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1. Introduction

The volatility of financial markets has long been a favored subject of
study for participants and academics alike. Although the many and varied
approaches to the subject over the past decades have yet to reach a consensus
on how 'volatility’ should be modelled, one indisputable conclusion appeared
to have emerged — namely, that volatility is volatile. Here the measurement
problem is somewhat complicated. A number of studies on this subject have
used standard deviations of daily price changes to study volatility changes in
the stock market and its equilibrium implications; see for example French,
Schwert, and Stambaugh (1987), Schwert (1990), and Schwert and Seguin (1990).
The requirement of using daily data to compute standard deviations have
limited these studies to monthly changes in volatilities.

More recent studies have begun to use implied volatilities derived from
observed option prices to study daily changes in volatilities; see for
example, Merville and Pieptea (1989), Franks and Schwartz (1990). The
attraction lies in the notion of being able to use an ex ante measure of
volatility while finessing the sample size problem at the same time.
Unfortunately, these advantages are not obtained without costs. Firstly,
there is a problem of internal consistency. On the one hand, implied
volatilities are used to measure time variations in volatilities of the

underlying asset price. On the other, the implied volatilities themselves are
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derived from option models that assume a stationary process for the underlying
asset price. Hence it is difficult to infer from the nonstationary behavior
of implied volatilities properties of the underlying asset’s price dynamics.
Explicit attempts to adjust option models for stochastic volatilities would
not help, since all known option models of this type require further
assumptions on the future evolution of volatility as well as the market price
for volatility risk; see for example Hull and White (1987a, 1987b, 1988),
Johnson and Shanno (1987), Scott (1987), Wiggins (1987), and Chesney and Scott
(1989). In other words, using implied volatilities from a particular option
model requires some prior knowledge about the behavior of volatility, which is
the object of analysis to begin with. Secondly, it is not clear that implied
volatility necessarily has superior information content than other volatility
measures based solely on time series of prices. At least, the recent work by
Canina and Figlewski (1990) cast doubt on this popular assumption. Thirdly,
even if one accepts implied volatility to be a reasonable proxy for the
market’s expectation of future volatility, it is unclear as to the horizon
over which this ’'forecast’ represents.

In this paper we present a method for assessing these alternative
measures of volatility based on a variation of Hsieh (1991) and provide
empirical evidence on their stochastic behavior on a daily frequency. Using
tick-by-tick data, we are able to compute daily volatility observations from
intra-day price movements. In addition, matching tick-by-tick data of options
prices to the underlying asset prices, we calculate the implied volatility at
the end of each trading day. This allows us to compare alternative measures
of daily volatility over a reasonable sample size. While this methodology is

applicable to most financial markets, we limit our application to the foreign
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currency futures market, due to the volume of tick-by-tick data required to
conduct a study of this type.

The paper is organized as follows. Section 2 describes some of the
popular beliefs on the statistical properties of implied volatilities which
motivate the subsequent test design. Section 3 defines the alternative
volatility measures and contrasts their information content. Section 4
compares their ability to forecast future volatility. Section 5 deals with
the relation between volatility and market level. Section 6 summarizes the

results and discusses some implications.

2. Implied Volatility: Some Accepted Wisdom

Since the 1960s, finance has been blessed with the growing availability
of security price databases, and there is now a well documented literature on
the statistical distribution of security prices. Curiously, much less is
known about the statistical properties of option prices. The majority of the
work in this area has centered on tests of alternative option pricing models.
One could argue that since an option is just a derived asset to its
munderlying," its time series behavior should, afortiori, be driven by the
underlying asset's price dynamics. Running this argument in reverse, one may
be able to infer properties of the underlying asset prices by studying the
dynamics of option prices. This would be particularly useful if the option
prices depend on an aspect of the underlying asset prices, such as its
standard deviation, which is not directly observable. In fact, the connection
between option prices and expected volatilities is much more explicit in
practice.

Typically, over-the-counter (OTC) currency options are quoted in
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annualized percentage standard deviation rather than price. Figure 1 graphs
the volatility quotes of two major currency options brokers, Tradition
(Reuters, page TRAD) and the Bierbaum-Martin Group (Telerate, page 9042) on
Jan. 18, 1991, as an illustration. These volatility quotes are for European
style at-the-money spot, as distinct from forward, currency options of varying
maturities. The accepted practice for converting a volatility quote to price
is the Garman-Kohlhagen (1982, GK for short) variation of the standard Black-
Scholes (1973, BS for short) model. The advantage of this format is that
volatility levels are much slower moving than spot prices, and therefore,
provided there is no ambiguity in converting volatility quotes to prices, one
can avoid the need to continuously update option prices as the spot exchange
rate moves. Here the GK model is being used as a conversion factor between
volatilities and option prices, similar to the conversion factor used by the
Chicago Board of Trade between the Treasury bond futures contract and
deliverable cash bonds. Our point is that the notion of price and asset
volatility is very interchangeable in the market place.

It is therefore natural to think of studying implied volatility derived
from standard option models without necessarily assuming the "correctness" of
the model itself. This is analogous to computing the basis of a futures
contract to its underlying cash instrument without implying that the basis is
at "fair value." From an empirical perspective, we think of the process of
computing implied volatilities as a method for forecasting future volatility.
The question then boils down to this: can implied volatility forecast future
volatility better than standard measures based on historical prices? One of
our goals here is to design a framework for assessing this issue. Obviously,

if the resultant implied volatilities display stochastic behavior incompatible
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with the assumptions of the option model used to create them, we will need to
address some difficult theoretical issues in option pricing. But we must
first document the facts.

One stylized fact is the existence of a maturity or term structure in
the volatility quotes, which is illustrated in Figure 1. This is certainly
consistent with the mean reversion behavior of implied volatilities reported
in Merville and Pieptea (1989) for stock options. A simple way to see this is
to apply a risk neutral valuation argument. In such a world, one would be
willing to form expectations of future volatility levels, incorporate them
directly into option prices without further adjustment for risk. Therefore,
in much the same way as in the case of an interest rate term structure, the
expected average volatility may differ with maturity point. With risk
aversion, the additional complication is how to determine the size of the risk
premium embedded in these volatility quotes.

A related question is how asset price volatility behavior affect implied
volatility and, in turn, option prices. Once again, only sufficient
conditions can be provided. Suppose the volatility of asset prices mean
reverts. Unless this phenomenon is totally disregarded in forming
expectations of future volatility or price dynamics, options with different
maturities would be priced to reflect this. After all, delta hedging an
option position is ultimately governed by the amount of price volatility
realizable. In the next section, we provide some empirical observations on
this issue.

A second common observation concerns the negative association between
implied volatility and market level which is frequently posited as accepted

wisdom. Whilst a theoretical argument linking volatility to equity prices can
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be constructed, as in Christie (1982), we know of no analogous theory for
currencies. In fact, the notion of market level is hard to define in the
foreign exchange market. Figure 2 provides some tentative clues on this
point. The price-to-implied volatility relation is routinely monitored by
major investing institutions. As a result, brokerage houses regularly report
on this. Figure 2 is a typical graph published by the Discount Corporation of
New York Futures, which plots the implied volatility of the nearest to at-the-
money options on the lead month futures contract along side the futures
prices. The precise model and interest rate used to compute the implied
volatilities is of minor importance here, since the early exercise value of
at-the-money options is low relative to its value and since short term
interest rate plays a small role on options on futures contracts. Therefore,
even if there are biases in the computation due to the early exercise feature
of these options, they are likely to be small.

Although the plots themselves do not constitute a formal test, the fact
that market participants are interested in them provide a prima facie case for
further academic investigation. Pause for a moment on the currency plot in
Figure 2. The solid line represent an index of futures prices in British
Pound, Deutschemark, Japanese Yen, and Swiss Franc. Since the individual
futures prices are expressed in number of units of US currency per unit of
foreign currency, a decline in the index level corresponds to a rising US
dollar and vice versa. It is interesting to note that during the dollar rally
through 1988 ending in the summer of 1989, implied volatility was high.
Subsequently to that, during the second half of the dollar decline throughout
the second half of 1990 and into the early part of 1991, implied volatility

was also rising. Although the second rise in implied volatility is more
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likely to be related to the Gulf War, nonetheless, we have seen two dollar
moves in opposite directions coinciding with high levels of implied
volatility. Therefore, if there is an association between implied volatility
and market level, how this can be measured for currency options is far from
clear. We provide some empirical observations of this phenomenon in the next
section.

The third stylized fact posits a "strike price bias" in option implied
volatilities. Figure 3 illustrates this. The horizontal axis expresses the
closing futures price as a percent of various strike prices for the March DM
option on March DM futures in the International Monetary Market on January 2,
1991. Implied volatilities of closing option prices at various strikes are
expressed as a percent of the implied volatility of the nearest to at-the-
money option. The model used is based on the Barone-Adesi and Whaley (1987)‘
extension to the BS model. The Quantitative Strategies Group in the
Institutional Futures Division of Lehman Brothers monitors these statistics on
a daily basis. Clearly, the implied volatilities of out-of-the-money options
skew away from that of the at-the-money options. This is sometimes referred
to as the "smile" across strikes. There are a number of ad hoc institutional
reasons often put forward as explanations; few, if any, lend themselves to
formal tests. A more systematic cause of this can be found in the work on
option models admitting stochastic volatilities with non-zero correlation
between volatility and price.

Consider the structure analyzed in Wiggins (1987) where the underlying
asse t price S(t) follows a diffusion process given by:

ds(t) = pg S(t) dt + o(t) S(t) dzg,

where the volatility diffusion process is:
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do(t) = f(o(t)) dt + ¢ o(t) dz,,
with the instantaneous correlation

p dt = dz, dz,.

Variations to the function f(o(t)) were used in Scott (1987), Hull and
White (1987a, 1987b, 1988), and Chesney and Scott (1989). All of the above
papers used a mean reversion process for f(o(t)), with a stationary variance
. 1In a loose way, we can interpret the stylized facts where volatility is
stochastic, displays a maturity effect, and appears to be correlated to market
levels, as lending support to the above structure. With simulated results,
most of the above authors showed that even with p set to zero, the presence of
stochastic volatility alone is sufficient to induce implied volatilities for
out-of-the-money options computed using standard models to be higher than
their at-the-money counterparts. However, with p set to be negative, it will
have an asymmetric effect on puts and calls. We prefer to adopt this as the
motivation for testing this "smile" across strikes. Results are reported in

the next section.

3. Volatility Measures and Their Information Content

In this section, we define various measures of volatility and contrast
their information content. This methodology applies to analysis of volatility
in financial markets in general. In this paper, we limit our scope to the
currency markets. Like the US government bond market, the foreign exchange
(FX for short) market remains an over-the-counter market where transactions
are generally conducted through interbank networks. Liquidity is perhaps the
highest of all financial markets. 1In 1986, the average volume of worldwide

trading is over $200 billion per day. (See Krugman and Obstfeld, 1988,
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p. 314, footnote 1.) Of the various currencies, the most liquid currency is
the Deutschemark/US Dollar exchange rate. Due to the nature of the market,
transactions data history simply does not exist in any meaningful way.
Quotation prices are mainly through the normal information agencies such as
Reuters and Telerate, which pool currency quotes from contributing banks. As
a result, although official sources on daily exchange rates exist, such as the
Federal Reserve'’s data base, higher frequency data such as tick-by-tick quotes
remain the private property of a limited number of financial institutions.
Both the availability and the data quality of such databases are only becoming
known through recent work by Goodhart and Demos (1990) and Muller et al
(1990). The result thus far leads us to believe that more work is required
before the data can be subjected to serious tests. In relation to this,
option prices on spot FX rates are even harder to obtain. Therefore, in this
paper, we use the Deutschemark (DM for short) futures contract in the Chicago
Mercantile Exchange which also has available the associated options data.

The tick-by-tick (also called "quote capture" or "time-and-sales") data
contain the time and price of every transaction in which the price has changed
from the previous transaction. In addition, a bid price is recorded if it is
above the previous transaction, and an ask price is recorded if it is below
the previous transaction. Since these bid and ask prices do not represent
actual transactions, we eliminated them from our sample. Note that there is
no information on the number and volume of transactions at any given price.

In addition to the tick-by-tick data, the Chicago Mercantile Exchange also
provides daily data on the open/high/low/settlement prices of each futures
contract, as well as its daily volume and open interest. Our data begins on

Feb. 25, 1985, when daily price limits were removed on currency futures, and
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ends on Jul. 30, 1989, totaling 1121 daily observations.

We begin our analysis with a description of the daily settlement prices.
Let F, denote the futures settlement price at date t. Let x; = log[F./Fy,] be
the continuously compounded rate of change, where "log" means natural
logarithm. Figure 4 is a plot of x;, and Table 1 presents some statistical
description of the data. The mean is close to zero (the t-statistic for this
test is 1.62). There is little autocorrelation in x,, but there is some
autocorrelation in |x,|. The latter finding is consistent with the
predictability volatility changes.

Our goal is to provide a description of volatility changes. Some
further notation is needed. Define Ey[%y4;] = py, and Vi i[x,] = of. Based on
the information in Table 1, we assume that py = 0, and that o, changes over
time.

Since o, is not observable, we need to proxy it. To do so, we use the
tick-by-tick data on the DM futures contract in the CME. For each trading
day, we calculate o, as the standard deviation of the 15 minute rates of
change of the nearby futures contract. We call this "realized volatility."

It is appropriate to discuss the rationale for using the 15 minute
interval, rather than a shorter time span. In tick-by-tick data, as in most
transactions data, there are bid-ask bounces, causing a large and negative
first order serial correlation in the data. We need a sufficiently long time
interval to remove the effects of any bid-ask bounce. This is achieved using
a 15 minute interval.

We should also discuss the method used to convert the standard deviation
of 15-minute data to a daily volatility. Essentially, we multiply the

standard deviation of the 15-minute data by the factor (96/M)%, where 96 is
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the number of 15-minute intervals in a 24 hour day, and M is the number of 15-
minute intervals in the trading day. This "scaling up” is based on the
observation that currency markets are open around the clock, and therefore the
intraday open-to-close price volatility is proportional to the daily close-to-
close price volatility. [The appropriateness of this method is illustrated in
Table 4, and will be discussed later.]

We examine the time series behavior of o, in terms of its natural
logarithm. There are three reasons for this transformation. 1In the first
place, the standard deviation is always a positive number. If we had graphed
o., it would be easy to pick out sudden increases but difficult to see sudden
decreases, which may be responsible for the popular belief that volatilities
are more likely to jump upwards than downwards. In the second place, we
would like to predict o,. If we had worked with o, itself, our prediction may
have been negative! This is avoided by working with log[o,]. 1In the third
place, log[o,] is a much better behaved series than o, itself, because the
logarithmic transformation "pulls" the outliers in. This makes statistical
analysis much simpler and nicer.

Figure 5 is a plot of logl[oy]. Some statistics of log[o,] are provided
in Table 2. Volatility changes over time. Its smallest and largest values
are -6.29 and -2.96, or 2.9% and 83.1%, respectively, on an annualized basis.
Volatility is also serially correlated. Based on the Akaike (1974)
information criterion, log[o,] is best described as an AR(7). The regression
is given in the lower panel of Table 2. The sum of the autoregressive
coefficients is 0.794, which indicates that log[o,] is mean reverting. The
fitted values, log[el,], are plotted in Figure 6.

This characterization of DM futures prices is similar to that of spot
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exchange rates. For example, Hsieh (1989) found a significant amount of
nonlinear dependence in daily rates of change of spot exchange rates, which is
consistent with Engle’s (1982) autoregressive conditional heteroskedasticity
(ARCH) model, or Bollerslev'’s (1986) generalized autoregressive conditional
heteroskedasticity (GARCH) model. We have decided not to pursue that method
of extracting volatility, in view of the fact that the tick-by-tick data
provide a natural way to obtain daily measures of volatility, and that Hsieh
(1991) finds that GARCH models for currency futures suffer from

misspecification.

4, Forecasting Volatility
We next examine some of the methods used to forecast volatility. First,
we consider historical volatility, which is the standard deviation of past
observations of x,. We use a 20-day rolling measure:
02y = [ 2 (x¢-; - 2;3xr,-5/20 )2 /20 1%,
Figure 7 is a plot of log[o2,]. Since 02, is a rolling measure of volatility,
it is not surprising that o2, is highly autocorrelated, as shown in Table 3.
Second, we use the implied volatility of at-the-money (ATM) call and put
options on the DM futures, o3, and o4,. This is obtained as follows. For
each day, we choose the nearby DM futures contract and the options on that
contract which mature in the same month. For example, in January 1989, we use
the March 1989 option and futures. Contracts are rolled over when the option
has less than 10 days to maturity. We match futures and options prices using
the tick-by-tick data from the CME. The option with the strike price closest
to the futures price at the end of the day is chosen. The interest rate is

taken to be the treasury bill rate for the bill which matures nearest to the
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options expiration date. The implied volatility is that volatility which
equates the options price and the model price, using the Barone-Adesi and
Whaley (1987) approximate solution to an American option.

Figures 8 and 9 are plots of log[o3y] and log[o4.]. It is interesting
to note that ATM call and put implied volatilities are almost identical. This
is quite different from the behavior of stock index options. Statistics of
the series are given in Table 3. They indicate that there is strong
autocorrelation in both series. This should not be surprising, since the
forecast of an AR(7) is likely to be much more correlated than the AR(7)
itself, as demonstrated in Table 3.

Third, we use the lagged value of the l5-minute volatility, oy.;. This
can be interpreted as a naive forecast.

Fourth, we use the fitted values of the AR(7) model. This can be
interpreted as a "rational expectations" forecast.

We perform two comparisons of the ability of these series to forecast
future price volatility. In the first comparison, we test whether these
measures of volatility can standardize the daily rates of change, as follows.
For each day, we divide the rate of change of the settlement price (x;) by the
previous day’s measure of volatility, i.e.:

Zy = Ry/0yp1; Z2¢ = Xp/02¢-1; 23y = Ry/03¢1; Zhy = Rg/0beog.

If 0i,., is the appropriate forecast of volatility, then zi; should have mean
zero, variance one, and no evidence of heteroskedasticity. Table 4 presents
the statistics of the zi's for the 1121 observations (Feb. 26, 1985 to Jul.
30, 1989). The means of the zi’s are not statistically different from zero
(the t-statistics are 0.737, 1.434, 1.486, and 1.454, respectively, for z,

z2,, z3;, and z4,). The standard deviation of z2, is statistically different
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from unity at the 5% significance level, while those of z;, z3,; and z4, are
not statistically different from unity (the t-statistics are 0.00, 2.063,
-0.602, and -0.636, respectively, for z,, z2,, z3;, and z4;). In addition, the
autocorrelation of the absolute values of the zi’s show that the
standardization has removed all evidence of heteroskedasticity. These tests,
although crude, show that the 15-minute and implied volatilities can predict
the next day’'s price volatility, but historical volatility tends to
underpredict the next day’s price volatility.

In the second comparison, we calculate the root mean squared errors and
mean absolute errors of the 1-day ahead forecasts of price volatility, o,
using the various measures of volatility from the previous day. The results
are reported in Table 5. It shows that the historical volatility and the
lagged 15-minute volatility are the worse predictors. The put and call
implied volatilities can forecast realized volatility better, by about 17% in
root mean squared error, and by about 8% in mean absolute error. Not
surprisingly, the fitted values of the AR(7) is the best predictor of future
volatility, beating the historical volatility by 20% in root mean squared
error and 10% in mean absolute error.

The impressive performance of implied volatility in forecasting l-day
ahead realized volatility, at least relative to the fitted volatility, brings
us to the following issue. Is the implied volatility a forecast of the
average realized volatility over the remaining life of the option, or is it
merely forecasting the next day's realized volatility? This is a difficult
question to answer. The problem is that, even though we have over 1000
observations, there are only 17 quarterly expiration cycles in our data. In

other words, the options are forecasting overlapping periods, so that the
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forecast horizon shortens as the options age. This creates substantial
statistical problems. The overlapping forecast horizon was addressed in
Canina and Figlewski (1990) in the context of stock index options. But the
asymptotic distribution used in their work is most likely a poor approximation
of the finite sample distribution, especially in our case.

One way to answer this question is to use the AR(7) model to forecast
the average future volatility for the life of the option. We denote this
series as of,. The logarithm of of, is plotted in Figure 10. Due to the mean
reversion of the AR(7), of, is a smoother series than ol,, as indicated by its
smaller standard deviation in Table 3. 1In addition, the autocorrelation
coefficients of of, are uniformly smaller than those of ¢l,. Relying on the
principle of matching moments and autocorrelation coefficients, the evidence
favors the view that implied volatilities are 1l-day ahead forecasts of future

volatility.

5. Volatility and Levels

We now deal with the issue of whether volatility is related to asset
levels. Figure 11 is a plot of the levels of the DM futures contract.
Superimposing Figure 11 on realized volatility (Figure 5), historical
volatility (Figure 6), fitted volatility (Figure 7), call and put implied
volatilities (Figures 8 and 9), there does not appear to be any relation
between the level of DM futures and any measures of volatility.

In trying to test the relation between volatility and level, we
encountered some important statistical problems. It is natural to test the
relation between volatility and level by regressing the former on the latter,

and testing whether the regression coefficient is statistically negative.
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This procedure runs into the problem of "spurious” correlation, as defined in
Granger and Newbold (1974). Whenever one regresses a highly autocorrelated
series (such as the logarithm of volatility) on another higher autocorrelated
series (such as the logarithm of DM futures price), the standard errors of the
estimated coefficients are incorrect, leading to erroneous inference. To
avoid this problem, we ran the regression in first differences. We found that
there is no relation between volatility and levels. This is reported in

Table 6. None of the regression coefficients of log[F,.;] are statistically
different from zero.

An implication of this finding is that the observed behavior that out-
of-the-money options tend to have different implied volatilities than at-the-
money options (as illustrated in Figure 3) cannot be due to a negative
relation between the level of the asset and volatility. It is more reasonable
to attribute this behavior to the incorrect assumption of the Black (1976)
model that futures prices follow a geometric brownian motion. In particular,
the distribution of the rates of change has fatter tails than the normal,
which means that the Black (1976) model underprices out-of-the-money options,

i.e. their implied volatilities are higher than at-the-money options.

6. Concluding Remarks

In summary, we have found the following empirical facts regarding the
volatility of the DM futures contract:
a) Realized volatility changes over time and is mean reverting; it can be
modelled as an AR(7).
b) The historical volatility is a poor predictor of future volatility,

relative to at-the-money put and call volatilities.
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¢) At-the-money put and call volatilities are almost identical, and are good
predictors of future volatility, almost as good as the in-sample predicted
values of the AR(7) model.
d) The evidence slightly favors the view that implied volatilities are l-day
ahead forecasts of future volatilities.
e) None of the measures of volatility (realized, fitted, implied) are related
to the level of the DM futures. This means that the "mispricing" of the Black
(1976) option model on out-of-the-money options relative to at-the-money
options cannot be attributed to this explanation.

There are some interesting implications for these findings. The fact
that an AR(7) process is needed to describe volatility indicates that it has a
complicated structure. The simple stochastic volatility models used in recent
option pricing models may not be adequate. Nevertheless, the AR(7) process
can easily be used in simulations. This can help in describing the
distribution of asset price movements, which is critically important in
determining the capitalization needs of leverage positions. See Hsieh (1991)
for details. Lastly, an accurate model of the dynamics of volatility will

help in asset allocation decisions. This will be left for future research.
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Table 1
Statistics of Rates of Change of DM Futures

%Xy = log[Fy/Fypq]

Summary statistics of xg:

Mean 0.376510E-03

Median 0.000000

Std dev 0.777268E-02

Skewness 0.212509

Kurtosis 5.51004

Maximum 0.483210E-01
- Minimum -0.326300E-01

Autocorrelation Coefficients:

Lags X 1%
1 -0.011 0.055
2 0.007 0.035
3 0.045 0.087
4 -0.030 0.064
5 0.001 0.079
6 0.000 0.107
7 -0.008 0.104
8 0.029 0.077
9 -0.002 0.049
10 -0.006 0.129
11 -0.012 0.033
12 -0.005 0.057
13 0.022 0.097
14 -0.021 0.056
15 0.051 0.098
16 -0.050 0.054
17 -0.035 0.015
18 -0.007 0.055
19 -0.013 0.013
20 0.031 0.033
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Mean
Median
Std dev
Skewness
Kurtosis
Maximum
Minimum

Stat

Table 2
istics of Log Volatility (15 Minute Rates of Change)

-4.74154
-4.76615
0.469094
0.639847E-01
3.00770
-2.95990
-6,29327

Autocorrelation Coefficients:

Lags

O oOodAATU LS WN -

QOO OO0 OCOOCOOOCOOOLOOLO0

.465
.418
.392
417
.412
.388
.388
.358
.343
.324
.313
.314
.294
.298
.308
.285
.271
.201
.283
.252

AR(7) regression: y, = log[o.]

e =

A
I

-.9004 + .215 yoq + .116 yop + .077 yeo3 + .133 y,,

(.16

.336

4) (.030) (.031) (.030) (.030)
+ .114 yt_s + .062 Y-8 + .094 Yie-7
(.031) (.031) (.030)
, SEE = .379

Heteroskedasticity-consistent standard errors in parentheses.
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Table 3
Statistics of Log Alternative Volatility Measures

o2 o3 oh ol of
Mean -4.9844 -4.8671 -4.8644 -4.7446 -4.7411
Median -4.9910 -4.8877 -4.8877 -4.7417 -4.7455
Std Dev 0.3332 0.2133 0.2140 0.2740 0.1344
Skewness 0.032 -0.030 -0.025 -0.198 -0.254
Kurtosis 2.901 2.658 2.654 2.613 4,268
Maximum -4.2097 -4.2988 -4.3319 -4.0982 -4.3180
Minimum -6.0921 -5.7153 -5.6557 -5.5830 -5.4107

Autocorrelation Coefficients:

Lag 1 0.973 0.966 0.965 0.943 0.939
2 0.943 0.944 0.946 0.910 0.887
3 0.914 0.925 0.926 0.895 0.833
4 0.885 0.906 0.908 0.852 0.785
5 0.857 0.891 0.894 0.809 0.741
6 0.827 0.878 0.879 0.775 0.703
7 0.793 0.863 0.864 0.721 0.665
8 0.757 0.847 0.848 0.695 0.635
9 0.721 0.834 0.832 0.672 0.607

10 0.683 0.818 0.817 0.650 0.579
11 0.644 0.802 0.802 0.628 0.552
12 0.604 0.787 0.788 0.605 0.526
13 0.563 0.770 0.772 0.586 0.503
14 0.522 0.757 0.756 0.567 0.483
15 0.480 0.741 0.741 0.551 0.465
16 0.437 0.726 0.726 0.533 0.445
17 0.394 0.710 0.711 0.514 0.424
18 0.354 0.695 0.697 0.493 0.401
19 0.312 0.681 0.681 0.482 0.388
20 0.272 0.667 0.668 0.462 0.366
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Table 4
Statistics of Standardized Data

Zy z2y z3 zh,
Mean 0.022 0.049 0.043 0.042
Std dev 1.000 1.144 0.969 0.967
Skewness -0.401 -0.098 0.062 0.057
Kurtosis 7.972 5.175 4.167 4,226
Maximum 4,035 4,893 4,647 4.659
Minimum -7.507 -5.800 -3.347 -3.405
T-test:
Mean=0 0.737 1.434 1.486 1.454
SD=1 0.000 2.063 -0.602 -0.636
Autocorrelation coefficients of absolute wvalues:
Lag 1 -0.066 0.034 -0.002 -0.001
2 -0.080 ~-0.022 -0.037 -0.036
3 -0.053 0.013 0.012 0.012
4 -0.035 0.021 0.016 0.014
5 -0.043 0.038 0.030 0.029
6 0.008 0.034 0.043 0.042
7 0.037 0.042 0.044 0.045
8 0.008 0.005 0.022 0.022
9 0.026 0.019 0.022 0.022
10 0.053 0.039 0.066 0.066
11 -0.024 -0.029 -0.015 -0.017
12 -0.002 -0.021 0.004 0.003
13 -0.013 0.013 0.033 0.033
14 -0.002 -0.005 0.018 0.015
15 0.058 0.019 0.048 0.048
16 0.025 -0.007 0.042 0.039
17 -0.024 -0.063 -0.026 -0.025
18 -0.017 -0.039 0.011 0.011
19 -0.013 -0.045 -0.017 -0.017
20 0.022 -0.070 -0.014 -0.013
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Table 5
Forecast Errors of log[o.]

Log of Ogp-1 Uzt-l 031:-“1 04t—1 alt"l

Root Mean

Squared 0.482 0.487 0.406 0.405 0.390
Errors

Mean

Absolute 0.601 0.613 0.562 0.562 0.550
Errors

-26-




Table 6
Regression of Volatility on Asset Levels

First differences:

Call implied volatility on futures price level:

log[o3,] = -0.0024 + 0.128 log[F,;] - 0.130 loglo3i-11]
(0.0015) (0.163) (0.056)

R? = .015

Put implied volatility on future price level:

loglo4y] = -0.0025 + 0.289 log[F,;] - 0.189 logloby-1]
(0.0015) (0.166) (0.057)

RZ = .034

Realized volatility on futures price level:

log[o,] = -0.0008 - 1.201 log[F.;] - 0.764 log[oy]
(0.0115) (1.343) (0.032)

- 0.628 log[oy-p] - 0.536 logloy-3] - 0.386 logloy ]
(0.038) (0.044) (0.044)

- 0.253 logloy-s] - 0.174 logloy-g] - 0.066 logloy.;]
(0.043) (0.040) (0.030)

R%2 = .370

Heteroskedasticity-consistent standard errors in parentheses.
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Figure 4 DM Futures Rates of Change
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Figure 5 Realized Volatility (15 minutes DM Futures Prices)
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Figure 6 Fitted Volatility
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Figure 7 Historical Volatility (20 days)
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Figure 8 Call Volatility
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Figure 9 Put Volatility
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Figure 10 Average Future Volatility
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Figure 11 Levels of the DM Futures
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