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The average probability estimate of J > 1 judges is generally better than its components. Two studies 
test 3 predictions regarding averaging that follow from theorems based on a cognitive model of the judges 
and idealizations of the judgment situation. Prediction 1 is that the average of conditionally pairwise 
independent estimates will be highly diagnostic, and Prediction 2 is that the average of dependent 
estimates (differing only by independent error terms) may be well calibrated. Prediction 3 contrasts 
between- and within-subject averaging. Results demonstrate the predictions' robustness by showing the 
extent to which they hold as the information conditions depart from the ideal and as J increases. Practical 
consequences are that (a) substantial improvement can be obtained with as few as 2-6 judges and (b) the 
decision maker can estimate the nature of the expected improvement by considering the information 
conditions. 

On many occasions, experts are required to provide decision 
makers,or policymakers with subjective probability estimates of 
uncertain events (Morgan & Henrion, 1990). The extensive liter- 
ature (e.g., Harvey, 1997; McCleUand & Bolger, 1994) on the 
topic shows that in general, but with clear exceptions, subjective 
probability estimates are too extreme, implying overconfidence on 
the part of the judges. The theoretical challenge is to understand 
the conditions and the cognitive processes that lead to this over- 
confidence. The applied challenge is to figure out ways to obtain 
more realistic and useful estimates. The theoretical developments 
of Wallsten, Budescu, Erev, and Diederich (1997) provide one 
route to the applied goals, and they are the focus of this article. 
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Specifically, this research tests three predictions regarding the 
consequences of averaging multiple estimates that an event will 
occur or is true. The predictions follow from two theorems pro- 
posed by Wallsten et al. (1997) and proved rigorously by Wallsten 
and Diederich (in press). They are based on idealizations that are 
unlikely to hold in the real world. If, however, the conditions are 
approximated or if  the predicted results are robust to departures 
from them, then the theorems are of considerable practical use. 

We next provide a brief overview of background material and 
then develop the predictions in more detail. We test them by 
reanalyzing data collected for other purposes and with an original 
experiment. We defer discussion of the practical and theoretical 
consequences to the final section. 

Researchers have studied subjective probability estimation in 
two types of tasks. In the no-choice full-scale task, respondents 
provide an estimate from 0 to 1 (or from 0% to 100%) that 
statements or forecasts are or will be true. In the other, perhaps 
more common task, choice half-scale, respondents select one of 
two answers to a question and then give confidence estimates 
from 0.5 to 1.0 (or 50% to 100%) that they are correct. Instructions 
in both the choice and nonchoice paradigms generally limit re- 
spondents to categorical probability estimates in multiples of 0.1 
(or of 10). When judges are not restricted to categorical responses, 
the estimates generally are gathered for purposes of analysis into 
categories corresponding to such multiples. The graph of fraction 
correct in choice half-scale tasks or of statements that are true in 
no-choice full-scale tasks as a function of subjective probability 
category is called a c a l i b r a t i o n  curve .  

The most common finding in general-knowledge or forecasting 
domains is that probability estimates are too extreme, which is 
interpreted as indicating overconfidence on the part of the judge. 
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Specifically, in the choice half-scale paradigm, the mean subjec- 
tive probability exceeds the fraction of correct answers. More 
generally, the fraction of correct choices within each subjective 
probability category is less than the category value, and the cali- 
bration curve falls below the diagonal. In the no-choice full-scale 
paradigm, the fraction of true statements within each response 
category is less extreme than the category value. That is, the 
calibration curve falls below the diagonal for estimates greater 
than 0.5 (as in the choice half-scale case) and above the diagonal 
for estimates less than 0.5, as illustrated in Figure 6, which 
portrays data that we discuss subsequently. To understand how this 
pattern reflects overconfidence, one must note that statements 
thought more likely to be true (estimates greater than 0.5) are not 
true as frequently as predicted, and those thought more likely to be 
false (estimates less than 0.5) are not false as frequently as 
predicted. 

Certain robust results argue against an unqualified generaliza- 
tion that probability estimates are always too extreme. One is that 
the judgments of some classes of well-practiced experts are rela- 
tively well calibrated. For example, calibration curves for precip- 
itation probability estimates provided by U.S. National Weather 
Service forecasters fall close to the diagonal (Murphy & Winkler, 
1977). The second result is the well-known hard-easy effect, 
whereby people tend to be overconfident in hard tasks and under- 
confident in easy ones (where hard and easy, of course, are 
relevant to an individual's level of expertise). Generally, people 
are overconfident in domains in which the proportion correct is 
below about .75 and underconfident in domains where it is above 
(Ferrell, 1994; McClelland & Bolger, 1994). Finally, in contrast to 
conceptual domains, there is some indication that underconfidence 
is the norm in perceptual judgments (e.g., Bjtrkman, Juslin, & 
Winman, 1993). However, that conclusion is controversial (Baran- 
ski & Petrusic, 1994, 1999; Olsson & Winman, 1996) and not 
relevant to our concerns in this article. 

Many explanations have been suggested for the observed pat- 
terns of judgment. These include the arguments by Gigerenzer, 
Hoffrage, and Kleinb61ting (1991), Juslin (1994), Winman (1997), 
and others that observed patterns of overestimation are due to 
biases in how the items to be judged are selected. According to this 
perspective, subjective probability estimates are accurate when 
items are randomly sampled from suitably defined domains, 
thereby making them ecologically valid. Respondents appear to be 
overconfident when hard or tricky items (e.g., May, 1986) are 
oversampled (and presumably underconfident when they are un- 
dersampled). In contrast, Ferrell and McGoey (1980; see also 
Ferrell, 1994) have argued that patterns of overconfidence and 
underconfidence have their origin at the response selection stage of 
the judgment process and are due to respondents insufficiently 
adjusting their response criteria relative to the difficulty of the task. 
A third explanation, originating with the work of Koriat, Lichten- 
stein, and Fischhoff (1980), posits that the patterns are due to 
biased retrieval of information from memory. Finally, Erev, Wall- 
sten, and Budescu (1994) suggest that trial-by-trial error in the 
judgment process may contribute to (or in the limit be fully 
responsible for) observed overconfidence (see also Pfeiffer, 1994). 
Considerably expanding the range of possible artifacts, Juslin, 
Wimnan, and Olsson (in press) have argued that the hard-easy 
effect may be driven almost exclusively by methods of measure- 
ment and analysis rather than by cognitive phenomena. The ex- 
planations are not mutually exclusive, and they are all controver- 

sial. For further discussions of them, see McClelland and Bolger 
(1994) and Harvey (1997). 

Theory  

The theory underlying this article grows from a generalization 
of the Erev et al. (1994) model (see also Budescu, Erev, & 
Wallsten, 1997). According to these authors, subjective probability 
estimates are perturbed by random Wial-by-tdal fluctuations that 
arise both when respondents form their covert opinions and when 
they translate them to overt estimates. Expressed formally (al- 
though in different notation than Erev et al., 1994, used), R = g (X ,  

E), where the judge's probability estimate, R, is an increasing 
monotonic function, g, of  the base confidence in the item, X, 
perturbed (not necessarily additively) by error, E. X is a covert 
random variable that represents base confidence values arising 
from the judge's memory search for knowledge about the items in 
question. The randomness in this variable arises from the experi- 
menter's (or the environment's) selection of the item to be judged 
and not from the memory operation itself. Thus, whatever the 
respondent's search strategy is, its error-free execution for item i 
results in a particular base confidence value, x i. E is a random 
variable representing the stochastic aspects of both the memory 
search and the process of mapping its outcome to an overt re- 
sponse. This model is very general and consistent with virtually 
every other one in the literature. The random errors need not be 
additive, but their effect is one of reversion to the mean (Samuels, 
1991) when calculating percentage correct or percentage true con- 
ditioned on the response category. 2 The effect may or may not 
cause the apparent overconfidence, but, at the very least, it con- 
tributes to its magnitude. 3 

Wallsten et al. (1997) generalized the model by allowing it to 
take different forms for each judge, j ,  j = 1 . . . . .  J. That is, 

Ry = gj(Xj ,  Ej) .  (1) 

Thus, the distribution of covert confidence, Xj, may vary over 
judges, as may the error terms, Ej, the mapping function, gj, to 

Harvey (1997), following Lichtenstein, Fischhoff, and Phillips (1982), 
referred to two types of overconfidence when respondents assess the 
probabilities that items are true. One is the type we refer to here; the other 
is when the calibration curve is everywhere below the diagonal, indicating 
a consistent overestimation in the likelihood that items are true. In our 
view, this is not overconfidence but rather a bias to call items true (see, for 
example, Gilbert, 1991, or Wallsten & Gonz,,ilez-Vallejo, 1994, for further 
discussion). The distinction is important to the extent that the two phe- 
nomena are mediated by different processes. 

2 Reversion to the mean is a weaker and more general condition than 
regression to the mean. Specifically, if X 1 and X 2 are positively (but not 
perfectly) related identically distributed standardized random variables 
with common mean/~, regression to the mean states that for all c >/~, p. - 
E[X2~  1 = c] < c, with the reverse inequality for c < ~. Reversion to the 
mean states that for any c, p. <- E[X2[X I > c] < E[XI[XI > c] and i~ 
E[X2~ l < c] > E[XI~ l < c]. Regression to the mean impfies reversion to 
the mean but not conversely. See Samuels (1991) and references therein for 
further details. 

3 Similarly, reversion to the mean also occurs when estimates are aver- 
aged conditioned on objective probability values, as is commonly done in 
revision of opinion research. The consequence is apparent underconfi- 
dence. This paradox was the focus of the original articles. 
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overt responses, Rj, and therefore the response distributions 
themselves. 

Despite the generality of Equation 1, it does have testable 
predictions. One set concerns the consequences of averaging esti- 
mates per stimulus within- and between-subjects. Numerous stud- 
ies (reviewed and discussed by Wallsten et al., 1997) suggest that 
mean estimates differ from those of individuals in one of two 
ways. Sometimes, the averages are better calibrated, and some- 
times, they are more diagnostic (often called highly resolved, 
Yates, 1982). Estimates are highly resolved when, conditioned on 
true and false statements (correct or incorrect forecasts), they are 
reasonably well separated and therefore relatively predictive of the 
outcome. 

We consider both better calibration and improved resolution to 
be improvements over the individual estimates, but not all authors 
agree. Ferrell (1994), for example, stated that such procedures "do 
not improve  the calibration of individuals, they just change  it in a 
systematic way. From the standpoint of decision analysis there is 
a serious problem if this is so" (p. 447). The systematic change to 
which Ferrell refers is toward underconfidence and therefore 
greater resolution. We disagree that this change is a problem and 
consider it instead as a virtue because outcome predictability is 
greatly enhanced. (With suitable modeling, one can recalibrate the 
group function if necessary.) In any case, the conditions leading to 
improved calibration versus improved diagnostic value are not 
well understood. 

By making some very weak assumptions regarding Equation 1, 
Wallsten et al. (1997) showed that the effects of averaging the 
estimates depend crucially on how the covert confidence distribu- 
tions of the judges relate to each other. The mathematical proofs 
are in Wallsten and Diederich (in press). Specifically, let J be the 
number of judges providing an estimate about item i. The authors 
showed that given four other assumptions, 4 if for all pairs of 
judges, j  and j '  (j # j ' ,  j ,  j '  = 1 . . . . .  J), X j  and Xj,  are independent, 
conditional on the state of the item (true or false), the mean of the 
J estimates becomes increasingly diagnostic of the statement's 
truth value as J increases. In other words, the probability that the 
statement is true approaches 1 or 0, according to whether the mean 
estimate is above or below 0.5. Expressed formally, 

1 i f M j > 0 . 5  
P ( S i =  IIMj) ~ 0 i f M l < 0 . 5  a s J  ---> ~,  (2) 

where St refers to the state of sentence i, which is either false (0) 
or true (1), J refers to the number of estimates being averaged, and 
Mj is that average. That is, the estimates become increasingly 
resolved and increasingly underconfident as the number of condi- 
tionally pairwise independent estimates increases. In fact, the 
theorem is much more general than stated here because it applies 
to any monotonic increasing transformation of the estimates. 

In extreme contrast to pairwise independence, the estimates may 
come from the same base confidence and differ from each other 
only by independent random components. That is, 

Rj---- gj(X, Ej). (3) 

This model describes the case in which all judges have the same 
base confidence" for a particular item, or, more realistically, the 
same judge gives replicated estimates at different points in time. 
Thus, for any item, X = x for all judges (or all replications). In this 
case, estimates differ only due to the error component. Using only 

assumptions (a) and Co) of Footnote 4 and a straightforward 
application of the law of large numbers, Wallsten and Diederich 
(in press) showed that the mean of the multiple estimates con- 
verges to a mean expected value as J increases. That is, 

1 i M j  ---} ~ E(gj(Rj)) .  (4) 
j=l 

Whether or not My, J > 1, is better calibrated than the estimates of 
J = 1 judges depends on the judges' collective expertise and the 
response functions, gj. There is no mathematical guarantee one 
way or the other. Resolution will likely increase to some extent, 
simply because of the elimination of random scatter, but it will 
never become perfect as it will under the former model. 

It has been long understood that the diagnostic value of multiple 
estimates decreases with the extent of their interdependence (e.g., 
Clemen, 1989; Clemen & Winkler, 1990; Ferrell, 1985; Hogarth, 
1978). However, not commonly recognized has been that pooling 
multiple conditionally pairwise independent estimates maximizes 
their diagnostic value by fundamentally altering the shape of the 
calibration curve, whereas pooling estimates on the basis of com- 
mon confidence levels may, but will not necessarily, improve 
resolution and calibration by reducing variability (but see Clemen 
& Winkler, 1990, and Ferrell, 1985, who make related points). 

As Wallsten et al. (1997) indicated, the conditional pairwise 
independence assumption that is at the heart of the model embod- 
ied by Equation 1 is most likely to be met when judges base their 
estimates on distinct sources or interpretations of information. This 
condition, in turn, seems most applicable when judges are estimat- 
ing probabilities regarding unique rather than aleatory (i.e., repeat- 
able) events. Thus, it is in these cases that we expect the prediction 
implied by Equation 2 to hold. In contrast, the assumption of 
identical confidence per event that is the foundation of the model 
in Equation 3 and leads to Equation 4 is most likely to be met when 
judges are estimating probabilities of aleatory events on the basis 
of common relative-frequency information. 

The assumptions leading to either model may, of course, not 
hold in the real world, and, therefore, their implications may not 
hold empirically. One may in particular question the conditional 
pairwise independence assumption necessary for the results in 
Equation 2. As a check, Wallsten et al. (1997) reanalyzed two 
previously published studies using full-response-scale paradigms, 
one by Wallsten, Budescu, and Zwick (1993), for which the model 
in Equation 1 was more likely to hold, and another by Erev and 
Wallsten (1993), for which the model in Equation 3 was more 
likely. Although conditional pairwise independence was violated 
to some extent in the first case, the mean estimates became 
increasingly diagnostic of a statement's truth value as the number 
of respondents contributing to the average increased from 1 to 21. 
In the second case, in contrast, the mean estimates showed im- 

4 Technically, the X/are assumed to be discrete random variables with 
values, xjl, l = 1 . . . . .  Lj. That is, each judge can have a distinct number of 
covert confidence categories. The four other assumptions, then, are (a) the 
Ej are independent random variables with E(Ej) = 0 and cr~j ; (b) the f(Rj) are 
random variables with finite mean and finite variance; (c) the Xj are 
symmetric about their midpoints and the probabilities are equal for sym- 
metric pairs (xjt, Xj.Lj+~); and (d) the error distribution is such that the 
expected response given Xj = xjt is regressive, and the expected response 
distribution is symmetric around the midpoint of the response scale. 



AVERAGING PROBABILITY ESTIMATES 133 

proved calibration but little improvement in resolution as the 
number  of judges increased from 1 to 60. 

We report reanalyses of data collected for investigation at the 
individual (i.e., J = 1) level as well as a new experiment to test 
three distinct predictions. The collective results paint a very co- 
herent picture of how the degree of  dependence among the judges 
affects the consequences of pooling multiple subjective probability 
estimates. 

The reanalyses and the new experiment test the prediction from 
Equation 2, based on the model in Equation 1: 

Prediction 1. For the general-knowledge judgment task, indices of 
diagnostic value will improve substantially (to complete resolution in 
the limit), while calibration changes in the direction of underconfi- 
deuce, as the number of estimates contributing to the group average 
increases. 

The reanalyses, but not the new experiment, test the additional 
prediction based on the model in Equation 3: 

Prediction 2. For a task in which all respondents have the same 
information, indices of diagnostic value will improve to some degree, 
while those of calibration stabilize (perhaps, but not necessarily at 
better calibration), as the number of estimates contributing to the 
group average increases. 

Finally, the new experiment, but not the reanalyses, tests the 
following prediction: 

Prediction 3. The mean estimates of two separate individuals regard- 
ing general knowledge statements are more diagnostic of an item's 
truth and show less overconfidence than the means of a single indi- 
vidual's replicated estimates collected at two different points in time. 

The last prediction follows from the assumption that between- 
subject averaging is more likely to approach the conditional pair- 
wise independence requirement of the model in Equation 1 than is 
within-subject averaging, in which the separate estimates are as- 
sumed to differ from each other only by an error component, as 
described in Equation 3. 

R e a n a l y s e s  

Prediction 1: Judgments o f  General-Knowledge Events 

We tested Prediction 1 with the data originally published by 
Juslin (1994) and by Winman (1997), who used the same set of 
stimuli in their studies. Justin 's  purpose was to compare judgment  
quality under a condition in which items were randomly selected 
versus one in which they were selected by other participants, 
whereas Winman ' s  purpose was to compare the extent of the 
hindsight bias under the two item-selection conditions. We ana- 
lyzed all the data (excluding the hindsight judgments in Winman ' s  
experiments) but present details only for the random-selection 
condition because the participant-selection procedure introduced 
considerations beyond our scope. We briefly summarize the latter 
results, however, in the Discussion. The 60 respondents in each 
condition include 20 from Juslin (1994), 20 from Winman ' s  (1997) 
Experiment 1, and 20 from his Experiment 2; all were undergrad- 
uate university students in Uppsala, Sweden. 

Method. Their stimuli consisted of 120 items in the half-range format 
for which respondents chose one of two alternatives as correct and gave a 
confidence of 50% (labeled random), 60%, 70%, 80%, 90%, or 100% 

(labeled absolute certainty). The items concerned six target variables: 
latitudes of national capitals ("Which city is further northT'), populations 
of national capitals ("Which city has a larger population?"), populations of 
countries ("Which country has a larger population?"), mean life expectancy 
("In which country does the population have a higher mean life expec- 
tancy?"), area ("Which country has a larger area7"), and population density 
("Which country has more inhabitants per km2?"). The experiments were 
all computer controlled. 

The stimuli in the random condition were constructed by randomly 
sampling 20 pairs of countries for each of the six target variables from 
the 13,366 possible pairs of 164 countries then in existence. Those in the 
informal condition were selected by 12 volunteer participants working in 
pairs. Each participant pair selected 20 pairs of countries to create ques- 
tions for a single target variable. Their instructions said, in part, 

The items should be good general knowledge items. That is, the items 
should provide a test of the knowledge of the subjects, and in a general 
sense conform to your own standards for what is a good general 
knowledge item. (Justin, 1994, p. 236) 

Each pair of selectors was given suitable statistical tables and a world atlas. 
For more details, see Juslin (1994) and Winman (1997). 

For our purposes, we first converted each half-scale estimate to two 
full-scale estimates, one each for the implied true and false statement, by 
assuming additivity and doing the appropriate subtraction. 5 For example, 
assume "A" is the correct answer to the question, "Which city is further 
north, A or BT' If a respondent selected "B" with confidence 70%, he or 
she was credited with estimates of 70% in the false statement, "City B is 
further north than City A," and of 30% in the true statement, ''City A is 
further north than City B." Thus, the 120 half-scale estimates per respon- 
dent yielded 240 complementary full-scale estimates. 

Results. Here, we present the results only of  the random- 
selection condition. Prior to testing Prediction 1, we assessed 
conditional pairwise independence by taking all possible pairs of 
the respondents and, for each pair, calculating the linear correla- 
tion between their estimates of the true statements. 6 (Because the 
estimates of the false statements are the complements of those for 
the true ones, the results apply to these as well.) The correlations 
(i.e., the inverses of the mean Fisher Z transformations) ranged 
from .05 to .70. Their interquartile interval is bounded by .32 and 
.48, and their mean is .40. Conditional pairwise independence is 
clearly violated. 

Nevertheless, we looked at the effect of averaging probability 
estimates forY = 3, 6, 12, 20, 30, and 60 judges. Figure 1 displays 
the calibration curves, including that for individual respondents 
(J  = 1). First, consider the J = 1 curve, which shows the average 
proportion of statements that are true conditioned on the probabil- 

5 Justification for assuming additivity comes from Wallsten et al. (1993) 
and the new experiment that follows. In both cases, respondents saw true 
and false versions of the same items at different points in time and gave 
their subjective probabilities that each was true. Estimates of complemen- 
taw events summed to 1.02 in both studies. This value was not signifi- 
cantly different from 1.00 in the case of Wallsten et al. with N = 21 but 
was in the current study with N = 64. Regardless, the deviation from 
perfect additivity is very small. 

6 It is important to note that a linear correlation of 0 (or for a sample of 
data, a linear correlation not significantly different from 0) is necessary but 
not sufficient for palrwise independence. That is, ff two variables are 
stochastically independent, their linear correlation will be 0, hut nonlinear 
dependencies may also yield no linear correlations. As there are an infinite 
number of such dependencies, one cannot look for them without a guiding 
theory. 
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Figure 1. Calibration curves from the random condition of Juslin (1994) and Winman (1997). The abscissa is 
the mean estimate over J respondents per statement, with data gathered into categories that are multiples of 0.1. 
The ordinate is the proportion of statements per category that are true. 

ity estimates assigned to them (confidence expressed as a percent- 
age divided by 100), that is, P(T) versus estimate category. This 
curve is the average of the 60 individual calibration plots and 
corresponds to the random-selection curve in Juslin (1994), except 
that it includes Winman ' s  (1997) data and is reflected about 0.5. 
As Juslin (1994) and Winman (1997) pointed out (and expected) in 
their articles, respondents in this condition are reasonably well 
calibrated. Our analysis focuses on the calibration and diagnostic 
properties of the estimates as the responses from increasing num- 
bers of judges are averaged together. 

There are many ways to average multiple probability estimates 
per stimulus, and we used two. One is simply to average the 
estimates, r, and the other is to convert the estimates to log-odds, 
log(r/(1 - r)), (after changing r = 0 and 1 to r = .02 and .98, 
respectively), average the log-odds, and then convert the result 
back to the original scale. Both methods lead to essentially the 
same results, and we present only the former. For each J greater 
than 1 and tess than 60, the respondents were randomly gathered 
into subgroups of size J. Thus, for J = 3, there were 20 subgroups, 
and, in general, there were 60/J subgroups. We repeated the 
process 30 times, yielding a total of 900/J subgroups for each J, 
1 < J < 60. For each subgroup, we averaged the estimates of its 
members to each of the 120 statements and gathered the mean 
estimates into 11 categories corresponding to the original scale, 
that is, into categories with boundaries of [0, .045), [.045, 
.145) . . . . .  [.845, .945), [.945, 1]. The process was identical for 
J = 60, except that all respondents were included in a single group. 
Finally, we determined the proportion of true statements, P(T), in 

each response category for each J. The results are shown as the 
remaining curves in Figure 1. It is important to note that all 
respondents contributed equally to all the curves. What differs 
across the conditions is how many respondents contributed to a 
subgroup average. 

Despite the clear violation of conditional pairwise indepen- 
dence, the results appear to support Prediction 1 that the mean 
estimates become increasingly diagnostic of the true state of the 
item as the number of judges, J, increases. Simultaneously, as 
expected, calibration worsens in the direction of underconfidence. 
Table 1 shows four measures common in the judgment literature, 
which are helpful in quantifying these effects. They are as follows: 

1. An overall index of quality, the well-known mean probabil- 
ity, or Brier, score, 

Table 1 
Mean Values for the Mean Probability Score (PS), Calibration 
Index (CI), and Two Indices of Resolution (DI and DI') for the 
Data Summarized in Figure 1 

J PS CI DI DI' 

1 .174 .009 .085 1.35 
3 .153 .022 .119 1.78 
6 .148 .034 .136 1.96 

12 .146 .042 .146 2.07 
20 .144 .046 .153 2.13 
30 .144 .048 .154 2.15 
60 .142 .056 .164 2.18 
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- -  1 N 

PS = ~ ~ ( r l -  fi) 2, 
i=l 

where r i is a probability estimate in [0, 1] that statement i is true, 
f~ = 0 for false statements and 1 for true ones, and N is the number 
of statements judged. (N = 240 in this study.) PS varies from 0 
to 1, with lower scores being better. 

2. An index of calibration, 

1 K 
c t  = ~ :~ ~Vk(r~ _ ~ ) 2 ,  

k=l 

where k indexes the response category, K is the number of cate- 
gories (K = 11 here), N~ is the number of responses in category k, 
and fk is the proportion of true statements in category k. CI is 
simply the weighted-mean squared deviation of the points in a 
calibration curve from the diagonal. Lower values are better, in 
that they indicate better calibration. 

3. An index of discrimination, or resolution, 

1 K 

D I =  ~ ~ Nk(fk _f)2, 
k=l 

whereJ'is the overall proportion of true statements. (In this study, 
.t" = 0.5.) It is important to note that DI is the variance of the 
proportions of true statements conditional on response category. 
Higher values are better, in that they indicate greater separation 
among the categories, and therefore greater diagnostic value of an 

estimate. D l i s  bounded, 0 -< DI -<](1 - ~  ffi .25 (Yaniv, Yates, 
& Smith, 1991). 

4. An alternative index of discrimination, 

DI' = - - ,  
Sr 

where ~r and ~F are the means of the estimates accorded the true 
and false statements, respectively, and sr is the pooled standard 
deviation of the two distributions of estimates. In contrast to the 
previous index, which is conditioned on response category, this 
signal-detection-like measure is conditioned on the state of the 
stimulus. Larger values are better. 

Yates (1982) has extensively discussed Indices 1-3, including 
that fact that they are related through Murphy's decomposition, PS 
= ~1  - ]) + CI - DI. Index 4 was introduced and discussed by 
Wallsten et al. (1997). 

The data in Table 1 quantify what is apparent in Figure 1. 
Calibration, CI, worsens and resolution, DI or DI', improves with 
J. The balance is such that the overall mean probability score, PS, 
improves somewhat as J increases. The reason behind the in- 
creased resolution is best understood by considering DI', which 
grows from 1.35 at J = 1 to 2.18 at J = 60. In a manner analogous 
to d' in signal-detection theory, DI' indexes the e x t e n t  of overlap 
between two distributions. The distributions in this case are of the  

(mean) estimates conditioned on true and false statements. Thus, 
resolution improves because the two response distributions be- 
come increasingly separated, as Ferrell (1994) noticed in his in- 
vestigation of the effects of pooling judgments. 

Figure 2 shows the conditional response distributions for se- 

Figure 2. Response distributions conditioned on the true and false versions of the items for selected values of 
J in the random condition of Juslin (1994) and Winman (1997). 
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lected values of J from 1 to 60. It is apparent that the increase in 
DI' (decrease in distribution overlap) as J increases is due entirely 
to the decreasing variances of the two distributions. The standard 
deviations of the distributions--the "scatter" in Yates's (1982) 
terms--decrease from .218 at J = 1 to .138 at J = 60. This is the 
expected result under Wallsten and Diederich's (in press) Theo- 
rem 2. Their proof makes clear that under the axioms, as J 
increases, the expected mean estimate for true statements con- 
verges on an (unspecified) probability, r (r > .5), and the mean for 
false statements converges on 1 - r. Convergence in the present 
data is not complete probably because of the violations of condi- 
tional pairwise independence and possibly also to the finite num- 
ber of judges. 

Discussion. The results under the random item-selection con- 
dition extend those of Wallsten et al. (1993) and provide strong 
confirmation of Prediction 1. Despite the violation of conditional 
pairwise independence, the mean subjective probability estimates 
of multiple judges rapidly became very diagnostic of the verity of 
a statement. The results are summarized and easily related to 
others to be discussed with the aid of Table 2, which shows the 
percentage of statements that were true (or false) given a proba- 
bility estimate greater than (or less than) 0.5 for selected values of 
J. The columns are arranged according to the mean between- 
subject conditional pairwise correlation. Therefore, the random 
condition is in the fourth column. We see that the percentage is 
about 82% for J = 1. With as few as 6 judges, it increases to about 
90% and with J = 60 to almost 95%. 

For comparison purposes, Table 2 also shows selected results 
obtained by Johnson, Budescu, and Wallsten (in press) in Monte 
Carlo analyses of the effects of averaging probability estimates. 
Conditions in their simulations guaranteed that the axioms neces- 
sary for WaUsten and Diederich's (in press) theorem were met 
except where explicitly and systematically violated. Two columns 
in Table 2 summarize Johnson et al.'s results for the conditions in 
which pairwise correlations were .30 and .60, respectively. These 
two conditions bracket the mean pairwise correlation values of all 
the data to be presented in this article. It is important to note that 
the percentage under Johnson et al. for J = 1 is somewhat less than 
that in the random condition, suggesting that the simulation was 
operating at a slightly greater difficulty level. For each subsequent 
level of J (to J = 32, the upper bound of the simulation), the 
percentage at r = .30 is very close to that in the random condition, 

whereas for r = .60, it is less. Thus, the present real data mesh very 
well with the simulated data generated under known conditions, 
which gives us some confidence that the results are replicable. 

Turning, for a moment, to the participant-selection condition, 
the effects of averaging differed somewhat from those observed in 
the random condition. Specifically, the linear pairwise correlations 
were smaller (in fact, their mean was .30, identical to that in 
Johnson et al., in press, as shown in column 1 of Table 2), yet the 
mean probability estimates converged more slowly with J. A 
summary of these analyses appears in column 2 of Table 2. For a 
single judge, about 65% of the items were true (or false) given an 
estimate above (below) 0.5. With J = 60, this increased only to 
just under 75%. One might speculate that this pattern occurred 
simply because the selected questions were more difficult, and, 
therefore, the conditional response distributions overlapped to a 
greater extent. Therefore, more than the 60 judges available are 
required to achieve the theoretical asymptotic result. This expla- 
nation is unlikely to be correct because the calibration curve and 
associated statistics reached apparently asymptotic values at least 
by J = 3 0 .  

It is more likely that the very process of selecting items to 
construct a test of individuals' knowledge caused conditional 
pairwise independence to be violated in a systematic fashion not 
captured by the linear correlation coefficient. Whatever the de- 
tailed cause, we believe that the random condition is closer to the 
real situations to which one wants to generalize the results than is 
the participant-selection one. That is, real-world judgment issues 
arise in ways not intended to test the limits of one' s knowledge but 
rather as the consequence of legitimate uncertainties that arise in 
the course of making decisions. There is nothing inherently present 
in these situations to trick or test people's limits, as there often is 
in constructed tests. This conclusion is supported by the fact that 
the results in the random condition are consistent with those of 
Wallsten et al. (1997). The study they reanalyzed (Wallsten et al., 
1993) used a large number of items constructed to span a broad 
range of difficulty. 

The general conclusion, then, is that Prediction 1 clearly holds 
in the face of substantial violation of conditional palrwise inde- 
pendence when items are randomly selected. It does not hold to the 
same degree when the items are selected with a view toward test 
construction. In either case, averaging multiple judgments yields 
improved forecasts, which are considerably more diagnostic than 

Table 2 
Percentage of Statements That Were True (or False) Given Probability Estimates (at J = 1) or 
Mean Probability Estimates (at All Other J) Greater (or Less) Than 0.5, for the Indicated 
Studies, Arranged in Increasing Order of  Mean Pairwise Correlations 

J & W New 
participant Johnson et al. J & W random experiment Johnson et al. 

.P (? = .30) (in press; ? = .30) (? = .40) (~ = .57) (in press; r = .60) 

1 65.1 73 81.8 64.9 
6 or 8 70.7 88 89.9 68.7 
10 or 12 73.1 91.8 

16 91 69.2 
30 or 32 74.7 93 93.3 69.6 
60 or 64 74.7 94.8 70.7 

72 
82 

83 
84 

Note. J & W refers to the data from Juslin's (1994) and Winman's (1997) experiments. 
a When two values of J are given, one value was used in some of the studies, and the other was used in the 
remaining. 
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individual ones in the random case and somewhat more in the 
participant-selection one. In both cases, as few as 6 judges yield 
substantial improvement,  and 12 are sufficient for achieving close 
to the maximum possible under the particular conditions. 

Prediction 2: Judgments Given Identical Information 
Conditions Across Respondents 

We evaluated Prediction 2 with data collected by Wallsten and 
Gu (1996). Their primary purpose was to evaluate the claims of 
Erev et al. (1994) that trial-by-trial stochastic error contributes to 
the discrepancies that arise when analyses of judgment  data con- 
ditioned on responses (as is common in calibration research) are 
compared with those conditioned on objective probabilities (as is 
common in revision of opinion research). As the stochastic con- 
tributions to the probability estimates decrease, the two analyses 
should converge on a single conclusion (of overconfidence or 
underconfidence). To check this prediction, it was necessary to 
collect probability estimates in a situation in which objective 
probabilities are well defined and in which the magnitude of the 
stochastic component to the judgment  process can be estimated. Of 
interest for present purposes is that all the respondents in that 
experiment had the same training and then saw the same stimuli. 
Therefore, the conditions leading to the model in Equation 3 are 
perfectly met. 

Method. Respondents were instructed to imagine that skeletons were 
discovered at an archaeological site. In Session 1, they learned how to 
distinguish men from women based on the density of a bone substance 
indicated by a five-digit number. The densities were represented by two 
equal-variance normal distributions of five-digit numbers, separated by one 
standard distribution (d' = 1). Subsequently, in Sessions 2 and 3, the 
respondents saw individual density values in three replicated blocks of 150 
trials each and gave probability estimates that the skeleton was of a man. 
They were told that although the task was hypothetical, the distributions 
were real, a priori half the skeletons were women and half were men, and 
there was a correct answer on each trial, l~ayment was contingent on 
performance. By using external distributions (Kubovy, Rapoport, & Tver- 
sky, 1971) of known discriminability in this fashion, it is possible to use 
Bayes's rule to calculate the objective posterior probabilities for compar- 
ison with the estimates. All respondents saw the same samples, although 
not in the same sequence. There were, however, two between-subject 
manipulations: Half the respondents selected their estimates from the 11 
categorical values, .02, .10, .20 . . . . . .  90, and .98, whereas the other half 
were unrestricted, in that they could use any multiple of .01 from .02 to .98. 
Crossed with this manipulation, half the respondents were told their cu- 
mulative earnings every 150 trials, whereas the other half were not. 
With 10 participants per group, there were a total of 40 respondents in the 
experiment. For more details, see Wallsten and Gu, 1996. For our purposes, 
we averaged together up to 20 estimates per stimulus within each of the 
categorical and unrestricted response conditions. 

Results. The model in Equation 3 implies that the mean esti- 
mate to a stimulus converges on an expected value as the number  
of  contributing judges grows larger. Because the model is stated in 
terms of  the mean estimate per stimulus (rather than in terms of 
percentage correct per mean estimate), the appropriate way to view 
the data is to plot the mean estimate (mean SP) as a function of the 
objective stimulus probability (OP). The axes of this reliability 
graph, thus, are reversed from those of calibration curves such as 
in Figure 1. Moreover, it is not necessary to aggregate observations 
within a probability interval, as it is with calibration curves. 
Rather, each stimulus is shown as a separate point. Figure 3 
illustrates the pattern of results as J increases. When the data are 

summarized in this fashion, one can see the effects of averaging 
over J judges only by comparing the plots of multiple respondents 
with those of multiple groups of various sizes. 

The panel denoted J = 1 in Figure 3 shows SP versus OP for 10 
of the 20 respondents. Only 10 respondents aredisplayed so that 
the individual points can be discerned to some degree. Even so, the 
points overlap considerably. The diagonal provides a reference of 
perfect calibration. For the J = 5 panel, we formed 10 groups of 5 
judges each by randomly partitioning the 20 respondents into 4 
mutually exclusive and exhaustive sets of 5 each, doing so on 3 
occasions (yielding 12 subgroups) and dropping the last 2 sub- 
groups. The plot shows the means of the 5 respondents '  estimates 
per stimulus, with a different symbol for each of the 10 groups. 
Again, there is much overlap among the groups. For the J = 10 
panel, we took 5 random partitions of the full set, each time into 2 
mutually exclusive and exhaustive subsets of 10 respondents each. 
The plot shows the mean estimate per stimulus, with a different 
symbol for each group and considerable overlap among the groups. 
Finally, the J = 20 panel shows the mean estimate per stimulus for 
all 20 respondents. 

In contrast to the results of Figure 1, and consistent with 
Prediction 2, Figure 3 shows that the reliability curve stabilizes as 
J increases without fundamentally changing shape. In fact, the 
mean estimates stabilize on the diagonal of perfect calibration as J 
increases from 1 to 20. 

To provide a close comparison of these results with those from 
the data of Juslin (1994) and Winman (1997), we calculated the 
indices PS, CI, DI, and DI' exactly as we had for Table 1. That is, 
for J = 1, we partitioned the SP estimates of each of the 20 
respondents (not just  the 10 shown in the first panel of Figure 3) 
into categories with boundaries of [.02, .045), [.045, .145) . . . . .  
[.845, .945), [.945, .98], took the mean SP and mean OP per 
category, and calculated the four indices. The mean results are 
shown in the first row of Table 3. Similarly, we formed many 
groups of J = 5 and J = 10, calculated the indices in the same 
fashion, and have displayed the results in the next two rows of 
Table 3. The last row shows the results for J = 20. 

It is important to note the excellent CI values for all levels of J, 
despite the considerable scatter around the diagonals in the plots. 
This result occurs as a consequence of averaging SP estimates 
within response categories before calculating the various indices, 
thereby eliminating much of the noise apparent in the figure. From 
this perspective, therefore, calibration is excellent at the individual 
level and continues to be so as J increases. The more fine-grained 
results shown in the figure tell a different story, however, in line 
with Prediction 2. That is, individual estimates per stimulus vary 
considerably, but converge on mean values, which themselves bear 
an orderly relationship to the objective probabilities of the stimuli. 

Prediction 2 allows resolution to improve somewhat as scatter is 
reduced but not to the extent expected under the model from 
Equation 1. The indices DI or DI' show that this is precisely what 
happens. As J increases, resolution comes close to the maximum 
allowed by the structure of the task (recall that d '  = 1 for the 
external distributions), but it never achieves the level obtained with 
Juslin 's (1994) and Winman ' s  (1997) random condition (see Fig- 
ure 1 and Table 1). 

The pattern of changes in DI and DI' with J in the present data 
is illuminated by the conditional response distributions, which are 
shown in Figure 4. As before, resolution improves because the two 
conditional response distributions separate as J increases. The 
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Figure3. Calibration plots for 10respondents(J= l), for the means of l0 groups of respondents (J = 5,10), 
and for the mean of all respondents (J = 20) in the unrestricted condition of Test Session 1 from Wallsten and 
Gu (1996). Each respondent or group of respondents in the J = 1, 5, 10 panels is shown by a different symbol. 
Points in many cases are superimposed. SP = subjective probability; OP = objective probability. 

improvement in DI' is modest because the pooled standard devi- 
ations decrease only slightly from .269 at J = 1 to .224 at J = 20. 
DI improves more substantially with J because the distributions 
become considerably more peaked. 

Discussion. The analyses completely support Prediction 2. 
Increases in resolution and calibration are due solely to reduction 
of variability about mean values rather than to changes in the shape 
of the reliability functions with increasing J. One should not 
overgeneralize from the excellent calibration displayed in this task 
because others have obtained different results (Kubovy et al., 
1971; DuCharme & Peterson, 1968) under somewhat different 
conditions. Our point is not to explore determinants of good 
calibration but simply to emphasize that the good calibration 

Table 3 
Mean Values for the Mean Probability Score (PS), Calibration 
Index (CI), and Two Indices of Resolution (DI and Dl') for the 
Data Summarized in Figure 3 

J PS CI DI DI' 

1 .246 .000 .005 .945 
5 .226 .001 .024 , .978 

10 .205 .001 .045 .985 
20 .149 .001 .102 .988 

observed here is not a necessary consequence of averaging multi- 
ple estimates contingent on a common information. 

The pattern of results from both studies is clear and informative. 
Predictions 1 and 2 were sustained under conditions in which the 
items to be judged were randomly selected from the full popula- 
tion, according to a uniform distribution in the first case and to the 
operative probability distributions in the second. The differences in 
the predictions and in the supporting data are seen clearly by 
comparing Figures 1 and 3. Prediction 1 concerns the probability 
that an item is true given its estimate. Accordingly, the calibration 
curve plots P(T) as a function of the estimate category. Predic- 
tion 2 concerns the mean estimate per stimulus. Here, assuming the 
stimuli have relative-frequency-based posterior probabilities, the 
calibration curve plots SP as a function of OP. 

That said, Prediction 1 dictates that the calibration curve literally 
should change shape as J increases. Regardless of the degree of 
calibration at J = 1, as long as the curve is monotonic increasing, 
it should demonstrate increasing underconfidence and increasing 
resolution as J increases. If the axioms leading to Equation 2 are 
satisfied, the curve should asymptote at perfect resolution and 
correspondingly extreme underconfidence. Prediction 2, in con- 
trast, states that calibration, as indexed by reliability, increases 
with J, but that the functional relationship between mean SP and 
OP will not change. The necessary conditions here are much 
weaker than in the first case, amounting only to all judges having 
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Figure 4. Response distributions conditioned on male and female samples for four levels of J. 

the same information base, causing their estimates to differ at most 
by (not necessarily additive) error and unique response functions. 

The conditions leading to Prediction 2 were clearly met and the 
prediction was perfectly sustained. Of the axioms necessary for 
Prediction 1 (see Footnote 4), conditional pairwise independence is 
the most likely to be violated, and, in fact, it was with a mean 
pairwise linear correlation of .40 (in the random condition). Im- 
portantly, the impact of this violation was not to nullify the 
prediction but to limit the asymptotic outcome to somewhat less 
than full resolution (95% rather than 100% of the items being true 
or false given a mean estimate greater than or less than 0.5). The 
Johnson et al. (in press) simulations confirm this result. 

A New Exper iment  

The previous analyses relied entirely on data collected for other 
purposes. The present experiment was designed specifically to test 
Predictions 1 and 3 under varied stimulus and response conditions 
to assure their generality. Recall that Prediction 3 concerned the 
relative consequences of averaging subjective probability esti- 
mates within and between individuals under conditions of epis- 
temic uncertainty. Assuming that conditional pairwise indepen- 
dence is more strongly violated within than between respondents, 
the diagnostic quality of the resulting means should be less in the 
former than the latter case. 

Instead of the choice half-scale procedure of Juslin (1994) and 
Winman (1997), we used a no-choice full-scale procedure, in 
which respondents gave confidence estimates that statements of 
fact were true rather than false. We tested generality across re- 
sponse scales by having half the participants use categorical re- 
sponses (0%, 10% . . . . .  90%, 100%) and half use essentially 
continuous responses (0%, 1% . . . . .  99%, 100%). The stimuli 
were either single statements or syntactically identical comple- 
mentary pairs of statements, one written above the other. For 

example, a single statement might have been "In 1992 the popu- 
lation of Albuquerque was greater than that of Cleveland." A 
complementary pair might have been the previous example along 
with, "In 1992 the population of Cleveland exceeded that of 
Albuquerque" written below it. These manipulations were explor- 
atory, designed to determine whether they affected within- or 
between-subject variability in any way and thereby affected the 
response distributions or the consequences of averaging. 

The statements to be judged concerned the relative populations 
of the 50 largest cities in the United States in 1992. Consistent with 
Juslin (1994), Winman (1997), and our own recent work (e.g., 
Wallsten & Gonz,41ez-Vallejo, 1994), we sampled stimuli ran- 
domiy from the set of all possible pairs of the these cities. To 
anticipate one result, in contrast to Juslin and Winman, our re- 
spondents demonstrated considerable overconfidence. Budescu, 
Wallsten, and Au (1997) used a portion of the data from the 
present study to illustrate a procedure for assessing calibration 
following correction for trial-by-trial within-subject error. They 
showed most respondents to be overconfident even following this 
correction. Although they used a subset of the data presented here, 
there is virtually no overlap in the former and the present data 
analyses. We summarize their analyses and relate them to the 
present ones in the discussion. 

Method 

Participants. Respondents were 64 volunteers from the University of 
North Carolina, Chapel Hill community and were paid according to per- 
formance, with a minimum of $4 for an approximately l-h session. 

Between-subject design. Sixteen individuals served in each cell formed 
by crossing two stimulus with two response conditions. In Stimulus Con- 
dition S, respondents saw single true or false sentences on each trial. In 
Stimulus Condition P, they saw a complementary pair of sentences per 
trial, with the true one randomly above or below the false one. In Response 
Condition UR, they provided essentially unrestricted subjective probability 
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estimates, multiples of I in (0%, 100%) regarding the truth of a statement. 
In Condition R, their estimates were restricted to the 11 values, 0%, 
10% . . . . .  90%, 100%. 

Materials and procedure. Stimuli were generated by randomly sam- 
piing 100 pairs of cities from the full set (of 1,225) obtained by construct- 
ing all possible pairs oftbe 50 largest cities in the United States as of 1992. 
These 100 pairs were used to create 100 true statements (e.g., "In 1992 the 
population of Atlanta exceeded that of Buffalo") and their 100 false 
complements (e.g., "In 1992 the population of Buffalo exceeded that of 
Atlanta"). 

The 200 statements were used in 400 trials, divided into 4 blocks of 100 
each, with each trial involving a distinct pair of cities. Thus, city pairs were 
replicated over but not within blocks. In Stimulus Condition S, Block 1 
consisted of a random ordering of 50 true and 50 false statements. Block 2 
used the same ordering of city pairs as Block 1, but with each sentence 
constructed to be the complement of the one that had appeared earlier. 
Blocks 3 and 4 were replications of Blocks 1 and 2, respectively. Thus, 
each true and each false statement appeared twice, and sentences concern- 
ing identical pairs of cities were maximally separated, with true and false 
versions alternating over blocks. One sequence of 400 sentences was 
constructed as just described, and it was used with half the respondents in 
Condition S. The reverse sequence was used with the other half. The 
ordering of city pairs was identical in Condition P, but each trial showed 
the pairs consisting of the true and false statements. 

The experiment was computer controlled. Sentences were presented on 
a 14-in. (36-cm) color monitor, and responses were collected on the 
keyboard. Respondents studied the sentence(s) on each trial for as long as 
they wished. When they were ready to provide an estimate, they pressed 
the "Enter" key, and the stimulus disappeared. In Condition S, they typed 
in a subjective probability estimate that the sentence was true. In Condition 
P, the word top or bottom appeared to instruct them whether to provide an 
estimate with respect to the top or the bottom sentence in the pair. 
Respondents in Condition UR used any integer, and those in Condition R 
used any multiple of 10 from 0 to 100. The next stimulus appeared on the 
screen a few seconds after the response was entered. 

To provide motivation, we made payoffs response contingent. Partici- 
pants won or lost points on each trial according to the spherical scoring 
rule, s = a + b ( p l ~ p  2 + (1 - p)2), where for true statements, p = r, the 
estimate that the statement was true, and for false statements, p = 100 - 
r. The spherical, along with all strictly proper scoring rules (Murphy & 
Winlder, 1970), has the property that given a subjective probability value, 
~r, for an event, one maximizes one's expected score by setting r = ~'. The 
constants were fixed at a = -120.71 and b = 170.71, so that estimates 
yielded positive payments if their direction relative to 50 corresponded 
correctly to the statement's verity (maximum score of 50 for p = 100), 
negative payments if the direction was incorrect (minimum score of 
-120.71 forp = 0), and 0 forp = 50. 

The instructions neither showed nor mentioned the scoring role. Instead, 
they said that respondents would win or lose points (convertible to money) 
on each trial according to their probability estimate and whether the 
statement was in fact true or false. An explanation of the scoring rule 
principle was followed by a table with sample payoffs given selected 
estimates. This part of the instructions concluded by saying, 

R e s u l t s  

This section is organized as follows: First, we consider overall 
response distributions and response reliability. Then, we turn to the 
study's main predictions, considering first the properties of indi- 
vidual calibration curves, then the comparison of between- and 
within-subject averaging to test Prediction 3, and, finally, the 
effects of increasing the number of judges whose estimates were 
combined as a further test of Prediction 1. Whenever response 
categorization was required, we used the category boundaries 
[0%, 4.5%), [4.5%, 14.5%) . . . . .  [84.5%, 94.5%), [94.5%, 100%]. 
In all cases, we used analysis of variance (ANOVA) procedures to 
assess the effects of the stimulus and response conditions (as well 
as of sequential block) on the statistics of interest. Other than on 
the overall response distributions, the effects were close to nil. In 
the interest of brevity, we present these ANOVAs only for the 
overall response distributions. 

Response distributions. After classifying the UR responses 
into the 11 categories available to the R participants, we compared 
response distributions across the four cells of the design in terms 
of the variance of each individual's frequency of category use. 
Taking logarithm of the variances to linearize them, we subjected 
the resulting values to a 2 (stimulus condition) × 2 (response 
condition) ANOVA. The only significant effect was that due to 
response condition, F(I ,  60) = 4.30, p < .05. 

The actual distributions for the two response conditions are 
shown in Figure 5. For ease of interpretation, the abscissa is scaled 
from 0 to 1 instead of from 0 to 100. The distributions are both 
markedly W-shaped, as Budescu, Weinberg, and Wallsten (1988) 
and Wallsten et al. (1993) also found, but the peaks in the 0, 0.5, 
and 1 categories are respectively higher for Condition UR than for 
Condition R. Substantiating that conclusion, the proportion of 
responses in those three categories is significantly greater in Con- 
dition UR than in Condition R, F(1, 60) = 13.50, p < .05. In 
Condition UR, 62% of the responses were in the end and center 
categories, whereas in Condition R, 43% were in the end and 
center categories. These W-patterns appear at the level of individ- 
uals as well. 

Additivity and reliability. Respondents provided two probabil- 
ity estimates for each true statement and two for each complemen- 
tary false one. Additivity requires that the means of these two 

Clearly, you will earn the maximum possible number of points by 
always correctly using 0 and 100. This will be impossible, of course, 
because you will not always be certain of the correct answer. The 
formula we are using to calculate your outcome, however, guarantees 
that you will maximize your expected eAlrltln~ in light o f  y o u r  

knowledge by always assigning that number from 0 to 100 that best 
reflects your actual estimate of the chances that the claim is true. No 
other strategy can be expected to yield better earnings. 

The sample table remained available throughout the session. Respondents Figure 5. Response distributions for Condition R (gray) and Condition 
received feedback only at the end, and not after each trial. UR (black), averaged over the two stimulus conditions. 
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sets of judgments sum to unity. The overall mean of 1.015 
(SD = 0.033) is slightly but significantly greater than 1.0, 
t(63) = 3.60, p < .05, based on the mean sum over all items per 
respondent. Nevertheless, assuming additivity, we converted the 
estimates of the false sentences to those of true ones by subtracting 
them from 1. On that basis, each respondent provided four esti- 
mates for statements concerning each pair of cities. For each 
respondent, we calculated the six linear correlations defined for all 
pairs of the four sets of estimates. The six values were similar, and 
we took their average following Fisher's Z transform. The overall 
mean correlation coefficient (i.e., the inverse of the mean Fisher's 
Z value) was .66. 

Individual calibration. The mean of the individual calibration 
curves is labeled "All" in Figure 6. Separate calibration curves per 
group are virtually indistinguishable and are not shown here. (We 
discuss the remaining two curves in the figure subsequently.) 
Despite the random selection of items, the data show the overes- 
timation typically found in other calibration studies rather than the 
pattern obtained by Juslin (1994) and Winman (1997) in their 
random condition. The curve rises above the diagonal for response 
categories less than 0.5 and falls below the diagonal for categories 
greater than 0.5. 

To characterize each individual's performance and to look for 
group differences, we calculated PS, CI_, DI, and 191' for each 
participant. Overall means are given in the first row of Table 4 and 
serve as benchmarks for subsequent comparisons. 

Prediction 3 :  Within- versus between-subject averaging. As 
before, the simple arithmetic means and the means of the estimates 
converted to log-odds yield the same pattern of outcomes. Thus, 
we present analyses based only on the f'LrSt method. 

Table 4 
Mean Values for  the Mean Probability Score (PS), Calibration 
Index (CI), and Two Indices of  Resolution (DI and 191')for 
Individuals and for  Averages Taken Over Pairs of  Estimates 
Both Within and Between Respondents 

Level PS CI 131 DI' 

Individual .252 .040 .038 .666 
Average within .250 .047 .047 .657 
Average between .234 .034 .051 .732 
t(31)" 21.83 11.33 -5.07 -24.67 

a all ps < .05 .  

It is important to recall that the mean within-subject correlation 
coefficient is .66. Prediction 3, that between-subject averaging will 
be superior to within, is predicated on the assumption that there is 
less dependency between than within individuals. To assess 
whether that condition holds, we used respondents' mean estimates 
to the 200 statements to calculate all pairwise correlations between 
individuals within each of the four groups. The mean values (based 
on Fisher Z transformations) are .50, .57, .62, and .60 for groups 
P-R, P-UR, S-R, and S-UR, respectively, with a grand mean of 
.57. Thus, the necessary condition is met, although these values are 
higher than we encountered previously. 

To compare the effects of averaging within- and between- 
subjects, we randomly paired the 16 individuals within each of the 
four groups, thereby forming eight dyads per group. For each dyad, 
we took four different means for each statement. Two were within- 
subject means, obtained by averaging each individual's replicated 
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Figure 6. Calibration curves based on individuals' raw estimates (All) and on the pairwise averages of those 
estimates per statement within- and between-subjects. P(T) -- proportion of statements that are true. 
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estimates. Two were between-subject means, obtained by averag- 
ing each member's  fast  estimate with the other one's second 
estimate. Specifically, for a given item, let rjk denote respondentj 's 
kth estimate (k = 1, 2 ; j  = 1 . . . . .  16). Let m~/denote the mean of 
two estimates with the first subscript indicating the person whose 
first estimate was included and the second subscript indicating the 
one whose second estimate was included. Then, the two within- 
and two between-subject means, respectively, are m~. = (rjl + 
rj2)/2, my,j, = ( r f l  + rj,2)12, mjj, = (ry 1 + rf2)12, and mj,j = (rj, 1 

+ rj2)/2. 
Calibration curves based on the within- and between-subject 

means, respectively, are shown in Figure 6. It is important to note 
that averaging pairs of replicated estimates within-subjects has 
virtually no effect on the quality of the estimates, whereas aver- 
aging between yields substantial improvement, as predicted. 

To quantify and assess the extent of the improvement, we used 
the 32 sets of m~ and 32 of m~, to calculate the four quality indices 
for the within- and between-subject averaging, respectively. The 
means (and standard deviations) are given in rows 2 and 3, 
respectively, of Table 4. Consistent with the curves in Figure 6, 
averaging an individual's two replications per statement does very 
little to improve the quality of the estimates over the individual 
case, whereas averaging pairs of estimates between respondents 
provides consistent gain. 

The difference between the two methods is substantiated by t 
tests. Because the various means are not independent of each other, 
we performed the t test for each index on a contrast score con- 
strutted to measure the mean within- and between-respondent 
difference per dyad, D = (wij + wj,y - wTd, - wfj)/2, where w 
denotes the index in question and the subscripts indicate the 
particular source of the mean estimates with which it was calcu- 

lated. It is important to note that d f  = 31 for each index's test, 
arising from 8 independent values of D per group, one for each 
dyad, and therefore 32 independent values over the 4 groups. The 
resulting values of t are shown in the last row of Table 4. All are 
significantly different from 0, and all the differences favor the 
between-subject averaging. 

Predict ion 1: Increasing the number  o f  judges .  Figure 7 illus- 
trates the consequences of averaging probability estimates over 
judges. All pooling across respondents used individuals' mean 
estimates per statement. The calibration curve based on these 
individual means is shown as J = 1 and is identical to the 
within-subject curve of Figure 6. For the remaining functions 
(those for J -> 2), we ignored the stimulus condition and averaged 
estimates per item across participants separately within Response 
Conditions R and UR. Specifically, for J = 2, we randomly 
divided the 32 respondents per group into 16 pairs and, for each 
pair, took the average estimate per statement. The curve in the 
figure represents the average of the separate curves per pair. For 
J = 4, we divided the respondents into 8 sets of 4 individuals each, 
averaged the individual estimates per statement within each qua- 
druple, and have shown the weighted average calibration curve. 
Similarly, for J = 8, we divided the respondents randomly into 4 
sets of 8 each, and so forth through J = 32, where we simply 
averaged the estimates of all respondents per group. For J = 64, 
we simply averaged the estimates of all respondents across both 
conditions. Thus, all the participants contributed equivalently to 
pooling at each level. All that differed across levels were the 
numbers of estimates being averaged together per statement. The 
calibration curves for the separate conditions are virtually identi- 
cal, and we present only the combined results in Figure 7. 
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It is apparent that the calibration curves change shape, consistent 
with Prediction 1, as the number of judges increases from 1 to 64, 
although not to the same extent as we saw previously (Figure 1). 
Table 5 and the penultimate colnnm in Table 2 quantify the extent 
of the improvement. Table 5 shows mean values of the four quality 
indices as a function of group size and response condition, whereas 
the column in Table 2 shows the percentage of statements that are 
true (or false) given mean estimates greater (less) than 0.5 aver- 
aged over both response conditions. 

The major result is that each index improves asymptotically and 
significantly as a function of the group size. The percentage index 
in Table 2 and DI' in Table 5 are clearly the most sensitive to 
number of judges. Prediction 1 called for improvements in the 
indices of diagnostic value and decreases in overconfidence, with- 
out making specific prediction about calibration. In fact, those 
indices improved as well, with the consequence that the calibration 
curves for J = 32 and 64 are very close to the diagonal. Separate 
linear multiple regressions for each index in Table 5 using log 
group size (for J = 1 . . . . .  32) and response condition as predic- 
tors fit the data well (with adjusted R 2 from .74 to .87, depending 
on the index) and show significant effects of hi(J) in all cases (at 

= .05). Response condition is significant only for DI and DI', 
which are better on average in condition R than in UR. 

Finally, Figure 8 shows response distributions for each group 
size (averaged over both response conditions) from J = 1 to 32 
conditional on the statement being true or false. This figure tells a 
story similar to that of the earlier depiction of response distribu- 
tions across values of J (see Figure 2). For individual judges, the 
conditional distributions overlap considerably. However, as J in- 
creases, these distributions separate because of their decreasing 
spread (pooled SD = .392 at J = 1 and .209 at J = 32) and 
increasing single peakedness. The distributions at J = 64 are 
virtually identical to those at J = 32, with a pooled SD of .207. 

Table 5 
Mean Values for the Mean Probability Score (PS), Calibration 
Index (CI), and Two Indices of  Resolution (DI and Dl') for  
Mean Estimates Within the Indicated Group Sizes, J, Separately 
by Response Condition and for J = 64 Over Conditions 

m 

J PS C! DI DI' 

Condition R 

1 .24 .03 .04 .68 
2 .22 .02 .04 .78 
4 .21 .01 .05 .85 
8 .21 .01 .05 .93 

16 .21 .01 .05 .92 
32 .21 .00 .05 .91 

Condition UR 

1 .26 .04 .03 .60 
2 .24 .02 .04 .70 
4 .22 .01 .04 .77 
8 .22 .01 .04 .79 

16 .21 .01 .05 .83 
32 .21 .00 .04 .88 

Over both conditions 

64 .21 .00 .05 .90 

Discussion 

This section discusses a few issues relevant to this experiment 
alone, including effects of the independent variables, response 
reliability, and the data with respect to Prediction 3. We defer 
commentary on Prediction 1 to the General Discussion because it 
is of interest to relate these results to those of  the reanalyses. In that 
section, we also connect Budescu, Wallsten, et al. 's (1997) treat- 
ment of a portion of these data to the analyses presented here. 
Finally, the General Discussion considers the overall theoretical 
and practical implications of the two studies taken together. 

The independent variables. The stimulus manipulation, pre- 
senting a single statement or a pair of complementary statements, 
had essentially no impact on any of the dependent variables. In 
contrast, the response manipulation did have an effect, such that 
individuals in the unrestricted condition used the anchor categories 
of 0, 0.5, and 1 (actually 0%, 50%, and 100%) more frequently 
than did those in the restricted. If it were the case that the anchor 
categories only drew from their neighbors, the effect would be 
relatively uninteresting. However, Figure 5 shows that use of all 
the nonanchor categories is depressed by roughly equivalent 
amounts for UR relative to R respondents, suggesting a difference 
in response strategy for the two groups. Nevertheless, response 
condition had relatively little effect on the consequences of aver- 
aging either within or between respondents. 

Response reliability. The mean within-subject pairwise corre- 
lation among the responses was unaffected by the independent 
variables and very high, .66. This value is comforting, but we 
cannot rule out the possibility that, to some degree, it reflects 
memory of previous responses rather than simple unbiased repli- 
cability. To minimize that possibility, replicated stimuli were 
spaced as far apart as possible, with true and false complementary 
statements separated by 50 trials and repetitions of  identical sen- 
tences separated by 100 trials. 

Prediction 3. In accordance with this prediction, pairwise av- 
eraging of estimates between-subjects yielded better calibrated and 
more diagnostic results than did pairwise averaging within. We 
had expected the better diagnostic indices and lower overconfi- 
dence that we observed, but we had made no prediction regarding 
calibration, leaving open the possibility that it would turn to 
underconfidence. That did not happen. 

The results are particularly interesting because the within- and 
between-subject pairwise response correlations are so close (.66 
and .57, respectively), yet the outcome of averaging was so dif- 
ferent in the two cases. Averaging estimates within individuals 
yielded no benefit at all, whereas averaging between yielded small, 
consistent, and statistically significant gains (see Figure 6 and 
Table 4). There are two possible explanations here, neither of 
which can be ruled out at the present time. One is that improve- 
ment given linear correlations in the neighborhood of .66 is simply 
so small that many more than two values must be averaged 
together to have any effect. The simulations of Johnson et al. (in 
press) provide some support to this notion, as they show the effects 
of averaging two observations at correlations of .60 to be minimal, 
although noticeable, with effects reaching asymptote at between 16 
and 32 judges (see Table 2). The second possibility is that within- 
and between-subject violations of pairwise independence under 
these conditions differ in ways not captured by linear correlation 
coefficients and that the within-subject violations are such that no 
improvement results. For example, the within-subject correlation 
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Figure 8. Distributions of mean estimates to true and false statements for group sizes, J = 1, 2, 4, 8, 16, and 32. 

almost certainly depends solely on the degree of random error a 
respondent brings to his or her information base. Averaging can do 
no more than eliminate the perturbations caused by the error 
process. The between-subject correlation depends on random 
within-subject error but also on the extent of overlap in the judges' 
information bases. Averaging in this case benefits from the totality 
of the underlying information and thereby improves the diagnostic 
impact. This, of course, is exactly the distinction captured in its 
extreme by Equations 3 and 2, respectively. Both of these expla- 
nations support the basis of Prediction 3 that averaging within- 
subjects will lead to less diagnostic results than averaging 
between-subjects because of greater violations of pairwise 
independence. 

General  Discuss ion 

At this point, we turn from considering the present experiment 
in isolation to merging discussion of it with that of the reanalyses 
for the purpose of drawing general conclusions and implications. 

Prediction 1 

Our new results join those uncovered in the reanalyses in 
supporting Prediction 1, but they are not so spectacular (see 

Figure 7 and Table 5), no doubt because of the greater violation of 
conditional pairwise independence. Table 2 provides a convenient 
comparison of all the results, including the relevant subset from 
Johnson et al.'s (in press) simulation. It is important to note that 
according to the percentage of true (or false) statements given 
probability estimates greater (or less) than 0.5 at J = 1, the mean 
level of accuracy in this study matches that of Juslin's (1994) and 
Winman's (1997) participant-selection condition. Despite the pair- 
wise correlation being much greater in the present case, the ad- 
vantages of averaging are only slightly less. This fact further 
suggests that the nature of the independence violation in the 
participant-selection case is different than in the others and not 
well captured by the linear correlation coefficient. 

The overall picture from our analyses along with the Johnson et 
al. (in press) simulations is one of substantial support for Predic- 
tion 1, with good but still incomplete indication of its degree of 
robustness. In all cases, the calibration curve plotting P(T) as a 
function of the mean estimate becomes less regressive, even anti- 
regressive, as the number of judges increases, in accordance with 
Prediction 1. The comparisons in Table 2 and the relevant figures 
suggest that the degree to which that occurs depends on both the 
difficulty of the task and the nature of the conditional pairwise 
dependency. When the task is relatively easy, items are not se- 
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lected with a view to testing the judge, and violations of indepen- 
dence are moderate (Juslin's, 1994, and Wiuman's, 1997, random 
condition and the Johnson et al. simulation with r = .30), averag- 
ing yields considerable underconfidence and good resolution. Un- 
der the same conditions, but more severe violations of indepen- 
dence (our experiment and Johnson et al., r = .60), averaging still 
improves the diagnostic value to a considerable degree. Good 
resolution given the degree of conditional dependence was 
achieved with 6 judges and close to the maximum possible with 12 
or 16. 

Calibration and Difficulty Differences Among the 
Various Conditions 

According to the ecological view (e.g., Gigerenzer et al., 1991; 
Juslin, 1994), overconfidence in probability estimation is an arti- 
fact of biased sampling of events. Juslin's (1994) and Winman's 
(1997) data, which we have looked at so closely, support this view. 
Accordingly, then, respondents in our Study 2 should have been 
well calibrated because their stimuli also were randomly sampled 
from a well-defined domain. In contrast, they were overconfident. 

Associated with this difference in calibration is a difference in 
difficulty, as indexed by the percentage of true or false items given 
mean estimates respectively above or below 0.5. (This index is a 
direct function of the percentage of correct answers in the choice 
half-scale task.) In fact, others (see Brenner, Koehler, Liberman, & 
Tversky, 1996, and references therein) have also shown overcon- 
fidence given random sampling in cases with low proportions of 
correct answers. Thus, we might attribute the calibration differ- 
ences simply to the hard-easy effect. However, this effect is not an 
explanation, it is simply a description of a widely observed pattern 
of data. In a recent article, Juslin et al. (in press) argued that the 
hard-easy effect is primarily, if not entirely, due to statistical and 
measurement artifacts. When these are properly corrected for, they 
argued, most of the effect goes away in tasks that involved random 
item selection (see also Klayman, Soil, GonzAlez-Vallejo, & Bar- 
las, 1999). As part of their argument, Juslin et al. showed that the 
means and standard deviations of the subjective probability esti- 
mates were identical in their random- and participant-selection 
conditions. What differed in the two cases were the probabilities of 
correct choices (and, as a consequence, the level of calibration). 
Indeed, comparing the response distributions in Juslin's (1994) and 
Wiuman's (1997) random condition and our Study 2 (which can be 
done by averaging over the conditional distributions in Figure 2 
and Figure 8, respectively), we see that they barely differ. Thus, 
the groups of respondents are identical at the level of response 
distributions and differ in calibration only to the extent that the 
tasks vary in difficulty. (See Wallsten, 1996, for additional dis- 
cussion and illustration of the role P[T] plays in determining 
calibration.) 

Budescu, Wallsten, et al. 's (1997) Analyses 

The ecological approach may explain why the response distri- 
butions do not change for informal versus random sampling of 
items from a given domain, but it does not explain why the 
distribution is fixed across domains. Exploration of that issue is 
beyond the scope of this article. However, Budescu, Wallsten, et 
al. (1997) analyzed a portion of the present data to determine 
whether the observed overconfidence remained after correcting for 

trial-by-trial random perturbations in judgment and response pro- 
cesses. The analyses, which used the data of the respondents in 
Condition R and were done only at the level of J = 1, were distinct 
from those presented here. Rather than investigate the effects of 
averaging, they focused on Wallsten and Gonz,51ez-Vallejo's 
(1994) stochastic judgment model, according to which respon- 
dents' probability estimates depend on the location of their covert 
confidence for an item relative to response criteria, with both the 
confidence and the criteria subject to triM-by-trial fluctuation. 
Omitting all details, the conclusion was that the vast majority of 
the respondents displayed overconfidence, even after correcting 
for stochastic perturbations. Moreover, the overconfidence was 
directly due to respondents setting insufficiently extreme response 
criteria for the task at hand. 

Practical Implications 

The present data add to a growing body of results that strongly 
points to the importance of considering within- and between- 
subject variability in probability estimates (e.g., SoU, 1996). Trial- 
by-trial error within respondents may add to the apparent degree of 
overconfidence and miscalibration within an individual (Erev et 
al., 1994), although it did not do so to any appreciable degree in the 
experiment. We continue to expect on theoretical grounds that it 
will in conditions of lower response reliability, and that in those 
cases, averaging individual judgments may yield some or even 
substantial improvement. 

However, the story is different with between-subject variability. 
In this case, even when pairwise correlations among estimates 
(conditional on the state of the item--true or false) are high, 
averaging over multiple judges distinctly improves the quality of 
the forecast. The degree of improvement varies with the extent of 
the dependency but can be quite substantial. 

These results yield three very clear practical conclusions: One is 
that averaging works. The mean estimate of only 2 judges gener- 
ally is more diagnostic than that of either one alone. Additionally, 
substantial improvement can be obtained by averaging the esti- 
mates of as few as 6 judges. The second conclusion is that the 
judges should operate from as distinct information bases as pos- 
sible, thereby reducing the conditional pairwise correlations 
among their estimates and maximizing the diagnostic result. These 
two points echo Hogarth's (1989) and Sorkin and Dai's (1994) 
recommendations (see also Ashton, 1986). Thus, a fixed budget is 
better spent on diversifying across experts with access to different 
information or with different perspectives than on increasing the 
number of experts looking at the same information in the same 
way. Third, there seems to be some advantage in having respon- 
dents use categorical rather than unrestricted estimates. Interest- 
ingly, most tend to adopt this strategy spontaneously. (Almost 85% 
of the estimates in Condition UR were multiples of 10 and an 
additional 9% were multiples of 5 but not of 10. This pattern is 
similar to that observed by Budescu et al., 1988, and Wallsten et 
al., 1993). 

Can we more specifically advise the decision maker on how to 
treat the average estimate of J (say 6) forecasters? Before address- 
ing this issue, it is appropriate to point out that the optimal way to 
use multiple subjective probability estimates is through Bayes's 
rule (Morris, 1977). That is, the decision maker should treat the 
estimates (say of Event A) as data, estimate the likelihood of the 
particular data pattern (combination of estimates) given A and 
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given not-A, then use the likelihood ratio to revise his or her own 
subjective prior odds about the event. Although this approach 
sounds straightforward, it is very difficult to apply in practice 
because the decision maker rarely has sufficient experience with 
the particular experts in the particular context to reliably estimate 
likelihood ratios. To make matters worse, the greater the condi- 
tional dependency among judges, the more history is required to 
get good estimates. In the end, the decision maker must rely on his 
or her intuition on the basis of whatever information or history is 
available. Researchers have suggested a host of formal models to 
aid the decision maker in incorporating this intuition into Bayes 's  
rule (see, for example, Clemen & Winkler, 1993; Genest & 
Schervish, 1985; Winkler, 1989). 

The advantage of taking averages, as we are suggesting, is that 
one does not have to focus on different combinations of estimates 
but only on their central value. Thus, perhaps (we have not studied 
the issue) global and informal estimates of conditional dependency 
will do, based on general knowledge of the experts'  backgrounds, 
biases, and data sources. Of course, the more this estimate is 
informed by explicit past experience, the better. If the decision 
maker considers the experts to have mild and unsystematic overlap 
in their information sources, then he or she should treat the 
probability of the event as considerably more extreme than the 
mean estimate. In contrast, if the overlap is large (perhaps com- 
plete), then the decision maker may wish to treat the probability as 
closer or roughly equal to the mean estimate. 

Finally, although not specifically addressed in this study, we 
should briefly say something about the type of average to take. 
Wallsten and Diederich's  (in press) result is that given the assump- 
tions, the mean of any monotonic transformation of the probability 
estimates will converge in the manner of Equation 2. Thus, arith- 
metic averages, such as used in this study, are not required. One 
can use mean log-odds, weighted means, trimmed means (includ- 
ing medians), or any other central statistic and should select the 
one that converges fastest. Empirical comparisons thus far suggest 
little practical difference between arithmetic means and means of 
the log-odds transformation. Nevertheless, one form of central 
tendency may be substantially better than others under particular 
conditions. For example, it may turn out to be better to average 
log-odds than to take arithmetic means when only rare events (e.g., 
with probabilities under .01) are being judged. These points, 
among others, remain to be more thoroughly investigated. 
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