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I. Introduction

Volatility, being one of the key variables in most models in
modern finance, has deservedly attracted substantial amounts of
research attention. Over the last decade, financial markets have
richly rewarded empirical researchers with dramatic swings. This,
coupled with the explosive growth in derivative markets and an
abundance of price data, has resulted in a diverse collection of
empirical studies that reflect the wide range of financial models
where volatility assumes a central role. However, many fundamental
questions remain unresolved. In this paper we focus oh the modest
task of documenting the statistical properties of "volatility"
in the three major financial markets - stocks, bonds and
currencies. The lack of precision in the way we use the tern
"volatility" is deliberate. It is deliberate because an immediate

problem in a study of this type is the question of measurement. -




At the conceptual level, there is the issue whether using standard
measures of volatility based on historical priées’is inferior to
impligd volatility derived from option prices; the latter of
which should better reflect market expectations. At a more
detailed level, there is the question of whether high frequency
data, such as intra-day prices, offer additional insight to the
traditional approach of using lower frequency (daily, weekly, or
monthly) data over longer calendar spans. Clearly, the choice
of data frequency and the technique for measuring volatility
depends on the application to which it is put. Here, we attempt
to provide empirical input to that decision. The volatility
measure we focus on is the time series of "implied volatility"
derived from observed option prices. The methodology is
essentially based on Hsieh (1991) and Fung and Hsieh (1991) using

high frequency (tick-by—tick) data.

The choice of markets covers the stock market, as proxied by
the S&P futures contract at the CME, the bond market, proxied by
the Bond futures contract at the CBT, and the currency market
proxied by the Deutschemark futures contract at the IMM. This
way, not only will we encompass most of the major financial
instruments, but will also be able to contrast their empirical
behaviour. The paper is organised as follows. 1In section II,
‘we document some stylised facts conerning Volatility’behaviour

in these markets. Section III defines the different ways of




measuring volatility and analyse their information content.
Section IV compares the our finding to the styiised facts in
section II in the context of the inherent assumptions in option
pricing models admitting stochastic volatility. Section V

summarises cur analyses and present our concluding remarks.

ITI. Some Stylised Facts

To motivate the subsequent analysis, we present in this section
selected empirical observations. Figures 1, 2 and 3 plot the
historical behaviour of implied volatility versus historical
price volatility based on the standard deviation of daily closing
prices of the lead futures contract on a rolling 20‘days basis.
Implied volatility is computed based on closing prices of the
nearest to at-the-money series on the lead futures contract using
the Barone-Adesi and Whaley (1987) approximation. Short term
rates used are the T-bill rates of the closest matching maturity
to the-optioﬁ. The actual plot in these figures is based on the
average implied volatility of the puts and calls. Futures
contracts are 1rolled over to the next in the standard
March-June-Sept-Dec cycle at the beginning of the delivery month.
Whilst there are other arguablyrmnxapreciée‘methods for adjusting

contract rollovers in each of the instrument type, we adopted




this rule for simplicity and for uniformaty across markets.
Technically, the aging of the option contracts (as‘we move towards
option expiration) may in itself cause implied_volatility to
shift, but the basic point here is that the changes over time is
of substantial magnitude and not eésily accounted for by the fine
tuning of institutional factors. The more obvious conclusion is
that these volatility time series are volatile and their time

series behaviour merit more formal analysis.

Another interesting question is whether implied volatility
is functionally related to the level of the underlying asset
price. Various propositions have been put forward to substantiate
such associations in different markets. We shall defer analysing
this question after we have presented some formal statistics_on
the data in the next section. However, we would like to leave
the reader with the following question. Are implied volatilities
related to the level of the underlying asset price ? If so, is
the relationship stable ? Figure 4 shows the usual graph one
receives in the industry. Certainly, even casual observations
will cast doubt on concludingzitoﬁal lack of relationship between
implied volatility and price level. Another striking feature is
that should there be an association between implied volatility
and prices, the form of the relationship is unlikely to be uniform
across asset categories. We investigate this issue in section

Iv.




The combined effect of stochastic volatility and.a possible
correlation between volatility and price level would cause
standard option models to imply volatilities of the same underlying
asset to vary across strikes - an observation consistent with
optioﬁ models admitting stochastic volatility; see Hull and White
(1987a, b, 1988), Johnson and Shanno (1987), Scott (1987), Wiggins
(1987), and Chesney and Scott (1989). Figures 5 to 9 provide a
simple graphical illustration. In each of the figures, the x-axis
gives the ratio of the closing futures price to the repsective
option strike price in %. The y-axis expresses in % the ratio
of the implied volatility of options at respective strikes to
that of the one nearest to at-the-money. For example, figure 5
graphs this for the S&P futures options for two specific dates
: Jan 2nd 1991 (for March options on the March contract) and May
1st 1991 (for Septémber options‘on the September contract). It
is clear from the figure that out-of-the-money puts and calls
trade at- substantially different imply volatilities than
at-the-money options; that is if standard option models are used
to compute implied volatilities. Granted that there are other
institutional factors that could cause this 'strike-bias’,
certainly if empirical facts support stochastic volatilities it
would be sufficient to induce standard models to imply this bias
as the above authors have demonstrated theoretically. Adjusting
for this bias calls for an option pricing model that explicitly

accommodate this type of volatility behaviour. However, the




literature has yet to reach an agreement on how this should be
done. More specifically, how one determines the market price of
volatility risk remains an open issue. Here we prefer to take
an empirical route towards progress and report on these

relationships in the next two sections.

Another important fact to bear in mind is that this ’strike
bias’ may well be time dependent. In figure 5, the shaded lines
plot the implied volatility ratios observed at a different point
in time. Granted that the options have siightly different
maturities (Jan. observations on March options versus May
observations on Sept. options) the "levelling" of the strike bias
is hard to dismiss as simply due to a maturity difference in the
~options. Moving to other markets, figures 6, 7 and 8, reveal
similaf shifts and appear to display different degrees of bias
and time shifts across markets. In fact in the case of currency
futures options, figure 7 and 8, the strike bias appeared to have
steepened even comparing Jan. observations on March options to
May observations on June options. It is therefore important to

bear this in mind before entering into more formal analysis.

Finally, Merville and Pieptea (1989) reported a mean reverting
tendency of implied volatility in stock options. This 1is
.consistent with options of different maturities having different

implied volatilities when computed via standard option models.




In other words, implied volatilities would appear to have a
maturity (or term) sturcture. With the Black-Schoies model being
widely accepted, it is now common place to have OTC options.quotgd
in implied volatility terms where it is understood that the model
used is the standard Black-Scholes model (sométimes with minor
~variations to adjust for the underlying instrument type) for
European options. Whilst the hedging of such positions may well
be based on an entirely different model, "Black-Scholes implied
vol" is certainly the industry standard. To illustrate this
point, figure 9 éraphs the '"quoted" volatility of Yen/Dollar
options at maturities ranging from one month to one year obtained
from currency brokers that regularly provide these quotes on
Telerate and Reuters (the reported figures are averaged over
several brokers). It is clear from the graph that options of
different maturities are ’‘priced’ at different volatilities.
Furthermore, this maturity or term structure could assume
different shapes at different points in time. Figure 10 gives
a similar graph on DEM/Dollar options. As can be seen, the slope
of the quoted term structure can range from being flat, downward
sloping to upward sloping. Figﬁre 11 displays two term structures
for DEM/Dollar options and Yen/Dollar options observed at the
same time to illustrate the point that the shape of the ternm
structure could slope differently depending on the underlying
asset. In fact, Figures 9 and 10 illuétrate the movement of

this structure where, over the first half of 1991, Yen options




moved from being downward sloping to a flat structure, whereas
DEM options went frém being downward sloping toAupward sloping
and back to being downward sloping. It is entirely possible that
with suitable adjustments to Black-Scholes, one could derive an
option model that accounts for the time series behaviour of
volatility such that the resultant "implied volatility" is flat
across maturities at all times. Such a model will undoubtedly
call for additional input parameters (compared to Balck-Scholes)
that describes the time dependence of volatility; see for example
Wiggins (1987), or Hull and White (1987a, b, 1988). Our empirical

results offer further insight to this issue.

ITI Data Series and Basic Statistics

In order to keep the scope of the empirical work within
reasonable limits without losing sight of the the cross-market
contrast objective, we have chosen to proxy the stock market by
the S&P index, the bond market by the longer end of the US
Government Bond market, and the currencies market by é major
currency such as the Deutschemark. A further consideration on
the choice of data is the issue of liquidity and the associated
data quality problem. As liquidity for both the US Government
»Bohd market and the Foreign Exchange market resides with the

over-the-counter markets (broker-dealer for bonds and inter-bank




for currencies), options prices on these instruments for any
reasonable continuous period are generally unobtainable. As a
result, we prefer to use exchange traded futures contracts and
options on futures contracts to proxy the behaviour of these
asset categories. For stocks, we used the Chicago Mercantile
Exchange’s S&P Futures contract, the Chicago Board of Trade’s
Bond Futures contract for bonds, and the International Monetary
Market’s Deutschemarks Futures contract for Foreign Exchange.
The data for the S&P futures and options contract and the DM
futures and options contracts is from the Chicago Mercantiie
Exchange’s (CME) tick-by-tick (quote capture) data. The/data
for the US Treasury Bond futures and options contract is from
the Chicago Board of Trade (CBT)’s Education and Marketing
Services. The Stocks and Bonds data span the period of March
1st, 1983 to July 31 st, 1989. The DM data begins later on Feb.
26, 1985 and ends on the same day. The shorter data period for
the DM is. to avoid potential distortion to the price dynamics
due to a change in the dialy price limit prior to the 1985 start

date.
Several measures of volatilities are computed. These are :
g,(t) rolling standard deviation based

on the daily Log relative of closing prices

Log.(closing price,/closing price, )




from t-20 to t

o, () standard deviaiton based on extreme
values, as in Parkinson (1980);
(.361)°°x Log . (Hi/Lo)

Here the implicit assumption is that
the true trading day can be approximated

by the openning hours of the exchan@e

a.(t) implied volatility of the nearest to
at-the-the-money call options derived

using parameters as described in section II

a,(t) implied volatility of put options

computed in the same way as for the calls

A few comments on the choice of these volatility measures.
Thezo—daysrollinghistoricalstandarddeViation,GAQL is choosen
simply becasue it is a commonly used measure of volatility. The
Parkinson (1980) measue, ¢,(!), makes better use of intra-day price
dynamics than the close-to-close type of measure like g.{t). It
therefore represents a useful first step towards the use of higher
frequency price data than daily closes and is therefore included

here for comparison.
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The two implied volatility series ¢ (t), o,(t), have to be
interpreted with some care. On the one hand they represent
. reasonable proxies of the market’s expectation of future price
volatility. However, an uncomfortable theoretical issue arises.
These measures are computed using a model that assumes a stationary
stochastic process in the underlying asset prices, it therefore
would be internally inconsistent to subsequently fit these series
to non-stationary models. This fortunately is not the way we
choose to interpret these "implied volatilites™® at this point.
Initially, we prefer to concentrate on the gquestion of information
content in the implied volatilities. In this context, one can
think of the Barone-Adesi and Whaley (1987) model purely as an
algorithm that computes forecasts of price volatilities labelled
here as "implied volatilities" for convenience. We then compare
these measures to other more direct measures of volatility. These
"implied volatilities"™ would be accepted or rejected for further
analysis based solely on their information content. Viewed this
way, we can defer the difficult theoretical issues until the
statistical properties of ¢.(t), and o¢,(!) can be shown to merit
further analysis. Note also that we only include near to
at-the-money options for two reasons. Firstly, 1liquidity is
generally greater for these options compare to the out-of-the-
money series. Secondly, given the observed "strike bias" reported
in section II, including out-of-the-money (or in-the-money)

options would introduce further errors into the reported




statistics.

Tables 1 to 3 report the statistics on these volatility
measures for the S&P, DM andAT Bonds respectively. 1In addition
to the four measures, which are reporﬁed in logarithﬁic form, we
also included a new measure of volatility which we use as our
proxy for "realised volatility", g (). The rationale for
focusing on the transformed volatility series ié as follows.
Since by construct, these measures are positive definite and are
therefore bounded below by zero but theoretically unbounded above
which induces an asymmetric behaviour of the time series. Figures

12 to 29 plot these series in the three markets.

The method for assessing the information content of the four
volatility measures, o,(t), ¢,(t),0.(t), and QPU), is based on Hsieh
(1991), and Fung and Hsieh (1991). The reasoning runs as follows.
We regard.a volatility measure as informative if it is indicative
of future realised price movements or volatility. Since these
empirical measures are on a daily basis, we need a proxy of
realised daily price volatility. This is achieved by measuring

the standard deviation of the series {r,} :

r;=Log.(Price;/Price;_sminutes)
where 3j spans the daily trading hours (open to close of the
’market). The measure, ¢ ({) is therefore the daily standard

deviation of the series of 15 minutes rates of change for each
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trading day excluding the market close to market open (or
overnight) effect. However, an adjustment needs to be made to
bridge the computed o' (t) to better approximate a 24-hours standard
deviation measure. For the DM futures, we multiply the standard
deviation of the 15 minutes data by V96, to reflect the 96
15-minutes interval in a 24 hours day, to obtain a daily standard
deviation. Here the implicit assumption is that liquidity in
the currency market does not diminish outside of US day time
hours. For the S&P and T Bonds, we need to gccount for the

nontrading hours differently.

Let O,andC, denote the openning and closing prices for day
t respectively. Let VT, denote the "total daily variance" from
the close of the market in one day to the next. We can decompose

this total variance into two parts
VT, =VI1,+VZ2,

where V!, is the variance of the rate of change between C, ,and0,,
and V2, the variance of the rate of change between O,andC,. We
estimate V2, by scaling up the standard deviation of the 15-minutes
data. Specifically, suppose that there are n 15-minutes intervals
during the trading day, then V2, is the standard deviation of the
15-minutes data multiplied by Jn. To obtain V7T, we use the

approximation

VT, =(1+08)xV2,




where 9=V1,/V2, estimated using

_ [Log.(0,/C,.1)]?
 [Log.(C./0)7?

over the sample period. The same procedure is also used to scale

the Parkinson Hi/Lo volatility measure o.(t).

The 15 minutes time interval is an empirical choice. Going
beyond 15 minutes to higher frequency data brings in empirical
issues beyond the scope of this paper. For instance, there are
significantly different autocorrelation characteristics for the
three markets. At high data frequency, more work is needed to
correct the autocorrelation effect that is due purely to bid/offer
spreads. We opted for the 15 minutes interval, which is
sufficiently long to mitigate a lot of the bid/offer spread
induced autocorrelation and yet short enough to allow for a
meaningful number of observations- approximately 26 observations
per day- to compute a daily standard deviation. The time series
of corresponding daily returns {x,.,} is then computed using the
log relative of close-to-close prices and is based on information
external to that used in computing o¢’({). This series of daily
returns when transformed to be in absolute terms, {|x.,|), displayed
a high level of autocorrelation than the original series which
is close to mean zero with varying degrees of autocorrelation.

"This is consistent with the significant levels of autocorrelation
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in all the volatitily series in tables 1 to 3. Next we define

a series of standardised variables

x(t+ 1)}
27\ Ton (D)

<x(z+ 1)}
“7 o

. <X(t+ 1)>
=z
o (t)
~ Y(t'*'])
“7\ 7o)
. <x(z+ 1)}
i 0,(1)

We say that a volatility measure has better information content
if the corresponding standardised variable is closer to being
iid; with mean zero and a standard deviation of 1. This is in
many ways analogous to the structure of a GARCH model. Consider

a GARCH type structure where

X1 1~D(0, hy)
Here we informally approximate h/’?by the four volatility measures.
Tables 4, 5 and 6 present the results for the S&P, DM and T-Bonds.

An additional column of data labelled as Raw Data representing

the statistics on {x,} is included for comparison.

Standard t-tests are reported against N(0,1) for the five

volatility measures in each of the three markets. 1In all cases,
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the standardised variables (z,} for 1 = h, k, *, c, p showed
substantial amount of reduced autocorrelation. r‘rho:-z t-tests for
{z,}, 1 = *, c,. p all failed to reject {z~N(O,1). There 1is
however, some troublesome levels of kurtosis for the case of the
S&P series. We suspect thaf this is due to the inclusion of the
87’ stock market crash in the data series. The bottom of table
4 recompute the moments in two subperiods excluding the period
of the crash. Generally the kurtosis levels are much reduced.
Based on this 1id test, we would conclude that the "implied
volatility" series performed 3just as well as the realised
volatility ¢7(t), and could be loosely described as having superior
information content to the two other measures o,(t) and ¢,(f). At
this stage, the evidence would support further investigations on

the information content of the implied volatilities.

The next stage of our test design is a straight forward
one-step-ahead forecast of "realised volatility" as proxied by
¢’(t). For completeness, we include the ¢'(t) series itself in the
test. Two simplistic time series forecasts are included, the
first is simply a random walk model of E,. (¢’ (t))=c¢'(t—-1). The
second model is a simple autoregressive model based on the observed
autocorrelation patterns in tables 1, 2 and 3. Table 7 shows
the fitted model. Generally, it was necessary to go up to lag
'15 for the S&P and T Bonds whereas it was sufficient to stop at

lag 8 for the DM futures. The figures immediately below the
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coefficients in table 7 are the standard errors. Here we overfit
somewhat by using the entire sample at our disposél to determine
the order of the autoregressive models; AR(15) for stocks and
bonds and AR(8) for the DM futures. The forecasts are based on
EPJG’U))=E(.IAR(nJ~1)). Clearly the latter forecast based on
the AR models contains information going beyond that available
at t-1, but only to the extent of the "order" of the AR models.
The coefficients to the models are refitted periéd by period.
Table 8 contains the Root Mean Square Error (RMSE) and Mean

Absolute Error (MAE) for each of the forecast models.

It is hardly surprising that the "over-fitted" AR models diaqd
the best. In the case of the S&P, except for the over-fitted AR
model, there is little to choose between the others. 1In other
words, the implied volatilities add little to the straight forward
rolling historical volatility series. A conclusion that is
consistent with Canina and Figlewski (1990). 1In the case of DM,
the implied volatilities performed almost as well as the
over-fitted AR model. They show a reduction of RMSE, and MAE by
almost 20% on average against the other three models. In the
case of the T-Bonds, the results are similar to that of stocks
with the implied volatilites showing only marginal improvements

to the simple historcial rolling volatility.

The broad conclusion at this point is that a great deal of
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the observed non-stationarity and non—-linearity in the underlying
assets’ returns come from the non—stationafity of their
volatilities as shown in the iid tests. Although implied
volatilities performed as well as other standard measures in the
iid tests, they do not appear to forecast future realised price
movement any better for stocks and bonds. Only in the case of
the DM, did the implied volatilities add information. We can
offer one pluasible explanation to this phenomena; Stocks and
bonds are physical financial assets with natural demand to hold
over long horizons. This cannot be said fﬁr currencies.
Thereofore, if investors are net long of stocks and bonds, the
insurance attribute of options in a world with transaction costs
could be a significant contributing factor to the option premium.
This in turn will afffect the computed implied volatilities based
on a model casts in a frictionless market setting. In other
words, the diverse clientele of investors in the stock and bond
markets injects an additional dimension to our analysis of implied

volatility.
Section 1V Implications for Option Pricing Models
The stylised facts outlined in seciton II are, with specific

‘assumptions, formally stated in the stochastic volatility models

in Wiggins (1987) and Hull and White (1987a, b, 1988). 1In these
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models, the stochastic process for the underlying asset is:

dS(t) =pS(t)di+o(1)S(t)dz,
do(t)=F(o(t))dt+80(t)dz,

pdt=dz Xdz,

The function forms used for f(o(!)), tended to be variations
of a first order mean reversion model with a constant variance
term ©. Given this ‘specification, the above authors were able
to simulate option prices that exhibit implied volatility
different from the input volatility when derived from a standard
option pricing model assuming constant variance. The "stylised
facts" reported in section II on the stochastic nature of implied
volatilities and the "strike-bais" are, althohgh informal but/
consistent empirical evidence in favor of the above models.
Specifically, the asymmetric "strike bias" in the S&P futures
options ié consistent with a negative p. The assumption of mean
reversion in o(t), is consistent with the observed maturity
structure to the implied volatilities reported in section II.
Whilsttheseobservationssupportanunderlyingstochasticprocess
similar to the one specified above, a few words of caution is in

order.

Firstly, the term structure we observed in section II and
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its time variations appeared to be more complex than just a simple
first order model. Secondly, the intertemporal behaviour of the
"strike bias"™ is of a magnitude that may not be consistent with

a stationary 6, and p.

In terms of the empirically results in section III, the AR
models reported in Table 7 would be consistent with mean reverting
behaviour, since the coefficients of the lag terms sum to less
than unity. However, the order of the AR model is inconsistent
with the structure suggested in the stochastic volatility options
literature. Although one could investigate alternatives such as
ARMA models of a reduced lag structure, preliminary results
suggest a nonstationary mean term which brings in further
complications to the existing option models both in terms of
misspecification of the stochastic précesses as weli as adding
to the problem of estimating the market price of volatility risk.
The implied volatility series display similar autocorrelation
behaviour to that of the 15-minutes volatility series. Until a
more robust structure capturing the time series behaviour of
these volatility measures can be established, reliable estimates
of 6, and p continue to elude us. From the evidence we have thus
far, models that depend on the stationarity of ©, and p appear

to be poor propositions.
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\' Summary and Concluding Remarks

We began the paper by reporting some stylised facts on the
behaviour of implied volatilities in three options markets - S&P
rfutures, DM futures, and T Bond futures. At first glance, the
observations look promising in that they are broadly consistent
with the predictions of stochastic volatility option models of
Hull and White (1987a, b, 1988) and Wiggins (1987). Although
there are some tell tale signs tha{t the stochastics process may
be more complex'than the ones used in the literature thus far,
they are sufficiently encouraging to warrant further investi-
gation. Realising the high demand for data quantity in analysing
time series behaviour of volatility and the attendant measurement
problems, we adopted a different approach. Here we chose to
interpret the observable implied volatilities from option prices
as one of several volatility forecasts we examine without
reference to the theoretical assumptions underlying the option
model. It is important to note that we based our observations
on the nearest to at-the-money-options rather than averaging over
options of different strikes as in other studies. This is becasue,
given the strike bias we observe in section II, out-of-the-money
(or in-the-money) options bring additional measurement errors.
Also, a quick reference to the reported volume on out (in)~the-money
‘options reveals a wide disparity in 1liquidity compared to

at-the-money options. Since we are concerned with the information




content of the implied volatilities, it makes more sense to avoid
the out(in)-of-the-money series. In terms of other, more
historical price based, volatility measures, we added to the
standard daily price change type of measure two additional
alternatives influenced by our belief that intra-day price
movements play a crucial role in volatility measures. The first
additional measure is based on the extreme value method as proposed
in Parkinson (1980) using daily Hi/Lo prices to estimate standard
deviations. The second measure is based on 15-minutes price
changes extracted from tick-by-tick observations of the market.

We use this latter measure to proxy "relaised volatility".

In order to proceed we need to define a form of information
criterion. In the spirit of GARCH models we used the alternative
measures of volatilities, including the implied volatilities, in
place of a volatility equation in the GARCH structure. We say
that these measures contain information if they reduce observed
autocorrelations in the underlying daily returns and can
standardise the returns to be closer to iid. Under this criterion,
the implied volatilities performed satisfactorily. As a result,
we proceeded to perform a on-step-ahead forecast test on the
predictive ability of these volatility measures using our proxy
of realised volatility as the benchmark. Here, the results are
‘mixed. The implied volatilities performed better than the

historical volatilities in the case of DM futures but added little
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by way of smaller forecast errors for stocks and bonds. In Fung
and Hsieh (1991), we also investigated whether implied
volatilities are better regarded as forecasts of volatility
realised over the remaining life of the option rather than a
one-day ahead forecést we used here. Our results in that paper
suggest that forecast horizon is not an issue. We therefore
ended our analysis at this point and chose not to proceed along

the lines of Canina and Figlewski (1990).

Overall, our impression of the empirical evidence is that
implied volatilities derived from frictionless market models are
affected by institutional factors distorting the time series
analysis. This is particularly the case in stock and bond markets,
but less so with currencies. The more promisipg route appears
to be using high frequency data (tick-by-tick) to model volatility
directly. Judging from the results thus far, the stochastic
process that best describe volatilites of asset prices may well
be more complex than the typiéal first order mean revertin models

used in stochastic volatility option models to date.
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Mean

Std Dev
Skewness
Kurtosis
Maximum
Minimum

Table 1

Rolling
Historical
Vol

~-4.666
0.477
2.118
10.477
-2.370
-5.5821

Measures of S&P Log Volatility

High/
Low
Vol

-4.641
0.527
0.958
6.591

-1.422

-6.244

Autocorrelation coefficients

Lag 1

0.982
0.963
0.942
0.921
0.839
0.877
0.854
0.830
0.807
0.781
0.755
0.730
0.705
0.681
0.657
0.633
0.608
0.583
0.557
0.530

0.471
0.448
0.422
0.469
0.435
0.402
0.339
0.360
0.376
0.344
0.343
0.301
0.311
0.322
0.313
0.311
0.265
0.261
0.262
0.311

15 Min
Tick
Vol

~-4.585
0.454
1.414
9.811
-1.177
-6.168

0.671
0.627
0.600
0.592
0.548
0.503
0.480
0.476
0.466
0.433
0.431
0.398
0.387
0.406
0.423
0.418
0.381
0.354
0.351
0.369

Call
Implied
Vol

-4.522
0.326
0.926
5.402

~-2.803

~5.123

0.980
0.965
0.954
0.943
0.932
0.918
0.908
0.901
0.892
0.883
0.876
0.870
0.864
0.859
0.853
0.846
0.838
0.830
0.824
0.815

Pﬁt
Implied
Vol

-4.503
0.341
1.043
5.961

-2.705

-5.183

0.976
0.961
0.952
0.942
0.%29
0.915
0.901
0.892
0.885
0.874
0.866
0.858
0.850
0.846
0.839
0.831
0.825
0.820
0.812
0.805



Mean

std dev
Skewness
Kurtosis
Maximum
Minimum

Table 2

Rolling
Historical
Vol

-4.977
0.337
0.023
2.847

-4.210

~-6.092

Measures of DM Log Volatility

High/

Low
Vol

-4.721
0.530
0.091
2.845

-3.000

-6.277

Autocorrelation coefficients

Lag 1

0.974
0.946
0.918
0.891
0.864
0.835
0.802
0.768
0.733
0.697
0.659
0.620
0.580
0.541
0.500
0.459
0.417
0.378
0.338
0.299

0.353
0.332
0.296
0.322
0.319
0.311
0.328
0.307
0.277
0.251
0.220
0.253
0.244
0.257
0.259
0.207
0.170
0.144
0.209
0.185

15 Min

Tick
Vol

-4.742
0.469
0.065
3.014

-2.960

~-6.293

0.464
0.417
0.390
0.416
0.410
0.386
0.385
0.356
0.340
0.320
0.310
0.310
0.291

0.294

0.304
0.280
0.266
0.197
0.279
0.248

Call

Implied

Vol

-4.872
0.213
-0.040
2.650
-4.405
-5.719

0.968
0.944
0.925
0.905
0.89%90
0.876
0.859
0.843
0.829
0.813
0.796
0.780
0.762
0.749
0.732
0.716
0.699
0.684
0.669
0.655

Put

Implied

Vol

-4.869
0.214
-0.033
2.653
~4.412
~-5.660

0.967
0.945
0.926
0.907
0.892
0.876
0.860
0.843
0.827
0.812
0.796
0.780
0.763
0.748
0.732
0.716
0.700
0.685
0.669
0.655



Mean

Std dev
Skewness
Rurtosis
Maximum
Minimum

Table 3

Rolling
Historical
vol

~4.924
0.305
0.351
2.707
-4.095
-5.666

Measures of T Bond Log Volatility

High/

Low
Vol

-4.739
0.487
0.145
2.941

-3.208

-6.319

Autocorrelation coefficients

Lag

O 020U b Wk

N S el el I N R S S R S
QUL OUHEWNKHO

0.875
0.952
0.928
0.503
0.876
0.850
0.824
0.799
0.773
0.745
0.716
0.688
0.660
0.631
0.602
0.576
0.551
0.528
0.503
0.477

0.325
0.332
0.335
0.341
0.315
0.256
0.287
0.296
0.272
0.259
0.264
0.251
0.223
0.226
0.277
0.207
0.229
0.190
0.219%
0.176

15 Min

Tick
Vol

-4.812

0.428.

0.076
3.047
-3.234
-6.185

0.557
0.497
0.472
0.513
0.492
0.437
0.421
0.424
0.427
0.405
0.386
0.365
0.387
0.360
0.394
0.364
0.348
0.344
0.362
0.309

Call

Implied

Vol

-4.843
0.212
0.545
3.442

-3.785

-5.383

0.966
0.946
0.926
0.907
0.887
0.868
0.848
0.829
0.806
0.790
0.773
0.755
0.740
0.723
0.707
0.688
0.671
0.657
0.639
0.623

Put

Implied

Vol

~-4.832
0.209
0.460
3.073
~-4.116
-5.364

0.970
0.949
0.932
0.912
0.895
0.874
0.856
0.838
0.818
0.799
0.781
0.764
0.748
0.731
0.715
0.698
0.682
0.668
0.654
0.639



Table 4 Standardized Data for S&P

Rolling High/ 15 Min call Put Raw
Historical Low Tick Implied Implied Data
Vol Vol Vol Vol Vol
Mean 0.064 0.062 0.048 0.042 0.044 0.000
Std dev 1.234 1.212 1.112 1.090 1.085 0.016
Skewness -2.740 -0.526 -0.855 -4.862 -5.153 -7.064
Kurtosis 39.384 7.916 10.398 80.992 88.926 179.348
Maximum 4.359 6.311 6.042 3.199 3.841 0.177
Minimum -17.321 -7.781 -7.681 ~18.647 -19.018 ~-0.337
t (Mean=0) 1.736 1.712 1.445 1.290 1.357
t (SD=1) 1.024 2.226 1.100 0.309 0.280

Autocorrelation coefficients of absolute values

Lag 1 0.044 -0.179 -0.080 0.092 0.096 0.299
2 0.011 - -0.023 -0.0587 . 0.064 0.089 0.355
3 0.017 -0.020 -0.022 0.058 0.066 0.265
4 0.014 0.039 0.060 0.037 0.038 0.158
5 -0.002 -0.015 -0.010 0.031 0.021 0.207
6 0.018 0.011 -0.00°9 0.045 0.041 0.178
7 -0.020 -0.030 -0.040 ~0.007 ~0.005 0.106
8 -0.015 -0.009 -0.010 0.025 0.018 0.146
9 0.029 0.006 0.032 0.072 0.077 0.177

10 ~-0.034 ~-0.042 -0.055 -0.023 -0.024 0.044
11 ~0.026 0.034 -0.004 0.003 0.004 0.093
12 -0.052 ~-0.054 -0.036° -0.013 -0.010 0.057
13 -0.025 -0.004 ~0.013 -0.004 -0.007 0.062
14 -0.010 0.007 0.014 0.025 0.022 0.103
15 0.004 0.048 0.036 0.033 0.033 0.065
16 -0.043 -0.042 -0.020 -0.004 -0.003 0.068
17 -0.019% 0.017 0.009 0.006 0.005 0.060
18 ~-0.043 0.008 0.009 ~-0.004 -0.001 0.068
19 0.001 -0.013 0.009 0.042 0.048 0.084
20 -0.062 0.008 -0.012 -0.025 -0.024 0.050

Subperiod: Feb 26, 1885 - Jun 30, 1987 (592 cbservations)

Mean 0.079 0.081 0.070 0.072 0.072 0.001
Std Dev 1.138 1.187 1.045 0.980 0.977 0.010
Skewness -0.396 -0.920 -0.802 -0.447 -0.446 ~-0.623
Kurtosis 5.983 9.093 8.380 5.147 5.187 6.022
Maximum 4.240 4.258 3.811 3.199 3.196 0.033
Minimum -6.305 -7.781 -6.790 -5.116 -5.160 -0.057

Subperiod: Jan 4, 1988 - Jul 31, 1989 (399 observations)

Mean 0.094 0.080 0.070 0.062 0.065 0.001
Std Dev 1.095 1.232 1.1580 0.841 0.805 0.011
Skewness -0.326 0.100 ~-0.372 -1.056 -0.936 -1.541
Kurtosis 6.158 7.379 11.045 9.629 9.238 16.890
Maximum 4.359 6.311 6.042 2.908 2.855 0.042

Minimum -4.979 -5.657 -7.218 -5.508 -5.271 -0.088



Mean

Std dev
Skewness
Kurtosis
Maximum
Minimum
t (Mean=0)
t(SD=1)

Autocorrelation coefficients of

Lag 1

Table 5

Rolling

Historical

Vol

0.047
1.143
-0.099%9
5.189
4.893
-5.800
1.376
2.046

0.030
-0.022
0.015
0.021
0.036
0.033
0.043
0.006
0.017
0.040
-0.028
~0.020
0.014
~0.006
0.017
-0.006
~0.064
-0.037
~-0.044
-0.070

Standardized Data for DM

High/
Low
Vol

0.034
1.025
0.148
7.036
5.780
-4.768
1.110
0.332

-0.099
-0.042
-~0.048
-0.018
-0.030
~-0.004
0.024
0.003
0.011
0.028
-0.034
-0.001
0.003
-0.008
0.038
0.021
-0.019
0.007
0.007
~0.015

15 Min
Tick
Vol

0.021
1.000
-0.400
7.983
4.035
-7.507
0.703
0.000

Call
Implied
Vol

0.042
0.973
0.064
4.170
4.666
-3.360
1.445
-0.522

absolute values

-0.066
-0.080
-0.053
-0.035
~-0.044
0.007
0.037
0.008
0.026
0.053
~0.023
-0.002
-0.012
~-0.002
0.056
0.025
-0.024
-0.016
-0.013
0.022

-0.003
-0.037
0.012
0.016
0.029
0.043
0.044
0.023
0.021
0.066
-0.015
0.004
0.034
0.018
0.047
0.042
~-0.027
0.011
-0.017
-0.014

?ut
Implied
Vol

0.042
0.971
0.058
4.229
4.677
-3.419
1.448
-0.556

-0.002
-0.036
0.013
0.014
0.028
0.042
0.045
0.022
0.021
0.066
-0.017

0.003

0.033
0.014
0.047
0.039
-0.025
0.011
-0.017
-0.013

Raw
Data

0.000
0.008
0.270
5.426
0.048
-0.033

0.066
0.035
0.083
0.078
0.090
0.122
0.106
0.095
0.066
0.131
0.032
0.062
0.097
0.083
0.108
0.074
0.018
0.056
0.028
0.036



Mean

Std dev
Skewness
Kurtosis
Maximum
Minimum
t (Mean=0)
t(SD=1)

Table 6

Rolling
Historical
Vol

0.060
1.108
-0.087
4.830
4.574
-5.168
1.812
1.667

Standardized Data for T bond

High/
Low
Vol

0.066
1.099
0.033
7.902
5.840
-7.317
2.010
1.148

15 Min
Tick
Vol

0.055
1.104
0.110
7.955
6.983
-6.270
1.667
1.195

Call
Implied
Vol

0.056
0.992
-0.060
3.974
3.737
-3.899
1.889
=0.157

Autocorrelation coefficients of absolute values

Lag 1

20

-0.017
~-0.006
0.019
0.032
0.012
-0.002
~0.042
0.009
0.023
-0.016
0.010
-0.022
-0.013
~0.014
-0.045
-0.027
~0.060
-0.015
0.023
0.013

=-0.155
-0.054
-0.021
0.036
0.019
~-0.041
-0.038
0.011
-0.011
~-0.056
~-0.008
-0.0186
-0.005
-0.002
0.020
-0.021
-0.030
0.029
0.061
0.027

-0.089
-0.070
-0.033
0.017
0.030
-0.040
-0.028
0.003
0.017
-0.051
-0.015
-0.021
-0.001
-0.021
0.002
-0.014
-0.032
0.032
0.059
0.038

-0.019
~0.010
0.031
0.069
0.029
0.024
-0.024
0.029
0.041
0.003
0.037
-0.007
0.036
0.028
0.009
0.015
-0.009
0.046
0.074
0.061

Put
Implied
Vol

0.057
0.984
-0.025
4.035
3.823
-3.831
1.939
-0.312

-0.004
-0.015
0.030
0.067
0.037
0.026
~-0.023
0.027
0.047
-0.001
0.031
-0.005
0.031
0.020
0.002
0.013
~0.016
0.041
0.076
0.058

Raw
Data

0.000
0.008
0.075
4.348
0.039
~-0.025

0.103
0.080
0.127
0.176
0.146
0.136
0.065
0.110
0.119
0.095
0.106
0.076
0.111
0.073
0.068
0.088
0.045
0.078
0.114
0.105



Table 7 Autoregressive Model of Log 15 Minute Volatility

S&P DM T Bond
Constant ~0.453 -0.853 0.001
0.141 0.168 0.000
Lag 1 0.337 0.213 0.326
0.049 0.032 0.041
Lag 2 0.187 0.112 0.083
0.036 0.030 0.045
Lag 3 0.120 0.069 0.071
0.031 0.031 0.045
Lag 4 ' 0.133 0.127 0.200
0.032 0.030 0.036
Lag S 0.036 0.111 0.052
0.036 0.032 0.042
Lag 6 -0.034 0.058 0.005
0.032 0.028 0.035
Lag 7 -0.018 0.090 0.005
0.033 0.031 0.037
Lag 8 0.035 0.041 0.032
0.034 0.030 0.036
Lag 9 0.048 0.013
0.033 0.040
Lag 10 -0.024 -0.007
0.035 0.034
Lag 11 0.028 0.013
0.032 0.037
Lag 12 -0.051 -0.016
0.032 0.039
Lag 13 ~0.047 0.044
0.032 0.036
Lag 14 0.050 -0.012
0.031 0.046
Lag 15 0.101 0.068
0.030 0.035

Rbar-sq 0.548 0.340 0.448



Table 8

S&P

RMSE

DM

RMSE

T Bonds

RMSE

Forecast Errors of Log 15 Minute Volatility

Rolling
Historical
Vol

0.378
0.286

0.492
0.380

0.376
0.302

High/
Low
Vol

0.435
0.350

0.520
0.398

0.471
0.367

15 Min
Tick
Vol

0.368
0.286

0.485
0.363

0.403
0.313

Call
Implied
Vol

0.368
0.265

0.404
0.314

0.374
0.283

Put
Implied
Vol

0.379

0.274

0.404
0.313

0.373
0.281

Forecasted
15 Min
Tick
Vol

0.326
0.241

0.396
0.304

0.336
0.264
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FIGURE 4

Discount Corporation of Méw York Futures

.

Futures Price vs. Implied Volatility*
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Figure 13 S&P: Log of High/Low Volatility
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Figure 14 S&P: Log of 15 Minute Volatility



85 ' BIS l 3'7 ’ Blﬂ ' 8.9 ' a0
Figure 15 S&P: Log of Call Implied Volatility
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Figure 16 S&P: Log of Put Implied Volatility
a8s ' BIS ' 8‘7 ! BlB j 8’9 ' =

Figure 17 S&P: Prediction of Log 5 Min Volatility



Figure 20 DM: Log of 15 Minute Volatility
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Figure 18 DM: Log of Historical Volatility
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Figure 19 DM: Log of High/Low Volatility
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Figure 23 DM: Prediction of Log 5 Min Volatility
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Figure 21 DM: Log of Call Implied Volatility
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Figure 22 DM: Log of Put Implied Volatility
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Figure 24 TBond: Log of Historical Volatility
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Figure 25 Tbond: Log of High/Low Volatility
85 j B’S ! 8‘7 ’ SIB K sle ' |0

Figure 26 Tbond: Log of 15 Minute Volatility
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Figure 27 Tbond: Log of Call Implied Volatility
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Figure 28 Tbond: Log of Put Implied Volatility
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Figure 29 Tbond: Prediction of Log 5 Min Volatility



