy),
j=1

would follow a parent distribution, typically Gaussian. The process I; is called the mixing

process. It is unobservable and presumable serially correlated, which motivates the stochastic

volatility specification given above.

2.2 Data Generator

The stochastic volatility model defines a strictly stationary and Markov process {s;}, where
s¢ = (y¢, w;)". The process is Markovian of order L, = max(Ly, L,,) with conditional density

ps(8¢|St-L,,---,8t-1,p) given by the stochastic volatility model, where
pP= (/":wcl, ey ch7Ty7a17 «ee3QL,, rw)l

is a vector that contains the free parameters of the stochastic volatility model.

The process {y;} is observed whereas {w;} is regarded as latent. Write py s(yi-s, ..., ¥:|p)
for the implied joint density under the model of a stretch y;_s,...,y:;. Most integrals ap-
pearing in formulas in subsequent sections fail to admit closed form solutions. In practice,
they must be approximated by quadrature or Monte Carlo integration, although likelihoods
can sometimes be computed efficiently using the Kalman filter (Kim and Shephard, 1994).
As will be seen, we need to compute expectations under the model of a variety of nonlinear
functions. Monte Carlo integration is most convenient, and is effected by averaging over
a long realization from the stochastic volatility model. For a general nonlinear function
9(Yt—J,Ytmd41,- - -, Yt ), integrals of the form

J
/ T /g(yt_J, Ytmd+1s - - 2 Y) Py (Ye=0, Ye-d1, - - -5 Yl P) kI:IO dy:—k

are approximated by

S 32)
T G\Yr—J:Yr=J+15- - Yr
N r=J+1



where {§,}_, is a long simulated realization from the stochastic volatility model given a
value p. This is accomplished by simulating {3,}/_,, which is straightforward, and retaining
the element ¢, from §, = (g, W-).

Here, computations are based on realizations of length 50,000 to 100,000, with the choice
having no substantive effect on inferences. To let transients die off, first the volatility equa-
tion (which displays substantial persistence) runs for 10,000 periods; next, both the mean
equation (which displays minor persistence) and the variance equations run together for
another 100 periods, which are discarded; then both equations continue to run together to

generate a realization of the desired length.

3 The EMM Estimator

In Sections 4 and 5 below we employ the Efficient Method of Moments (EMM) methodology
as described in Gallant and Tauchen (1996) to estimate and test the stochastic volatility
model. The title of the paper is suggestive — “Which Moments to Match?” — and the
answer is simple and intuitive: Use the score vector of an auxiliary model that fits the
data well to define a GMM criterion function. The EMM method has some computational
advantages relative to indirect inference (Gourieroux, Monfort, and Renault, 1993) as it
circumvents the need to refit the score generator to each simulated realization (compute the
binding function) and it bypasses a Hessian computation. The ideas behind EMM are as
follows.

We observe the data {f;}",, which is presumed to have been generated by the stochastic
volatility model for some value p° € R C Rf, where £, is the length of p°. The task is to
estimate p° and test the specification of the model.

Suppose that a probability model for the stochastic process {y:};2_,, defined by the

conditional density

Fyelyi—r, Y415 - - - 1 Yt-1,0) 6ecOcCRe,

fits the data {fj;}7_, reasonably well. Fits well means that when its parameters are estimated



by quasi-maximum likelihood

n
b = argmax 3> log[f(Gelge-r,- - -, Ge-1,0)]
o
t=L+1
the model does reasonably well on statistical specification tests and the fit appears sen-
sible from an economic perspective. The functional form of f(y:|z¢-1,0) need not have

any direct connection to that of the true conditional distribution of y; given z,_y =
(Yt=Lr YemLt1y -5 Y¢-1), which is

py,L(yt—ln Yt—L41s- -+ yttpo)
py,L—l(yt—-L7 Yt—L+1s---> yt*'llpo)

It should provide a good approximation, though, for the EMM estimator to be nearly fully
efficient (Tauchen, 1996; Gallant and Long, 1995).
The EMM estimator brings the information in f(y|z, 0,,) to bear on the task of estimating

and testing the stochastic volatility model as follows. Define the criterion

b L
m(p7 0) = / ’ / 55 log[f(yilyt*ln ey Y1, 9)]py,L(yt-—L, fen 7ytlp) H dyt—-ka

k=0
which is the expected score of the f(y|z,8) model under the stochastic volatility model.
Hence, f(y|z,8) is called the “score generator”. The induced parameter that 0, estimates
is that value §° for which m(p°,8) = 0 (Gallant, 1987, Chapter 7, Theorem 8). This fact

provides the motivation for the EMM estimator. One expects m(p,6,) to be near zero for

values of p close to p°.

The EMM estimator is
A : oA NT V-1 0
pn = argmin m'(p, 6)(Zn) ™ m(p, 0n)

where

0 ~ 0 R
— log f(§:|Z1-1,0:) | | 77 log f(§ie|Z1—¢, 0n)) -
t=L+1[69 t|Te—1 “60 ( t‘ t—t ]
and

~ ~ ~ ~ ’
Tie1 = (yt--La Yt L41r+ -~ yt—l) .

In computing p,, we do not need to impose restrictions that the parameter space R con-

tains only those p for which the model generates stationary data, as such restrictions are



automatically enforced on the computation (Tauchen, 1995). Also, as noted in Gallant and

Tauchen (1996), one should, strictly speaking, use a weighted covariance estimator of

1 & 0
T° = Var —\7;; t;ﬂ Ealog f(yt{yt—-L, Yt—L41y: -y yt~1’90)

rather than 7Z,, and formulas are given therein. However, it is unlikely that this generality
will be necessary in practice because the use of a weighted covariance estimator means
that one thinks that the score generator is a poor statistical approximation to the data
generating process. A poor statistical approximation is unlikely because the score generator
is, conceptually, a reduced form model, not a structural model, and is usually easy to modify
by adding a few parameters so that it fits the data well.

Under regularity conditions stated in Gallant and Tauchen (1996), which are standard
regularity conditions such that the maximum likelihood estimator of p in p(y|z, p) is consis-
tent and asymptotic normal and such that the quasi maximum likelihood estimator of § in

f(ylz,0) is asymptotic normal, we have that 4, is consistent and
Vn(pn = %) 5 N{0, (M) (Z°) 7 (M) }

where M° = M(p°,6°) and M(p,0) = (0/0p" )ym(p,8). M° can be estimated consistently by
M, = M,(pn,0,). The order condition (necessary condition) for identification is £, < £s;
sufficient conditions are discussed in Gallant and Tauchen (1996). The better the score gener-
ator approximates the conditional distribution of the data, then the closer is the asymptotic
covariance matrix to that of maximum likelihood (Tauchen, 1996; Gallant and Long, 1995).
If the score generator actually nests the true conditional distribution, then full efficiency
obtains (Gallant and Tauchen, 1996). |

M, (p,0) must be computed numerically in order to use the asymptotic distribution to
get standard errors for setting confidence intervals on the elements of p°. Alternatively, one
can avoid computation of M, by using the criterion difference statistic to set confidence
intervals (Gallant, 1987, Chapter 7, Theorem 15). The latter approach is to be preferred
in most time series applications because it will exclude values of p that imply an explosive

process from the confidence interval (Tauchen, 1995).



For specification testing, which is the focus of this paper, we have that
n (b, 02)(Za) (s 02) = ()

with df = €4 — £, under the null hypothesis that the maintained model py r(yt-L,- - -, ¥z, )
is correct.
When a model fails a diagnostic test, one would like some suggestions as to what is

wrong. Inspection of the quasi-t-ratios
Tn = 5;1\/,” m(fn, gn)

where S, = [diag(Z,)]"/? can suggest reasons for model failure. As seen in Section 4, different
elements of the score vector correspond to different features of the fit. Large quasi-t-ratios
reveal the features of the data that the maintained model cannot approximate.

The elements of Tn are biased downward in absolute value because the standard errors

Sy, are too large due to the fact that
am(pn, bn) 5 N{0,7° — (M®)[(M°) (Z°) (M) (M°) }.

The downward bias can be corrected by computing M,, numerically and putting S, =

~

(diag{Z, — (V) (MY (B)~ (M) (W,)'}) ™" im the formula for 7.

We have not corrected the bias in this paper because we believe the correction to be un-
necessary for two reasons. First, Z°— (M°)[(M°)(Z°)~*(M°)]~*(M®)" is the familiar formula
for the variance of GLS residuals and experience with GLS regressions suggests that the
difference between I° — (M°)[(M°) (Z°)~*(M°)]~'(M°)’ and I° is negligible in most applica-
tions. Secondly, we do not rely on the quasi-t-ratios for inference, we only rely on them for
suggestions as to how the stochastic volatility model might be enhanced. When we act upon
a suggestion, we check it with the x? statistic. This methodological approach is similar to
the well established F-protected ¢-test methodology as employed in the statistical Analysis

of Variance.



4 Univariate Empirical Results

4.1 Data

The data to which we fit the univariate stochastic volatility model is a long time series
comprised of 16,127 daily observations, {g; }.2’1127, on adjusted movements of the Standard
and Poor’s Composite Price Index, 1928-87. This series is the univariate stock series used
in Gallant, Rossi, and Tauchen (1992, 1993). The raw series is the Standard and Poor’s
Composite Price Index (SP), daily, 1928-87. We usé a long time series, because, among
other things, we want to investigate the long-term properties of stock market volatility.
As described in Gallant, Rossi, and Tauchen (1992), the raw series is converted to a price
movements series, 100[log(SP;) — log(SP;-1)], and then adjusted for systematic calendar
effects in location and scale. Financial data are known to exhibit calendar effects, that is,
systematic shifts in location and scale due to different trading patterns across days of the
week, holidays, and year-end tax trading. Calendar effects comprise a very small portion
of the total variation in the series, although they should still be accounted for in order not
to adversely affect subsequent analysis. The raw and adjusted data are plotted in Figure 1.

Though long time series sometimes exhibit structural regime switches, there is no such shift

apparent in the figure.

4.2 Score Generators

To implement the EMM estimator we require a score generator f(y|z,8) that fits these data
well. As documented in in Gallant, Rossi, and Tauchen (1992, 1993) the seminonparametric
(SNP) density proposed by Gallant and Tauchen (1989) does so. Moreover, when refitted to
subperiods, estimates are stable.

The SNP density is a member of a class of parameterized conditional densities

Hic = {Fx(yle,0) : 6= (61,00, -, 00,)}

which expands H; C Hy C --- as K increases. It has two desirable properties from the
perspective of EMM estimation: (1) The union H = UR., Hx is quite rich and it is rea-

sonable to assume that the true density p(y|z) of stationary data from a financial market is



contained in H. (2) If § is estimated by quasi-maximum likelihood, viz.

- 1 &
b, = 2 S loglfx(liesn. s Gors )],
arg max ”t:zz;n og[fx(FelFe-Ls- - - Ft-1,0)]

and if K grows with sample size n [either adaptively as a random variable K, or determin-

istically as a function K(n)], then

Pu(ylz) = fx(ylz,8,)

is a consistent (Gallant and Nychka, 1987) and efficient (Fenton and Gallant, 1996a; Gal-
lant and Long, 1995) nonparametric estimator of p(y|z) with desirable qualitative features
(Fenton and Gallant, 1996b).

A standard method of describing a conditional density f(y|z,#) is to set forth a location
function p, and a scale function R, that reduces the process {y:}2_., to an innovation

process {z;}32__ via the transformation

=770 (Yt — fho,_y)-

The description is completed by setting forth a conditional density h(z|z) for the innovation
process. We follow this recipe in describing fx(y|z,0) € Hg.

The location function p, is affine in z
lu’-’b‘t-l = bg + b,CEt..l.

It is presumed to depend on L, < L lags which is accomplished by putting leading elements
of b to zero as required. Note that were one to put r, to a constant and eliminate the
dependence of the innovation density on z by writing h(z) instead of A(z|z) then {y:}2_.,
would be a vector autoregression (VAR). |

The scale function r; is affine in the absolute values of z
Toeey = po + p'|7e-1]

It is presumed to depend on Ly < L lags which is accomplished by putting leading elements
of p to zero as required. Note that were one to eliminate the dependence of the innovation
density on z by writing k(z) instead of A(z|z) then {y;}32_., would be an ARCH-type process
akin to that proposed by Nelson (1991).

10



For a vector ¢ = ((i,...,() with real elements and a vector A = (Ay,..., \¢) with integer

elements, let (* denote the monomial [T¢_; ¢} of degree |A| = 54, |A:| and consider

 [Pel=a)e(2)
hac (1) = P (Do) du

formed from the polynomial
Pg(z,z) zf( i GaBT )
=0 |3]=0

where ¢(z) = (27)~Y2e~*'*/2. Pg(z,z) is a polynomial of degree K, in z whose coeffi-
cients are, in turn, polynomials of degree K, in z. The product [Px(z,z)]?¢(z) is a Hermite
polynomial in z with positivity enforced whose coefficients depend on z. The shape of the
innovation density hg(2:|z:-1) varies with z;_; which permits hg(2;|z;—1) to exhibit general,
conditional shape heterogeneity. By putting selected elements of the matrix A = [a,g] to
zero, Pk(z,z) can be made to depend on only L, < L lags from z. One may note that if K,
is put to zero, then the innovation density Ag(z|z) is Gaussian. If K, > 0 and K, = 0, then
the density can assume arbitrary shape but innovations are homogeneous.

The change of variables y; = r;,_, 2z: + pz,_, to obtain the density

_ {PK[ :ct 1(yt /‘l’zt—l)’xt"‘l]}z { .'L'g 1(yt /"xt-l)]
fr(yelzi1,0) = e T/ [ Pr(a. 2o )P () do .

completes the description of the SNP density. The vector 6 contains the coefficients A = [a,g]

of the Hermite polynomial, the coefficients [bo, b] of the location function, and the coefficients
[po, p] of the scale function. To achieve identification, the coefficient agg is set to 1. The
tuning parameters are L., L,, L,, K., and K, which determine the dimension £x (= £;) of
6.

When data is heavy tailed, as is typical for data from financial markets, numerical sta-
bility can be enhanced without affecting theoretical results by forming the vector of lags
z;-1 from a series {y;} consisting of {y;} that have been centered by subtracting the sam-
ple mean, scaled by dividing by the sample standard error, and transformed by the logistic
map that takes the interval (—co, oo) into the interval (-4, 4). That has been done both
here and in the results reported for this series by Gallant, Rossi, and Tauchen (1992, 1993).
Note that it is only the lagged dependent variables z.—; that are logistic transformed; the

contemporaneous ¥; is not.
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We selected the tuning parameters L, L,, L,, K., and K, following the protocol that
is described in detail in Bansal, Gallant, Hussey, and Tauchen (1995). Briefly, the model
1s expanded sequentially according to the BIC (Schwarz, 1978) model selection criterion.
It is then expanded further if a battery of statistical specification tests indicate that the
BIC specification is inadequate. Following this protocol, we selected the model L, = 2,
L, = 18, and K, = 4 with 26 free parameters, when innovations are constrained to be
homogenous (that is, K, = 0, and L, = 1 imposed). This is a semiparametric density with a
parametric part comprised of an AR(2)-ARCH(18) model with unconstrained lag coefficients
and a nonparametric error density, which is analogous to the model proposed by Engle and
Gonzales-Rivera (1991). We term the score from this fit the “Semiparametric ARCH Score”
in legends for figures and tables. When the homogeneity constraint is dropped, and we
follow the same protocol, we select the model L, = 2, L, = 18, L, = 2, K, = 4, and
K, = 1 with 36 free parameters; this specification does better under BIC than the model
with homogeneous errors. This fitted model differs in only minor respects from the preferred
SNP specification reported in Gallant, Rossi, and Tauchen (1992). (The differences are due
to minor enhancements to the computer program.) We term the score from this fit the
“Nonlinear Nonparametric Score”.

We emerge from this exercise with two sets of scores with which to confront the stochastic
volatility model. The first, the Semiparametric ARCH Score, is defined by a score generator
that is very similar to models widely employed in the ARCH literature, though a bit more
flexibly parameterized. The second, the Nonlinear Nonparametric Score, is defined by a
score generator determined via a complete specification search that accounts for the full

complexity of the data.

4.3 Fit to the Semiparametric ARCH Score

Table 1 shows the optimized values of the EMM objective function scaled to follow a chi
square, as described in Section 3. Table 2 shows the parameter estimates for the various
specifications reported in Table 1. From the top panel of Table 1, labeled Gaussian, it is
seen that the standard stochastic volatility model fails to approximate the distribution of the

data adequately; it is overwhelmingly rejected. However, as seen from the objective function

12



surface laid out across the various panels of the table, certain extensions of the standard
stochastic volatility model fit the data better.

We describe these extensions and seek to determine which features of the data they seem
to approximate well and which features poorly. Guided by the objective function, we inspect
the EMM quasi-t-ratios T,. The elements of T}, provide suggestive diagnostics, as pointed
out in Section 3.

Figure 2 shows these EMM quasi-t-ratios as a bar chart for the case L, = 2, L,, = 2, and

Gaussian z’s. This is the standard stochastic volatility specification

Ye— fy = Ci(Ye-1 — tby) + (Y2 — py) + exp(we)ry 2

Wy — oy = al(wt—l - ,Uw) + az(wt—2 - ﬂw) + Tzt

The source of the rejection of this model is failure to match the features defined by the
polynomial part of the SNP score. Either exp(w;) is not the correct transformation of the

latent variance process or z; is not Gaussian.

Modified Exponential

To explore the first possibility, consider the model

ye—ty = ca(Ye-1 — fy) + c2(Yi—2 — phy) + Te(wi)ry2:
Te(wt) = eXP(beo + belwt) + be2w? + be3I+(wt)w?

Wy — fhy = G1(Wie1 — o) + G2(Wimz — foy) + TwZt

where I, (w) is 1 if w is positive and is 0 otherwise. The idea is to modify the Taylor
expansion of exp(-) by replacing the quadratic term with a differentiable quadratic spline
that has one knot at zero. Inspection of the bar chart (not shown) indicates failure. The
fit is improved by better matching the VAR and ARCH scores at the expense of further
mismatch to the polynomial part of the SNP score. The exponential transformation appears

not to be a problem, so we consider non-Gaussian densities for z;.

13



t-Errors

A natural way to relax the Gaussian assumption is to use t-errors. Consider the model

ye — py = c1(Ye-1 — ty) + 2(Ye—2 — py) + exp(we)ryTue

Wy — oy = a1(Wim1 — fw) + G2(Wimz — fhw) + TwZ:

where {7,;} is iid Student-t with v degrees of freedom. The objective function is so flat for
values of the degrees of freedom parameter v € (10,20) that the optimizer gets stuck and
makes no progress when it sees v as free parameter along with the rest. Thus, in the second
panel of Table 1 we report the value of the objective function for » = 10,15,20,25. The
specification with ¢ errors helps, but still the model does not fit the data. Figure 3 shows
the bar chart for the case v = 15; the stochastic volatility model fails to fit the score of the

SNP polynomial for the cubic term, suggesting a failure to generate skewness.

Spline Error Transformation

More flexibility than with the ¢ is available from a spline transformation to the Gaussian

innovation. Consider

ye—py = 1(Ye-1 — py) + ca(y-2 — py) + exp(we)ry To(20)
Tz(zt) = sz + bzlzt + szth + bz31+(zt)zt2

Wy — fo = a(Wio1 — fw) + G2(Wimz — fw) + TwZ:

The idea is to allow a deviation from the Gaussian specification by _transforming z; through
a differentiable quadratic spline that has one knot at zero. To achieve identification, the
constraints (27)~1/2 [ T,(v)exp(—v?/2)dv = 0 and (27)7*/2 [ T}(v) exp(—v?*/2)dv = 1 are
imposed on the b,;. From Table 1 it is seen that the added flexibility of the spline trans-
form sharply reduces the objective function value. The EMM quasi-t-ratios for this “spline-
transform” fit are shown in Figure 4. The transform works; the moments of the polynomial
part of the Semiparametric ARCH score are adequately matched.

The effects of the spline are to fatten the tails and introduce an asymmetry as seen in

Figure 5. The solid line in the upper left panel is a plot of the spline T,. This plot can also
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be interpreted as a plot of the quantiles of the distribution of the random variable T,(2;) on
the vertical axis against the quantiles of the standard normal distribution on the horizontal
axis. If a distribution is Gaussian, then its quantile-quantile plot is a 45-degree line. A
comparison with the 45-degree line in the upper left panel of Figure 5 indicates heavy tails,
because the solid line plots below the 45-degree line on the left and above on the right, and an
asymmetry, because the solid line deviates more from the 45-degree line on the left than on
the right. The asymmetry is also apparent from a comparison with the solid line in the upper
right panel of Figure 5 which shows a quantile-quantile plot of the six degrees of freedom
Student t-distribution. The asymmetry and heavy tails are features of the data that have
been captured by the Semiparametric ARCH Score as can be seen in the lower left panel
of Figure 5. The EMM moment matching procedure has transferred these characteristics
to the spline-transform stochastic volatility model. The asymmetry and heavy tails are real
features of the data, not artifacts of the SNP fit, as can be seen from the solid line in the
lower right panel of Figure 5 which is a quantile-quantile plot of a kernel density estimate

from ARCH residuals.

Chaotic Volatility

Interestingly, one can do as well with a deterministic variance process. EMM quasi-t-ratios
(not shown) that result when the variance equation of the model
ye—py = (Y1 — fy) + ca(ye—2 — py) + Tu(we)ry T2(2)
Tw(wt) = bw() + bwlwt + beth + bu:31’+(7-l7i)w§5z
Tz(zt) = sz + bzlzt + szZtZ + b23I+(Zt)Z?

is a moving average in 40 lags

40 :

40 — 3
we = Z Vieyg
j=0 40 !

from a chaotic Mackey-Glass sequence

0.2'Ut_5
= v 10.5 [ ———=— — 0.1v;..
vy = Vg1 F 05(1—%—1}}95 0.1v; 1)

are similar to those shown in Figure 4. This Mackey-Glass variant on the spline-transform

stochastic volatility model does slightly better on the SNP scores and slightly worse on the
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ARCH scores.

Long Memory

Figure 4 suggests the standard stochastic volatility model has some trouble matching the
scores of the flexibly parameterized ARCH model, and somewhat more so at the longer
ARCH lags. Bollerslev and Mikkelsen (1996), Ding, Granger, and Engle (1993), and Breidt,
Crato, and Lima (1994) present evidence that long-memory models like those of Granger
and Joyeux (1980) might be needed to account for the high degree of persistence in financial
volatility. Harvey (1993) contains an extensive discussion of the properties of long memory
in stochastic volatility models. We thus explore if inclusion of both short- and long-memory
helps in fitting the stochastic volatility model.

The long-memory stochastic volatility model is

Ye—thy = C1(Yi-1 = By) + Ca(Yimz — py) + exp(w;)ry2:

wi —pw = (1- ‘C)_dzwt

Lw
Zwt = Z AjZyy pmj T TwZt
j=1

where {z;} and {Z;} are iid Gaussian, (1 — £)™% = 12, ¥x(d)L*, and the coefficients 1 (d)
are obtained from the series expansion of f(z) = (1 —z)™¢, valid for |d| < 1, as described in
Sowell (1990). Motivating this specification is the fact that for |[d] < 1/2, (1 — £)%; = €,
{€:} iid with finite variance, defines a strictly stationary process whose moving average
representation is v; = (1 — L) %e; = 122, ¥i(d)e;_x; the autocovariance function of v; decays
arithmetically to zero, instead of exponentially to zero as in the case of an autoregression of
finite lag length. For 1/2 < d < 1, (1 — £)%v; = ¢, defines a nonstationary process. {w}} is
thus obtained bj passing the autoregressive process {z,:} through the long-memory moving
average filter. For d = 0, this generates exactly the same autoregressive volatility process as
earlier, while for 0 < |d| < 1/2, it defines a strictly stationary volatility process with both
short- and long-memory components.

Since we need very long realizations for Monte Carlo integration, it is impractical to
simulate exactly from this model by, say, computing the Cholesky factorization of the co-

variance matrix of w; and proceeding in the usual manner. Instead, we follow Bollerslev
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and Mikkelsen (1996) and use a method that truncates the moving average filter and lets
the process run for a long while to attenuate the effects of transients. Their calculations
suggest that truncation at 1,000 suffices, so we use the moving average filter 1200 ¥ (d) L.
(Because of the truncation, this method technically generates a stationary process for all
|d] < 1.) They trim off the first 7,000 realizations; we trim off the first 10,000. Some would
argue that this method does not actually generate realizations from a long-memory volatility
process. The point is well taken but, nonetheless, the Bollerslev-Mikkelsen approach still
defines a volatility process {w;} with extremely high persistence.

The bottom part of Table 1 shows the optimized objective function when the long-
memory parameter, d, is estimated jointly with the other parameters of the model subject
to a normalization on u, for identification. We only estimate the long-memory version for
L, =1 and L, = 2, since the job of the long-memory specification is to take care of longer

lags. For the block labeled “Gaussian & Long Memory” the mean equation is

Y — py = C1(Yem1 — fy) + C2(Ye—2 — py) + exp(w;)ryz;

while for the block labeled “Spline & Long Memory,” the mean equation is

Yt — By = c(ye-1 — ty) + c2(yt—-2 — py) + eXP(w:)TyTZ(zt)

where the two-parameter quadratic spline T(-) is as defined above.

As seen from Table 1, long memory helps, but the Gaussian stochastic volatility model
cannot accommodate all of the structure implicit in the semiparametric ARCH model. With
the spline transform, it can. Figure 6 shows the bar chart for the case L, = 2. The impact
on the objective function value of long memory is similar to that of introducing two or three
extra freely parameterized lags into the volatility equation. Overall, long-memory helps

about as much as introducing six free lags into the volatility specification.

4.4 Fit to the Nonlinear Semiparametric Score

Table 3 displays the objective function surface for versions of the stochastic volatility model
against the Nonlinear Nonparametric Score; Table 4 shows the estimated parameter values.

From Table 3, the standard model is overwhelmingly rejected. The various extensions provide
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much improvement over the standard Gaussian model, but nothing comes as close as the
spline variants against the Semiparametric ARCH Score. We now examine the performance
of the extensions in more detail.

The bar chart for the L, = 2, L, = 2, Gaussian stochastic volatility specification is
shown as Figure 7. The ARCH part of the score is fit poorly, as is the SNP part. The
quasi-t-ratios are not orthogonal, so that failure to fit the SNP scores could manifest itself

as large ARCH quasi-t-ratios and conversely. The spline-transform variant (not shown) does

just about as poorly.

The full Nonlinear Nonparametric Score embodies various conditional nonlinearities, such
as the asymmetric “leverage effect” of Nelson (1991) that are discussed in Gallant, Rossi, and
Tauchen (1992, 1993). We explore the effects of introducing asymmetry into the stochastic
volatility model. A common approach in the stochastic volatility literature (Harvey and
Shephard, 1996) is to generate asymmetry by introducing correlations across innovations in

the mean and variance equations:

Ye—py = c1(yi-1 = py) + c2(yi-2 — py) + exp(we)ry 2z

W= flw = a1(Wie1 — fhw) + Q2(Wimz = py) + 10 (Z + g21-1)
where g is a free parameter to be estimated. This variant does better but still does poorly
on the chi-square statistics shown in Table 3. The bar chart (not shown) shows large SNP

quasi-t-ratios, which suggests that the spline-transform be applied to the asymmetric variant.

The model that results is
Yo — Uy = Cl(yt—l - ﬂy) + CZ(yt—Z - /‘y) + eXP(wt)TyTz(zt)
T:(2t) = bso+buz+ bz2(zt)2 + bz3]+(2t)(2t)2
W= fly = G1(Wi-1 — fhw) + a2(Wimz — o) + T (3 + g21-1)

The fit improves but is still inadequate, as indicated by the chi-square statistics shown in

Table 3.

Finally, we consider long-memory in the variance equation. We estimate with the spline

transformation:

Ye—py = c1(yi-1 — ty) + c2(Ye-2 — py) + exp(w; )y Te(z2)
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Tz(zt) = sz + bzlzt + bz2(zt)2 + bz3I+(Zt)(zt)2
W = = (1= L) %2

L.
Zwt = ) GiZuw—j + Ty
i=1

We also estimate a model with the spline transformation and cross-correlation in innovations:

Yo —py = ca(yem1 — fy) + c2(ye-2 — py) + exp(w])r, Te(2:)
T:(zt) = bao+buze + bao(2:)* + b§3f+(2t)(zt)2
w: - fw = (1 - ‘C)—dzwt

Ly
2wt = Zajzw,t—j+rw(zt+gét—l)

j=1

As seen from the lower two panels of Table 3 long memory helps, but, as in fitting to the
Semiparametric ARCH Score, long memory has about the same impact on the objective
function as does introducing a few more free lags into the volatility specification. Figure 8
shows the bar chart with long memory for the case L,, = 2 and correlated errors. Comparing
this figure to Figure 7 shows that the combined effects of the spline transformation, the
asymmetry, and the long memory improves the fit substantially, but despite all of these
added complications the model fails to fit both the ARCH and SNP scores.

This, we think, is about as far as one can go and stay within the spirit of the stochastic
volatility model. A specification that probably would capture the full complexity of the data

is to let the coefficients of the transformation
T:(2t) = bsg + bay2e + bupz? + bz3]+(2t)2tz, v

depend upon lagged z’'s and perhaps add a few more unconstrained lag coeflicients. However,
this degree of complexity is so close to a nonparametric specification that we see little point

to it. Why not just fit the series nonparametrically and have done with it?

5 Trivariate Estimation

Modern asset pricing theory holds that there is a pricing kernel (or marginal rate of sub-

stitution) that discounts gross returns to unity. Using methods similar to ours, Andersen
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(1996) obtains a good fit of a continuous time stochastic volatility model to high frequency
Treasury returns. As Treasury returns reflect pure nominal pricing kernel movements, An-
dersen’s findings taken together with asset pricing theory suggest that a stochastic volatility
model should be able to account for the co-movements of several assets. As one of the dis-
tinguishing features of the EMM method is its ability to accommodate multivariate data,
we investigate this possibility using several assets over a shorter, and therefore potentially
more homogeneous, time horizon than in the previous section.

Let y; denote an M x 1 vector containing the first differences (either simple or logarithmic)
over a short time interval, a day for instance, of the prices of a financial asset traded on active
speculative markets. A multivariate stochastic volatility model for y; is

L,
ye— by = 9 Ci(ye-j — py) + diaglexp(we)| Ry 2

j=1
Ly

W= pw = Y Ai(Wiej — pu) + Rue
J=1

where p, is an M x 1 vector, the C; are M x M matrices for j = 1,2,...,L,, and R, is
an M x M upper triangular matrix. Similarly, p,, is an M x 1 vector, the A; are M x M
matrices for j = 1,2,..., L, and R, is an M x M upper triangular matrix. The processes
{z} and {%;} are mutually independent iid random variables with mean zero and variance
Ins. Throughout, exp(-) denotes the elementwise exponential of a vector argument, diag(v)
with a vector argument denotes the diagonal matrix with the elements vy, ..., va down the
diagonal, and diag(B) with a matrix argument denotes the vector (b11, ..., bamn) with the

diagonal elements of B as its elements. Thus,

[ ewe 0 ... 0
0 ev
diaglexp(w)] =
0
i 0 PO 0 ewMt ]

The data to which we fit this stochastic volatility model (M = 3) consists of 4,044 daily
observation on three variables: adjusted movements of the Standard and Poor’s Composite
Price Index, adjusted movements of the $§/DM spot exchange rate, and the adjusted 90-day
Euro-Dollar interest rate, 1977-92. In this case M = 3, y; = (y1¢, Y21, Ya¢)’, and the data set
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is {7:}:21*. The raw series consists of the Standard and Poor’s Composite Index (SP), the
$/DM exchange rate (DM), and the three-month Euro-dollar interest rate (ED). The three
series were collected daily, January 4, 1977-December 31, 1992. The stock index and the
exchange rate are converted to raw price movements series, 100[log(SP,) — log(SP,—1)], and
100[log(DM,) —log(DM,_1)]. The two raw price movement series and the raw ED series are
then each adjusted for systematic calendar effects. The adjustment procedure is the same as
Gallant, Rossi, and Tauchen (1992) except for the use of a robust regression method instead
of ordinary least squares.

The estimation treats the three series as strictly stationary. This seems reasonable for
stock returns and exchange rate movements, but requires discussion for the interest rate.
As is well known, short-term interest rates collected at high frequencies display extreme
persistence characteristic of (near) unit-root processes. However, recent empirical results of
Ait-Sahalia (1996), and confirmed in Tauchen (1996), indicate that, although interest rates
display little mean revision in the central part of the data, they display substantial mean
reversion at very low and very high values. Hence, interest rates appear nonstationary, or
nearly so, when considered with linear methodology, when in fact they are stationary when
considered with nonlinear methods.

As in Section 4, to implement the EMM estimator we require a score generator that
approximates these data well. We use the multivariate SNP model as described in Gallant,
Rossi, and Tauchen (1992). It is derived along the same lines as set forth in Section 4.2 and

has the following functional form

PR (5 ~ o), 21} RS (v — o)
W) = PG, P &2

where
gy = b, + Bz™
vech(R;) = p, + Plz*|.
vech(R) denotes the elements of the upper triangle of R stored as a column vector, |z| denotes

element-wise absolute value, z* is a vector of lagged values of y;, and #(z) = (21)~M/2e=7'2/2

The asterisk indicates that prior to forming lags, the y; have been centered by subtracting
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the sample mean, scaled by dividing element\;vise by sample standard errors, and then trans-
formed elementwise by the logistic map that takes the interval (—o0, o0) into the interval
(-4, 4). P(z,z*) is a polynomial of degree K, in z whose coefficients are, in turn, polynomials
of degree K, in z*. u, is a function of the first L, lags in z* which is accommodated by
inserting zeros in B at the appropriate locations; similarly R, is a function of the first L.
lags in z* and P(z,2*) a function of the first L, lags in z*. The multivariate model has
two additional tuning parameters I, and I, that indicate that high order interaction in the
polynomial P(z,z*) have been put to zero: I, = 0 means that no interactions are suppressed,
I, = 1 means that the highest order interactions are suppressed, namely those of degree K,
and so on; similarly for K;. We only allow P|z"| to contribute to the diagonal of R, by
inserting zeroes in the appropriate elements of P.

As in Section 4, if K, =0, K, =0, L, > 0, and L, > 0 then the SNP density is a form
of ARCH model with Gaussian innovations. If K, > 0, K; =0,L, >0, and L, > 0 then
the SNP density is a form of ARCH model with conditionally homogeneous, non-Gaussian
innovations. The SNP model with K, > 0 and K, = 0 can accurately approximate any con-
ditionally homogeneous innovation process by taking K, large enough. If K, > 0, K, > 0,
L,>0,L, >0,and L, > 0 then the SNP model can accurately approximate any Markovian,
stationary process by taking K, and K, large enough, including those that exhibit nonlin-
earities such as conditional skewness and kurtosis (Gallant, Hsieh, and Tauchen, 1991).

We fit the SNP model by quasi maximum likelihood following the protocol that is de-
scribed in Bansal, Gallant, Hussey, and Tauchen (1995) and is summarized in Section 4.
Following this protocol, we select the model L, = 4, L, =16, K, = 8, and I, = 7 when
innovations are constrained to be homogenous (K, = 0, L,=1). The score from this fit
we term the “Semiparametric ARCH Score”. We also report results for the model L, =4,
L,=16,L,=1,K,=81,=1 K, = 2, and I; = 1, where the homogeneity constraint is
dropped, and term the score from this fit the “Nonlinear Nonparametric Score”. We encoun-
tered difficulty fitting the stochastic volatility model to the even larger specification, L, = 4,
L,=16,L,=1,K, =81, =7, K, =3, and I, = 2, dictated by following the protocol
and do not report EMM results for that score. In all cases, the linear VAR model at the

core of the SNP hierarchy is constrained to be zero after lag 2, except for lags of the interest
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rate which go out to lag 4, which reflects our prior knowledge that interest rates display
much more complicated patterns of linear persistence than do stock returns or exchange rate
movements.

Following the EMM procedure described in Section 3 we obtain the chi-square statistics
shown in Table 5. As seen from the table, the stochastic volatility model fails to approximate

the distribution of these data adequately; it is overwhelmingly rejected.

6 Conclusion

The standard stochastic volatility model, which has received substantial attention in the
literature, is an empirically implausible model for stock returns. Our exhaustive search across
many specifications indicates that the model must be extended to include (i) an asymmetric
thick-tailed distribution for innovations in the mean equation, (ii) long-term dependence
in the volatility equation, and (iii) cross correlation between innovations in the mean and
volatility equations. When introduced individually, each of these extensions improves the
fit somewhat. When introduced together, they produce a stochastic volatility model that is
quite elaborate and can accommodate features of the data best described as “Semiparametric
ARCH?”. However, the model still cannot accommodate features that could be described as
“Nonlinear Nonparametric.” Although not as exhaustive, our investigation for the trivariate
data series on stock returns, interest rates, and exchange rates leads to a similar result.
These findings thus cast doubt on the statistical reliability of estimated stochastic volatil-
ity models that do not include all three of the extensions. At a minimum, estimates of
stochastic volatility models should be accompanied by diagnostic tests in the directions
found empirically important here. An even stronger conclusion, which emerges from the
failure to fit the Nonlinear Nonparametric features, is that the stochastic volatility model
cannot be made to fit financial market data without losing scientific content. The reason is
that the conditional heterogeneity in higher moments exhibited by the stochastic volatility
model is imparted solely by the volatility equation and therefore cannot be decoupled from
the volatility equation. Without the decoupling, the model is not rich enough to approximate
data from financial markets. With a decoupling, the stochastic volatility model becomes akin

to a nonparametric specification and there are far more computationally convenient nonpara-
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metric estimators. Our findings stand in contrast to results of Kim and Shephard (1994),
Geweke (1994), and others who find evidence in favor of fairly standard stochastic volatility
models. The reason is that we step outside the narrow confines of stochastic volatility and
entertain the possibility of very general and flexible auxiliary models. These models provide

the diagnostics discrediting stochastic volatility.
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Table 1. Univariate Price Change Series: Optimized Value of the Crite-
rion for the Semiparametric ARCH Score Generator.

Score Generator (SNP) SV Model Objective Function
L, L. L, K. K: Y4 L, Ly, ¢, x? df  p-val
Gaussian
2 18 1 4 0 26 2 1 6 86.432 20 < 0.0001
2 18 1 4 0 26 2 2 7 79.001 19 < 0.0001
2 18 1 4 0 26 2 3 8 72.672 18 < 0.0001
2 18 1 4 0 26 2 4 9 69.188 17 < 0.0001
2 18 1 4 0 26 2 5 10 67.823 16 < 0.0001
2 18 1 4 0 26 2 6 11 61.093 15 < 0.0001
t(v), v =10, 15,20, 25
2 18 1 4 0 26 2 2 8 78.186 18 < 0.0001
2 18 1 4 0 26 2 2 8 68.931 18 < 0.0001
2 18 1 4 0 26 2 2 8 69.111 18 < 0.0001
2 18 1 4 0 26 2 2 8 69.898 18 <« 0.0001
Spline
2 18 1 4 0 26 2 1 8 41.920 18 0.0011
2 18 1 4 0 26 2 2 9 41.351 17 0.0008
2 18 1 4 0 26 2 3 10 37.700 16 0.0016
2 18 1 4 0 26 2 4 11 36.107 15 0.0017
2 18 1 4 0 26 2 4 12 33.768 14 0.0022
2 18 1 4 0 26 2 6 13 18.638 13 0.1348
Gaussian & Long-Memory
2 18 1 4 0 26 2 0 6 67.691 20 < 0.0001
2 18 1 4 0 26 2 1 7 67.061 19 < 0.0001
2 18 1 4 0 26 2 2 8 65.463 18 < 0.0001
Spline & Long-Memory
2 18 1 4 0 26 2 0 8 34.923 18 0.0097
2 18 1 4 0 26 2 1 9 26.718 17 0.0623
2 18 1 4 0 26 2 2 10 21.781 16 0.1504

Ly is the number of lags in the linear part of the SNP model; L, is the number
of lags in the ARCH part; L, the number of lags in the polynomial part, P(z, z).
The polynomial P(z,z) is of degree K, in z and K, in z; by convention, L, = 1 if
K; = 0. £y is the number of free parameters associated with the SNP model. L,
is the number of lags in the linear conditional mean specification of the stochastic
volatility model, and L, is the number of lags in the volatility specification. £, is
the number of free parameters of the stochastic volatility model. x? is the EMM
objective function scaled to be distributed x?(df) under the maintained assumption
of correct specification of the stochastic volatility model. Some relevant quantiles
are x2 99(20) = 37.566, x2 49(15) = 30.578.

29



Table 2. Univariate Price Change Series: Fitted Parameter Values for the Semipara-
metric ARCH Score Generator.

Hy Ty 2! c2 020 bzl 052 bz3 Tw a az a3 ay ag ag d
Gaussian
0.038 0.927 0.105 0.066 1.000 0.095 0.976
0.037 0.918 0.105 0.066 1.000 0.155 0.961 -0.662
0.036 0.909 0.103 0.068 1.000 0.149 0.964 0.010 -0.641
0.036 0.906 0.103 0.068 1.000 0.172 0.959 -0.209 -0.267 -0.547
0.037 0.916 0.104 0.068 1.000 0.116 0.972 0.156 -0.185 -0.616 0.304
0.036 0.909 0.102 0.069 1,000 0.144 0.965 -0.067 -0.592 -0.002 -0.485 0.397
t
0.034 0.935 0.103 0.066 v =10 0.031 0.993 0.561
0.036 0.937 0.104 0.066 v=15 0.049 0.989 0.378
0.035 0.928 0.104 0.066 v =20 0.124 0.971 -0.521
0.036 0.926 0.104 0.066 v=25 0.132 0.969 -0.580
Spline

0.023 0.942 0.110 0.063 0.030 0.921 -0.079 0.097 0.083 0.980

0.022 0.939 0.109 0.063 0.030 0.933 -0.072 0.083 0.129 0.969 -0.537

0.022 0.931 0.109 0.084 0.032 0.960 -0.056 0.049 0.138 0.966 0.036 -0.623

0.021 0.923 0.108 0.064 0.032 0.988 -0.039 0.014 0.212 0.947 -0.558 -0.479 -0.356

0.022 0.935 0.109 0.063 0.029 0.928 -0.073 0.089 0.029 0.993 1.634 -1.853 1.078 -0.247

0.023 0.947 0.109 0.064 0.029 0.942 -0.064 0.071 0.012 0.998 2.005 -1.970 0.939 0.220 -0.378

Gaussian & Long Memory

0.036 0.908 0.104 0.067 1.000 0.224 ' 0.540
0.035 0.904 0.103 0.067 1.000 0.242 -0.159 0.550
0.034 0.908 0.104 0.066 1.000 0.221 0.039 -0.192 0.539
Spline & Long Memory

0.022 0.922 0.I11 0.062 0.033 1.046 -0.003 -0.059 0.259 0.515
0.021 0.887 0.110 0.060 0.038 1.208 0.095 -0.267 0.369 -0.268 0.493
0.020 0.863 0.109 0.061 0.044 1.355 0.187 -0.463 0.429 -0.419 0.128 0.486

The rows of Table 2 correspond to the rows of Table 1. Due to identification restrictions across
parameters, the number of parameters in a row do not necessarily correspond to the number of free -
parameters shown in Table 1.
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Table 3. Univariate Price Change Series: Optimized Value of the Crite-
rion for the Nonlinear Nonparametric Score Generator.

Score Generator {SNP) SV Model Objective Function

Lu Ly Lp K: Kz fo Ly Ly &  x* df pval

Gaussian

2 18 2 4 1 36 2 1 6 173.361 30 < 0.0001
2 18 2 4 1 36 2 2 7 164.337 29 < 0.0001
2 18 2 4 1 36 2 3 8 155.449 28 < 0.0001
2 18 2 4 1 36 2 4 9 151.243 27 < 0.0001
2 18 2 4 1 36 2 5 10 149.350 26 < 0.0001
2 18 2 4 1 36 2 6 11 147.984 25 < 0.0001
Spline

2 18 2 4 1 36 2 1 8 151.290 28 < 0.0001
2 18 2 4 1 36 2 2 9 150.765 27 < 0.0001
2 18 2 4 1 36 2 3 10 144411 26 < 0.0001
2 18 2 4 1 36 2 4 11 143.310 25 < 0.0001
2 18 2 4 1 36 2 5 12 143.310 24 < 0.0001
2 18 2 4 1 36 2 6 13 142.461 23 < 0.0001
Gaussian-Asymmetric

2 18 2 4 1 36 2 1 7 111.497 29 < 0.0001
2 18 2 4 1 36 2 2 8 111.487 28 < 0.0001
2 18 2 4 1 36 2 3 9 97.536 27 < 0.0001
2 18 2 4 1 36 2 4 10 93.969 26 < 0.0001
2 18 2 4 1 36 2 5 11 91.075 25 < 0.0001
2 18 2 4 1 36 2 6 12 85.711 24 < 0.0001
Spline-Asymmetric

2 18 2 4 1 36 -2 1 9 78.972 27 < 0.0001
218 2 4 1 36 2 2 10 78.197 26 < 0.0001
2 18 2 4 1 36 2 3 11 75.483 25 < 0.0001
2 18 2 4 1 36 2 4 12 70.109 24 < 0.0001
2 18 2 4 1 36 2 5 13 69.881 23 < 0.0001
2 18 2 4 1 36 2 6 14 69.645 22 < 0.0001

Spline & Long Memory
2 18 2 4 1 36
2 18 2 4 1 36
2 18 2 4 1 36

8 152.654 28 < 0.0001
9  146.479 27 < 0.0001
10 143.477 26 < 0.0001

[N ]

2 18 2 4 1 36 0o 9 94.678 27 < 0.0001
2 18 2 4 1 36 1 10 72.049 26 < 0.0001

2
2
2
Spline-Asymmetric & Long Memory
2
2
2 18 2 4 1 36 2 2 11 71.609 25 < 0.0001

L, is the number of lags in the linear part of the SNP model; L, is the number
of lags in the ARCH part; L, the number of lags in the polynomial part, P(z, z).
The polynomial P(z,z) is of degree K, in z and K, in z; by convention, L, = 1 if
K, = 0. £; is the number of free parameters associated with the SNP model. L,
is the number of lags in the linear conditional mean specification of the stochastic
volatility model, and L., is the number of lags in the volatility specification. £, is
the number of free parameters of the stochastic volatility model. x? is the EMM
objective function scaled to be distributed x?(df) under the maintained assumption
of correct specification of the stochastic volatility model. Some relevant quantiles
are x2 49(30) = 50.892, x2 55(25) = 44.314, x3 4(20) = 37.566.
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Table 4. Univariate Price Change Series: Fitted Parameter Values for the Nonlinear Non-
parametric Score Generator.

by Ty c1 c2 g boo  Ds;1  ba2 0;3  Tw a; az a3 a4 as a¢ d
Gaussian
0.052 0.767 0.114 0.052 1.000 0.092 0.966
0.051 0.762 0.114 0.051 1.000 0.152 0.944 -0.712
0.050 0.756 0.111 0.052 1.000 0.195 0.930 -0.826 -0.510
0.050 0.748 0.109 0.054 1.000 0.223 0.920 -0.746 -0.625 -0.404
0.050 0.746 0.108 0.054 1.000 0.229 0.919 -0.642 -0.733 -0.318 -0.284
0.050 0.745 0.109 0.054 1.000 0.229 0.919 -0.642 -0.732 -0.318 -0.284 -0.009
Spline
0.046 0.769 0.114 0.052 0.010 0.905 -0.068 0.117 0.072 0.974
0.047 0.770 0.114 0.052 0.010 0.901 -0.071 0.123 0.038 0.986 0.475
0.047 0.770 0.115 0.052 0.009 0.914 -0.062 0.106 0.010 0.997 1.651 -0.802
0.047 0.771 0.115 0.051 0.009 0.915 -0.061 0.105 0.019 0.994 0.670 0.834 -0.799
0.047 0.771 0.115 0.051 0.009 0.915 -0.061 0.105 0.019 0.994 0.670 0.834 -0.799
0.047 0.772 0.115 0.051 0.009 0.914 -0.063 0.107 0.046 0.986 -0.146 0.549 0.575 0.000 -0.695
Gaussian-Asymmetric
0.047 0.839 0.115 0.055 -0.791 1.000 0.070 0.976
0.047 0.839 0.115 0.055 -0.801 1.000 0.068 0.976 0.018
0.045 0.834 0.114 0.057 -0.494 1.000 0.122 0.964 0.076 -0.671
0.045 0.836 0.114 0.058 -0.510 1.000 0.106 0.970 0.286 -0.552 -0.267
0.045 0.839 0.114 0.057 -0.630 1.000 0.085 0974 0.220 -0.128 -0.690 0.361
0.045 0.837 0.112 0.058 -0.547 1.000 0.101 0.970 0.212 -0.806 0.307 -0.610 0.479
Spline-Asymmetric
0.033 0.849 0.119 0.054 -1.454 0.024 0.919 -0.074 0.100 0.045 0.979
0.033 0.848 0.119 0.054 -1.720 0.024 0.917 -0.075 0.102 0.035 0.982 0.134
0.032 0.863 0.117 0.053 -1.038 0.026 0.924 -0.073 0.094 0.054 0.980 0.427 -0.489
0.031 0.856 0.117 0.056 -0.938 0.026 0.939 -0.063 0.075 0.065 0.977 0.361 -0.808 0.329
0.031 0.857 0.117 0.056 -0.859 0.026 0.942 -0.061 0.071 0.069 0.977 0.430 -0.882 0.390 -0.083
0.032 0.856 0.117 0.055 -1.063 0.025 0.939 -0.062 0.075 0.055 0.979 0.279 -0.224 -0.191 0.622 -0.491
Spline & Long Memory
0.046 0.760 0.114 0.052 0.010 0.965 -0.032 0.044 0.200 0.507
0.046 0.736 0.112 0.051 0.011 1.075 0.037 -0.094 0.304 -0.315 0.484
0.046 0.724 0.110 0.052 0.012 1.149 0.083 -0.190 0.351 -0.510 0.164 0.485
Spline-Asymmetric & Long Memory
0.035 0.829 0.119 0.054 -0.431 0.021 0.975 -0.037 0.031 0.179 0.541
0.031 0.849 0.121 0.052 -1.030 0.024 0.931 -0.067 0.085 0.060 0.664 0.496
0.031 0.850 0.121 0.052 -1.034 0.025 0.932 -0.066 0.084 0.056 0.677 0.111 0.501

The rows of Table 4 correspond to the rows of Table 3. Due to identification restrictions across parameters,
the number of parameters in a row do not necessarily correspond to the number of free parameters shown

in Table 3.
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Table 5. Trivariate Series: Optimized Value of the Criterion

Score Generator (SNP) SV Model Objective Function

L Lo Ly K, I, Ko I %y Ly Lw & x? df _ p-val

4 161 8 7 0 0 101 2 1 44 490.306 57 < 0.0001
4 16 1 8 7 0 0 101 2 2 47 329.603 54 < 0.0001

4 16 1 8 7 2 1 251 2 3 47 4168470 204 < 0.0001

L, is the number of lags in the linear part of the SNP model; L. is the number of lags in the
ARCH part; L, the number of lags in the polynomial part, P(z,z). The polynomial P(z, z) is of
degree K, in z, with interactions of degree exceeding K, — I, suppressed; likewise, P(z,z) is of
degree K in z, with interactions of degree exceeding K, — I, suppressed. By convention, L, = 1
if Kz = 0. £ is the number of free parameters associated with the SNP model. Ly is the number
of lags in the linear conditional mean specification of the stochastic volatility model, and L,
is the number of lags in the volatility specification. £, is the number of free parameters of the
stochastic volatility model. x? is the EMM objective function scaled to be distributed x2(df)
under the maintained assumption of correct specification of the stochastic volatility model.
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Figure 1. Time series of unadjusted and adjusted stock price movements. The top panel shows a
time series plot of the daily unadjusted price movement series, 100(log P; — log P;..;). The data are
daily from 1928 to 1987, 16,127 observations. The bottom panel shows the adjusted price movement
series. The adjustments remove calendar effects and long-term trend on the basis of least squares
regressions. The adjusted series can reasonably be taken as stationary, which is required for use of
the SNP estimator. See Section 1 of Gallant, Rossi, and Tauchen (1992) for a description of the
adjustment procedure.
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T-Ratios of Mean Score, Lw=2
Semiparametric ARCH Score Generator
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Figure 2. EMM Quasi-t-Ratios for the Stochastic Volatility Model Matched to the Semiparametric
ARCH Score. The Semiparametric ARCH score is an SNP specification with L, = 2, L, = 18,
Ly =1,K,=4,1, =0, K, = 0, and I, = 0. The VAR t-ratios and ARCH ¢-ratios shown in
the plot correspond to the equations u; = b, + b’z and r; = po + p'z of the SNP specification,
respectively. The SNP t-ratios correspond to the coefficients of the polynomial P(z,z) of the SNP
specification where the subscript indicates degree. The stochastic volatility specification is Yt —fy =
e1(ye-1 = py) + ca(ye—2 = y) + exp(we)ryzi, we — poy = ay(Wi-1 = pw) + a2(Wi—2 — ptoy) + T 5.
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T-Ratios of Mean Score, Lw=2, t-Errors
Semiparametric ARCH Score Generator
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Figure 3. EMM Quasi-t-Ratios for the t-Innovations Stochastic Volatility Model Matched to the
Semiparametric ARCH Score. The Semiparametric ARCH score is an SNP specification with L, = 2,
L.=18,L,=1,K,=4,1, =0, K, =0, and I, = 0. The VAR t-ratios and ARCH t-ratios shown
in the plot correspond to the equations p; = b, + b’z and ry = p, + p'z of the SNP specification,
respectively. The SNP t-ratios correspond to the coefficients of the polynomial P(z,z) of the SNP
specification where the subscript indicates degree. The stochastic volatility specification is y; — puy =
c1(Yr—1 — py) + ca(yi—2 — py) + exp(We)Ty 15,1, Wt — fhw = a1 (Wi1 — fho) + 2(Wim2 — pu) + Tw 1,
where 75, follows the t-distribution on 15 degrees freedom.
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T-Ratios of Mean Score, Lw=2, Spline
Semiparametric ARCH Score Generator
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Figure 4. EMM Quasi-t-Ratios for the Spline-Transform Stochastic Volatility Model Matched to
the Semiparametric ARCH Score. The Semiparametric ARCH score is an SNP specification with
Ly =2, L =18, L, =1, K, =4,I; = 0, K, = 0, and I = 0. The VAR t-ratios and ARCH
t-ratios shown in the plot correspond to the equations u, = b, + b’z and r; = p, + p'z of the SNP
specification, respectively. The SNP t-ratios correspond to the coefficients of the polynomial P(z, z)
of the SNP specification where the subscript indicates degree. The stochastic volatility specification
is ye — pty = c1(Ye—1—py) +c2(yr—2— py) +exp(we)ry Ty (2:), Tx (2¢) = bro+ba120+bs22f + b3l ()22,
W — flo = 61(Wi1 — Pw) + G2(Wio2 — fho) + Tu Z1



Spline versus Gaussian t versus Gaussian
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Figure 5. Quantile-Quantile Plots. The solid line in the upper left panel shows the spline transform
of Figure 4 which can also be interpreted as a plot of the quantiles of the distribution of the random
variable T} (z;) on the vertical axis against the quantiles of the standard normal distribution on the
horizontal axis. The dashed is a plot of the quantiles of the standard normal against the quantiles
of the standard normal. The solid line in the upper right panel is a quantile-quantile plot of the five
degree freedom Student ¢-distribution. The solid line in the lower left panel is a quantile-quantile
plot of the innovation distribution of the Semiparametric ARCH Score Generator. The solid line in
the lower right panel is a quantile-quantile plot of a kernel density estimate from ARCH residuals.
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T-Ratios of Mean Score, Lw=2, Spline, Long Memory
Semiparametric ARCH Score Generator
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Figure 6. EMM Quasi-t-Ratios for the Spline-Transform Stochastic Volatility Model with a Long-
Memory Variance Equation Matched to the Semiparametric ARCH Score. The Semiparametric
ARCH score is an SNP specification with L, =2, L, =18, L, =1, K, =4, I, =0, K; = 0, and
I. = 0. The VAR t-ratios and ARCH t-ratios shown in the plot correspond to the equations u, =
b, +b'z and r; = p,+ p'z of the SNP specification, respectively. The SNP t-ratios correspond to the
coefficients of the polynomial P(z,z) of the SNP specification where the subscript indicates degree.
The stochastic volatility specification is y: — py = c1(yr—1 — phy) + c2(yt—2 — py) + exp(wy )ry T3 (22),
Ti(zt) = bao+bs12e +b,022 + b3l (20)2F, W) — pw = (1= L£) %20, Zwt = a120,0-1+ 022w 1—2 +Tw Zr.
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T-Ratios of Mean Score, Lw=2
Nonlinear Nonparametric Score Generator
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Figure 7. EMM Quasi-t-Ratios for the Stochastic Volatility Model Matched to the Nonlinear
Nonparametric Score. The Nonlinear Nonparametric score is an SNP specification with L, = 2,
L =18, Ly =2, K, =4,1, =0, K, = 0, and I, = 0. The VAR t-ratios and ARCH ¢
ratios shown in the plot correspond to the equations p, = b, + b’z and r, = Po + p'z of the
SNP specification, respectively. The SNP t-ratios correspond to the coefficients of the polynomial
P(z,z) of the SNP specification. A coefficient such as a(00,2) corresponds to the monomial 2?2,
one such as a(10,2) to z2z, a(01,2) to z2z3, and so on. The stochastic volatility specification is
Ye—py = c1(Yrm1—py)+e2(Ui-2— iy ) Fexp(we)ryze, we—po = a1 (Wem1— o)+ a2 (Wim2— o )+ 1o .
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T-Ratios of Mean Score, Lw=2, Asymmetric, Spline, Long Memory

Nonlinear Nonparametric Score Generator
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Figure 8. EMM Quasi-t-Ratios for the Asymmetric, Spline-Transform Stochastic Volatility Model
with a Long-Memory Variance Equation Matched to the Nonlinear Nonparametric Score. The
Nonlinear Nonparametric score is an SNP specification with L, = 2, L, = 18, L, =2, K, = 4,
I, =0, K; =0, and I, = 0. The VAR t-ratios and ARCH t-ratios shown in the plot correspond to
the equations u, = b,+b'z and r, = po+p'z of the SNP specification, respectively. The SNP ¢-ratios
correspond to the coefficients of the polynomial P(z, z) of the SNP specification. A coefficient such as
a(00, 2) corresponds to the monomial 22, one such as a(10,2) to 2%z, a(01,2) to z2z,, and so on. The
stochastic volatility specification is y; — by = ¢1(Yrmr— py)+cz(yt..z—-—py)-l-exp(w;‘)ryil} (22), Ty(z2) =
bro+b;12 +bz2(2:)2+bz31+(zt)(zt)2, Wi —py = (1=L) "2y, 21 = Zf:l @5 2w t—j + 7w (2 +g2e-1).
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