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Regulators often allow firms to sell new drugs based on preliminary efficacy evidence, with final approval

contingent on confirmatory testing. We characterize optimal approval policies when firms have private infor-

mation about testing costs and the regulator’s payoff depends on expected efficacy. The optimal policy

may include partial conditional approval for drugs with low expected efficacy, and leniency in granting final

approval below conventional standards. Our calibration suggests these tools can generate hundreds of mil-

lions of dollars in annual social value.
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1. Introduction

In 1988, HIV-AIDS activists protesting outside the Food and Drug Administration (FDA) chanted,

“Hey, hey, FDA, how many people have you killed today?” With tens of thousands dying annually

from HIV-AIDS, activists demanded access to promising antiviral drugs still under development

(United Press International 1988). In response, the FDA introduced a conditional approval mecha-

nism called “accelerated approval.” In 2024, the FDA granted conditional approval to seven drugs,

six of which target rare diseases (Food and Drug Administration 2025). Conditional approval has

also been granted in many regulatory jurisdictions, including the U.S., Europe, and Japan.

Conditional approval allows a new drug to reach the market after phase II testing, with full

approval contingent on confirmatory phase III tests. Phase II tests are relatively short and inexpen-

sive, but provide inconclusive evidence. In contrast, phase III tests are costly and time-consuming,

but provide statistically and clinically significant evidence of efficacy. Without conditional approval,

firms might forego phase III testing for slow-progressing diseases, which require long and large tests

(Budish et al. 2015).1

Conditional approval benefits patients through faster access and encourages investment by

increasing revenue. It allows firms to generate sales while funding costly phase III testing, making

the development of marginally profitable drugs viable. Revenue rises early from immediate sales

and later through market diffusion.

1 More generally, regulatory restrictions and testing costs can stifle innovation and reduce social welfare (Peltzman
1973, Philipson and Sun 2008, Grennan and Town 2020).
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We use the term “leniency” to describe the regulator committing to a final approval threshold

below what it would choose later. Leniency may involve approving drugs without persuasive confir-

matory trials or relying on surrogate endpoints (e.g., tumor shrinkage) instead of clinical outcomes

(e.g., survival). Indeed, 9 of 46 cancer indications granted final approval after conditional approval

lacked statistically significant evidence of benefit in the medical literature (Liu et al. 2024).

The regulator can commit to leniency before phase III. For example, the FDA’s “breakthrough”

designation gives the firm access to timely advice and interaction with the regulator to facilitate

drug development. Through this pathway, the regulator can guide trial design and specify what

(possibly lowered) evidence is required.

Leniency is always costly to society, as it raises the risk of approving ineffective drugs. Conditional

approval, by contrast, may or may not be costly to society, depending on the drug’s expected

effectiveness and the extent to which early access boosts future adoption.

Regulators set conditional approval and leniency with limited information about testing costs for

three reasons. First, many drugs lack predicates for benchmarking; five of the seven conditionally

approved drugs in 2024 were first in their therapeutic class. Second, recruitment and enrollment

costs are substantial, especially for rare diseases with few patients. Third, transparency is limited:

firms anticipate ex post profits, so they conceal costs to avoid criticism about excess profit and

calls for price regulation. The regulator’s belief distribution depends on the degree of informational

asymmetry with the firm.2

Private information about phase III testing cost motivates our mechanism design approach,

which yields optimal conditional approval and leniency thresholds, based on the regulator’s belief

about the testing cost and the drug’s efficacy potential. In essence, the regulator’s problem is a

procurement problem, where the firm supplying the new drug can be paid in two ways: conditional

approval and leniency.

In our framework, however, three features distinguish the regulator’s problem from standard

procurement problems. First, the final approval decision is based on a testing result that does not

arise in a procurement setting. Second, the two types of payments are bounded by constraints

analogous to budgets: there is a finite amount of feasible leniency and the scale of conditional

approval is bounded by the market size. Third, the regulator’s payoff function is nonlinear in

leniency. This nonlinearity precludes the use of standard mechanism design techniques to solve the

regulator’s problem.

2 We focus on private information about testing costs, though firms may also have private information about efficacy.
Both high costs and low expected efficacy can deter development, motivate government incentives, and give firms
information rents. The distinction between the two types of private information matters most when the regulator
provides funding up front and ex post profit is not positive, as with foundation grants for tropical disease research.
In such cases, under private information about expected efficacy, a moral hazard problem arises. The firm has little
incentive to exert effort because it already has the money and little to gain from success (Ridley et al. 2025).
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If a drug is “low-cost,” i.e., the regulator’s belief about the firm’s testing cost is sufficiently

optimistic, the optimal policy involves no costly incentives. Conditional approval is granted only if

the drug is ex-ante promising (not simply to induce testing), and there is no leniency.

If, instead, the regulator believes that testing costs could be high enough to deter investment,

the regulator can implement a take-it-or-leave-it offer by setting a scale of conditional approval

and a threshold for final approval. The firm will find it profitable to accept the offer if and only

if its testing cost falls below a threshold. The optimal levels of conditional approval and leniency

balance the goal of inducing the firm to run confirmatory testing against the risk of paying for

ultimately ineffective drugs.

We begin with a two-period version of the model, where the regulator’s problem can be framed

as an (infinite-dimensional) linear program. The two-period model is appropriate for rare-disease

drugs, which are exempt from price regulation and face limited generic competition due to their

small market size. Duality theory implies that a take-it-or-leave-it offer is indeed optimal, and

yields its full characterization for all parameter values in our framework.

We then analyze a three-period version of the model, in which generic competition or price

regulation drives the price down to marginal cost in the third period. In this version, we derive

a linear relaxation of the regulator’s problem, which provides an upper bound for the regulator’s

payoff. Based on its solution, we construct a feasible policy that yields a lower bound for the

regulator’s payoff. In our calibrated numerical analysis, these bounds are remarkably close.

Based on our analysis, lawmakers should grant regulators the following powers: First, regulators

should be permitted to conditionally approve drugs with low expected efficacy. Second, they should

have the flexibility to grant partial conditional approval, such as limiting access to specific patient

subgroups. Insurance coverage could also be restricted. Third, regulators should be able to use

leniency in setting the final approval threshold below the myopic standard.

1.1. Literature Review

Myerson (1981) laid the foundation for optimal mechanism design. Baron and Myerson (1982)

extend the framework to regulation economics with adverse selection concerns. In that paper, the

agent (a firm) privately knows the unit production cost, and the principal (a regulator) maximizes

a linear combination of consumer welfare and the firm’s profit. The regulator sets the unit price

the firm can charge, which determines the resulting sales quantity and may also subsidize or tax

the firm. The basic Myersonian framework assumes at least two instruments in the mechanism:

allocation and monetary transfer. Our principal uses entry, as well as the conditional and final

approvals, as instruments. This also implies that we have more “budgetary” constraints in the

optimization model, which complicates the analysis and results. Furthermore, we need to consider
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testing with uncertain outcomes, an important feature that Baron and Myerson (1982) does not

have.

Some diseases lack commercial prospects because they are concentrated in lower-income coun-

tries, where profit margins are near zero (Ridley et al. 2025). In such cases, conditional approval

may help patients but offers little incentive to firms, because speeding an unprofitable drug to mar-

ket does not improve returns. For tropical diseases, push and pull mechanisms are more effective

than conditional approval. Push mechanisms subsidize early-stage testing, often through agencies

such as the National Institutes of Health (NIH) or the Gates Foundation. Pull mechanisms raise

revenues, for example through advance market commitments that guarantee purchases (Berndt

et al. 2007, Kremer et al. 2022), or transferable vouchers such as U.S. priority review vouchers

(Gans and Ridley 2013) and exclusivity-extension vouchers (Dubois et al. 2022).

For diseases that are profitable ex post but not ex ante due to long testing timelines (Budish

et al. 2015), conditional approval offers two advantages over push and pull funding. First, it grants

early access and accelerates diffusion, generating benefits both immediately and over time. Second,

it is often more politically feasible than direct subsidies to drug makers, which remain unpopular.

Indeed, NIH funding is directed largely to universities for early-stage testing rather than to firms

for late-stage trials (Zhou et al. 2023). Push, pull, and conditional approval are not mutually

exclusive, however. When calibrating the model, push funding could be incorporated as reducing

testing costs, and pull funding could increase revenue, complementing conditional approval.

This paper also contributes to the literature on optimal regulatory approval. Carpenter and Ting

(2007) analyze a regulator-firm interaction where approval decisions rely on imperfect information.

They examine the trade-offs between false positives and negatives in regulatory decisions. Condi-

tional approval often depends on surrogate endpoints, which must be carefully validated to ensure

reliability for regulators and payers (Bognar et al. 2017). Beyond conditional approval, regulators

employ pathways like the FDA’s “breakthrough” designation to facilitate market entry (Chandra

et al. 2024).

Permissive conditional approval policies may lead to withdrawals of drug indications if fur-

ther testing reveals insufficient efficacy. Orlov et al. (2020) show that firms might delay reporting

negative information to postpone withdrawals. Xu et al. (2021) demonstrate that firms balance

regulatory costs by choosing between extended and shorter testing periods. To address delays,

regulators like the FDA now require firms to initiate confirmatory testing before granting condi-

tional approval. The dynamics differ for most medical devices, especially those similar to previous

devices. Testing is less rigorous, markets see frequent entry, and competition is dynamic (Grennan

and Town 2020, Collard-Wexler et al. 2024).
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Some papers study continuous-time models in which approval decisions evolve with accumulating

evidence. Henry and Ottaviani (2019) extends Wald’s sequential hypothesis testing model to a game

between a firm and a regulator. The firm conducts costly testing, generating a publicly observed

Brownian motion with drift based on unobservable efficacy. The firm benefits from approval; the

regulator’s payoff depends on true efficacy. The firm chooses when to stop and seek approval.

Commitment by the regulator leads to Pareto improvements over outcomes without commitment.

Henry et al. (2022) allow for approval revocation when negative evidence emerges. The results

highlight the importance of flexible regulatory policies.

The continuous-time models are ideal for settings with adaptable protocols, such as early-stage

drug testing in animals or review of drugs after final approval. However, discrete time is suffi-

cient in settings such as late-stage human testing which involves fixed endpoints, with outcomes

revealed simultaneously. Furthermore, our model captures the diffusion effect triggered by condi-

tional approval, which is not present in Henry et al. (2022).

McClellan (2022) presents another continuous-time model in which the regulator decides when

to stop experimentation and approve a drug. The setup generalizes optimal stopping problems

by accounting for the firm’s incentive to exit prematurely. Even with symmetric information,

the regulator lowers the approval threshold as the firm nears exit, terminating only if the drug’s

prospects fall too low. Under asymmetric information, if the firm claims the drug is less promising,

the structure resembles the symmetric case. If the firm reports a more promising drug, the regulator

offers a “fast track” with a lower approval threshold and a floor on efficacy. If the drug hits the

floor, the regulator reverts to a higher approval threshold. Likewise, in our model, the regulator

can be more lenient to allow a more marginal drug that might otherwise exit. However, our model

differs by including conditional approval, allowing the firm to earn revenue and begin diffusion

during confirmatory testing.

2. Model

A regulator and a pharmaceutical firm interact in a three-period game. At the beginning, the firm

has already conducted preliminary clinical tests for a new drug. Based on the outcome of these tests,

both parties believe that the drug’s efficacy η is a random variable with support [0,1], cumulative

distribution function G, and strictly positive density g. To ascertain the true efficacy of the drug

η ∈ [0,1], the firm must conduct a final round of confirmatory tests which cost c. The firm knows

the value of c privately, while the regulator believes that c is drawn from a distribution with a

cumulative distribution function F and positive density f on its support [cL, cH ], with 0≤ cL ≤ cH .

We maintain the following regularity assumption throughout the paper.

Assumption 1. The inverse hazard ratio F (c)/f(c) is non-decreasing.
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Assumption 1 is routinely invoked in the mechanism design literature, following Myerson’s pioneer-

ing work (Myerson 1981). It implies that the “virtual cost” function c+ F (c)/f(c) is increasing,

and holds for several commonly used distributions, including uniform, exponential, and Pareto

distributions. In our setting, this assumption rules out stochastic regulatory policies.

The game begins with the regulator committing publicly to a regulatory policy. Any feasible

regulatory policy specifies, for each cost realization c ∈ [cL, cH ], a probability τ(c) ∈ [0,1] of the

firm conducting confirmatory testing, and a scale of conditional approval a1(c) ∈ [0,1] contingent

on the firm testing; and then for each pair (c, η) ∈ [cL, cH ]× [0,1], a probability of granting final

approval a2(c, η) ∈ [0,1].3 If the firm chooses not to test, the game ends immediately with both

parties earning zero payoffs. Otherwise, the firm enters the market in period one at scale a1 while

testing is taking place.

0 t1 t2

Small, short

trials (I/II)

Conditional

approval

decision

a1

Large, long

trials (III/IV)

Final

approval

decision

a2

Monopoly price Lower price

Figure 1 Timeline for testing, regulatory review, and falling prices. After preliminary testing, the regulator may

grant conditional approval for a portion of the population (a1). Later, the regulator can grant full approval (a2).

After conditional or final approval, the firm will charge a monopoly price until t2 when the price falls.

Figure 1 illustrates the timeline. At time 0, the regulator decides whether to induce testing

(τ(c)) and grants conditional approval (a1(c)) according to the agent’s reported cost c. From time

0 to t1, the firm sells a1 fraction of the market at a given price. At time t1, the test result (η) is

revealed, and the regulator decides whether to grant final approval (a2(c, η)). If the drug receives

final approval, the firm continues selling at the monopoly profit margin until time t2, after which

generic drugs are allowed to enter the market and the price falls to marginal cost. In the rest of

the paper, we refer to time intervals [0, t1), [t1, t2), and [t2,∞) as periods one, two, and three,

respectively.

3 Any regulatory policy can be interpreted as a direct revelation mechanism, as implied by the revelation principle
(Myerson 1981).
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Without loss of generality, we normalize both the firm’s monopolistic profit per unit and the

demand in period one, when full conditional approval is granted, to 1. If the firm is granted

conditional approval at scale a1, its payoff in period one is a1.

The firm’s revenue in period two, after the drug’s final approval, is affected by its revenue in

period one. Drug sales tend to rise over time as doctors and patients learn about the drug through

experience and word of mouth.4 Hence, entering the market in period one at a larger scale increases

later sales and profit in period two. We assume that the total discounted demand in period two, if

final approval is granted, is λ0+λ1 ·a1, where λ0 and λ1 are fixed parameters. When the monopolistic

period ends, generic drugs are allowed to enter the market, and the firm’s net revenue becomes 0.

The firm’s total expected profit is given by the testing probability multiplied by its total revenue

across both periods minus the testing cost. Therefore, if the firm has a true cost c and chooses the

option designed for cost c′, its expected total profit is

Π̂(c, c′)≡ τ(c′) ·
[
a1(c

′)− c+ [λ0 +λ1 · a1(c′)] ·
∫ 1

0

a2(c
′, η)dG(η)

]
. (1)

To be feasible, any regulatory policy must satisfy incentive compatibility (IC), meaning that the

firm should not benefit from choosing any option other than the one designed for its true cost c,

i.e.,

∀c, c′ ∈ [cL, cH ] : Π̂(c, c)≥ Π̂(c, c′). (IC)

Also, because the firm can earn zero profit by declining the request to conduct the final round

of tests, the following individual rationality (IR) constraint must hold:

∀c∈ [cL, cH ] : Π̂(c, c)≥ 0. (IR)

Finally, the probability of testing τ , the scale of conditional approval a1, and the probability of

final approval a2, must be between 0 and 1:

∀c∈ [cL, cH ] : 0≤ τ(c)≤ 1, (2)

∀c∈ [cL, cH ] : 0≤ a1(c)≤ 1, and (3)

∀(c, η)∈ [cL, cH ]× [0,1] : 0≤ a2(c, η)≤ 1. (4)

The regulator’s payoff per unit of the drug v(η) depends on the efficacy level. The function

v : [0,1]→R reflects the drug’s value net of its monopoly price, which the firm charges in periods

one and two. We assume that v is strictly increasing and satisfies

v(0)≤−1 and 0< v(1), (5)

4 A drug’s revenue often peaks in year six (Robey and David 2016).
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where the price difference between the monopolistic and competitive periods equals the firm’s net

profit per unit, which is normalized to 1. That is, v(0) equals zeros minus the drug’s production

cost, minus the firm’s monopoly profit (which is normalized to 1), and minus the cost of toxicity.5

Therefore, if the test outcome is sufficiently poor, i.e., η is close to 0, then the regulator’s net payoff

remains negative even after the firm loses its monopoly power.

If market access is granted in period one at scale a1, the regulator’s expected payoff is

vE ·
∫ cH

cL

τ(c) · a1(c)dF (c), (6)

where vE is the expected value of v(η) given by

vE ≡
∫ 1

0

v(η)dG(η).

Given the firm’s reported cost c and the revealed efficacy level η, the drug is finally approved with

probability a2(c, η). Therefore, the regulator’s expected payoff in period two is∫ cH

cL

τ(c) · [λ0 +λ1 · a1(c)] ·
∫ 1

0

v(η) · a2(c, η)dG(η)dF (c). (7)

At the end of period two, the firm loses its monopoly power, due to generic entry or the initiation

of government price controls. We assume that the price drops to the marginal cost. Therefore the

firm’s profit vanishes. The regulator’s unit payoff increases to v(η)+1.6 Letting ∆ denote the total

demand after period two, the regulator’s payoff in period three is given by

∆ ·
∫ cH

cL

∫ 1

0

τ(c) · [v(η)+ 1] · a2(c, η) dG(η)dF (c). (8)

The regulator maximizes its expected payoff, given by the sum of (6), (7), and (8):

UR(τ, a1, a2;∆)≡
∫ cH

cL

τ(c)

[
vE a1(c)+

∫ 1

0

Φ(a1(c), η;∆) a2(c, η)dG(η)

]
dF (c), (9)

where the coefficient of a2 in the inner integral is defined as

Φ(a1, η;∆)≡ (λ0 +λ1 a1) v(η)+∆ [v(η)+ 1] . (10)

The monotonicity of v(η) and assumption (5) imply the following “single-crossing” property of the

function Φ.

5 Many conditionally approved drugs show toxicity in phase I and II trials. For example, many conditionally approved
drugs target cancer, such as chemotherapy, which is inherently toxic but potentially effective. The key questions are
whether the drug is sufficiently efficacious relative to its toxicity, and whether this justifies spending on the drug.

6 Recall that the profit margin before period three is normalized to 1.
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Lemma 1. For any a1 ∈ [0,1] and ∆ ≥ 0, the function Φ(a1, ·;∆) is strictly increasing, and

satisfies

Φ(a1,0;∆)< 0<Φ(a1,1;∆).

In light of Lemma 1, we can define, for each level of conditional approval a1 ∈ [0,1], the “no-

leniency” threshold for final approval as the unique solution to the equation Φ
(
a1, ·

)
= 0, i.e.,

ηNL(a1)≡ v−1

(
− ∆

λ0 +λ1 a1 +∆

)
. (11)

If ∆= 0, the no-leniency threshold becomes

η̄≡ v−1(0). (12)

A regulator that could renege on its initial commitment after seeing the realization of η would

always set the final approval threshold at the no-leniency level, because this threshold maximizes

its continuation payoff after any amount of conditional approval granted in period one.

Under the assumption that any commitment made at the beginning of the first period is irrevo-

cable, the regulator’s problem can be stated as

U∗
R(∆)≡ max

τ,a1,a2
UR(τ, a1, a2;∆), (13)

subject to (IC), (IR), (2), (3), and (4).

The optimization problem in (13) is infinite-dimensional and non-convex, hence well beyond the

reach of standard solvers. Our approach consists in partitioning the parameter space into three

regions, and using a different approach for each region.

In Section 3, we show that, if the drug is “low-cost,” i.e., the regulator’s belief about the firm’s

testing cost is concentrated on relatively low values, all (IC) and (IR) constraints in (13) can be

ignored. In this case, the highest cost is not too high to be excluded. The problem is solved by

policies that provide no costly incentive to the firm, i.e., no leniency, and conditional approval only

if the belief in the drug’s efficacy is sufficiently optimistic.

In Section 4, we focus on the version of the model where the testing cost could be high, i.e.,

the regulator’s belief is not as optimistic as the previous case, and there is no third period, i.e.,

∆= 0. We reformulate the problem in (13) as a linear optimization problem, and provide analytical

expressions of optimal policies for all parameter values in this second region. The optimal solution

can be implemented by a “take-it-or-leave-it” policy which specifies a conditional approval scale

and a final approval threshold, in exchange for testing.

In Section 5, we let ∆> 0 and provide a linear relaxation of the regulator’s problem, which yields

an upper bound for the regulator’s expected payoff. Based on the solution to the upper-bound
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problem, we construct a take-it-or-leave-it policy that is feasible for the original problem (13).

This policy provides a lower bound on the regulator’s expected payoff. Under the calibrated model

parameters, the lower bound is within 97.5% of the upper bound. Moreover, when ∆= 0, the upper

and lower bounds coincide with the optimal objective value.

Optimal conditional approval and leniency may depend on the length of exclusivity. Longer

exclusivity raises firm profits but delays savings for the regulator. As a result, longer exclusivity

can strengthen development incentives and reduce the need for conditional approval and leniency,

all else equal. We report how optimal strategies vary with exclusivity length in Appendix EC.3.

Before closing this section, we provide an in-depth discussion of the main assumptions in the

model.

2.1. Discussion of the Model

In this section, we discuss features of the model that correspond to the institutional detail in the

Appendix EC.1. The interaction between the regulator and the firm testing a new drug unfolds

over two periods. Later, we add a third period in which the price falls. Period one begins at time

0, and period two begins at time t1 (Figure 1).

At time 0, the firm has already conducted preliminary tests, which are informative but insufficient

to yield statistically significant results. Consequently, the regulator’s decision to approve the drug

is complicated by residual uncertainty about the efficacy of the drug (Fact 2). Throughout the

game, the firm’s belief about the drug’s efficacy (η) is shared with the regulator.

A key question is whether efficacy is high enough to justify any toxicity. Some toxicity is accept-

able for serious diseases with limited treatment options, e.g., chemotherapy is inherently toxic but

potentially effective. Toxicity is generally known after phase I and II testing, and is especially well

known for new indications of an already approved drug, such as a cancer drug tested for a different

type of cancer.

While efficacy is publicly observed, confirmatory testing costs may be private for two reasons.

First, joint development makes it hard to attribute costs to a single drug. Second, rare-disease

drugs are often first in class and lack a predicate (Fact 5).

At time 0, the regulator can grant conditional approval in exchange for confirmatory testing

(Fact 3), which allows the drug to be sold to a fraction of the market (Fact 4).

If there is no confirmatory testing, either because the regulator does not grant conditional

approval or the firm decides to exit, the game ends with both parties earning zero payoffs. If instead,

the regulator requests testing and the firm accepts, the firm can start selling the drug in period

one, up to the market share conditionally approved. Testing is the only source of information about

efficacy; they do not learn more about the drug’s efficacy from sales (Fact 6).
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The firm has monopoly power until t2 (Fact 7) after which the price falls to marginal cost due

to generic entry or price controls (Figure 1). In Appendix EC.3, we discuss how changes in the

monopoly-pricing period affect the optimal policy.

Revenue rises gradually in the years following approval as doctors and patients gradually become

aware of the drug (Fact 8), as shown in Figure 2(a). Because of rising revenue, the firm benefits

from conditional approval not just because it can begin selling earlier, but also because its later

sales are higher.

For drugs with high testing costs, profit can be positive only if the drug is conditionally approved

at a large scale (Fact 9), as illustrated in Figure 2(b). The cumulative profit in the case of high

testing costs without conditional approval remains negative for the duration of the game.

Figure 2 Annual revenue (top) and cumulative profit (bottom) depend on whether the regulator conditionally

approves (a1 > 0) or not (a1 = 0) (assuming final approval). Source: Authors’ analysis.

The regulator makes three decisions: (i) whether to induce the firm to conduct confirmatory

testing, (ii) at what scale the firm can enter the market before final approval, and (iii) where to
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set the efficacy threshold for final approval. In the next three sections, we characterize optimal

regulatory policies for various configurations of parameter values.

3. Low Testing Cost

In this section, we focus on cases in which the regulator’s belief about the firm’s testing cost

is relatively optimistic. For these “low testing cost” parameter configurations, the firm finds it

profitable to participate without any leniency, even at the highest possible testing cost cH .

Definition 1. Let ǓR(a1, ηm) denote the regulator’s expected payoff conditional on testing,

generated by conditional approval level a1 and final approval threshold ηm,
7 i.e.,

ǓR(a1, ηm) ≡ vE a1 +

∫ 1

ηm

[
(λ0 +λ1 a1)v(η)+∆ [v(η)+ 1]

]
dG(η), ∀(a1, ηm)∈ [0,1]2. (14)

We say that a drug is

- “promising”, if

ǓR(0, ηNL(0)) ≤ ǓR(1, ηNL(1)); (15)

- “not promising”, if

ǓR(0, ηNL(0)) ≥ ǓR(1, ηNL(1)); (16)

- “low-cost”, if either (15) holds and

cH ≤ 1+ (λ0 +λ1) [1−G(ηNL(1))] , (17)

or (16) holds and

cH ≤ λ0 [1−G(ηNL(0))] . (18)

□

The expression in (14) is obtained from the expression within the square brackets in (9), after

substituting a1(c) = a1 and a2(c, η) = 1η≥ηm . It represents the regulator’s expected payoff when the

firm runs confirmatory testing, is granted conditional approval at scale a1, and is promised final

approval only if the revealed efficacy η exceeds the threshold ηm. The definition of “promising,”

as specified in (15), implies that the regulator achieves a higher expected payoff by granting full

conditional approval (a1 = 1) than not (a1 = 0).

The next proposition establishes that it is optimal to provide no leniency if the drug is low-cost.

7 If we replace any function a2 with the step function a2(c, η) = 1η≥ηm(c), where the threshold ηm is given by

1−G(ηm(c)) =

∫ 1

0

a2(c, η)dG(η), ∀c∈ [cL, cH ],

the firm’s expected profit remains unchanged, and the regulator’s expected payoff does not decrease, because the
unit payoff function v is increasing. Therefore we can restrict attention without loss of generality to threshold final
approval policies.
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Proposition 1. (1) If the drug is promising and low-cost, i.e., (15) and (17) hold, it is optimal

for the regulator to grant full conditional approval and no leniency, which induces all cost

types to test, i.e.,

∀(c, η)∈ [cL, cH ]× [0,1] : τ(c) = 1, a1(c) = 1, a2(c, η) = 1η≥ηNL(1). (19)

(2) If the drug is not promising and low-cost, i.e., (16) and (18) hold, on the other hand, it is

optimal for the regulator to grant no conditional approval and no leniency, which induces all

cost types to test, i.e.,

∀(c, η)∈ [cL, cH ]× [0,1] : τ(c) = 1, a1(c) = 0, a2(c, η) = 1η≥ηNL(0). (20)

When the drug is low-cost, it is optimal to provide no costly incentives to the firm: always no

leniency, full conditional approval if the drug is promising, and no conditional approval if the drug is

not promising. Therefore the optimal policies in (19) and (20) also solve both “first-best” problem,

where the incentive constraints (IC) are ignored, and the “dictatorial” problem where both (IC)

and (IR) are ignored. We record this result in the next corollary.

Corollary 1. The “dictatorial” problem, defined as (13) without (IC) and (IR), and the “first-

best” problem, defined as (13) without (IC), are solved by the policy in (19) under conditions (15)

and (17), and by the policy in (20) under conditions (16) and (18).

If the inequalities in (17) or (18) hold strictly, the optimal policies described in Proposition 1

leave the firm with a strictly positive expected profit, even when its production cost is cH . This

never happens in standard procurement problems, where the (IR) constraint for the worst type

always binds.

4. High Testing Cost in the Two-Period Game (∆=0)

Starting from this section, we allow the testing cost to violate the low-cost conditions of Definition

1. In other words, the regulator believes the firm’s testing cost could be high relative to the drug’s

potential. Furthermore, we also assume prices never fall from generic entry or price controls. This

implies ∆= 0. In the next section, we will relax this assumption about prices falling.

Why assume prices do not fall? Generic competition may never emerge if the drug is displaced by

newer technology before patent expiry. Moreover, rare-disease drugs, the majority of conditionally

approved treatments (see fact 7), often maintain high prices for two reasons. First, markets are

typically too small to support multiple firms. Second, Medicare price controls do not currently

apply to rare-disease drugs.
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4.1. Optimal Policies

When ∆= 0, we can reformulate the regulator’s problem (13) as a linear optimization problem, by

introducing the following variables:

∀c∈ [cL, cH ] : α1(c)≡ τ(c)a1(c), and (21)

∀(c, η)∈ [cL, cH ]× [0,1] : α2(c, η)≡ τ(c) [λ0 +λ1 a1(c)] a2(c, η). (22)

The feasibility conditions (2)-(4) can be written as

∀c∈ [cL, cH ] : 0≤ α1(c)≤ τ(c), (23)

∀(c, η)∈ [cL, cH ]× [0,1] : 0≤ α2(c, η)≤ λ0 τ(c)+λ1α1(c). (24)

The firm’s total expected profit function in (1) becomes

Π̂(c, c′) = α1(c
′)− c τ(c′)+

∫ 1

0

α2(c
′, η)dG(η), (25)

and the regulator’s expected payoff in (9) becomes

UR(τ,α1, α2;∆) =

∫ cH

cL

[
vE α1(c)+

∫ 1

0

v(η)α2(c, η)dG(η)

]
dF (c). (26)

The next proposition establishes that, when ∆ = 0, we can transform the original regulator’s

problem defined in (13) into an equivalent linear optimization formulation.

Proposition 2. Recall U∗
R(∆) defined in (13). We have

U∗
R(0) = max

τ,α1,α2

UR(τ,α1, α2;∆), (27)

subject to (IC), (IR), (2), (23), and (24).

Furthermore, given an optimal solution {τ ∗(c), α∗
1(c), α

∗
2(c, η)} to (27), define

a∗1(c)≡
α∗

1(c)

τ ∗(c)
·1τ∗(c)>0 and a∗2(c, η)≡

α∗
2(c, η)

λ0 τ ∗(c)+λ1α∗
1(c)

·1τ∗(c)>0. (28)

Then, {τ ∗(c), a∗1(c), a∗2(c, η)} is an optimal solution to (13).

The expressions for a∗1 and a∗2 in (28) follow directly from the change of variables defined in

(21) and (22), given the optimal solution to (27). Proposition 2 provides a translation between the

optimal incentive mechanism that solves (13) and an optimal solution to the linear optimization

problem (27).

In the rest of this section, we focus on presenting the optimal solution to (27). A rigorous proof,

based on linear programming and duality, is presented in Appendix EC.4.3. Here, we present an

intuitive (albeit non-rigorous) line of argument to motivate the result.
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We show that the optimal incentive mechanism when ∆ = 0 can be implemented as a take-it-

or-leave-it offer. That is, the firm is granted a single conditional approval scale a1 and is promised

a single final approval threshold η, in exchange for testing, if and only if its cost is below a cutoff

type c0.

In the previous section, we examined the low-cost cases. Here, we turn to the cases where the

testing cost could be high, defined as the complement of the “low-cost” condition in Definition

1, where the regulator may need to screen out a high cost firm. The incentive constraints and

optimality conditions imply that a firm of cutoff type c0 is indifferent between participating and

not. That is, its expected revenue across both periods is equal to c0, i.e.,

c0 = a1 +(λ0 +λ1 a1) · [1−G(η)] . (29)

Therefore a firm with testing cost below c0 has no incentive to decline the offer. The regulator’s

problem can be rewritten as:

max
a1,η,c0

Û(a1, η, c0)≡ F (c0) ·
[
vE a1 + (λ0 +λ1 a1)

∫ 1

η

v(y)dG(y)

]
subject to (29) and (a1, η, c0)∈ [0,1]× [0, η̄]× [cL, cH ],

(30)

where F (c0) denotes the probability that a firm’s testing cost is below the cut-off type c0. Con-

straint (29) guarantees that such a firm is willing to participate. The term that multiplies F (c0)

represents the regulator’s expected payoff from committing to a conditional approval scale a1 and

final approval threshold η, conditional on the firm’s participation. It is without loss of generality to

restrict the search for the optimal final approval threshold from within the interval [0, η̄], following

the definition (12) and the fact that v is increasing.

The optimization problem in (30) can be interpreted as a procurement problem in which the

regulator wants to buy a new drug with the goal of maximizing total consumer surplus, and has

two instruments to incentivize the supplier: i) conditional approval a1, which generates revenue

in period one and stimulates demand after period one, and ii) “leniency” η < η̄, which increases

the firm’s expected revenue after period one, by lowering the final approval threshold η below its

no-leniency level η̄, thus increasing the probability of final approval.

Now we consider first-order conditions (FOCs) to maximize Û . We first eliminate a1 using (29),

and substitute

ã1(η, c0)≡
c0 −λ0 [1−G(η)]

1+λ1 [1−G(η)]
. (31)

in place of a1 in the regulator’s expected payoff Û . The partial derivative with respect to η is

∂Û(ã1(η, c0), η, c0)

∂η
=

(λ0 +λ1 c0) F (c0)g(η)[
1+λ1 [1−G(η)]

]2 ·h(η), (32)
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in which

h(η) ≡ vE − v(η)+λ1 ·
∫ 1

η

[v(y)− v(η)] dG(y), ∀η ∈ [0, η̄]. (33)

It is clear that the sign of h determines the sign of Û ’s partial derivative with respect to η. The

function h is decreasing and satisfies h(0)> 0. Therefore, for any given c0, the objective function

Û admits a unique maximizer η∗(c0) ∈ (0, η̄]. If the drug is promising, i.e., h(η̄) ≥ 0, then the

derivative is nonnegative over the entire interval, and the maximizer is attained at the upper bound,

i.e., η∗(c0) = η̄. Conversely, if the drug is not promising, i.e., h(η̄)< 0, then the maximizer η∗(c0)

corresponds to the unique root of h in the interval (0, η̄).

The function h plays a central role in determining the testing and final approval thresholds under

the optimal regulatory policy. Before presenting the details, it is convenient to define the following

two functions, from setting a1 in the right-hand side of (29) to be 0 and 1, respectively:

c(η)≡ λ0 [1−G(η)] , ∀η ∈ [0,1], (34)

and

c̄(η)≡ 1+ (λ0 +λ1) [1−G(η)] , ∀η ∈ [0,1]. (35)

The following lemma defines the critical testing threshold on cost c and the final approval thresh-

old on η, to be used in the optimal mechanism.

Lemma 2. The function h defined in (33) is strictly decreasing with h(0) > 0, leading to the

following results:8

(1) If h(η̄)≤ 0, there exists a unique η̌ ∈ [0, η̄] such that h(η̌) = 0. Define

č≡ sup

{
c∈ [cL, cH ] :

dÛ(ã1(η̌, c), η̌, c)

dc
≥ 0

}
. (36)

(2) If h(η̄)≤ 0 and č < c(η̌), there exists a unique η̃ ∈ [η̌, η̄] such that

dÛ
(
0, η, c(η)

)
dη

∣∣∣∣∣
η=η̃

= 0, (37)

and we have h(η̃)≤ 0.

(3) If h(η̄)> 0 or h(η̄)≤ 0 and č > c̄(η̌), define

η≡ inf

{
η ∈ [0, η̌] :

dÛ(1, η, c̄(η))

dη
≤ 0

}
. (38)

We have h(η)≥ 0.

8 We extend the definition of F (c)/f(c) for c /∈ [cL, cH ] as follows: F (c)/f(c) = 0 for c < cL and F (c)/f(c) = 1/f(cH)
for c > cH .
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Intuitively, the pair of testing threshold č and final approval threshold η̌ maximizes the prin-

cipal’s expected payoff Û if we ignore feasibility constraints. The final approval thresholds η̃ and

η correspond to the maximizers of Û when the conditional approval scales are fixed at 0 and 1,

respectively, and the cutoff types c0 are set to c(η̃) and c̄(η), respectively.

The next proposition characterizes the optimal incentive mechanism for all parameter values.

Proposition 3. Define three values, a conditional approval scale α∗, a testing threshold c∗, and

a final approval threshold η∗, that depend on model parameters in the following cases.

(1) If h(η̄)≤ 0 and c(η̌)≤ č≤ c̄(η̌), we have c∗ = č and η∗ = η̌, and the optimal conditional approval

scale below the threshold is α∗ = ã1(η
∗, c∗), where ã1 is defined by (31).

(2) If h(η̄) ≤ 0 and č < c(η̌), the regulator grants no conditional approval, i.e., α∗ = 0, and the

thresholds c∗ and η∗ are determined as follows:

(a) if c(η̃)< cL, we have c∗ = cL and η∗ = 1;

(b) if cL ≤ c(η̃)< cH , we have c∗ = c(η̃) and η∗ = η̃; and

(c) if c(η̄)< cH ≤ c(η̃), we have c∗ = cH and η∗ = sup{η ∈ [0,1] : c(η)≥ cH}.
(3) If h(η̄) > 0 or h(η̄) ≤ 0 and č > c̄(η̌), the regulator grants full conditional approval to firms

whose types are below the threshold, i.e., α∗ = 1. The thresholds c∗ and η∗ are determined as

follows:

(a) if c̄(η)< cL, we have c∗ = cL and η∗ = 1;

(b) if cL ≤ c̄(η)< cH , we have c∗ = c̄(η) and η∗ = η; and

(c) if c̄(η̄)< cH ≤ c̄(η), we have c∗ = cH and η∗ = sup{η ∈ [0,1] : c̄(η)≥ cH}.
The following solution is optimal to (27):

τ ∗(c) = 1c∈[cL,c∗), α∗
1(c) = α∗ ·1c∈[cL,c∗), α∗

2(c, η) = (λ0 +λ1α
∗) ·1(c,η)∈[cL,c∗)×[η∗,1]. (39)

Cases (2) and (3) in Proposition 3 do not consider conditions cH ≤ c(η̄) or cH ≤ c̄(η̄), respectively,

because these are special cases of Proposition 1 for ∆ = 0. It can be verified that when ∆ = 0,

conditions (15)-(18) become h(η̄)≥ 0, h(η̄)≤ 0, cH ≤ c̄(η̄), and cH ≤ c(η̄), respectively.

Consider case (2) of Proposition 3. When h(η̄)≤ 0 and cH ≤ c(η̄), we have

č≤ cH ≤ c(η̄)≤ c(η̌).

Therefore, the condition č < c(η̌) is already implied, and the optimal mechanism corresponds to

case (2) in Proposition 1.

Next, consider case (3) of Proposition 3. When cH ≤ c̄(η̄), we have

č≤ cH ≤ c̄(η̄)≤ c̄(η̌),

implying that the condition č > c̄(η̌) is irrelevant. The optimal mechanism corresponds to case (1)

in Proposition 1.
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4.2. Calibration

Here, we use the calibrated model parameters with ∆= 0. Figure 3 shows how the optimal policy

changes as the drug’s expected effectiveness increases. In this and later figures, except Figure

6, we use the calibrated values of the model parameters from Table EC.3 in Appendix EC.2, a

uniform distribution of private information c, the cdf G(η) = ηk for various values of k to obtain

the corresponding ex ante expected values vE, and a linear regulator’s utility function v. We plot

c∗, α∗, and η∗ against vE.

Figure 3 Drugs with high expected value and low testing cost are tested (top panel), receive conditional

approval (middle panel), and have a high final approval threshold, meaning less leniency (bottom panel).

We partition the vE space into five intervals. In the first interval (vE < v1), the drug’s expected

effectiveness is so low that it is not worth inducing testing. Therefore, in this first interval, the drug

will never be tested (c∗ = cL), and hence the regulator grants no conditional approval (α∗ = 0). In
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the second interval, vE ∈ [v1, v2), the optimal policy grants no conditional approval but induces the

firm to test if the testing cost is relatively low by providing some leniency, i.e., η∗ < η̄. In the third

interval [v2, v3), as the expected value vE increases, the regulator progressively grants greater scales

of conditional approval while becoming more stringent on the final approval threshold. Because

the scale of conditional approval increases, the cutoff type c∗ also increases. In the fourth interval

vE ∈ [v3, v4), the regulator reduces the scale of conditional approval and continues raising the final

approval threshold. The firm is now willing to test regardless of the cost (c∗ = cH). Here, the

regulator lowers the conditional approval scale α∗ because the higher likelihood of final approval

already provides sufficient incentive for the firm to test. Finally, in the fifth interval vE ∈ [v4, v(1)],

the assumptions of Proposition 1 hold, hence, the optimal policy coincides with the “first-best”

policy. The regulator grants full conditional approval and no leniency, and the firm tests regardless

of the cost.

Note that the scale of conditional approval, α∗, exhibits a discontinuous jump at vE = v4. The

intuition behind this behavior is as follows. When vE approaches v4 from the left, the final approval

threshold converges to η̄. Correspondingly, the coefficient of a1 in the regulator’s payoff function

(9) is given by

vE +λ1

∫ 1

η̄

v(η)dG(η),

which crosses 0 at v4 from below. Consequently, it becomes optimal to grant full conditional

approval, i.e., α∗ = 1, when vE increases beyond v4.

The regulator’s final approval threshold (η∗) is lower for drugs with lower expected value (vE)

under the parameters in our calibration exercise (Figure 3(c)). Under a higher expected value, the

regulator can set a higher final approval threshold without discouraging the firm from testing. The

particularly interesting observation in Figure 3(c) is that the threshold η∗ may be strictly less than

the myopic threshold η̄. Recall that if the efficacy is at η̄, the drug’s societal value v(η̄) = 0. It may

be counterintuitive that the regulator should grant final approval to a drug whose societal value is

negative. The reason is that if the ex ante effectiveness vE is fairly negative and the regulator still

holds the final approval threshold at η̄, the chance of success is too low for the firm to be willing

to test. This may forfeit the possibility of developing a drug that could turn out to be efficacious.

In order to ensure sufficient profit for the firm to invest in testing, the regulator can either use

conditional approval or commit to a final approval threshold that is lower than the “no-leniency”

threshold η̄. That is, committing to the final approval of a drug with societal value v(η)< 0 can

be interpreted as the society sharing part of the testing cost with the firm, in the hope that the

drug may ultimately prove more efficacious.

In practice, missing the threshold might mean that the trials were not conclusive in demonstrating

a benefit for the average patient, but the regulator asks for no more. The regulator can commit to



20

a lower threshold during discussions with the firm before confirmatory testing. Indeed, the FDA

grants what it calls “breakthrough status” to certain drugs, providing the developer with timely

advice on clinical trial design (Fact 11).

4.3. Benchmark: First-Best Optimal Policies

How do the optimal policies under private information compare to the first-best policies, where the

regulator observes the firm’s testing cost? The answer depends on whether the regulator believes

testing costs are low or high. The previous section showed that the first-best and second-best

solutions are the same under low-cost beliefs (see Corollary 1). We now examine the case where

testing costs may be high. More precisely, these first-best policies solve the regulator’s problem (13)

with ∆= 0, without the incentive compatibility constraints (IC). That is, we define the first-best

optimization problem as

UFB ≡ max
τ,a1,a2

UR(τ, a1, a2; 0), (40)

subject to (IR), (2), (3), and (4).

Because the firm’s testing cost is potentially high, any first-best policy generates zero expected

profit for the firm, thus solving the optimization problem (30) with c0 = c. Among the multiple

combinations of leniency and conditional approval that yield zero expected profit, it is optimal to

use the combination that maximizes the regulator’s expected payoff.

The next proposition provides a formal characterization of the first-best policy when ∆= 0.

Proposition 4. Suppose that either (15) and c > 1 + (λ0 + λ1) [1−G(ηNL(1))] hold together,

or (16) and c > λ0 [1−G(ηNL(0))] hold together. The combinations of conditional approval a∗1 and

final approval threshold η∗, as defined below, solve the optimization problem on the right-hand side

of (40), when restricting to policies that induce testing.

(1) If the drug is promising, i.e., h(η̄)≥ 0, then:

(a) if c̄(η̄)< c≤ c̄(0), we have a∗1 = 1 and η∗ =G−1

(
1− c− 1

λ0 +λ1

)
; and

(b) if c > c̄(0), the regulator cannot induce the firm to conduct testing.

(2) If the drug is not promising, i.e., h(η̄)≤ 0, then:

(a) if c(η̄)< c< c(η̌), we have a∗1 = 0 and η∗ =G−1

(
1− c

λ0

)
;

(b) if c(η̌)≤ c≤ c̄(η̌), we have a∗1 = ã1(η̌, c) and η
∗ = η̌;

(c) if c̄(η̌)< c≤ c̄(0), we have a∗1 = 1 and η∗ =G−1

(
1− c− 1

λ0 +λ1

)
; and

(d) if c > c̄(0), the regulator cannot induce the firm to conduct testing.

It is optimal to induce testing (i.e., τ = 1) if and only if the regulator’s resulting expected payoff

is nonnegative.
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Figure 4 First-best policies for various values of the regulator’s expected unit payoff vE and the testing cost c.

Figure 4 illustrates first-best optimal policies for four representative parameter configurations.

At point (1), the first-best policy grants full conditional approval and no leniency. At point (2),

the drug is less ex-ante efficacious (while the testing cost remains unchanged), so the first-best

policy grants neither conditional approval nor leniency. These two points correspond to the two

cases considered in Proposition 1 and Corollary 1. At point (3), the testing cost is higher (while

efficacy remains the same as at point 2), so it is optimal to grant no conditional approval, and

some leniency is required to induce testing. This corresponds to case (2)(a) in Proposition 4. At

point (4), the even higher testing cost c requires a combination of leniency and a positive scale of

conditional approval to induce testing. This corresponds to case (2)(b) in Proposition 4.

Next, we illustrate the value of information, i.e., the gap between the regulator’s expected payoffs

in the first-best and second-best scenarios (Figure 5). When the belief about efficacy is pessimistic

(e.g., vE < −40), the value of information is small. This indicates that learning the firm’s true

testing cost provides little benefit to the regulator, because only limited information rent is paid

in this case. When the belief is optimistic (e.g., vE >−8), the value of information is zero because

the first-best and second-best policies coincide, as explained in Corollary 1. When the belief is

intermediate, the value of information first increases and then decreases as the drug becomes more

efficacious (e.g., vE increases from −40 to −8), reflecting the regulator’s willingness to pay to learn

the true testing cost.

5. High Testing Cost in the Three-Period Game (∆> 0)

We now consider the case of potentially high testing costs and a third period in which the drug

price falls due to generic competition or price controls. A lower price in the third period implies

an even higher net benefit to the regulator. For ∆ > 0, the regulator’s problem (13) cannot be

formulated as an equivalent linear optimization as in Section 4.1. Therefore, we present a linear
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Figure 5 The regulator’s expected payoff in the first-best (UFB) and second-best (U∗
R(0)), and the value of

information (UFB −U∗
R(0)) as beliefs about efficacy η change.

optimization relaxation, which not only provides an upper bound for U∗
R(∆) but also allows us to

construct a feasible mechanism.

5.1. Upper-Bound Linear Optimization

In addition to α1 defined in (21), we define the following new decision variables for any (c, η) ∈

[cL, cH ]× [0,1]:

α̂2(c, η)≡ τ(c)a2(c, η), and (41)

α̂3(c, η)≡ a1(c) α̂2(c, η) = α1(c)a2(c, η). (42)

Using these notations, the regulator’s payoff function (9) becomes

ÛR(τ,α1, α̂2, α̂3;∆)≡
∫ cH

cL

[
vE α1(c)+

∫ 1

0

[(λ0 +∆)v(η)+∆] α̂2(c, η)dG(η)

+λ1

∫ 1

0

v(η) α̂3(c, η)dG(η)

]
dF (c), (43)

and the firm’s payoff function (1) becomes

Π̂(c, c′) = α1(c
′)− c τ(c′)+

∫ 1

0

[λ0 α̂2(c
′, η)+λ1 α̂3(c

′, η)] dG(η). (44)
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We further impose the following constraints on the decision variables α̂2 and α̂3: for any (c, η)∈

[cL, cH ]× [0,1], we require

0≤ α̂2(c, η)≤ τ(c), (45)

0≤ α̂3(c, η)≤ α̂2(c, η), and (46)

α̂3(c, η)≤ α1(c). (47)

The regulator’s upper-bound problem can be formulated as the following linear optimization

problem:

Ū∗
R(∆)≡ max

τ,α1,α̂2,α̂3

ÛR(τ,α1, α̂2, α̂3;∆), (48)

subject to (IC), (IR), (2), (23), (45), (46), and (47),

where ÛR and Π̂ follow (43) and (44), respectively.

The next proposition formalizes that the objective function value of the optimization problem

(48) is an upper bound for the original problem (13).

Proposition 5. Ū∗
R(∆)≥U∗

R(∆) for any ∆≥ 0.

Under Assumption 1, the optimal solution to the regulator’s upper-bound problem (48) is fully

characterized by four constants: ĉ, α̂, η̂1, and η̂2. The following proposition summarizes this result.

Proposition 6. Consider the optimization problem (48) under Assumption 1. There exists an

optimal solution {τ̂(c), α̂1(c), α̂2(c, η), α̂3(c, η)} that can be summarized by four values: a cost thresh-

old ĉ∈ [cL, cH ], a scale of conditional approval α̂∈ [0,1], and two efficacy thresholds η̂1 and η̂2 with

0≤ η̂1 ≤ η̂2 ≤ η̄, as follows: for any (c, η)∈ [cL, cH ]× [0,1],

τ̂(c) = 1c<ĉ, α̂1(c) = α̂ ·1c<ĉ.

Furthermore, α̂2 and α̂3 demonstrate one of the following two cases:

Case 1:

α̂2(c, η) = 1(c,η)∈[cL,ĉ)×[η̂1,1], α̂3(c, η) = α̂ ·1(c,η)∈[cL,ĉ)×[η̂2,1]; (49)

Case 2:

α̂2(c, η) =

 1, ∀(c, η)∈ [cL, ĉ)× [η̂2,1],
α̂, ∀(c, η)∈ [cL, ĉ)× [η̂1, η̂2),
0, otherwise,

α̂3(c, η) = α̂ ·1(c,η)∈[cL,ĉ)×[η̂1,1]. (50)

The proof of the proposition, presented in Appendix EC.4.4, provides closed-form expressions of

ĉ, α̂, η̂1, and η̂2, which vary depending on the model parameters. For simplicity of exposition, we

leave the detailed expressions to Proposition EC.1 in the appendix.
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Figure 6 Illustration of α̂2 and α̂3 from Proposition 6. The left and right panels correspond to cases 1 and 2,

respectively, with the dashed and solid lines representing α̂2 and α̂3, respectively, for a given c∈ [cL, ĉ).

It is worth mentioning that the solution described in Proposition 6 may not be feasible to the

original problem (13). To explain this, we observe Figure 6, which illustrates the two cases of the

optimal α̂2 and α̂3 for a given c∈ [cL, ĉ) as described in Proposition 6. As shown in the figure, the

thresholds η̂1 and η̂2 may differ. As a result, we cannot identify a final approval policy based on α̂2

and α̂3 that achieves the optimal value of the objective function in (48).

As a special case, if the optimal α̂= 0, then η̂2 and η̂1 are irrelevant in Cases 1 and 2, respectively.

This implies that the upper-bound optimal solution is feasible to the original problem (13). In

particular, the principal offers no conditional approval while including a firm with cost less than ĉ

to test. If Case 1 (resp. Case 2) of Proposition 6 holds, then the final approval decision follows the

threshold η̂1 (resp. η̂2). This result is summarized in the following corollary.

Corollary 2. If the optimal solution described in Proposition 6 satisfies α̂ = 0, we have

Ū∗
R(∆) =U∗

R(∆).

If ∆ = 0, the two thresholds η̂1 and η̂2 always coincide,9 ensuring that the optimal solution to

the upper-bound problem remains feasible for the original one. Hence, the upper bound Ū∗
R is tight

when ∆= 0. This property is documented in the following corollary.

Corollary 3. We have Ū∗
R(0) =U∗

R(0).

5.2. Feasible Mechanism and Lower Bound

When the drug is low-cost (Definition 1), the policies described in Proposition 1 are optimal. For

drugs with potentially high testing costs, the following proposition states that, given the optimal

solution to the upper-bound problem (48), we can always construct a feasible solution to the

original problem (13), with its objective function value serving as a lower bound.

9 See Lemmas EC.3, EC.4, and EC.6 for details.
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Proposition 7. Let {τ̂(c), α̂1(c), α̂2(c, η), α̂3(c, η)} denote the optimal solution to the upper-

bound problem (48) described in Proposition 6 (i.e., τ̂(c) = 1c<ĉ and α̂1(c) = α̂ · 1c<ĉ). For any

c∈ [cL, ĉ), define a threshold η1 ∈ [0,1] as the unique solution to

λ0

∫ 1

0

α̂2(c, η)dG(η)+λ1

∫ 1

0

α̂3(c, η)dG(η) = (λ0 +λ1 α̂) [1−G(η1)] . (51)

Based on these, define

a′1(c)≡ α̂ ·1c<ĉ and a′2(c, η)≡ 1(c,η)∈[cL,ĉ)×[η1,1]; (52)

and
c2 ≡ α̂+(λ0 +λ1 α̂) [1−G(ηNL(α̂))] , τ ′′(c)≡ 1c<c2 ,

a′′1(c)≡ α̂ ·1c<c2 , and a′′2(c, η)≡ 1(c,η)∈[cL,c2)×[ηNL(α̂),1].
(53)

Both {τ̂(c), a′1(c), a′2(c, η)} and {τ ′′(c), a′′1(c), a′′2(c, η)} are feasible solutions to (13). Therefore, we

have

Ũ∗
R(∆)≡max{UR(τ̂ , a

′
1, a

′
2;∆), UR(τ

′′, a′′1 , a
′′
2 ;∆)} ≤U∗

R(∆). (54)

Finally, if η1 > ηNL(α̂), we have Ũ∗
R(∆) =UR(τ

′′, a′′1 , a
′′
2 ;∆).

As in Section 4, the feasible solutions to the optimization problem (13) constructed in Proposition

7 can be implemented as follows. The regulator chooses between two take-it-or-leave-it offers.

Expression (52) (along with the function τ̂) indicates that the drug is tested if its cost c is below

the threshold ĉ, and receives a conditional approval at scale α̂ and final approval if the efficacy

result η is above η1. Similarly, (53) specifies the testing threshold, conditional approval scale, and

final approval threshold as c2, α̂, and ηNL(α̂), respectively. Expression (54) then implies that the

regulator chooses the better one between the two aforementioned mechanisms, which provides a

lower bound on the optimal value U∗
R(∆).

In the first construction (52), we take both ĉ and α̂ directly from the upper-bound optimal

solution to construct a feasible mechanism. In the second construction (53), by contrast, we use

only α̂ as the conditional approval scale, and set the final approval threshold to ηNL(α̂).

It is instructive to explain how we obtain the other thresholds accordingly. The final approval

threshold η1 is determined by (51), which guarantees that the firm receives the same expected

payoff as in the upper bound optimal solution (and hence all incentive constraints (IC) and (IR)

are automatically satisfied). In particular, the left- and right-hand sides of (51) represent the firm’s

expected payoff in period two under the optimal solution to the upper-bound problem (48) and

our candidate solution, respectively.

In the second case, we set the final approval threshold to ηNL(α̂) because it is never optimal to

choose a higher value. Given this threshold, we then determine the testing threshold c2 from (53)
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such that the (IR) constraint for the threshold type binds. This choice of c2 also ensures that the

incentive compatibility constraint (IC) is satisfied.

Finally, when ηNL(α̂) < η1, the coefficient of a2 remains nonnegative for all η ∈ [ηNL(α̂), η1],

implying that lowering the final approval threshold from η1 to ηNL(α̂) increases the regulator’s

expected payoff from any participating firm. Moreover, since c2 ≥ ĉ, the second policy induces

greater participation. Therefore, it strictly outperforms the first policy. This explains the last

sentence of Proposition 7.

5.3. Calibration

We again use the calibrated model parameters following Appendix EC.2, and obtain the optimal

upper-bound solution according to Proposition EC.1 for various G, similar to Section 4.2. Based

on these, we construct feasible solutions to the original problem following Proposition 7.

Figure 7(a) illustrates the performance ratio (PR) of the candidate solution compared with the

upper bound, i.e.,

PR=
Ũ∗

R

Ū∗
R

.

Under the given model parameters, the candidate solution consistently achieves a performance

ratio exceeding 0.975, implying that it is very close to optimal. In particular, the performance

ratio equals 1 when the beliefs about efficacy are either very pessimistic (vE < v2) or sufficiently

optimistic (vE > v5). In the pessimistic case (vE < v2), it is optimal to grant no conditional approval,

and the upper and lower bound objective values coincide. This corresponds to Corollary 2. In the

optimistic case (vE > v5), the “no-leniency” policy described in Proposition 1 is optimal, yielding

the exact optimal solution to the original problem.

Our candidate mechanism shares the same characteristics as the optimal one when ∆ = 0: the

regulator induces testing if the cost c is low (below the threshold ĉ) and grants final approval if

the efficacy η is high (above the threshold η̂). Against the corresponding expected values vE, we

plot the testing threshold ĉ (Figure 7(b)), the scale of conditional approval α̂ (Figure 7(c)), and

the threshold of final approval η̂ (Figure 7(d)). Compared to Figure 3, the testing threshold ĉ is

weakly higher due to the regulator’s positive payoff after period two, as shown in panel (b).

The discontinuous jump of α̂ in panel (c) at vE = v4 arises for the same reason as discussed in

Section 4.2. When vE > v4, as the drug appears more promising, the coefficient of a1 in the regula-

tor’s payoff function (9) remains nonnegative, implying that it is optimal to grant full conditional

approval, i.e., α̂= 1.

In panel (d), we use the notation η̄2 to represent the highest final approval threshold. Its value

coincides with ηNL (defined in (11)) when a1 = 1, i.e., η̄2 ≡ ηNL(1). Given α̂= 1, the coefficient of
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Figure 7 The lower-bound mechanism derived from the upper-bound problem performs well (top panel). Drugs

with high expected value and low testing cost are tested (second panel), receive conditional approval (third

panel), and have a high final approval threshold, meaning less leniency (bottom panel).

a2 in the integrand of the objective function is nonnegative for all η ∈ [η̄2,1]. Therefore, it is never

optimal to set the final approval threshold above this value.

We compare policy performance with and without the tools of conditional approval and leniency

(Figure 8). First, consider the scenario where the regulator uses conditional approval but not
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Figure 8 Performance ratios and the regulator’s expected payoff (in million USD) of our candidate policy, the

conditional approval-only policy, the leniency-only policy, and the policy without both tools.

leniency. Here, it fixes a naive final approval threshold, η̄′, defined as the no-leniency threshold

when a1=0:

η̄′ ≡ ηNL(0) = inf {η ∈ [0,1] : (λ0 +∆)v(η)+∆≥ 0} . (55)

When the regulator uses only a leniency threshold and not conditional approval, we have a1(c) = 0

for all c ∈ [cL, cH ]. With neither tool, the final approval threshold is η̄′, and only firms with low

testing costs proceed with trials. For completeness, we present the optimal policies in closed form

in Appendix EC.4.5.

In Figure 8(a), the solid line matches the curve in Figure 7(a). We observe that when either

tool is unavailable, performance drops significantly under certain model parameters, highlighting

the importance of both tools. It is worth noting that when the expected value vE is close to v4,

the policy without leniency performs best among the four. This is because our candidate policy,

which utilizes both tools, is constructed from an infeasible solution and is not necessarily optimal,

making it possible for another policy to outperform it.
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We plot the regulator’s expected payoffs (in millions of USD) for the four scenarios in Figure

8(b). For instance, when G(η) = η3/2, we have vE = −15.2, which falls between v3 and v4. At

this point, the regulator’s payoffs are $187, $231, $270, and $270 million under the policies with

neither tool, only leniency, only conditional approval, and both tools available, respectively. That

is, considering both conditional approval and leniency yields a value as high as $83 million.

Hence, conditional approval and leniency can generate more than $6 billion in social value during

a decade, compared to using neither, assuming a value of about $83 million per drug and 79 drugs

per decade. Additional value goes to shareholders, but we do not estimate it here. Nearly all of the

social value comes from conditional approval rather than leniency, although leniency is relatively

important for drugs with lower expected value (Figure 8(b)).

6. Conclusion

In 1992, the FDA granted its first conditional approval to an HIV-AIDS drug. The original aim was

to accelerate patient access. We show that conditional approval offers a second benefit: encouraging

investment in drugs that might otherwise be undeveloped.

We estimate that optimal use of conditional approval and leniency, compared to using neither,

can generate hundreds of millions of dollars in social value each year, in addition to commercial

value. Nearly all of the social value comes from conditional approval, rather than leniency, although

leniency is relatively important for drugs with lower expected value.

Our analysis demonstrates the high value of conditional approval, even under our conservative

framework that omits two additional benefits. First, conditional approval can accelerate price

reductions if the end of pricing power depends on the approval date.10 Second, conditional approval

creates opportunities to learn from real-world use. Observational data may reduce the required

sample size in clinical trials and lower testing costs. In this way, conditional approval can raise

profits not only through earlier sales (as modeled), but also through reduced testing costs. This

benefit, however, depends on the regulator’s willingness to use non-randomized evidence, which is

subject to selection bias.11

Our results yield three policy recommendations for lawmakers regarding regulatory authority.

First, regulators should be allowed to conditionally approve drugs with low expected efficacy,

accepting that some will later be withdrawn. The FDA’s actual withdrawal rate was 22% for drugs

conditionally approved between 2013 and 2017 (Figure EC.1). Our back-of-the-envelope calibration

implies that this is consistent with the optimal withdrawal rate for drugs with zero expected value

10 Earlier approval can lead to earlier price declines if the patent expires before exclusivity ends, or if the drug is
subject to Medicare price regulation. See Appendix EC.3 for details on the duration of market power.

11 For example, if only high-income patients use the drug, their outcomes may reflect socioeconomic advantages rather
than drug efficacy.
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(Appendix EC.2.4). This indicates that, in the past, the agency approved a mix of drugs with

positive and negative expected values. However, parts of the agency have become more conservative,

as the head of gene therapy appointed in 2025 has called for stricter conditional approval standards

and less leniency (The Economist 2025).

Second, regulators should have the flexibility to grant partial conditional approval, such as

restricting access to specific patient subgroups. Limiting insurance coverage could achieve a similar

effect. Partial access should not be motivated solely by evidentiary uncertainty, though, but by

whether limited access suffices to motivate continued development.

Third, regulators should be able to commit to a final approval threshold below the myopic

threshold to encourage testing. The FDA appears to follow this practice, though the policy is not

formally codified.
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Online Appendix
This online appendix includes facts, model calibration, and proofs.

EC.1. Institutional background

Details about drug regulation and competition provide a foundation for the model.

Fact 1: The regulator does not typically directly finance late-stage testing. About 3% of NIH’s

total research budget was devoted to financing the clinical testing of drugs ultimately approved

between 2010 and 2019 (Zhou et al. 2023). Rather than supporting late-stage trials for firms, NIH

funding is typically directed toward lower-cost, pre-clinical research conducted at universities. A

notable exception was the financing of late-stage testing for COVID-19 vaccines through Operation

Warp Speed (Snyder et al. 2023).

Fact 2: Phase II clinical testing provides limited information about a drug’s efficacy. Sample

sizes are typically smaller in phase II than in phase III and are insufficient for definitive inference.

Phase I and II trials tend to be short and small to minimize patient risk and financial cost, given

that most drugs entering phase II do not progress to phase III (DiMasi et al. 2016). We treat phase I

and II testing costs as sunk, but the model could be reframed to account for earlier decision-making

by the firm.

Fact 3: The regulator can require initiation of confirmatory testing as a condition for grant-

ing conditional approval. Beginning in fiscal year 2023, the U.S. Congress granted the FDA the

authority to mandate that trials begin before a drug receives conditional approval (US Congress

2023). Previously, some firms selling conditionally-approved drugs cited difficulty enrolling enough

patients in trials for rare diseases. This rationale was often a convenient excuse, as confirmatory

testing could reveal that the drug should be withdrawn (Xu et al. 2021, Frank et al. 2022). Among

46 cancer drugs granted conditional approval between 2013 and 2017, 15% had not completed

testing after a median of six years (Liu et al. 2024) (Figure EC.1). However, we expect that under

the new policy, the share of drugs failing to do timely testing will drop.

Fact 4: The regulator can grant conditional approval for only a share of patients. For example,

approval may be limited to those with the most severe conditions, or coverage may be restricted

so that only some patients are reimbursed while others pay out-of-pocket. In the United States,

the FDA determines approval scope, while Medicare sets coverage rules, both under the Secretary

of Health and Human Services. After conditional approval of an Alzheimer’s drug, for instance,

Medicare covered it only for patients who agreed to participate in a study of its efficacy (Centers

for Medicare & Medicaid Services 2022). For tractability, we assume conditional approval applies

to a share of uniform patients.

Fact 5: Testing costs are privately known by the firm. According to Light and Warburton (2005),

“this science-based industry refuses to allow independent parties to check the validity of their cost
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Figure EC.1 For 46 cancer indications conditionally approved in the U.S. between 2013 and 2017, 43%

received final approval after demonstrating statistically significant benefits in confirmatory trials, 20% received

final approval despite Liu et al. (2024) finding no evidence of statistically significant benefits, 22% were

withdrawn, and 15% remained in ongoing testing. Source: Authors’ figure based on data from Liu et al. (2024).

.

data and analyze it so that policy can be based on solid, objective, reproducible evidence.” Firms

do not disclose testing costs, because it is hard to allocate joint costs. Also, firm executives fear

being held up. Disclosing testing costs could lead the government to reimburse only the testing

costs, without compensating for the failures of other drugs or the opportunity cost of capital. For

external parties, it is especially hard to benchmark costs for conditionally-approved drugs because

they tend to be novel with few comparable examples.

Fact 6: Information from use of the drug outside randomized trials is not very informative, as it

is noisy and subject to selection bias. For example, if healthier, high-income patients are more likely

to purchase a drug, observed outcomes may overstate efficacy. Accordingly, our model assumes

that usage after conditional approval does not affect phase III testing. If “real-world evidence”

were informative, it could reduce firms’ testing costs by allowing smaller or shorter trials. Hence,

we might underestimate the value of conditional approval.

Fact 7: Drugs given conditional approval are typically for rare diseases and do not have com-

petition. From 2015 to 2024, more than 80% of FDA conditional approvals were for rare diseases

(see Figure EC.2). At launch, drugs for rare diseases typically have no competition, due to orphan

drug exclusivity of seven years in the U.S. and ten years in Europe. Even years later, markets for

rare diseases are often too small to attract multiple firms.

Fact 8: Conditional approval increases the firm’s revenue during conditional approval and several

years afterward. Drug revenue typically rises during the first five years after approval (Robey and

David 2016), as physicians and patients become more familiar with the drug. Demand is higher for

drugs with which physicians and patients have more experience (Ridley and Lee 2020).
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Figure EC.2 The FDA granted conditional approval to 79 drugs between 2015 and 2024. Most of the

conditionally-approved drugs treat rare diseases. The official FDA term for conditional approval is “accelerated

approval” and for rare disease is “orphan disease.” Source: Authors’ analysis of data on approvals of new

molecules by the Center for Drug Evaluation and Research.

Fact 9: Conditional approval provides earlier revenue for some firms that would otherwise not

continue testing. According to the head of the FDA center responsible for gene therapies and

vaccines, “The wherewithal to do a three-year study or a four-year study without having a revenue

stream, it’s just beyond many companies that are startups. So having the accelerated approval

process is a way to get there” (Armstrong 2024).

Fact 10: A discrete-time model is appropriate in our setting because human clinical trials

typically involve pre-specified endpoints and results that are announced all at once. Typically,

phase III trials have pre-specified endpoints, followed by a comprehensive analysis by the firm

before regulatory submission. However, there are exceptions, such as early-stage animal testing

and the rolling review of the COVID-19 vaccine, which have a more flexible and exploratory set of

protocols.

Fact 11: The regulator can signal to the firm that it will grant final approval to a drug that

narrowly misses the efficacy threshold. The FDA has granted final approval to several drugs that did

not prove efficacy (Figure EC.1). Furthermore, the FDA will advise some firms before confirmatory

testing about how to design their trials and what evidence will merit approval. Under a 2012 law,

FDA staff support the developer of a potential breakthrough drug by “providing timely advice to,

and interactive communication with, the sponsor regarding the development of the drug to ensure
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that the development program to gather the nonclinical and clinical data necessary for approval is

as efficient as practicable.”

EC.2. Calibration

We calibrate the model to illustrate its application and to inform policy recommendations. Our

approach proceeds in five steps: First, we select a representative drug. Second, we use the literature

on drug development to determine values for the probability of technical success and the discount

rate. Third, we estimate the testing cost for a representative drug. Fourth, we estimate drug doses

and revenue for a representative drug. Fifth, we apply these parameter values to calculate the

cumulative net present value for a representative drug.

We select a representative drug that received conditional approval: avelumab (brand name Baven-

cio). In 2017, the FDA granted conditional approval for avelumab to treat skin cancer based on

tumor shrinkage. In 2023, full approval was granted based on clinical benefits. Following its initial

approval for skin cancer, avelumab was also approved for bladder and kidney cancers.

The discount rate (δ) is set at 10.5% (DiMasi et al. 2016), and for simplicity, we assume that

both the regulator and the firm use the same discount rate.

EC.2.1. Estimated testing costs

We assume that phase III clinical testing costs are evenly distributed over the first three years,

with the regulator making the final approval decision at the start of the fifth year. The firm sells at

monopoly prices for thirteen years, after which we assume the net revenue following generic entry

is negligible.

To establish the lower and upper bounds for avelumab’s testing costs, we use estimates from

similar drugs. A prior study analyzed financial filings from companies with few drugs and limited

joint costs, which made it easier to attribute expenses to a specific drug. Among 355 drugs approved

by the FDA between 2009 and 2018, Wouters et al. (2020) identified sufficient testing cost data

for 63 drugs. Of these, 13 drugs had phase III testing cost estimates in the same therapeutic

class (antineoplastic and immunomodulating agents) as avelumab. For the low estimate, we used

brigatinib’s phase III testing cost of $98.1 million (in 2018 dollars). For the high estimate, we used

$630.7 million for sarilumab. However, these estimates are imprecise. For example, the authors

expressed low confidence in the phase III cost estimate for sarilumab.

EC.2.2. Estimated doses and sales

Next, we estimate the total doses and revenue for the representative drug. We have only publicly

available data on Medicare and Medicaid patients so we extrapolate to the total market. Also, our

analysis uses data on total sales of avelumab across all indications, meaning the reported sales
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Avelumab
Medicaid+Medicare ($MM)a 121
Total sales ($MM)b 290
Net revenue ($MM)c 217
Price per dose ($)d 86
Production cost per dose ($)e 21.5
Total doses (MM)f 3.37
Willingness to pay per dose ($)g 118

a Medicaid and Medicare Part B spending (Source: (Centers for Medicare & Medicaid Ser-
vices 2024))

b “Medicaid+Medicare” multiplied by 2.4 because Medicaid and Medicare accounted for 42%
of total U.S. prescription drug spending at the time (Source: National Health Expenditures)

c “Total sales” multiplied by 0.75 to reflect cost of goods sold is
25% of total sales (Source: Harmand, https://hardmanandco.com/
2021-pharma-statistics-long-term-cost-underlying-ebit-analysis/)

d We use Medicare prices because they are negotiated by commercial insurers and are similar
to commercial prices. We use Part B spending for avelumab, because it is mainly admin-
istered by providers. (Source: Centers for Medicare and Medicaid Services)

e “Price per dose” multiplied by 0.25 to reflect production cost of goods
sold is 25% of price (Source: Harmand, https://hardmanandco.com/
2021-pharma-statistics-long-term-cost-underlying-ebit-analysis/)

f “Total sales”/“Price per dose”
g We assume that the buyer’s surplus is half of the seller’s. Hence, the willingness to pay is
1.375 times the unit price.

Table EC.1 Annual doses and prices for avelumab in 2022.

figures are larger than those specific to the skin cancer indication. Table EC.1 summarizes the

annual sales data for avelumab in 2022.

We denote the firm’s net profit per dose by π and the number of doses sold during the conditional

approval period (under full conditional approval) by q. Both values are normalized to 1 in the

theoretical model (see Section 2).

The price per dose is $86, the production cost per dose is $21.5, and the patient’s willingness to

pay $118 (Table EC.1), and we have

π= $86− $21.5 = $64.5, v(0) = $86, v(1) = $118− $86 = $32. (EC.1)

Table EC.2 summarizes the (discounted) annual doses of avelumab. When full conditional

approval is granted, the firm’s total sales in the first 4 years are 4.36 million doses,12 and from

years 5 to 17, they are 15.43 million doses.13 When no conditional approval is granted, if the drug

12 Summation of Years 1 to 4 of “Discounted annual sales” for “Full conditional approval” in Table EC.2.

13 Summation of Years 5 to 17 of “Discounted annual sales” for “Full conditional approval” in Table EC.2.

https://hardmanandco.com/2021-pharma-statistics-long-term-cost-underlying-ebit-analysis/
https://hardmanandco.com/2021-pharma-statistics-long-term-cost-underlying-ebit-analysis/
https://hardmanandco.com/2021-pharma-statistics-long-term-cost-underlying-ebit-analysis/
https://hardmanandco.com/2021-pharma-statistics-long-term-cost-underlying-ebit-analysis/
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receives final approval, the firm’s total sales are 11.34 million.14 By their definitions in Table EC.3,

the values of q, λ0, and λ1 are determined by q= 4.36
λ0 = 11.34
λ0 +λ1 = 15.43

⇒

 q= 4.36
λ0 = 11.34
λ1 = 4.09

. (EC.2)

The discounted quantities sold from year 18 onward are given by15

∆=
∞∑

i=18

3.37

(1+10.5%)i
= 5.88. (EC.3)

Under fixed duration, if conditional approval is granted, the firm is only able to sell at the

monopolistic price ($86) until year 13. In this case, the total discounted doses in the final approval

period decrease by 2.89 million.16 Conversely, the total discounted doses during the competitive

period increase by the same amount, as Years 14 to 17 are now included in the competitive period.

The estimated model parameters are summarized in Table EC.3.

EC.2.3. Estimated cumulative net present value

Next, we apply the parameter values to estimate the cumulative net present value for avelumab

when the testing cost is at its maximum value, cH = $630.7 million, is evenly distributed over the

first three years, and full conditional approval is granted. Table EC.4 displays the firm’s cumulative

net present value.

Figure EC.3 shows the firm’s cumulative net present value under various scales of conditional

approval. The upper and lower curves in each panel represent the firm’s cumulative net profit when

testing costs are at their lower bound (cL) and upper (cH) bound. For testing costs that fall within

[cL, cH ], the corresponding curve lies in the shaded area. In the absence of conditional approval

(α1 = 0), firms with high testing costs will forgo testing, causing a potential societal loss.

EC.2.4. Calibrated optimal policy

Next, we estimate the optimal withdrawal rate, i.e., the optimal share of conditionally approved

drugs ultimately denied final approval (Figure EC.4). If the regulator grants conditional approval,

given the final approval threshold η̂, the probability of withdrawal is G(η̂).

In Figure EC.4, there are two discontinuities. First, the regulator does not grant conditional

approval to drugs with very low expected value (vE < v2). Second, there is a discontinuity at v4

because the final approval threshold jumps to η̄2 at this point.

14 Summation of Years 5 to 17 of “Discounted annual sales” for “No conditional approval” in Table EC.2.

15 The values 3.37 and 10.5% come from the “Total doses” line in Table EC.1 and the discount rate (δ), respectively.

16 Summation of Years 14 to 17 of “Discounted annual sales” for “Full conditional approval” in Table EC.2.
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Figure EC.3 Firm’s cumulative net profit under different scales of conditional approval and testing costs.

Source: Authors’ analysis using a representative drug avelumab.

The optimal withdrawal rate for drugs with vE = 0 is 23%. How does this compare to the FDA’s

actual rate? A study of cancer drugs granted conditional approval between 2013 and 2017 found

that 22% were later withdrawn (Figure EC.1). If the withdrawal rate for drugs with vE = 0 is equal

to the FDA’s actual rate (Figure EC.1), then the agency was conditionally approving a mix of

drugs with positive and negative expected values.

These results suggest the FDA was historically close to the optimum and, if anything, slightly

too conservative. However, the leader of the FDA gene therapy unit appointed in 2025 has adopted

a more conservative stance on conditional approval (The Economist 2025). Our calibrated results

suggest that this change will reduce social welfare.
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Figure EC.4 Proportion of drugs withdrawn after receiving conditional approval. Source: Authors’ analysis

based on a representative drug.
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Notation Description Value Source
δ discount rate 10.5% DiMasi et al. (2016)
cL lower bound of the testing cost 98.1($MM) The estimated phase III testing

cost of a similar drug (brigatinib)
as estimated by Wouters et al.
(2020).

cH upper bound of the testing cost 630.7($MM) The estimated phase III testing
cost of a similar drug (sarilumab)
as estimated by Wouters et al.
(2020).

v(0) regulator’s loss from administering
an ineffective dose

$86 See equation (EC.1).

v(1) regulator’s payoff from administer-
ing an effective dose

$32 See equation (EC.1).

Γ price drop per dose after the
monopolistic period

$64.5 See equation (EC.1).

q total discounted doses with full
conditional approval before final
approval

4.36(MM) See equation (EC.2).

λ0 total discounted doses from final
approval when α1 = 0

11.34(MM) See equation (EC.2).

λ1 total boosted discounted doses in
the monopolistic period after final
approval when α1 = 1

4.09(MM) See equation (EC.2).

∆ total discounted doses after the
monopolistic period

5.88(MM) See equation (EC.3).

Table EC.3 Estimated model parameters for avelumab.
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EC.3. Flexible exclusivity

Optimal conditional approval and leniency may depend on the length of exclusivity. Some drug

classes receive extensions. For example, antibiotics gain five additional years under the GAIN Act

(Kong and Zhao 2024). Longer exclusivity increases monopoly sales, boosting firm profits but

delaying savings for payers. Exclusivity extensions can therefore strengthen development incentives

and reduce the need for conditional approval and leniency, all else equal.

Recall that λ0 denotes the number of doses sold before the competitive period under no condi-

tional approval. Likewise, λ0+λ1 denotes the number of doses sold under full conditional approval.

In Figure EC.5, the curve starting at time 0 shows annual sales with full conditional approval; the

parallel curve beginning at t1 represents sales without conditional approval. Because the competi-

tive period begins at time t2 (as illustrated in Figure 1), λ0 and λ1 correspond to the gray areas in

the middle and on the left, respectively. The number of doses sold during the competitive period,

denoted by ∆, is represented by the rectangle on the right. Because annual sales peak in six years

(Robey and David 2016), extending the firm’s monopolistic period beyond 13 years does not affect

λ1 and only increases λ0. Given that λ0 +∆ represents the total number of doses sold after final

approval, corresponding to the area under the curve starting at t1, any increase in λ0 leads to an

equivalent decrease in ∆. This adjustment corresponds to a rightward shift of time t2 in Figure

EC.5.

Time

Annual
Sales

0 t1 t2Period 1 Period 2 Period 3

a1 = 1 a1 = 0

1+λ1 λ0 ∆

Figure EC.5 Annual sales of the drug under no conditional approval and full conditional approval.

Let λ̂0 and ∆ denote the calibrated values of λ0 and ∆, respectively.17 In Figure EC.6, we plot the

testing threshold, the scale of conditional approval, the final approval threshold, and the expected

payoffs of both the regulator and the firm (with testing costs $200 and $500 million) as functions of

λ0, varying from λ̂0 to λ̂0+∆. The value λ̂0 corresponds to a scenario in which the firm’s monopoly

power ends at the end of year 13, while the upper bound λ̂0+∆ reflects a case where the regulator

17 See Appendix EC.2 for more details.
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Figure EC.6 The testing threshold, scale of conditional approval, threshold for final approval, and the expected

payoffs of the regulator and the firm (with different testing costs) under calibrated model parameters. The x-axis

ranges from calibrated λ̂0 to λ̂0 +∆.
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extends monopoly power indefinitely. Fixing λ0, the number of doses sold in the competitive period

is λ̂0 +∆−λ0.

As shown in panels (b) and (c), under the calibrated model parameters, when λ0 increases, the

scale of conditional approval decreases, and the final approval threshold increases. The testing

threshold, illustrated in panel (a), also declines, indicating that the regulator induces less firm

participation as the length of exclusivity increases. Finally, both the regulator (panel (d)) and

the firm’s expected payoffs (panel (e)) decrease as λ0 increases, suggesting that it is optimal to

maintain the current exclusivity timeline rather than granting additional exclusivity. Given the

firm’s testing cost, the monotonicity of its expected payoff in λ0 follows from the monotonicity of

the testing threshold ĉ. Specifically, since the expected payoff of a firm with production cost ĉ is

zero, the expected payoff for a firm with cost c is given by (c− ĉ)+. This observation also highlights

that, although firms generally favor extended exclusivity, they could be worse off if the regulator

reoptimizes its policy in response to the change.
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