Extracting Relationships by Multi-Domain Matching
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Motivation & Contribution Measure the Difference between Domains

1) We study domain adaptation from multiple sources. All data share the .
same labels (i.e. diagnosis), but the underlying reason for the decision
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Experiments on Digit Dataset

All domains, including sources and target, are denoted as D, for *  We use MNIST, MNIST-M, SVHN and USPS datasets.

s=1,--85.

(i.e. cause) may be different in each domain. *  We have feature encoder E(+; 85), and a domain discriminator MNIST
2) The training corpus is constructed from only a multiple sources within fs(-) for each domains =1, -, S. MNISTM
a larger population. * Distance between two domains Dg and Dg: SVHN
3) We hypothesize that each domain should be similar to a few other
domains and share statistical strength, while many other domains are d(Ds,Dyr) = ; ﬁ??\xq *x~DS[f9(E(x))] — LEx~.p, [fs(E(x))] USPS
irrelevant (i.e different reasons for outcomes). , vl L — .
| | | » Distance between domain D¢ and all other domains Ds: * Treat MNIST-M as target and the other three as training.
4) We propose the Multiple Domain Matching Network (MDMN) to
. . . B MINIST B MNISTM USPS Bl SVHN
perform unsupervised domain adaptation as well as extract these d(D ) ) — max T [F.(E()] — E. = [£.(E(x))] ) ] .
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Calculating Domain Weights s
* Domain weights wg = [wgq, Wsp, -+, Wsg] denotes the similarity
Domain between domain Ds and all other domains. $ 5
Adapter * First, calculate d(Ds, D) for every two domains in the set, ?8 3
including the target. Note that d;, = d(D, D) = 0. s PHE T,

) dSS])'
Can set a temperature variable in the softmax if desired

W, and parameters of the networks are updated iteratively.

Learned Graph from Domain Weights

* Second, compute w, = softmax(|dq,
The features should be learned to perform well on label prediction o

and perform poorly on a domain loss or prediction: °
ming . g, maxg, Ly — Lp

Embedding Dimension 2
Embedding Dimension 2

Embedding Dimension 1

MDMN

Embedding Dimension 1

DANN
Experiments on EEG Dataset
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_ MNISTM i MNISTM Learned Subject Dataset SEED | ASD

| Relationship from SyncNet 49.29 | 62.06

' Autism Spectral TCA 39.70 | 55.65

: Disorder Dataset SA 5390 | 62.53

\ ITL 45.27 | 54.62
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Network MDMN 60.59 67.78




