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Abstract—

 

Sets of similar objects are common occurrences—a crowd
of people, a bunch of bananas, a copse of trees, a shelf of books, a line
of cars. Each item in the set may be distinct, highly visible, and dis-
criminable. But when we look away from the set, what information do
we have? The current article starts to address this question by intro-
ducing the idea of a set representation. This idea was tested using two
new paradigms: mean discrimination and member identification.
Three experiments using sets of different-sized spots showed that ob-
servers know a set’s mean quite accurately but know little about the
individual items, except their range. Taken together, these results sug-
gest that the visual system represents the overall statistical, and not

 

individual, properties of sets.

 

Sets of similar objects are common occurrences—a crowd of peo-
ple, a bunch of bananas, a copse of trees, a row of fence posts, a shelf
of books, a line of cars. Each item in the set is distinct, highly visible,
and discriminable. But when we look away from the set, what infor-
mation do we have? If something in the set particularly catches our
eye, we may retain quite a bit of information about it. A rich represen-
tation will also be formed if we had some appropriate categories avail-
able—such as the names of several people in the crowd. However,
when the stimuli do not fall into preformed categories, what informa-
tion do we have about each of the individual items? What information
do we have about the set of items as a whole? Our language supports
the idea that a crowd, a bunch, a copse, or a set is somehow different
from the sum of its parts. The work reported here examined whether
the human visual system makes similar distinctions and represents
properties of items in sets as individual items or as a whole. The ex-
periments begin to address the question: Does the visual system create
a specific representation for a set of similar objects that is not just the
sum of the representations of the individual items? Two new para-
digms were used to determine what observers know about the mem-
bers of a set and what they know about the statistical properties of the
set (mean and distribution).

Comparing the accuracy with which observers represent informa-
tion about parts and sets allows us not only to answer these general
questions, but also to distinguish between two general approaches to
understanding the perception and representation of multiple items.
The first approach suggests that when many items are presented, the

 

visual system encodes only low-resolution information about each of them
(Neisser, 1967). Such an approach is consistent with limited-capacity
models of visual processing: If the visual system has a bottleneck at
some point, then the more items there are to process at one time, the
fewer bits there are available to represent each one (Nakayama, 1990).

The second approach suggests that there may be more efficient ways
of dealing with limited capacity than simply reducing the resolution of
the local representation. The idea here is that sets of objects could be
represented in a qualitatively different way than single items. There-
fore, when presented with a set of objects, the visual system does not
face trade-offs involving the resolution for encoding local informa-
tion, but rather decides how to divide resources between the two types
of representations (individual and set).

 

GENERAL METHOD

 

This article reports the results of three experiments that were iden-
tical in many regards. In particular, the sets and test stimuli in all the
experiments consisted of circular spots of various sizes. Such sets
have the advantage that the members do not fall into distinct catego-
ries, as they could if they varied in color, shape, or orientation. Two of
the experiments measured knowledge about the sizes of the individual
spots in a set (member-identification experiments), and one measured
sensitivity to the mean size of a set (mean-discrimination experiment).
In all the experiments, a set of spots was presented in the first temporal
interval of a two-interval trial, and a test stimulus, consisting of one or
two test spots, was presented in the second interval. An example of a
stimulus pair is shown in Figure 1. Both temporal intervals in a trial
were 500 ms in duration. There was no blank time between intervals.
The 2 observers were male undergraduate students who had normal
vision and were naive as to the purpose of the experiment. The same 2
observers participated in all three experiments. No feedback about the
correctness of responses was given in any experiment.

Each set consisted of spots of four sizes that were equally spaced
on a log scale. Each size was separated from the next size by a factor
of either 1.05 or 1.4 (

 

n

 

). The mean spot diameter was 0.25

 

8

 

. The 1.05
sets included spots of similar sizes—diameters ranged from 0.23

 

8

 

 to
0.27

 

8

 

; the 1.4 sets included spots with dissimilar sizes—diameters
ranged from 0.15

 

8

 

 to 0.42

 

8

 

. These two sets are referred to as sets of
similar and dissimilar spots, respectively. Sets with 4, 8, 12, and 16
spots were used, with 1, 2, 3, or 4 spots of each of the four sizes, re-
spectively. The spatial arrangements of the sets were random, with
constraints on overall area and minimum proximity between spots to
make the average density roughly constant. An example of a set of dis-
similar spots (factor of 1.4) is shown in Figure 1 together with a sam-
ple test spot. The range of sizes of the test spots exceeded the range of
the spots in the sets by the difference between the spot sizes them-
selves (the factor size).

Each set of spots (and its corresponding test spots) was presented
in 15 versions: five differently randomly scaled versions, each pre-
sented in three different spatial arrangements. The different versions
were used to discourage the observers from basing their judgments on
previously seen stimuli. In the data analysis and presentation of re-
sults, size of the test spot is represented relative to the mean of the set
with which it was presented, averaged over the 15 versions.
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MEMBER-IDENTIFICATION EXPERIMENTS

Method

 

In the member-identification experiments, two methods were used:
yes/no and two-alternative forced choice (2AFC). In the yes/no experi-
ment, each trial consisted of a presentation of a set of spots in the first
interval and a presentation of a single test spot in the second interval (as
in Fig. 1). The observer was asked to report whether the test spot was, or

was not, a member of the set. Only sets of dissimilar spots were used.
For each set size, 150 trials were conducted (10 trials for each of the 15
versions). The percentage of “yes” responses (i.e., the test spot was
judged to be a member of the set) was recorded and analyzed.

For each trial in the 2AFC experiment, a set of spots was presented
in the first interval (as in the left panel of Fig. 1), and two test spots
were presented in the second interval. The size of one of the test spots
matched that of one member of the set, and the size of the other test
spot was either the next larger or the next smaller in the series of test
spots. The observer was asked to report which of the two test spots
was a member of the set. Again, only sets of dissimilar spots were
used, with set sizes of 4, 8, 12, and 16. For each set size, 150 trials
were conducted (10 trials for each of the 15 versions). The percentage
of correct responses in the 2AFC task was recorded and analyzed.

 

Results

 

Results of the yes/no member-identification experiment are shown
in Figure 2. These graphs show the percentage of trials in which the
observer responded that the test spot was a member of the set as a
function of the size of the test spot. The data were normalized to the
maximum percentage of “yes” responses for each observer and set
size, making it possible to focus on the distribution of results without
regard to the observer’s criterion.

The arrows in Figure 2 mark the test spots that were members of

Fig. 1. Schematic representation of the two intervals used in each
trial. Observers first saw a set of circles for 500 ms, and then a test
stimulus consisting of one or two test spots. This example shows a set
of 16 items with a similarity factor of 1.4, and a single test spot.

Fig. 2. Yes/no member-identification results. The graphs show the percentage of trials on which the observers identified (correctly or incor-
rectly) a test spot as a member of the set. Results for the 2 observers are shown separately. Data are shown for four set sizes, with the number on
each curve indicating the number of spots of each size (i.e., set size/4). Spot size 5 (0.25 3 1.4 n)8. The x-axis shows spot size in terms of the
value of the exponent (n), which is the number of steps to the mean. The arrows mark the test spots that were members of the set; all other test
spots were not members of the set.
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the set. Perfect performance on this task would have resulted in a saw-
tooth shape with all data points above the arrows at 100% and all other
data points at 0%. The smooth curves obtained differ sharply from that
level of performance.

The 2 observers did not differentiate between members and non-
members within the range of a set. The observers were unable to make
this distinction despite the fact that the members differed in size from
the nonmembers by at least 18%, about three times the size-discrimina-
tion threshold for sets of same-size spots.

 

1

 

 Moreover, this failure to dis-
criminate held even for the sets with only four items. As can be seen in
Figure 2, both observers exhibited some knowledge of the range of the
set: They consistently responded “yes” more frequently to test spots that
were within the range of the set than to test spots that were outside the
range of the set. Within the range of the set (values of the spot size expo-
nent, 

 

n

 

, in the range 

 

2

 

1.5 to 1.5), the percentage of “yes” responses for
most spot sizes was above the 50% line, whereas outside that range, the
percentage for most spot sizes was below the 50% line.

The same experiment was repeated with a 2AFC paradigm to pro-
vide a criterion-free test of observers’ knowledge about the sizes of
the individual spots in the set. In this experiment, each test stimulus

consisted of two spots: a member of the set and a nonmember (as de-
scribed in the Method section). The observers’ task was to report
which test spot was a member of the set they had just seen. This is a
criterion-free procedure; observers’ subjective estimates of what
knowledge they have play no role. Instead, observers are forced to use
what information they have to make a judgment. Each member test
spot was presented with a larger nonmember test spot half the time
and with a smaller nonmember the other half of the time.

The results are shown in Figure 3, which graphs the percentage of
times that each member spot was chosen in all of the trials in which it
was presented—with a larger spot or with a smaller spot. This averag-
ing across the size of the nonmember test spot eliminates observer
bias in the data (e.g., the tendency to choose the spot size that is closer
to the mean). The results from the 2AFC procedure show that the ob-
servers were unable to distinguish test spots that were in the set from
those that were not: Performance of both observers was only margin-
ally better than chance. Overall, it seems that observers are not able to
make accurate judgments regarding parts of a set.

 

MEAN-DISCRIMINATION EXPERIMENT

Method

 

The stimuli used in the mean-discrimination experiment were
identical to those used in the yes/no member-identification experi-

Fig. 3. Results of the two-alternative forced-choice member-identification experiment. The graphs show the percentage of trials on which the
observers correctly identified the member in the pair of test items. Data from the 2 observers are shown separately. Data are shown for four set
sizes, with the number on each curve indicating the number of spots of each size (i.e., set size/4). Spot size 5 (0.25 3 1.4n)8. The x-axis shows
spot size in terms of the value of the exponent (n), which is the number of steps to the mean.

 

1. A small study was conducted to examine the discrimination threshold of
a single spot compared with a set of same-size spots. The results showed dis-
crimination thresholds between 4.5 and 5.8.
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ment. Each trial consisted of presentation of a set of spots in the first
interval and presentation of a single test spot in the second interval (as
in Fig. 1). The observer’s task was to report whether the test spot was
larger or smaller than the mean spot size of the set. For each of the
sets, 330 trials were conducted, including 30 trials for each of 11 test
stimuli spanning the likely range of the psychometric function. A stan-
dard probit analysis (Finney, 1971) was carried out to determine the
mean-discrimination threshold (the standard deviation of the best-fit-
ting cumulative normal distribution).

 

Results

 

The mean-discrimination thresholds are shown in Figure 4. In each
case, the threshold was either roughly constant across set size or de-
creased slightly with increasing set size. For the sets with the small, 1.05,
step size, the mean-discrimination threshold was quite low—about 4 to
6% of the spot size. Increasing the range dramatically, so that the spots
were sized differently enough that they could be considered dissimilar, el-
evated the threshold to only 6 to 12%. The results show that the mean size
of sets was known quite precisely for sets of both step sizes. Further, the
results indicate that precision either was independent of the number of
items in the set or improved with increasing set size.

Note that an ideal observer who has an error in perception would
also produce better mean discrimination than membership discrimina-
tion as a result of averaging of errors. Thus, in order to claim that per-
ception of the mean is more accurate than perception of membership,
one has to show that the same ideal observer could not produce both
sets of results. A simulation of an ideal observer was constructed to al-
low examination of this issue. In this simulation, an ideal observer
perceived each circle with an error that was 

 

k

 

% of the circle size and
made its judgments in the two tasks. The question was whether an
ideal observer with a given 

 

k

 

 could produce both sets of results. The
analysis showed that a 

 

k

 

 equal to 12 would be needed to explain the re-

sults of the mean-discrimination experiment, but the membership-
identification experiment would require that 

 

k

 

 equal 40. In other
words, although averaging multiple circles can account for a part of
the effect, it cannot explain it entirely. Moreover, there are a few other
aspects of the results that cannot be explained by the model of an ideal
observer. First, such a model would not be able to account for the in-
sensitivity to set size in the member-identification task (see Figs. 2 and
3). Second, it could not account for the constant (and slightly in-
creased) accuracy across set sizes (see Fig. 4). The fact that such er-
rors in perceptions cannot account for the current set of results might
be an indication that errors in these types of judgments do not occur
during initial perception, but rather occur in later stages.

In sum, the results of the mean-discrimination experiment are sur-
prising, particularly considering the results of the member-identifica-
tion experiments. If the 2 observers did not have accurate information
about the individual items in the set, how is it that they had accurate
information about the set? The answer to this question could lie, in
part, in the way the visual system represents sets of items. One impli-
cation of these results is that the representation of a set is not a simple
composition of its discrete parts.

 

DISCUSSION

 

Two new experimental paradigms (mean discrimination and mem-
ber identification) were used to help determine when a given property
of a collection of items is represented as a set property and when a
specific item is encoded by the visual system as belonging to a set.
The results of the member-identification experiments show that ob-
servers have a poor ability to discriminate members from nonmem-
bers: Observers knew little or nothing about the sizes of the individual
items in a set. In contrast, the results of the mean-discrimination ex-
periment indicate that observers encode quite precise information
about the mean of a set. Based on these results, one can speculate that
when presented with a set of four or more similar items, the visual
system creates a representation of the set, and discards information
about the individual items in the set.

Studies in object perception often have as their goal the under-
standing of how individual items are represented (e.g., Biederman,
1987). The expectation is that the representation of complex scenes
will consist of many such individual representations. The present re-
sults suggest that the visual system may not take this approach to rep-
resent the entire scene. In the many cases in which proximal items are
somewhat similar, the representation of a set may instead contain in-
formation about, for example, the average size, color, orientation, as-
pect ratio, and shape of the items in the set and essentially no
information about the individual items.

The current work demonstrates the existence of a novel kind of
representation: representation of sets of similar items. Such represen-
tations do not include information about individual items in a set, but
do include highly precise information about the mean of the set and
perhaps some information about the range or spread of the set. Orien-
tation, aspect ratio, mean hue, and shape (however represented) may
all be set properties—as well as item properties. (Tests of orientation
using short line segments showed that observers know the mean orien-
tation of a set of lines, but not individual orientations, a finding consis-
tent with there being a set representation of this property.) Velocity
may also be a set property (see also Rosenholtz, 1999). The mean and
variance of a set of moving dots are known quite accurately (Atchley &
Andersen, 1995; Watamaniuk & Duchon, 1992); it is reasonable to

Fig. 4. Mean discrimination thresholds for the four set sizes. Data are
shown separately for the 2 observers (“Obs”) and the two set distribu-
tions (similar and dissimilar).
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guess that the velocities of the individual dots are not. I turn now to a
discussion of some other implications of such set representations.

 

The Economy of Set Representations

 

Although the exquisite sensitivity of the human visual system to
minute differences in sensory input is a source of wonder and delight
to us, a computer can readily be equally sensitive. Much harder to
solve, and currently far beyond the abilities of computer vision sys-
tems, is the problem of knowing what information to throw away. We
know that contrast is more important than luminance (Mach, 1914/
1959), and that ratios and differences—not quantal counts—determine
color (Hering, 1964). Relationships matter more than absolutes (Hel-
son, 1964). But in research on spatial vision, the focus has been more
on reproducing the image exactly, on compressing the representation
without losing information (e.g., Watson, 1987). Although this focus is
useful in practical applications, it does not answer the basic question:
What spatial information is actually represented and in what form? If
our models do not lose any of the original data, then no decisions have
been made; no information has been extracted (Julesz, 1995). The re-
duction of a set of similar items to a mean (or prototypical value), a
range, and a few other important statistical properties may preserve
just the information needed to navigate in the real world, to form a sta-
ble global percept, and to identify candidate locations of interest.

 

Visual Search as Set Segregation

 

Closely related to the study of set representation is the research on
visual search: the investigation of what determines the speed with
which a target item can be located when embedded in many other
items, called the distractors. The central—and initially surprising—
finding in this field is that a target that is readily discriminable from a
single distractor may not be so discriminable (i.e., a relatively long
time may be needed to locate it) when it is embedded in multiple cop-
ies of that distractor.

This key result can be explained in terms of the concept of set rep-
resentation. Distractors (and sometimes the target, too) in a visual
search task might be represented as set properties (i.e., by their mean,
variance, and other set properties). One can further speculate that what
is known as preattentive, parallel, or set-size-independent search oc-
curs when the representation of the target is sufficiently different from
the set representation. This basic notion can suggest new interpreta-
tions for several basic visual search results. The implication for in-
creased variance in the distractors (Duncan & Humphreys, 1989) is
obvious. The variance of the set representation is larger when there is
more variability in the distractors themselves (provided that variability
exceeds the intrinsic variance). Consequently, as the variance of the
set increases, a target must differ more from the mean to segregate
from the set (see also Rosenholtz, 1999).

The considerable research on conjunctive searches (search for a
target that differs from the distractors only in its combination of fea-
tures) also takes on a different look when thought of in terms of sets. A
set representation is associated with the full spatial region of the set,
not with individual items, because the individual items are not repre-
sented. Thus, for example, a set of red and blue items has both colors
attributed to the entire set. A violet item would be a member of this
set—assuming it is encoded as a red-and-blue item—and conse-
quently would not be readily locatable—and indeed, it is not (Treis-
man, 1991). Similarly, the difficulty of finding a target that is defined

by the absence of a feature, such as finding an 

 

O

 

 among 

 

Q

 

s, is explain-
able in terms of a set representation. Again, all one needs is the as-
sumption that set representations are associated with the full spatial
region of the set (see also Grossberg, Mingolla, & Ross, 1994; Wolfe,
Cave, & Franzel, 1989).

In addition to posing intriguing questions of their own, visual
search studies have been useful in ferreting out the dimensionality of
the underlying representations. The mean-discrimination and mem-
ber-identification paradigms presented here provide a more direct ap-
proach to this problem. These paradigms allow us to directly measure
the groupings the visual system makes, so that we do not have to make
inferences from the results of a search task.

 

Visual Contrast Illusions and Set Representations

 

An additional related area to which set representation can be applied
is contrast and grouping. Consider, for example, the well-known Ebb-
inghaus illusion (see Fig. 5, top panel). It has been shown that the cen-
tral circle on the left seems smaller than the central circle on the right.
Examining this phenomenon from the perspective of set representation
suggests that the central circle on the left is judged relative to the set
properties of the circles surrounding it, whereas the central circle on the
right is judged relative to the set properties of the circles surrounding it.
If the basic representation of a set contains the relationship of an object
to the mean of its set, it follows that the central circle on the left will be
judged smaller than the central circle on the right. Moreover, if the cen-
tral circle were not perceived as belonging to the same set as the sur-

Fig. 5. The Ebbinghaus illusion and its attenuation. In this illusion
(top panel), the central circle in the array on the left is seen as smaller
than the central circle in the array on the right. The illusion is attenu-
ated when the surrounding circles are changed to triangles (bottom
panel).
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rounding objects, the Ebbinghaus illusion would be attenuated. Coren
and Miller (1974) obtained exactly this result (see Fig. 5, bottom panel).

 

Statistical Representation of Experiences

 

The idea of representation by statistical properties may be even
more broadly useful. Consider, for example, nonvisual experiences
such as a dental treatment, a meal, and a college course. A feature of
such experiences is that they unfold over time through a stream of
transient states that may vary in intensity and even in sign from mo-
ment to moment. Just as we might ask how people represent sets of
similar items, we can ask how people represent such experiences that
are composed of multiple parts. In particular, we can ask whether such
experiences are represented by their individual components, or
whether they are represented by a few overall statistical properties.

Recent work (Kahneman, 2000) has demonstrated that when people
summarize experiences, they do not simply combine the intensities of
the actual experiences. Rather, two kinds of defining features (gestalt
characteristics) appear to be given particularly high weight (impor-
tance). One reflects the change over time in the intensity of the transient
states. Prominent examples of such characteristics include the trend of
the profile (Ariely, 1998) and its rate of change (Hsee & Abelson, 1991).
The other type of gestalt characteristic reflects the intensity of the tran-
sient experience at particular key points in time. Specifically, a variety
of studies have found that the momentary experience at the most intense
and final moments (peak and end, respectively) can account for global
retrospective evaluations (Kahneman, Fredrickson, Schreiber, & Re-
delmeier, 1993). This work on hedonic calculus (how people combine
experiences of pleasure and pain) suggests that the set representations
proposed here may not be limited to the visual system. Other types of
experiences, such as touch, taste, sounds, and even pleasure and pain,
may be represented by some higher-level statistical properties.

Acknowledgments—I would like to express my deep gratitude to Chris-
tina Burbeck for her help and guidance, Gal Zauberman for stimulating
discussions and help with the experiments, and Gregory Ashby for his sug-
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